WO2021134321A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2021134321A1
WO2021134321A1 PCT/CN2019/130151 CN2019130151W WO2021134321A1 WO 2021134321 A1 WO2021134321 A1 WO 2021134321A1 CN 2019130151 W CN2019130151 W CN 2019130151W WO 2021134321 A1 WO2021134321 A1 WO 2021134321A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
optical lens
curvature
radius
Prior art date
Application number
PCT/CN2019/130151
Other languages
English (en)
French (fr)
Inventor
孙雯
陈佳
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Priority to PCT/CN2019/130151 priority Critical patent/WO2021134321A1/zh
Publication of WO2021134321A1 publication Critical patent/WO2021134321A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
  • the object of the present invention is to provide an imaging optical lens, which has good optical performance, high resolution, wide angle, and good imaging quality.
  • an embodiment of the present invention provides an imaging optical lens.
  • the imaging optical lens includes a first lens, a second lens, a third lens, and a fourth lens in order from the object side to the image side.
  • At least one of the first lens to the fifth lens includes a free-form surface, the focal length of the first lens is f1, the focal length of the second lens is f2, and the focal length of the third lens is f3, so The focal length of the fourth lens is f4, the radius of curvature of the image side of the first lens is R2, the radius of curvature of the image side of the third lens is R6, and the following relationship is satisfied: 0 ⁇ f1; 0 ⁇ R2; f2 ⁇ 0; f3 ⁇ 0; 0 ⁇ R6; 0 ⁇ f4.
  • the focal length of the imaging optical lens is f
  • the curvature radius of the object side of the first lens is R1
  • the axial thickness of the first lens is d1
  • the total optical length of the imaging optical lens is TTL, and Satisfy the following relations: 0.43 ⁇ f1/f ⁇ 2.85; -3.81 ⁇ (R1+R2)/(R1-R2) ⁇ -0.75; 0.05 ⁇ d1/TTL ⁇ 0.19.
  • the focal length of the imaging optical lens is f
  • the radius of curvature of the object side of the second lens is R3
  • the radius of curvature of the image side of the second lens is R4
  • the on-axis thickness of the second lens is d3
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship: -56.60 ⁇ f2/f ⁇ -1.43; 0.25 ⁇ (R3+R4)/(R3-R4) ⁇ 32.39; 0.03 ⁇ d3/TTL ⁇ 0.09.
  • the focal length of the imaging optical lens is f
  • the radius of curvature of the object side of the third lens is R5
  • the axial thickness of the third lens is d5
  • the total optical length of the imaging optical lens is TTL, and Satisfy the following relations: -12.93 ⁇ f3/f ⁇ -2.94; 1.85 ⁇ (R5+R6)/(R5-R6) ⁇ 8.05; 0.03 ⁇ d5/TTL ⁇ 0.09.
  • the focal length of the imaging optical lens is f
  • the radius of curvature of the object side of the fourth lens is R7
  • the radius of curvature of the image side of the fourth lens is R8, and the on-axis thickness of the fourth lens is d7
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship: 0.28 ⁇ f4/f ⁇ 1.64; 0.64 ⁇ (R7+R8)/(R7-R8) ⁇ 2.95; 0.08 ⁇ d7/TTL ⁇ 0.34.
  • the focal length of the imaging optical lens is f
  • the focal length of the fifth lens is f5
  • the radius of curvature of the object side of the fifth lens is R9
  • the radius of curvature of the image side of the fifth lens is R10
  • the axial thickness of the fifth lens is d9
  • the total optical length of the imaging optical lens is TTL, and satisfies the following relationship: -2.28 ⁇ f5/f ⁇ -0.52; 1.08 ⁇ (R9+R10)/(R9-R10 ) ⁇ 3.77; 0.04 ⁇ d9/TTL ⁇ 0.21.
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship: TTL ⁇ 4.45.
  • the aperture F number of the imaging optical lens is Fno, and the following relational expression is satisfied: Fno ⁇ 2.08.
  • the imaging optical lens according to the present invention has good optical performance, high resolution, wide angle, and good imaging quality. It is especially suitable for high-pixel CCD, CMOS and other imaging elements. Mobile phone camera lens assembly and WEB camera lens.
  • FIG. 1 is a schematic diagram of the structure of an imaging optical lens according to a first embodiment of the present invention
  • Fig. 2 is a situation in which the RMS spot diameter of the imaging optical lens shown in Fig. 1 is in the first quadrant;
  • FIG. 3 is a schematic diagram of the structure of an imaging optical lens according to a second embodiment of the present invention.
  • Fig. 4 is a case where the RMS spot diameter of the imaging optical lens shown in Fig. 3 is in the first quadrant;
  • FIG. 5 is a schematic diagram of the structure of an imaging optical lens according to a third embodiment of the present invention.
  • Fig. 6 is a case where the RMS spot diameter of the imaging optical lens shown in Fig. 5 is in the first quadrant;
  • FIG. 7 is a schematic structural diagram of an imaging optical lens according to a fourth embodiment of the present invention.
  • FIG. 8 is a situation in which the RMS spot diameter of the imaging optical lens shown in FIG. 7 is in the first quadrant;
  • FIG. 9 is a schematic diagram of the structure of an imaging optical lens according to a fifth embodiment of the present invention.
  • FIG. 10 is a case where the RMS spot diameter of the imaging optical lens shown in FIG. 9 is in the first quadrant;
  • FIG. 11 is a schematic diagram of the structure of an imaging optical lens according to a sixth embodiment of the present invention.
  • FIG. 12 is a case where the RMS spot diameter of the imaging optical lens shown in FIG. 11 is in the first quadrant.
  • FIG. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention.
  • the imaging optical lens 10 includes five lenses. Specifically, the imaging optical lens 10 includes an aperture S1, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5 in sequence from the object side to the image side.
  • An optical element such as an optical filter GF may be provided between the fifth lens L5 and the image plane Si.
  • the first lens L1 is made of plastic material
  • the second lens L2 is made of plastic material
  • the third lens L3 is made of plastic material
  • the fourth lens L4 is made of plastic material
  • the fifth lens L5 is made of plastic material.
  • the first lens L1 to the fifth lens L5 includes a free-form surface.
  • the focal length of the first lens L1 is defined as f1, and the following relationship is satisfied: 0 ⁇ f1.
  • the radius of curvature of the image side surface of the first lens L1 is defined as R2, which satisfies the following relationship: 0 ⁇ R2.
  • the focal length of the second lens L2 is defined as f2, which satisfies the following relationship: f2 ⁇ 0.
  • the focal length of the third lens L3 is defined as f3, which satisfies the following relationship: f3 ⁇ 0.
  • the radius of curvature of the image side surface of the third lens L3 is defined as R6, which satisfies the following relationship: 0 ⁇ R6.
  • the focal length of the fourth lens is defined as f4, which satisfies the following relationship: 0 ⁇ f4.
  • the free-form surface helps to correct aberrations such as astigmatism, curvature of field and distortion of the wide-angle optical system.
  • the imaging optical lens 10 satisfies the above relationship, the imaging optical lens 10 can meet the design requirements of high resolution, wide angle, and good image quality.
  • the focal length of the first lens L1 is defined as f1, and the focal length of the imaging optical lens 10 is f, which satisfies the following relationship: 0.43 ⁇ f1/f ⁇ 2.85, which specifies the ratio of the positive refractive power of the first lens L1 to the overall focal length ratio.
  • the first lens has an appropriate positive refractive power, which is beneficial to reduce system aberrations, and at the same time, is beneficial to the development of ultra-thin and wide-angle lenses.
  • 0.70 ⁇ f1/f ⁇ 2.28 is satisfied.
  • the curvature radius of the object side surface of the first lens L1 is R1
  • the curvature radius of the image side surface of the first lens L1 is R2, which satisfies the following relationship: -3.81 ⁇ (R1+R2)/(R1-R2) ⁇ -0.75
  • it satisfies -2.38 ⁇ (R1+R2)/(R1-R2) ⁇ -0.94.
  • the axial thickness of the first lens L1 is d1
  • the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.05 ⁇ d1/TTL ⁇ 0.19, which is beneficial to achieve ultra-thinness.
  • 0.08 ⁇ d1/TTL ⁇ 0.15 is satisfied.
  • the focal length of the second lens L2 is defined as f2, and the focal length of the imaging optical lens 10 is f, which satisfies the following relationship: -56.60 ⁇ f2/f ⁇ -1.43, by controlling the negative power of the second lens L2 In a reasonable range, it is helpful to correct the aberration of the optical system. Preferably, -35.37 ⁇ f2/f ⁇ -1.79 is satisfied.
  • the curvature radius of the object side surface of the second lens L2 is R3, and the curvature radius of the image side surface of the second lens L2 is R4, which satisfies the following relationship: 0.25 ⁇ (R3+R4)/(R3-R4) ⁇ 32.39, which is specified
  • R3+R4/(R3-R4) ⁇ 32.39 which is specified
  • it is beneficial to correct the problem of axial chromatic aberration.
  • it satisfies 0.39 ⁇ (R3+R4)/(R3-R4) ⁇ 25.91.
  • the axial thickness of the second lens L2 is d3, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.03 ⁇ d3/TTL ⁇ 0.09, which is beneficial to realize ultra-thinness.
  • 0.04 ⁇ d3/TTL ⁇ 0.08 is satisfied.
  • the focal length of the third lens L3 is defined as f3, and the focal length of the imaging optical lens 10 is f, which satisfies the following relationship: -12.93 ⁇ f3/f ⁇ -2.94.
  • the system has a relatively high Good imaging quality and low sensitivity.
  • it satisfies -8.08 ⁇ f3/f ⁇ -3.67.
  • the curvature radius of the object side surface of the third lens L3 is R5, and the curvature radius of the image side surface of the third lens L3 is R6, which satisfies the following relationship: 1.85 ⁇ (R5+R6)/(R5-R6) ⁇ 8.05.
  • the shape of the three lens within the range specified by the conditional formula, can ease the deflection of light passing through the lens and effectively reduce aberrations.
  • 2.97 ⁇ (R5+R6)/(R5-R6) ⁇ 6.44 is satisfied.
  • the axial thickness of the third lens L3 is d5, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.03 ⁇ d5/TTL ⁇ 0.09, which is conducive to achieving ultra-thinness.
  • 0.04 ⁇ d5/TTL ⁇ 0.08 is satisfied.
  • the focal length of the fourth lens L4 is defined as f4, and the focal length of the imaging optical lens 10 is f, which satisfies the following relationship: 0.28 ⁇ f4/f ⁇ 1.64, which specifies the ratio of the focal length of the fourth lens to the focal length of the system.
  • the range of the formula helps to improve the performance of the optical system. Preferably, 0.46 ⁇ f4/f ⁇ 1.31 is satisfied.
  • the curvature radius of the object side surface of the fourth lens L4 is R7
  • the curvature radius of the image side surface of the fourth lens L4 is R8, which satisfies the following relationship: 0.64 ⁇ (R7+R8)/(R7-R8) ⁇ 2.95, which is specified
  • the axial thickness of the fourth lens L4 is d7, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.08 ⁇ d7/TTL ⁇ 0.34, which is beneficial to realize ultra-thinness.
  • 0.12 ⁇ d7/TTL ⁇ 0.27 is satisfied.
  • the focal length of the fifth lens L5 is defined as f5, the focal length of the imaging optical lens 10 is f, and the following relationship is satisfied: -2.28 ⁇ f5/f ⁇ -0.52.
  • the limitation on the fifth lens L5 can effectively make the camera
  • the light angle of the lens is gentle, reducing tolerance sensitivity. Preferably, it satisfies -1.43 ⁇ f5/f ⁇ -0.65.
  • the radius of curvature of the object side surface of the fifth lens is R9
  • the radius of curvature of the image side surface of the fifth lens is R10
  • the following relationship is satisfied: 1.08 ⁇ (R9+R10)/(R9-R10) ⁇ 3.77, which is specified
  • the shape of the fifth lens L5 is within the range, with the development of ultra-thin and wide-angle, it is beneficial to correct the aberration of the off-axis angle of view.
  • 1.73 ⁇ (R9+R10)/(R9-R10) ⁇ 3.02 is satisfied.
  • the axial thickness of the fifth lens L5 is d9, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.04 ⁇ d9/TTL ⁇ 0.21, which is beneficial to realize ultra-thinness.
  • 0.07 ⁇ d9/TTL ⁇ 0.17 is satisfied.
  • the aperture F number of the imaging optical lens 10 is Fno less than or equal to 2.08, a large aperture, and good imaging performance.
  • Fno is less than or equal to 2.04.
  • the total optical length TTL of the imaging optical lens 10 is less than or equal to 4.45 mm, which is beneficial to realize ultra-thinness.
  • the total optical length TTL is less than or equal to 4.24 mm.
  • the imaging optical lens 10 has good optical performance while adopting a free-form surface, which can match the design image area with the actual use area, and maximize the image quality of the effective area; according to the characteristics of the optical lens 10
  • the optical lens 10 is particularly suitable for mobile phone camera lens assemblies and WEB camera lenses composed of high-resolution CCD, CMOS, and other imaging elements.
  • the imaging optical lens 10 of the present invention will be described below with an example.
  • the symbols described in each example are as follows.
  • the unit of focal length, on-axis distance, radius of curvature, and on-axis thickness is mm.
  • TTL total optical length (the on-axis distance from the object side of the first lens L1 to the imaging surface), the unit is mm;
  • Table 1 and Table 2 show design data of the imaging optical lens 10 according to the first embodiment of the present invention.
  • the object side surface and the image side surface of the first lens L1 are free-form surfaces.
  • R The radius of curvature of the optical surface, and the radius of curvature of the center of the lens
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the radius of curvature of the object side surface of the fifth lens L5;
  • R10 the radius of curvature of the image side surface of the fifth lens L5;
  • d0 the on-axis distance from the aperture S1 to the object side of the first lens L1;
  • d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
  • d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the optical filter GF;
  • d11 the axial thickness of the optical filter GF
  • d12 the on-axis distance from the image side surface of the optical filter GF to the image surface
  • nd refractive index of d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • ndg the refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF.
  • Table 2 shows the aspheric surface data of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, A20 are the aspherical coefficients
  • r is the vertical distance between the point on the aspherical curve and the optical axis
  • z is the aspherical depth (aspherical surface The vertical distance between the point r from the optical axis and the tangent plane tangent to the vertex on the aspheric optical axis).
  • the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (1).
  • the present invention is not limited to the aspheric polynomial form represented by the formula (1).
  • Table 3 shows free-form surface data in the imaging optical lens 10 of the first embodiment of the present invention.
  • k is the conic coefficient
  • Bi is the aspheric coefficient
  • r is the vertical distance between the point on the free-form surface and the optical axis
  • x is the x-direction component of r
  • y is the y-direction component of r
  • z is the aspheric depth (aspheric surface The vertical distance between the point r from the optical axis and the tangent plane tangent to the vertex on the aspheric optical axis).
  • each free-form surface uses the extended polynomial surface type (Extended Polynomial) shown in the above formula (2).
  • extended Polynomial Extended Polynomial
  • the present invention is not limited to the free-form surface polynomial form expressed by the formula (2).
  • FIG. 2 shows a situation where the RMS spot diameter of the imaging optical lens 10 of the first embodiment is within the first quadrant. According to FIG. 2, it can be seen that the imaging optical lens 10 of the first embodiment can achieve good imaging quality.
  • Table 19 shows the values corresponding to various values in each of Examples 1, 2, 3, 4, 5, and 6 and the parameters specified in the conditional expressions.
  • the first embodiment satisfies each conditional expression.
  • the entrance pupil diameter ENPD of the imaging optical lens is 1.559 mm
  • the full field of view image height (diagonal direction) IH is 5.470 mm
  • the image height in the x direction is 4.200 mm
  • the image height in the y direction is 3.500. mm
  • the imaging effect is best in this rectangular range.
  • the diagonal FOV is 81.00°
  • the x-direction is 66.44°
  • the y-direction is 57.28°
  • wide-angle, ultra-thin The on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the second embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 4 and Table 5 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • the object side surface and the image side surface of the fifth lens L5 are free-form surfaces.
  • Table 5 shows the aspheric surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows free-form surface data in the imaging optical lens 20 according to the second embodiment of the present invention.
  • FIG. 4 shows a situation where the RMS spot diameter of the imaging optical lens 20 of the second embodiment is within the first quadrant. According to FIG. 4, it can be seen that the imaging optical lens 20 of the second embodiment can achieve good imaging quality.
  • the second embodiment satisfies various conditional expressions.
  • the entrance pupil diameter ENPD of the imaging optical lens is 1.58mm
  • the full-field image height (diagonal direction) IH is 5.470mm
  • the image height in the x direction is 4.200mm
  • the image height in the y direction is 3.500.
  • the imaging effect is best in this rectangular range
  • the diagonal FOV is 78.18°
  • the x-direction is 64.27°
  • the y-direction is 56.58°
  • wide-angle, ultra-thin The on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the third embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Tables 7 and 8 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.
  • the object side surface and the image side surface of the fourth lens L4 are free-form surfaces.
  • Table 8 shows the aspheric surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 9 shows free-form surface data in the imaging optical lens 30 of the third embodiment of the present invention.
  • FIG. 6 shows a situation in which the RMS spot diameter of the imaging optical lens 30 of the third embodiment is within the first quadrant. According to FIG. 6, it can be seen that the imaging optical lens 30 of the third embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens is 1.539mm
  • the full-field image height (diagonal direction) IH is 5.470mm
  • the image height in the x direction is 4.200mm
  • the image height in the y direction is 3.500.
  • the imaging effect is the best in this rectangular range
  • the diagonal FOV is 80.70°
  • the x-direction is 66.68°
  • the y-direction is 57.52°
  • wide-angle, ultra-thin The on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the fourth embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 10 and Table 11 show design data of the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • the object side surface and the image side surface of the fifth lens L5 are free-form surfaces.
  • Table 11 shows the aspheric surface data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • Table 12 shows free-form surface data in the imaging optical lens 40 of the fourth embodiment of the present invention.
  • FIG. 8 shows a situation where the RMS spot diameter of the imaging optical lens 40 of the fourth embodiment is within the first quadrant. According to FIG. 8, it can be seen that the imaging optical lens 40 of the fourth embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens is 1.189mm
  • the full-field image height (diagonal direction) IH is 4.760mm
  • the image height in the x direction is 3.810mm
  • the image height in the y direction is 2.860. mm
  • the imaging effect is best in this rectangular range.
  • the diagonal FOV is 87.75°
  • the x-direction is 79.14°
  • the y-direction is 61.00°
  • wide-angle and ultra-thin The on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the fifth embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 13 and Table 14 show design data of the imaging optical lens 50 of the fifth embodiment of the present invention.
  • Table 14 shows the aspheric surface data of each lens in the imaging optical lens 50 according to the fifth embodiment of the present invention.
  • Table 15 shows free-form surface data in the imaging optical lens 50 of the fifth embodiment of the present invention.
  • FIG. 10 shows a situation where the RMS spot diameter of the imaging optical lens 50 of the fifth embodiment is within the first quadrant. According to FIG. 10, it can be seen that the imaging optical lens 50 of the fifth embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens is 1.186 mm
  • the full-field image height (diagonal direction) IH is 4.760 mm
  • the image height in the x direction is 3.810 mm
  • the image height in the y direction is 2.860. mm
  • the imaging effect is best in this rectangular range
  • the diagonal FOV is 91.77°
  • the x-direction is 77.89°
  • the y-direction is 61.03°
  • wide-angle, ultra-thin The on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the sixth embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 16 and Table 17 show design data of the imaging optical lens 60 of the sixth embodiment of the present invention.
  • the object side surface and the image side surface of the second lens L2 are free-form surfaces.
  • Table 17 shows the aspheric surface data of each lens in the imaging optical lens 60 of the sixth embodiment of the present invention.
  • Table 18 shows free-form surface data in the imaging optical lens 60 of the sixth embodiment of the present invention.
  • FIG. 12 shows a situation where the RMS spot diameter of the imaging optical lens 60 of the sixth embodiment is within the first quadrant. According to FIG. 12, it can be seen that the imaging optical lens 60 of the sixth embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens is 1.19mm
  • the full-field image height (diagonal direction) IH is 4.760mm
  • the image height in the x direction is 3.810mm
  • the image height in the y direction is 2.860. mm
  • the imaging effect is best in this rectangular range
  • the diagonal FOV is 91.73°
  • the x-direction is 77.66°
  • the y-direction is 60.86°
  • wide-angle, ultra-thin The on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 6 R2 23.20 17.88 17.92 5.93 5.71 5.47
  • R6 3.56 3.97 3.69 2.67 2.86 2.89 f 3.117 3.159 3.077 2.405 2.400 2.407 f1 2.711 2.780 2.740 4.574 4.523 4.379 f2 -6.677 -6.796 -6.986 -68.059 -40.695 -30.639 f3 -19.261 -18.884 -19.895 -12.229 -10.570 -10.881 f4 3.398 3.094 3.016 1.369 1.370 1.370 f5 -3.544 -3.602 -3.245 -1.877 -1.944 -1.935 Fno 2.00 2.00 2.00 2.02 2.02 2.02 2.02
  • Fno is the aperture F number of the imaging optical lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像光学镜头(10),自物侧至像侧依序包含:第一透镜(L1),第二透镜(L2),第三透镜(L3),第四透镜(L4),第五透镜(L5);第一透镜(L1)至第五透镜(L5)中的至少一个含自由曲面,第一透镜(L1)的焦距为f1,第二透镜(L2)的焦距为f2,第三透镜(L3)的焦距为f3,第四透镜(L4)的焦距为f4,第一透镜(L1)像侧面的曲率半径为R2,第三透镜(L3)像侧面的曲率半径为R6,且满足下列关系式:0≤f1;0≤R2;f2≤0;f3≤0;0≤R6;0≤f4。摄像光学镜头(10)具有良好光学性能的同时,满足高分辨率、广角、良好成像质量的设计要求。

Description

摄像光学镜头 技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
随着成像镜头的发展,人们对镜头的成像要求越来越高,镜头的“夜景拍照”和“背景虚化”也成为衡量镜头成像标准的重要指标。目前多采用旋转对称的非球面,这类非球面只在子午平面内具有充分的自由度,并不能很好的对轴外像差进行校正。自由曲面是一种非旋转对称的表面类型,能够更好地平衡像差,提高成像质量,而且自由曲面的加工也逐渐成熟。随着对镜头成像要求的提升,在设计镜头时加入自由曲面显得十分重要,尤其是在广角和超广角镜头的设计中效果更为明显。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,其具有良好光学性能的同时,具有高分辨率、广角、良好成像质量的特点。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜;
所述第一透镜至所述第五透镜中的至少一个含自由曲面,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第三透镜的焦距为f3,所述第四透镜的焦距为f4,所述第一透镜像侧面的曲率半径为R2,所述第三透镜像侧面的曲率半径为R6,且满足下列关系式:0≤f1;0≤R2;f2≤0;f3≤0;0≤R6;0≤f4。
优选地,所述摄像光学镜头的焦距为f,所述第一透镜物侧面的曲率半径为R1,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.43≤f1/f≤2.85;-3.81≤(R1+R2)/(R1-R2)≤-0.75;0.05≤d1/TTL≤0.19。
优选地,所述摄像光学镜头的焦距为f,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关 系式:-56.60≤f2/f≤-1.43;0.25≤(R3+R4)/(R3-R4)≤32.39;0.03≤d3/TTL≤0.09。
优选地,所述摄像光学镜头的焦距为f,所述第三透镜物侧面的曲率半径为R5,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-12.93≤f3/f≤-2.94;1.85≤(R5+R6)/(R5-R6)≤8.05;0.03≤d5/TTL≤0.09。
优选地,所述摄像光学镜头的焦距为f,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.28≤f4/f≤1.64;0.64≤(R7+R8)/(R7-R8)≤2.95;0.08≤d7/TTL≤0.34。
优选地,所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-2.28≤f5/f≤-0.52;1.08≤(R9+R10)/(R9-R10)≤3.77;0.04≤d9/TTL≤0.21。
优选地,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:TTL≤4.45。
优选地,所述摄像光学镜头的光圈F数为Fno,且满足下列关系式:Fno≤2.08。
本发明的有益效果在于:根据本发明的摄像光学镜头具有良好光学性能的同时,具有高分辨率、广角、良好成像质量的特点,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
为了更清楚地说明本发明实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的RMS光斑直径在第一象限内的情况;
图3是本发明第二实施方式的摄像光学镜头的结构示意图;
图4是图3所示摄像光学镜头的RMS光斑直径在第一象限内的情况;
图5是本发明第三实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的RMS光斑直径在第一象限内的情况;
图7是本发明第四实施方式的摄像光学镜头的结构示意图;
图8是图7所示摄像光学镜头的RMS光斑直径在第一象限内的情况;
图9是本发明第五实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的RMS光斑直径在第一象限内的情况;
图11是本发明第六实施方式的摄像光学镜头的结构示意图;
图12是图11所示摄像光学镜头的RMS光斑直径在第一象限内的情况。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括五个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5。第五透镜L5和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质。
在本实施方式中,定义所述第一透镜L1至所述第五透镜L5中的至少一个含自由曲面。定义所述第一透镜L1的焦距为f1,满足下列关系式:0≤f1。定义所述第一透镜L1像侧面的曲率半径为R2,满足下列关系式:0≤R2。定义所述第二透镜L2的焦距为f2,满足下列关系 式:f2≤0。定义所述第三透镜L3的焦距为f3,满足下列关系式:f3≤0。定义所述第三透镜L3像侧面的曲率半径为R6,满足下列关系式:0≤R6。定义所述第四透镜的焦距为f4,满足下列关系式:0≤f4。
自由曲面有助于广角光学系统像散、场曲和畸变等像差校正。在摄像光学镜头10满足上述关系式时,可以使摄像光学镜头10满足高分辨率、广角、良好成像质量的设计要求。
定义所述第一透镜L1的焦距为f1,所述摄像光学镜头10的焦距为f,满足下列关系式:0.43≤f1/f≤2.85,规定了第一透镜L1的正屈折力与整体焦距的比值。在规定的范围内时,第一透镜具有适当的正屈折力,有利于减小系统像差,同时有利于镜头向超薄化、广角化发展。优选地,满足0.70≤f1/f≤2.28。
所述第一透镜L1物侧面的曲率半径为R1,所述第一透镜L1像侧面的曲率半径为R2,满足下列关系式:-3.81≤(R1+R2)/(R1-R2)≤-0.75,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。优选地,满足-2.38≤(R1+R2)/(R1-R2)≤-0.94。
所述第一透镜L1的轴上厚度为d1,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.05≤d1/TTL≤0.19,有利于实现超薄化。优选地,满足0.08≤d1/TTL≤0.15。
定义所述第二透镜L2的焦距为f2,所述摄像光学镜头10的焦距为f,满足下列关系式:-56.60≤f2/f≤-1.43,通过将第二透镜L2的负光焦度控制在合理范围,有利于矫正光学系统的像差。优选地,满足-35.37≤f2/f≤-1.79。
所述第二透镜L2物侧面的曲率半径为R3,所述第二透镜L2像侧面的曲率半径为R4,满足下列关系式:0.25≤(R3+R4)/(R3-R4)≤32.39,规定了第二透镜L2的形状,在范围内时,随着镜头向超薄广角化发展,有利于补正轴上色像差问题,优选地,满足0.39≤(R3+R4)/(R3-R4)≤25.91。
所述第二透镜L2的轴上厚度为d3,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d3/TTL≤0.09,有利于实现超薄化。优选地,满足0.04≤d3/TTL≤0.08。
定义所述第三透镜L3的焦距为f3,所述摄像光学镜头10的焦距为f,满足下列关系式:-12.93≤f3/f≤-2.94,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-8.08≤f3/f≤-3.67。
所述第三透镜L3物侧面的曲率半径为R5,第三透镜L3像侧面的曲率半径为R6,满足下列关系式:1.85≤(R5+R6)/(R5-R6)≤8.05,规 定了第三透镜的形状,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足2.97≤(R5+R6)/(R5-R6)≤6.44。
所述第三透镜L3的轴上厚度为d5,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d5/TTL≤0.09,有利于实现超薄化。优选地,满足0.04≤d5/TTL≤0.08。
定义所述第四透镜L4的焦距为f4,所述摄像光学镜头10的焦距为f,满足下列关系式:0.28≤f4/f≤1.64,规定了第四透镜焦距与系统焦距的比值,在条件式范围内有助于提高光学系统性能。优选地,满足0.46≤f4/f≤1.31。
所述第四透镜L4物侧面的曲率半径为R7,所述第四透镜L4像侧面的曲率半径为R8,满足下列关系式:0.64≤(R7+R8)/(R7-R8)≤2.95,规定了第四透镜L4的形状,在范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足1.03≤(R7+R8)/(R7-R8)≤2.36。
所述第四透镜L4的轴上厚度为d7,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.08≤d7/TTL≤0.34,有利于实现超薄化。优选地,满足0.12≤d7/TTL≤0.27。
定义所述第五透镜L5的焦距为f5,所述摄像光学镜头10的焦距为f,满足下列关系式:-2.28≤f5/f≤-0.52,对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。优选地,满足-1.43≤f5/f≤-0.65。
所述第五透镜物侧面的曲率半径为R9,以及所述第五透镜像侧面的曲率半径为R10,且满足下列关系式:1.08≤(R9+R10)/(R9-R10)≤3.77,规定了第五透镜L5的形状,在范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足1.73≤(R9+R10)/(R9-R10)≤3.02。
所述第五透镜L5的轴上厚度为d9,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.04≤d9/TTL≤0.21,有利于实现超薄化。优选地,满足0.07≤d9/TTL≤0.17。
本实施方式中,摄像光学镜头10的光圈F数为Fno小于或等于2.08,大光圈,成像性能好。优选地,Fno小于或等于2.04。
本实施方式中,摄像光学镜头10的光学总长TTL小于或等于4.45毫米,有利于实现超薄化。优选地,光学总长TTL小于或等于4.24毫米。
当满足上述关系时,使得摄像光学镜头10具有良好光学性能的同 时,采用自由曲面,可实现设计像面区域与实际使用区域匹配,最大程度提升有效区域的像质;根据该光学镜头10的特性,该光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到成像面的轴上距离),单位为mm;
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。其中,第一透镜L1的物侧面和像侧面为自由曲面。
【表1】
Figure PCTCN2019130151-appb-000001
其中,各符号的含义如下。
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
d:透镜的轴上厚度以及透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到光学过滤片GF的物侧面的轴上距离;
d11:光学过滤片GF的轴上厚度;
d12:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure PCTCN2019130151-appb-000002
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数,r是非球面曲线上的点与光轴的垂直距离,z是非球面深度(非球面上距离光轴为r的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
z=(cr 2)/[1+{1-(k+1)(c 2r 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20      (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3示出本发明第一实施方式的摄像光学镜头10中的自由曲面数据。
【表3】
Figure PCTCN2019130151-appb-000003
Figure PCTCN2019130151-appb-000004
其中,k是圆锥系数,Bi是非球面系数,r是自由曲面上的点与光轴的垂直距离,x是r的x方向分量,y是r的y方向分量,z是非球面深度(非球面上距离光轴为r的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
Figure PCTCN2019130151-appb-000005
为方便起见,各个自由曲面使用上述公式(2)中所示的扩展多项式面型(Extended Polynomial)。但是,本发明不限于该公式(2)表示的自由曲面多项式形式。
图2示出了第一实施例的摄像光学镜头10的RMS光斑直径在第一象限内的情况,根据图2可知,第一实施方式的摄像光学镜头10能够实现良好的成像品质。
后出现的表19示出各实例1、2、3、4、5、6中各种数值与条件式中已规定的参数所对应的值。
如表19所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为1.559mm,全视场像高(对角线方向)IH为5.470mm,x方向像高为4.200mm,y方向像高为3.500mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为81.00°,x方向的视场角为66.44°,y方向的视场角为57.28°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方 式相同,以下只列出不同点。
表4、表5示出本发明第二实施方式的摄像光学镜头20的设计数据。其中,第五透镜L5的物侧面和像侧面为自由曲面。
【表4】
Figure PCTCN2019130151-appb-000006
表5示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表5】
Figure PCTCN2019130151-appb-000007
表6示出本发明第二实施方式的摄像光学镜头20中的自由曲面数据。
【表6】
Figure PCTCN2019130151-appb-000008
Figure PCTCN2019130151-appb-000009
图4示出了第二实施例的摄像光学镜头20的RMS光斑直径在第一象限内的情况,根据图4可知,第二实施方式的摄像光学镜头20能够实现良好的成像品质。
如表19所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为1.58mm,全视场像高(对角线方向)IH为5.470mm,x方向像高为4.200mm,y方向像高为3.500mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为78.18°,x方向的视场角为64.27°,y方向的视场角为56.58°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表7、表8示出本发明第三实施方式的摄像光学镜头30的设计数据。其中,第四透镜L4的物侧面和像侧面为自由曲面。
【表7】
Figure PCTCN2019130151-appb-000010
Figure PCTCN2019130151-appb-000011
表8示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表8】
Figure PCTCN2019130151-appb-000012
表9示出本发明第三实施方式的摄像光学镜头30中的自由曲面数据。
【表9】
Figure PCTCN2019130151-appb-000013
Figure PCTCN2019130151-appb-000014
图6示出了第三实施例的摄像光学镜头30的RMS光斑直径在第一象限内的情况,根据图6可知,第三实施方式的摄像光学镜头30能够实现良好的成像品质。
以下表19按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为1.539mm,全视场像高(对角线方向)IH为5.470mm,x方向像高为4.200mm,y方向像高为3.500mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为80.70°,x方向的视场角为66.68°,y方向的视场角为57.52°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第四实施方式)
第四实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表10、表11示出本发明第四实施方式的摄像光学镜头40的设计数据。其中,第五透镜L5的物侧面和像侧面为自由曲面。
【表10】
Figure PCTCN2019130151-appb-000015
表11示出本发明第四实施方式的摄像光学镜头40中各透镜的非 球面数据。
【表11】
Figure PCTCN2019130151-appb-000016
表12示出本发明第四实施方式的摄像光学镜头40中的自由曲面数据。
【表12】
Figure PCTCN2019130151-appb-000017
图8示出了第四实施例的摄像光学镜头40的RMS光斑直径在第一象限内的情况,根据图8可知,第四实施方式的摄像光学镜头40能够实现良好的成像品质。
以下表19按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为1.189mm,全视场像高(对角线方向)IH为4.760mm,x方向像高为3.810mm,y方向像高为2.860mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为87.75°,x方向的视场角为79.14°,y方向的视场角为61.00°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第五实施方式)
第五实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表13、表14示出本发明第五实施方式的摄像光学镜头50的设计数据。
【表13】
Figure PCTCN2019130151-appb-000018
表14示出本发明第五实施方式的摄像光学镜头50中各透镜的非球面数据。
【表14】
Figure PCTCN2019130151-appb-000019
Figure PCTCN2019130151-appb-000020
表15示出本发明第五实施方式的摄像光学镜头50中的自由曲面数据。
【表15】
Figure PCTCN2019130151-appb-000021
图10示出了第五实施例的摄像光学镜头50的RMS光斑直径在第一象限内的情况,根据图10可知,第五实施方式的摄像光学镜头50能够实现良好的成像品质。
以下表19按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为1.186mm,全视场像高(对角线方向)IH为4.760mm,x方向像高为3.810mm,y方向像高为2.860mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为91.77°,x方向的视场角为77.89°,y方向的视场角为61.03°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第六实施方式)
第六实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表16、表17示出本发明第六实施方式的摄像光学镜头60的设计数据。其中,第二透镜L2的物侧面和像侧面为自由曲面。
【表16】
Figure PCTCN2019130151-appb-000022
表17示出本发明第六实施方式的摄像光学镜头60中各透镜的非球面数据。
【表17】
Figure PCTCN2019130151-appb-000023
表18示出本发明第六实施方式的摄像光学镜头60中的自由曲面数据。
【表18】
Figure PCTCN2019130151-appb-000024
Figure PCTCN2019130151-appb-000025
图12示出了第六实施例的摄像光学镜头60的RMS光斑直径在第一象限内的情况,根据图12可知,第六实施方式的摄像光学镜头60能够实现良好的成像品质。
以下表19按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为1.19mm,全视场像高(对角线方向)IH为4.760mm,x方向像高为3.810mm,y方向像高为2.860mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为91.73°,x方向的视场角为77.66°,y方向的视场角为60.86°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
【表19】
参数及条件式 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
R2 23.20 17.88 17.92 5.93 5.71 5.47
R6 3.56 3.97 3.69 2.67 2.86 2.89
f 3.117 3.159 3.077 2.405 2.400 2.407
f1 2.711 2.780 2.740 4.574 4.523 4.379
f2 -6.677 -6.796 -6.986 -68.059 -40.695 -30.639
f3 -19.261 -18.884 -19.895 -12.229 -10.570 -10.881
f4 3.398 3.094 3.016 1.369 1.370 1.370
f5 -3.544 -3.602 -3.245 -1.877 -1.944 -1.935
Fno 2.00 2.00 2.00 2.02 2.02 2.02
其中,Fno为摄像光学镜头的光圈F数。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (8)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜;
    所述第一透镜至所述第五透镜中的至少一个含自由曲面,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第三透镜的焦距为f3,所述第四透镜的焦距为f4,所述第一透镜像侧面的曲率半径为R2,所述第三透镜像侧面的曲率半径为R6,且满足下列关系式:
    0≤f1;
    0≤R2;
    f2≤0;
    f3≤0;
    0≤R6;
    0≤f4。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第一透镜物侧面的曲率半径为R1,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.43≤f1/f≤2.85;
    -3.81≤(R1+R2)/(R1-R2)≤-0.75;
    0.05≤d1/TTL≤0.19。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -56.60≤f2/f≤-1.43;
    0.25≤(R3+R4)/(R3-R4)≤32.39;
    0.03≤d3/TTL≤0.09。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第三透镜物侧面的曲率半径为R5,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -12.93≤f3/f≤-2.94;
    1.85≤(R5+R6)/(R5-R6)≤8.05;
    0.03≤d5/TTL≤0.09。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.28≤f4/f≤1.64;
    0.64≤(R7+R8)/(R7-R8)≤2.95;
    0.08≤d7/TTL≤0.34。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -2.28≤f5/f≤-0.52;
    1.08≤(R9+R10)/(R9-R10)≤3.77;
    0.04≤d9/TTL≤0.21。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    TTL≤4.45。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈F数为Fno,且满足下列关系式:
    Fno≤2.08。
PCT/CN2019/130151 2019-12-30 2019-12-30 摄像光学镜头 WO2021134321A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130151 WO2021134321A1 (zh) 2019-12-30 2019-12-30 摄像光学镜头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130151 WO2021134321A1 (zh) 2019-12-30 2019-12-30 摄像光学镜头

Publications (1)

Publication Number Publication Date
WO2021134321A1 true WO2021134321A1 (zh) 2021-07-08

Family

ID=76686072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130151 WO2021134321A1 (zh) 2019-12-30 2019-12-30 摄像光学镜头

Country Status (1)

Country Link
WO (1) WO2021134321A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027549A1 (ko) * 2021-08-27 2023-03-02 엘지이노텍 주식회사 광학 모듈
WO2023027550A1 (ko) * 2021-08-27 2023-03-02 엘지이노텍 주식회사 광학 모듈

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104252032A (zh) * 2011-08-04 2014-12-31 大立光电股份有限公司 光学影像撷取镜片组
CN110007442A (zh) * 2019-05-08 2019-07-12 瑞声光电科技(苏州)有限公司 摄像光学镜头
US20190285860A1 (en) * 2015-02-17 2019-09-19 Largan Precision Co., Ltd. Image capturing lens assembly, image capturing device and electronic device
CN110515182A (zh) * 2019-08-19 2019-11-29 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN209803445U (zh) * 2019-05-06 2019-12-17 浙江舜宇光学有限公司 光学透镜组
CN110596859A (zh) * 2019-08-19 2019-12-20 瑞声通讯科技(常州)有限公司 摄像光学镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104252032A (zh) * 2011-08-04 2014-12-31 大立光电股份有限公司 光学影像撷取镜片组
US20190285860A1 (en) * 2015-02-17 2019-09-19 Largan Precision Co., Ltd. Image capturing lens assembly, image capturing device and electronic device
CN209803445U (zh) * 2019-05-06 2019-12-17 浙江舜宇光学有限公司 光学透镜组
CN110007442A (zh) * 2019-05-08 2019-07-12 瑞声光电科技(苏州)有限公司 摄像光学镜头
CN110515182A (zh) * 2019-08-19 2019-11-29 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN110596859A (zh) * 2019-08-19 2019-12-20 瑞声通讯科技(常州)有限公司 摄像光学镜头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027549A1 (ko) * 2021-08-27 2023-03-02 엘지이노텍 주식회사 광학 모듈
WO2023027550A1 (ko) * 2021-08-27 2023-03-02 엘지이노텍 주식회사 광학 모듈

Similar Documents

Publication Publication Date Title
WO2022021453A1 (zh) 摄像光学镜头
WO2022000658A1 (zh) 摄像光学镜头
WO2021168881A1 (zh) 摄像光学镜头
WO2022041391A1 (zh) 摄像光学镜头
WO2022000647A1 (zh) 摄像光学镜头
WO2022007027A1 (zh) 摄像光学镜头
WO2022011738A1 (zh) 摄像光学镜头
WO2021097929A1 (zh) 摄像光学镜头
WO2022032827A1 (zh) 摄像光学镜头
WO2022126700A1 (zh) 摄像光学镜头
WO2021097925A1 (zh) 摄像光学镜头
WO2022007022A1 (zh) 摄像光学镜头
WO2021168882A1 (zh) 摄像光学镜头
WO2022021455A1 (zh) 摄像光学镜头
WO2021168891A1 (zh) 摄像光学镜头
WO2021134321A1 (zh) 摄像光学镜头
WO2021134324A1 (zh) 摄像光学镜头
WO2022021458A1 (zh) 摄像光学镜头
WO2021168889A1 (zh) 摄像光学镜头
WO2021168884A1 (zh) 摄像光学镜头
WO2021168878A1 (zh) 摄像光学镜头
WO2022032828A1 (zh) 摄像光学镜头
WO2022032826A1 (zh) 摄像光学镜头
JP7237056B2 (ja) 撮像光学レンズ
WO2022126707A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958319

Country of ref document: EP

Kind code of ref document: A1