WO2021097925A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2021097925A1
WO2021097925A1 PCT/CN2019/123017 CN2019123017W WO2021097925A1 WO 2021097925 A1 WO2021097925 A1 WO 2021097925A1 CN 2019123017 W CN2019123017 W CN 2019123017W WO 2021097925 A1 WO2021097925 A1 WO 2021097925A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
curvature
optical lens
radius
Prior art date
Application number
PCT/CN2019/123017
Other languages
English (en)
French (fr)
Inventor
许民益
王康
彭海潮
寺岡弘之
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Publication of WO2021097925A1 publication Critical patent/WO2021097925A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Definitions

  • the present invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
  • the photosensitive devices of general photographic lenses are nothing more than photosensitive coupled devices (CCD) or complementary metal oxide semiconductor devices (Complementary Metal).
  • CCD photosensitive coupled devices
  • CMOS Sensor complementary metal oxide semiconductor devices
  • the lenses traditionally mounted on mobile phone cameras mostly adopt three-element, four-element or even five-element or six-element lens structures.
  • the common five-element lens already has good optical performance, its optical power, lens spacing and lens shape settings are still unreasonable, resulting in the lens structure having good optical performance while being unable to meet large apertures. , Ultra-thin, wide-angle design requirements.
  • the object of the present invention is to provide an imaging optical lens, which has good optical performance while meeting the design requirements of large aperture, ultra-thinness, and wide-angle.
  • the embodiments of the present invention provide an imaging optical lens, from the object side to the image side, including: a first lens with positive refractive power, a second lens with negative refractive power, and a negative refractive power.
  • the third lens, the fourth lens with positive refractive power, and the fifth lens with negative refractive power wherein the overall focal length of the imaging optical lens is f, the focal length of the first lens is f1, and the second lens
  • the focal length of the lens is f2, the radius of curvature of the object side of the first lens is R1, the radius of curvature of the image side of the first lens is R2, and the radius of curvature of the object side of the second lens is R3.
  • the radius of curvature of the image side surface of the second lens is R4
  • the radius of curvature of the object side surface of the fourth lens is R7
  • the radius of curvature of the image side surface of the fourth lens is R8, and the on-axis thickness of the fifth lens is d9
  • the on-axis distance from the image side surface of the fourth lens to the object side surface of the fifth lens is d8, which satisfies the following relationship: -0.45 ⁇ f1/f2 ⁇ -0.28; -2.80 ⁇ f2/f ⁇ -1.80 ;
  • the axial thickness of the first lens is d1
  • the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.07 ⁇ d1/TTL ⁇ 0.22.
  • the axial thickness of the second lens is d3, and the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: 0.02 ⁇ d3/TTL ⁇ 0.08.
  • the focal length of the third lens is f3, the radius of curvature of the object side of the third lens is R5, the radius of curvature of the image side of the third lens is R6, and the on-axis thickness of the third lens Is d5, the total optical length of the camera optical lens is TTL, and satisfies the following relationship: -65.39 ⁇ f3/f ⁇ -4.21; -32.60 ⁇ (R5+R6)/(R5-R6) ⁇ -0.97; 0.02 ⁇ d5/TTL ⁇ 0.11.
  • the focal length of the fourth lens is f4
  • the axial thickness of the fourth lens is d7
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: 0.29 ⁇ f4/f ⁇ 1.41; 0.07 ⁇ d7/TTL ⁇ 0.32.
  • the focal length of the fifth lens is f5, the radius of curvature of the object side of the fifth lens is R9, the radius of curvature of the image side of the fifth lens is R10, and the total optical length of the imaging optical lens is TTL, and satisfies the following relationship: -1.29 ⁇ f5/f ⁇ -0.30; -0.13 ⁇ (R9+R10)/(R9-R10) ⁇ 1.39; 0.03 ⁇ d9/TTL ⁇ 0.13.
  • the combined focal length of the first lens and the second lens is f12, and satisfies the following relationship: 0.52 ⁇ f12/f ⁇ 1.63.
  • the field of view of the imaging optical lens is FOV, and satisfies the following relationship: FOV ⁇ 78°.
  • the total optical length of the imaging optical lens is TTL
  • the image height of the imaging optical lens is IH
  • the imaging optical lens according to the present invention has good optical performance, and has the characteristics of large aperture, wide angle, and ultra-thinness, and is especially suitable for mobile phones composed of high-pixel CCD, CMOS and other imaging elements.
  • Camera lens assembly and WEB camera lens are examples of the imaging optical lens according to the present invention.
  • FIG. 1 is a schematic diagram of the structure of the imaging optical lens of the first embodiment
  • FIG. 2 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 3 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic diagram of the structure of the imaging optical lens of the second embodiment
  • FIG. 6 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 7 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic diagram of the structure of the imaging optical lens of the third embodiment.
  • FIG. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 11 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9;
  • FIG. 13 is a schematic diagram of the structure of the imaging optical lens of the fourth embodiment.
  • FIG. 14 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 13;
  • FIG. 15 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 13;
  • FIG. 16 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 13.
  • the present invention provides an imaging optical lens 10 according to the first embodiment.
  • the left side is the object side
  • the right side is the image side.
  • the imaging optical lens 10 mainly includes five lenses. From the object side to the image side, the aperture S1, the first lens L1, the second lens L2 and the third Lens L3, fourth lens L4, and fifth lens L5.
  • a glass plate GF is provided between the fifth lens L5 and the image plane Si.
  • the glass plate GF may be a glass cover plate or an optical filter.
  • the first lens L1 has positive refractive power; the second lens L2 has negative refractive power; the third lens L3 has negative refractive power; the fourth lens L4 has positive refractive power; the fifth lens L5 has negative refractive power .
  • the focal length of the entire imaging optical lens 10 is defined as f
  • the focal length of the first lens L1 is f1
  • the focal length of the second lens L2 is f2
  • the radius of curvature of the object side surface of the first lens L1 is R1
  • the focal length of the first lens L2 is The radius of curvature of the image side surface is R2, the radius of curvature of the object side surface of the second lens L2 is R3, the radius of curvature of the image side surface of the second lens L2 is R4, the radius of curvature of the object side surface of the fourth lens L4 is R7, the fourth lens
  • the curvature radius of the image side surface of L4 is R8, the on-axis thickness of the fifth lens L5 is d9, and the on-axis distance from the image side surface of the fourth lens L4 to the object side surface of the fifth lens L5 is d8, which satisfies the following relationship:
  • conditional formula (1) specifies the ratio of the focal length f1 of the first lens L1 to the focal length f2 of the second lens L2, and the reasonable allocation of the focal length enables the system to have better imaging quality and lower sensitivity.
  • Conditional expression (2) specifies the ratio of the focal length f2 of the second lens L2 to the total focal length f of the system, which can effectively balance the spherical aberration and curvature of field of the system.
  • the conditional expression (3) specifies the shape of the first lens L1. Within the range specified by the conditional expression, the degree of deflection of the light passing through the lens can be alleviated, and aberrations can be effectively reduced.
  • conditional expression (4) defines the shape of the second lens L2, and contributes to improving the performance of the optical system within the range of the conditional expression.
  • Conditional expression (5) specifies the shape of the fourth lens L4. Within this range, with the development of ultra-thin and wide-angle, it is beneficial to correct the aberration of the off-axis angle of view.
  • Conditional expression (6) specifies the ratio of the on-axis distance d8 from the image side surface of the fourth lens L4 to the object side surface of the fifth lens L5 to the thickness d9 on the axis of the fifth lens L5, which helps to compress the optical system within the scope of the conditional expression
  • the total length can achieve ultra-thin effect.
  • the imaging optical lens also satisfies the following relational expression: 0.74 ⁇ f1/f ⁇ 0.84, which specifies the ratio of the focal length f1 of the first lens L1 to the total focal length f of the system, which helps to improve the optics within the scope of the conditional expression System performance.
  • 0.60 ⁇ f1/f ⁇ 1.00 is satisfied.
  • the axial thickness of the first lens L1 is d1
  • the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.07 ⁇ d1/TTL ⁇ 0.22, which is conducive to ultra-thinness.
  • 0.10 ⁇ d1/TTL ⁇ 0.18 is satisfied.
  • the on-axis thickness of the second lens L2 is d3, which satisfies the following relationship: 0.02 ⁇ d3/TTL ⁇ 0.08, which is beneficial to realize ultra-thinness.
  • 0.04 ⁇ d3/TTL ⁇ 0.07 is satisfied.
  • the focal length of the third lens L3 is f3, which satisfies the following relationship: -65.39 ⁇ f3/f ⁇ -4.21.
  • the reasonable distribution of optical power enables the system to have better imaging quality and lower sensitivity.
  • -40.87 ⁇ f3/f ⁇ -5.26 is satisfied.
  • the curvature radius of the object side surface of the third lens L3 is R5, and the curvature radius of the image side surface of the third lens L3 is R6, which satisfies the following relationship: -32.60 ⁇ (R5+R6)/(R5-R6) ⁇ -0.97, which can be effectively controlled
  • the shape of the third lens L3 facilitates the molding of the third lens L3, and avoids poor molding and stress generation due to excessive surface curvature of the third lens L3.
  • it satisfies -20.38 ⁇ (R5+R6)/(R5-R6) ⁇ -1.22.
  • the on-axis thickness of the third lens L3 is d5, which satisfies the following relationship: 0.02 ⁇ d5/TTL ⁇ 0.11, which is beneficial to realize ultra-thinness.
  • 0.04 ⁇ d5/TTL ⁇ 0.08 is satisfied.
  • the focal length of the fourth lens L4 is f4, which satisfies the following relationship: 0.29 ⁇ f4/f ⁇ 1.41.
  • the reasonable distribution of the optical power enables the system to have better imaging quality and lower sensitivity.
  • 0.46 ⁇ f4/f ⁇ 1.13 is satisfied.
  • the on-axis thickness of the fourth lens L4 is d7, which satisfies the following relationship: 0.07 ⁇ d7/TTL ⁇ 0.32, which is beneficial to realize ultra-thinness.
  • 0.11 ⁇ d7/TTL ⁇ 0.26 is satisfied.
  • the focal length f5 of the fifth lens L5 satisfies the following relationship: -1.29 ⁇ f5/f ⁇ -0.30.
  • the limitation of the fifth lens L5 can effectively smooth the light angle of the imaging lens and reduce the tolerance sensitivity. Preferably, it satisfies -0.80 ⁇ f5/f ⁇ -0.37.
  • the curvature radius of the object side surface of the fifth lens L5 is R9
  • the curvature radius of the image side surface of the fifth lens L5 is R10, which satisfies the following relationship: -0.13 ⁇ (R9+R10)/(R9-R10) ⁇ 1.39, which specifies the fifth
  • -0.08 ⁇ (R9+R10)/(R9-R10) ⁇ 1.11 is satisfied.
  • the on-axis thickness of the fifth lens L5 is d9, which satisfies the following relationship: 0.03 ⁇ d9/TTL ⁇ 0.13, which is beneficial to realize ultra-thinness.
  • 0.06 ⁇ d9/TTL ⁇ 0.10 is satisfied.
  • the combined focal length of the first lens L1 and the second lens L2 is f12, which satisfies the following relationship: 0.58 ⁇ f12/f ⁇ 1.63.
  • the aberration and distortion of the imaging optical lens 10 can be eliminated, and the back focal length of the imaging optical lens 10 can be suppressed to maintain the miniaturization of the imaging lens system group.
  • 0.92 ⁇ f12/f ⁇ 1.57 is satisfied.
  • the surface of each lens can be set as an aspherical surface.
  • the aspherical surface can be easily made into a shape other than a spherical surface, and more control variables can be obtained to reduce aberrations, thereby reducing the use of lenses. Therefore, the total length of the imaging optical lens 10 can be effectively reduced.
  • the imaging optical lens 10 can be reasonable The power, spacing, and shape of each lens are allocated, and various aberrations are corrected accordingly.
  • the field of view of the imaging optical lens 10 is greater than or equal to 78°, so as to achieve a wide angle of the imaging optical lens.
  • the ratio of the total optical length TTL of the imaging optical lens 10 to the image height IH is less than or equal to 1.42, so that the imaging optical lens is ultra-thin.
  • the imaging optical lens 10 can have good optical performance, and at the same time, it can meet the requirements of large aperture, wide-angle, and ultra-thinness. Design requirements; According to the characteristics of the optical lens 10, the optical lens 10 is particularly suitable for mobile phone camera lens components and WEB camera lenses composed of high-pixel CCD, CMOS and other imaging elements. In this way, the imaging optical lens 10 can not only have good optical imaging performance, but also meet the design requirements of wide-angle and ultra-thinness.
  • the imaging optical lens 10 of the present invention will be described below with an example.
  • the symbols described in each example are as follows.
  • the unit of focal length, distance on axis, radius of curvature, thickness on axis, position of inflection point, and position of stagnation point is mm.
  • TTL optical length (the on-axis distance from the object side of the first lens L1 to the imaging surface), the unit is mm;
  • the object side and/or the image side of the lens can also be provided with inflection points and/or stagnation points to meet high-quality imaging requirements.
  • inflection points and/or stagnation points for specific implementations, refer to the following.
  • the design data of the imaging optical lens 10 shown in FIG. 1 is shown below.
  • Table 1 lists the object side curvature radius and the image side curvature radius R of the first lens L1 to the fifth lens L5 constituting the imaging optical lens 10 in the first embodiment of the present invention, the on-axis thickness of each lens, and the distance between two adjacent lenses.
  • R The radius of curvature of the optical surface, and the radius of curvature of the center of the lens
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the radius of curvature of the object side surface of the fifth lens L5;
  • R10 the radius of curvature of the image side surface of the fifth lens L5;
  • R11 The curvature radius of the object side surface of the glass plate GF
  • R12 the radius of curvature of the image side surface of the glass plate GF
  • d the on-axis thickness of each lens or the on-axis distance between two adjacent lenses
  • d0 the on-axis distance from the aperture S1 to the object side of the first lens L1;
  • d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
  • d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the glass plate GF;
  • d11 the axial thickness of the glass plate GF
  • nd1 the refractive index of the first lens L1;
  • nd2 the refractive index of the second lens L2
  • nd3 the refractive index of the third lens L3;
  • nd4 the refractive index of the fourth lens L4
  • nd5 the refractive index of the fifth lens L5;
  • ndg the refractive index of the glass plate GF
  • vg Abbe number of glass plate GF.
  • Table 2 shows the aspheric surface data of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, and A20 are the aspheric coefficients.
  • the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (7).
  • the present invention is not limited to the aspheric polynomial form represented by the formula (7).
  • Table 3 and Table 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of the embodiment of the present invention.
  • P1R1 and P2R2 represent the object side and image side of the first lens L1 respectively
  • P2R1 and P2R2 represent the object side and image side of the second lens L2 respectively
  • P3R1 and P3R2 represent the object side and image side of the third lens L3 respectively
  • P4R1 and P4R2 represent the object side surface and the image side surface of the fourth lens L4, respectively.
  • P5R1 and P5R2 represent the object side and image side of the fifth lens L5, respectively.
  • the corresponding data in the “reflection point position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • the data corresponding to the “stationary point position” column is the vertical distance from the stationary point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • FIG. 4 shows a schematic diagram of field curvature and distortion of light with a wavelength of 546 nm after passing through the imaging optical lens 10.
  • the curvature of field S in FIG. 4 is the curvature of field in the sagittal direction
  • T is the curvature of field in the meridional direction.
  • the imaging optical lens 10 has an entrance pupil diameter of 1.562 mm, a full field of view image height of 3.282 mm, a diagonal field of view angle of 80.00 °, wide-angle, ultra-thin, and excellent Optical characteristics.
  • FIG. 5 is a schematic diagram of the structure of the imaging optical lens 20 in the second embodiment.
  • the second embodiment is basically the same as the first embodiment.
  • the meanings of the symbols in the following list are also the same as those in the first embodiment. Therefore, the same parts will not be repeated here. List the differences.
  • Table 5 and Table 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows the aspheric surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 7 and Table 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20.
  • FIG. 6 and 7 respectively show schematic diagrams of the axial aberration and the chromatic aberration of magnification after the light with wavelengths of 656 nm, 587 nm, 546 nm, 486 nm and 435 nm passes through the imaging optical lens 20.
  • FIG. 8 shows a schematic diagram of field curvature and distortion of light with a wavelength of 546 nm after passing through the imaging optical lens 20.
  • the curvature of field S in FIG. 8 is the curvature of field in the sagittal direction
  • T is the curvature of field in the meridional direction.
  • the imaging optical lens 20 has an entrance pupil diameter of 1.944mm, a full field of view image height of 3.264mm, a diagonal field of view angle of 79.20°, a wide-angle, ultra-thin, and excellent Optical characteristics.
  • FIG. 9 is a schematic diagram of the structure of the imaging optical lens 30 in the third embodiment.
  • the third embodiment is basically the same as the first embodiment.
  • the meanings of the symbols in the following list are also the same as those in the first embodiment. Therefore, the same parts will not be repeated here. List the differences.
  • Table 9 and Table 10 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 10 shows the aspheric surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 11 and Table 12 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 30.
  • FIG. 10 and 11 respectively show schematic diagrams of the axial aberration and the chromatic aberration of magnification after the light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm and 470 nm passes through the imaging optical lens 30.
  • FIG. 12 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 30.
  • the curvature of field S in FIG. 12 is the curvature of field in the sagittal direction
  • T is the curvature of field in the meridional direction.
  • the imaging optical lens 30 has an entrance pupil diameter of 1.853mm, a full-field image height of 3.186mm, and a diagonal viewing angle of 78.40°, wide-angle, ultra-thin, and excellent Optical characteristics.
  • FIG. 13 is a schematic diagram of the structure of the imaging optical lens 40 in the fourth embodiment.
  • the fourth embodiment is basically the same as the first embodiment.
  • the meanings of the symbols in the following list are also the same as those in the first embodiment. Therefore, the same parts will not be repeated here. List the differences.
  • Table 13 and Table 14 show design data of the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • Table 14 shows the aspheric surface data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • Table 15 and Table 16 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 40.
  • FIG. 14 and 15 respectively show schematic diagrams of the axial aberration and the chromatic aberration of magnification after the light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm and 470 nm passes through the imaging optical lens 40.
  • Fig. 16 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 40.
  • the curvature of field S in FIG. 16 is the curvature of field in the sagittal direction, and T is the curvature of field in the meridional direction.
  • the imaging optical lens 40 has an entrance pupil diameter of 1.816mm, a full-field image height of 3.266mm, a diagonal viewing angle of 80.00°, a wide-angle, ultra-thin, and excellent Optical characteristics.
  • Table 17 lists the values of the corresponding conditional expressions in Embodiment 1, Embodiment 2, Embodiment 3, and Embodiment 4 and the values of other related parameters according to the above conditional expressions.
  • Example 1 Example 2
  • Example 3 Example 4 f1/f2 -0.40 -0.30 -0.38 -0.38 f2/f -1.85 -2.77 -1.96 -2.03 (R1+R2)/(R1-R2) -1.36 -1.56 -1.65 -1.64 (R3+R4)/(R3-R4) 1.62 1.26 1.44 1.46 (R7+R8)/(R7-R8) 1.14 1.40 1.35 1.31 d8/d9 1.35 1.05 0.90 0.89 f 3.747 3.870 3.799 3.722 f1 2.810 3.217 2.844 2.856 f2 -6.948 -10.723 -7.463 -7.540 f3 -38.146 -24.414 -97.810 -121.700 f4 3.523 2.578 2.178 2.139 f5 -2.408 -2.148 -1.697 -1.691 f12 4.063 4.201 3.951

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像光学镜头(10),由物侧至像侧的方向上,摄像光学镜头(10)依次包括具有正屈折力的第一透镜(L1)、具有负屈折力的第二透镜(L2)、具有负屈折力的第三透镜(L3)、具有正屈折力的第四透镜(L4)及具有负屈折力的第五透镜(L5),且满足以下关系式:-0.45≤f1/f2≤-0.28;-2.80≤f2/f≤-1.80;-1.70≤(R1+R2)/(R1-R2)≤-1.35;1.24≤(R3+R4)/(R3-R4)≤1.65;1.10≤(R7+R8)/(R7-R8)≤1.40;0.88≤d8/d9≤1.40。摄像光学镜头(10)在具有良好的光学性能的同时,还满足广角化、超薄化的设计要求。

Description

摄像光学镜头 【技术领域】
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
【背景技术】
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、四片式甚至是五片式、六片式透镜结构。常见的五片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足大光圈、超薄化、广角化的设计要求。
【发明内容】
针对上述问题,本发明的目的在于提供一种摄像光学镜头,其具有良好光学性能的同时,满足大光圈、超薄化、广角化的设计要求。为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,由物侧至像侧依次包括:具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有负屈折力的第三透镜、具有正屈折力的第四透镜及具有负屈折力的第五透镜;其中,所述摄像光学镜头整体的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第一透镜的物侧面的曲率半径为R1,所述第一透镜的像侧面的曲率半径为R2,所述第二透镜的物侧面的曲率半径为R3,所述第二透镜的像侧面的曲率半径为R4,所述第四透镜的物侧面的曲率半径为R7,所述第四透镜的像侧面的曲率半径为R8,所述第五透镜的轴上厚度为d9,所述第四透镜的像侧面到所述第五透镜的物侧面的轴上距离为d8,满足下列关系式:-0.45≤f1/f2≤-0.28;-2.80≤f2/f≤-1.80;
-1.70≤(R1+R2)/(R1-R2)≤-1.35;1.24≤(R3+R4)/(R3-R4)≤1.65;1.10≤(R7+R8)/(R7-R8)≤1.40;0.88≤d8/d9≤1.40。
优选地,还满足下列关系式:0.74≤f1/f≤0.84。
优选地,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.07≤d1/TTL≤0.22。
优选地,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.02≤d3/TTL≤0.08。
优选地,所述第三透镜的焦距为f3,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-65.39≤f3/f≤-4.21;-32.60≤(R5+R6)/(R5-R6)≤-0.97;0.02≤d5/TTL≤0.11。
优选地,所述第四透镜的焦距为f4,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.29≤f4/f≤1.41;0.07≤d7/TTL≤0.32。
优选地,所述第五透镜的焦距为f5,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-1.29≤f5/f≤-0.30;-0.13≤(R9+R10)/(R9-R10)≤1.39;0.03≤d9/TTL≤0.13。
优选地,所述第一透镜和所述第二透镜的组合焦距为f12,且满足下列关系式:0.52≤f12/f≤1.63。
优选地,所述摄像光学镜头的视场角为FOV,且满足下列关系式:FOV≥78°。
优选地,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,且满足下列关系式:TTL/IH≤1.42。
本发明的有益效果在于:根据本发明的摄像光学镜头具有良好光学性能,且具有大光圈、广角化、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是实施方式一的摄像光学镜头的结构示意图;
图2是图1所示的摄像光学镜头的轴向像差示意图;
图3是图1所示的摄像光学镜头的倍率色差示意图;
图4是图1所示的摄像光学镜头的场曲及畸变示意图;
图5是实施方式二的摄像光学镜头的结构示意图;
图6是图5所示的摄像光学镜头的轴向像差示意图;
图7是图5所示的摄像光学镜头的倍率色差示意图;
图8是图5所示的摄像光学镜头的场曲及畸变示意图;
图9是实施方式三的摄像光学镜头的结构示意图;
图10是图9所示的摄像光学镜头的轴向像差示意图;
图11是图9所示的摄像光学镜头的倍率色差示意图;
图12是图9所示的摄像光学镜头的场曲及畸变示意图;
图13是实施方式四的摄像光学镜头的结构示意图;
图14是图13所示的摄像光学镜头的轴向像差示意图;
图15是图13所示的摄像光学镜头的倍率色差示意图;
图16是图13所示的摄像光学镜头的场曲及畸变示意图。
【具体实施方式】
下面结合附图和实施方式对本发明作进一步说明。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(实施方式一)
请一并参阅图1至图4,本发明提供了实施方式一的摄像光学镜头10。在图1中,左侧为物侧,右侧为像侧,摄像光学镜头10主要包括五个透镜,从物侧至像侧依次为光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5。在第五透镜L5与像面Si之间设有玻璃平板GF,玻璃平板GF可以是玻璃盖板,也可以是光学过滤片。
在本实施方式中,第一透镜L1具有正屈折力;第二透镜L2具有负屈折力;第三透镜L3具有负屈折力;第四透镜L4具有正屈折力;第五透镜L5具有负屈折力。
在此,定义摄像光学镜头10整体的焦距为f,第一透镜L1的焦距为 f1,第二透镜L2的焦距为f2,第一透镜L1的物侧面的曲率半径为R1,第一透镜L2的像侧面的曲率半径为R2,第二透镜L2的物侧面的曲率半径为R3,第二透镜L2的像侧面的曲率半径为R4,第四透镜L4的物侧面的曲率半径为R7,第四透镜L4的像侧面的曲率半径为R8,第五透镜L5的轴上厚度为d9,第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离为d8,满足下列关系式:
-0.45≤f1/f2≤-0.28                (1)
-2.80≤f2/f≤-1.80             (2)
-1.70≤(R1+R2)/(R1-R2)≤-1.35             (3)
1.24≤(R3+R4)/(R3-R4)≤1.65                (4)
1.10≤(R7+R8)/(R7-R8)≤1.40                 (5)
0.88≤d8/d9≤1.40               (6)
其中,条件式(1)规定了第一透镜L1的焦距f1与第二透镜L2的焦距f2的比值,通过焦距的合理分配,使得系统具有较佳的成像品质和较低的敏感性。
条件式(2)规定了第二透镜L2的焦距f2与系统总焦距f的比值,可以有效地平衡系统的球差以及场曲量。
条件式(3)规定了第一透镜L1的形状,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。
条件式(4)规定了第二透镜L2的形状,在条件式范围内有助于提高光学系统性能。
条件式(5)规定了第四透镜L4的形状,在此范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差。
条件式(6)规定了第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离d8与第五透镜L5轴上厚度d9的比值,在条件式范围内有助于压缩光学系统总长,实现超薄化效果。
在本实施方式中,摄像光学镜头还满足下列关系式:0.74≤f1/f≤0.84,规定了第一透镜L1的焦距f1与系统总焦距f的比值,在条件式范围内有助于提高光学系统性能。优选地,满足0.60≤f1/f≤1.00。
第一透镜L1的轴上厚度为d1,摄像光学镜头的光学总长为TTL,满足下列关系式:0.07≤d1/TTL≤0.22,有利于实现超薄化。优选地,满足0.10≤d1/TTL≤0.18。
第二透镜L2的轴上厚度为d3,满足下列关系式:0.02≤d3/TTL≤0.08, 有利于实现超薄化。优选地,满足0.04≤d3/TTL≤0.07。
第三透镜L3的焦距为f3,满足下列关系式:-65.39≤f3/f≤-4.21,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-40.87≤f3/f≤-5.26。
第三透镜L3物侧面的曲率半径为R5,第三透镜L3像侧面的曲率半径为R6,满足下列关系式:-32.60≤(R5+R6)/(R5-R6)≤-0.97,可有效控制第三透镜L3的形状,有利于第三透镜L3成型,并避免因第三透镜L3的表面曲率过大而导致成型不良与应力产生。优选地,满足-20.38≤(R5+R6)/(R5-R6)≤-1.22。
第三透镜L3的轴上厚度为d5,满足下列关系式:0.02≤d5/TTL≤0.11,有利于实现超薄化。优选地,满足0.04≤d5/TTL≤0.08。
第四透镜L4的焦距为f4,满足下列关系式:0.29≤f4/f≤1.41,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足0.46≤f4/f≤1.13。
第四透镜L4的轴上厚度为d7,满足下列关系式:0.07≤d7/TTL≤0.32,有利于实现超薄化。优选地,满足0.11≤d7/TTL≤0.26。
第五透镜L5焦距f5,满足下列关系式:-1.29≤f5/f≤-0.30,对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。优选地,满足-0.80≤f5/f≤-0.37。
第五透镜L5物侧面的曲率半径为R9,第五透镜L5像侧面的曲率半径为R10,满足下列关系式:-0.13≤(R9+R10)/(R9-R10)≤1.39,规定了第五透镜L5的形状,在范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足-0.08≤(R9+R10)/(R9-R10)≤1.11。
第五透镜L5的轴上厚度为d9,满足下列关系式:0.03≤d9/TTL≤0.13,有利于实现超薄化。优选地,满足0.06≤d9/TTL≤0.10。
第一透镜L1和第二透镜L2的组合焦距为f12,满足下列关系式:0.58≤f12/f≤1.63。在条件式范围内,可消除所述摄像光学镜头10的像差与歪曲,且可压制摄像光学镜头10后焦距,维持影像镜片系统组小型化。优选地,满足0.92≤f12/f≤1.57。
此外,本实施方式提供的摄像光学镜头10中,各透镜的表面可以设置为非球面,非球面容易制作成球面以外的形状,获得较多的控制变数,用以消减像差,进而缩减透镜使用的数目,因此可以有效降低摄像光学镜头10的总长度。
值得一提的是,由于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5具有如前所述的结构和参数关系,因此,摄像光学镜头10能够合理分配各透镜的光焦度、间隔和形状,并因此校正了各类像差。
本实施例中摄像光学镜头10的视场角大于或等于78°,从而实现摄像光学镜头的广角化。
本实施方式中摄像光学镜头10的光学总长TTL与像高IH的比值小于或等于1.42,从而实现摄像光学镜头的超薄化。
当本发明所述摄像光学镜头10的焦距、各透镜的焦距和曲率半径满足上述关系式时,可以使摄像光学镜头10具有良好光学性能,同时能够满足了大光圈、广角化、超薄化的设计要求;根据该光学镜头10的特性,该光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。如此,摄像光学镜头10实现了在具有良好光学成像性能的同时,还能满足广角化、超薄化的设计要求。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学长度(第1透镜L1的物侧面到成像面的轴上距离),单位为mm;
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
以下示出了图1所示的摄像光学镜头10的设计数据。
表1列出了本发明实施方式一中构成摄像光学镜头10的第一透镜L1~第五透镜L5的物侧面曲率半径和像侧面曲率半径R、各透镜的轴上厚度、相邻两透镜间的距离d、折射率nd及阿贝数νd。需要说明的是,本实施方式中,R与d的单位均为毫米(mm)。
【表1】
Figure PCTCN2019123017-appb-000001
Figure PCTCN2019123017-appb-000002
上表中各符号的含义如下。
R:光学面的曲率半径、透镜时为中心曲率半径;
S1:光圈;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:玻璃平板GF的物侧面的曲率半径;
R12:玻璃平板GF的像侧面的曲率半径;
d:各透镜的轴上厚度或相邻两透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到玻璃平板GF的物侧面的轴上距离;
d11:玻璃平板GF的轴上厚度;
d12:玻璃平板GF的像侧面到像面Si的轴上距离;
nd:折射率;
nd1:第一透镜L1的折射率;
nd2:第二透镜L2的折射率;
nd3:第三透镜L3的折射率;
nd4:第四透镜L4的折射率;
nd5:第五透镜L5的折射率;
ndg:玻璃平板GF的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
vg:玻璃平板GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
在表2中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
Figure PCTCN2019123017-appb-000003
Figure PCTCN2019123017-appb-000004
IH:像高
y=(x 2/R)/[1+{1-(k+1)(x 2/R 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20            (7)
为方便起见,各个透镜面的非球面使用上述公式(7)中所示的非球面。但是,本发明不限于该公式(7)表示的非球面多项式形式。
表3、表4示出本发明实施例的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P2R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面。P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
Figure PCTCN2019123017-appb-000005
Figure PCTCN2019123017-appb-000006
【表4】
  驻点个数 驻点位置1
P1R1 0  
P1R2 1 0.535
P2R1 0  
P2R2 0  
P3R1 0  
P3R2 0  
P4R1 0  
P4R2 0  
P5R1 0  
P5R2 1 1.105
另外,在后续的表17中,还列出了实施方式一中各种参数与条件式中已规定的参数所对应的值。
图2、图3分别示出了波长为656nm、587nm、546nm、486nm和435nm的光经过摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了波长为546nm的光经过摄像光学镜头10后的场曲及畸变示意图。图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,所述摄像光学镜头10的入瞳直径为1.562mm,全视场像高为3.282mm,对角线方向的视场角为80.00°,广角、超薄,且具有优秀的光学特征。
(实施方式二)
图5是实施方式二中摄像光学镜头20的结构示意图,实施方式二与实施方式一基本相同,以下列表中符号含义与实施方式一也相同,故对于相同的部分此处不再赘述,以下仅列出不同点。
表5、表6示出本发明实施方式二的摄像光学镜头20的设计数据。
【表5】
Figure PCTCN2019123017-appb-000007
表6示出本发明实施方式二的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure PCTCN2019123017-appb-000008
Figure PCTCN2019123017-appb-000009
表7、表8示出摄像光学镜头20中各透镜的反曲点及驻点设计数据。
【表7】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 0      
P1R2 0      
P2R1 2 0.175 0.565  
P2R2 0      
P3R1 0      
P3R2 1 0.875    
P4R1 3 1.135 1.335 1.425
P4R2 2 1.045 1.565  
P5R1 1 1.255    
P5R2 2 0.545 2.345  
【表8】
Figure PCTCN2019123017-appb-000010
Figure PCTCN2019123017-appb-000011
另外,在后续的表17中,还列出了实施方式二中各种参数与条件式中已规定的参数所对应的值。
图6、图7分别示出了波长为656nm、587nm、546nm、486nm和435nm的光经过摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为546nm的光经过摄像光学镜头20后的场曲及畸变示意图。图8的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,所述摄像光学镜头20的入瞳直径为1.944mm,全视场像高为3.264mm,对角线方向的视场角为79.20°,广角、超薄,且具有优秀的光学特征。
(实施方式三)
图9是实施方式三中摄像光学镜头30的结构示意图,实施方式三与实施方式一基本相同,以下列表中符号含义与实施方式一也相同,故对于相同的部分此处不再赘述,以下仅列出不同点。
表9、表10示出本发明实施方式三的摄像光学镜头30的设计数据。
【表9】
Figure PCTCN2019123017-appb-000012
表10示出本发明实施方式三的摄像光学镜头30中各透镜的非球面数据。
【表10】
Figure PCTCN2019123017-appb-000013
Figure PCTCN2019123017-appb-000014
表11、表12示出摄像光学镜头30中各透镜的反曲点及驻点设计数据。
【表11】
Figure PCTCN2019123017-appb-000015
Figure PCTCN2019123017-appb-000016
【表12】
  驻点个数 驻点位置1
P1R1 0  
P1R2 1 0.785
P2R1 0  
P2R2 0  
P3R1 0  
P3R2 0  
P4R1 0  
P4R2 0  
P5R1 1 2.135
P5R2 1 1.085
另外,在后续的表17中,还列出了实施方式三中各种参数与条件式中已规定的参数所对应的值。
图10、图11分别示出了波长为650nm、610nm、555nm、510nm和470nm的光经过摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为555nm的光经过摄像光学镜头30后的场曲及畸变示意图。图12的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,所述摄像光学镜头30的入瞳直径为1.853mm,全视场像高为3.186mm,对角线方向的视场角为78.40°,广角、超薄,且具有优秀的光学特征。
(实施方式四)
图13是实施方式四中摄像光学镜头40的结构示意图,实施方式四与实施方式一基本相同,以下列表中符号含义与实施方式一也相同,故对于相同的部分此处不再赘述,以下仅列出不同点。
表13、表14示出本发明实施方式四的摄像光学镜头40的设计数据。
【表13】
Figure PCTCN2019123017-appb-000017
Figure PCTCN2019123017-appb-000018
表14示出本发明实施方式四的摄像光学镜头40中各透镜的非球面数据。
【表14】
Figure PCTCN2019123017-appb-000019
Figure PCTCN2019123017-appb-000020
表15、表16示出摄像光学镜头40中各透镜的反曲点及驻点设计数据。
【表15】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3 反曲点位置4
P1R1 1 0.885      
P1R2 1 0.535      
P2R1 0        
P2R2 0        
P3R1 0        
P3R2 0        
P4R1 4 1.085 1.575 1.625 1.865
P4R2 3 0.975 1.725 1.925  
P5R1 2 1.225 2.385    
P5R2 3 0.505 2.255 2.735  
【表16】
  驻点个数 驻点位置1 驻点位置2 驻点位置3
P1R1 0      
P1R2 1 0.775    
P2R1 0      
P2R2 0      
P3R1 0      
P3R2 0      
P4R1 1 1.795    
P4R2 1 2.015    
P5R1 2 2.165 2.485  
P5R2 3 1.115 2.635 2.785
另外,在后续的表17中,还列出了实施方式四中各种参数与条件式中已规定的参数所对应的值。
图14、图15分别示出了波长为650nm、610nm、555nm、510nm和470nm的光经过摄像光学镜头40后的轴向像差以及倍率色差示意图。图16则示 出了,波长为555nm的光经过摄像光学镜头40后的场曲及畸变示意图。图16的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,所述摄像光学镜头40的入瞳直径为1.816mm,全视场像高为3.266mm,对角线方向的视场角为80.00°,广角、超薄,且具有优秀的光学特征。
以下表17根据上述条件式列出了实施方式一、实施方式二、实施方式三、实施方式四中对应条件式的数值,以及其他相关参数的取值。
【表17】
参数及条件式 实施例1 实施例2 实施例3 实施例4
f1/f2 -0.40 -0.30 -0.38 -0.38
f2/f -1.85 -2.77 -1.96 -2.03
(R1+R2)/(R1-R2) -1.36 -1.56 -1.65 -1.64
(R3+R4)/(R3-R4) 1.62 1.26 1.44 1.46
(R7+R8)/(R7-R8) 1.14 1.40 1.35 1.31
d8/d9 1.35 1.05 0.90 0.89
f 3.747 3.870 3.799 3.722
f1 2.810 3.217 2.844 2.856
f2 -6.948 -10.723 -7.463 -7.540
f3 -38.146 -24.414 -97.810 -121.700
f4 3.523 2.578 2.178 2.139
f5 -2.408 -2.148 -1.697 -1.691
f12 4.063 4.201 3.951 3.969
FNO 2.399 1.991 2.050 2.050
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头,由物侧至像侧依次包括:具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有负屈折力的第三透镜、具有正屈折力的第四透镜及具有负屈折力的第五透镜;
    其中,所述摄像光学镜头整体的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第一透镜的物侧面的曲率半径为R1,所述第一透镜的像侧面的曲率半径为R2,所述第二透镜的物侧面的曲率半径为R3,所述第二透镜的像侧面的曲率半径为R4,所述第四透镜的物侧面的曲率半径为R7,所述第四透镜的像侧面的曲率半径为R8,所述第五透镜的轴上厚度为d9,所述第四透镜的像侧面到所述第五透镜的物侧面的轴上距离为d8,满足下列关系式:
    -0.45≤f1/f2≤-0.28;
    -2.80≤f2/f≤-1.80;
    -1.70≤(R1+R2)/(R1-R2)≤-1.35;
    1.24≤(R3+R4)/(R3-R4)≤1.65;
    1.10≤(R7+R8)/(R7-R8)≤1.40;
    0.88≤d8/d9≤1.40。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,还满足下列关系式:
    0.74≤f1/f≤0.84。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
    0.07≤d1/TTL≤0.22。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.02≤d3/TTL≤0.08。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -65.39≤f3/f≤-4.21。
    -32.60≤(R5+R6)/(R5-R6)≤-0.97;
    0.02≤d5/TTL≤0.11。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的焦距为f4,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.29≤f4/f≤1.41;
    0.07≤d7/TTL≤0.32。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的焦距为f5,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -1.29≤f5/f≤-0.30;
    -0.13≤(R9+R10)/(R9-R10)≤1.39;
    0.03≤d9/TTL≤0.13。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜和所述第二透镜的组合焦距为f12,且满足下列关系式:
    0.52≤f12/f≤1.63。
  9. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的视场角为FOV,且满足下列关系式:
    FOV≥78°。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,且满足下列关系式:
    TTL/IH≤1.42。
PCT/CN2019/123017 2019-11-22 2019-12-04 摄像光学镜头 WO2021097925A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911154162.X 2019-11-22
CN201911154162.XA CN110749979B (zh) 2019-11-22 2019-11-22 摄像光学镜头

Publications (1)

Publication Number Publication Date
WO2021097925A1 true WO2021097925A1 (zh) 2021-05-27

Family

ID=69284193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123017 WO2021097925A1 (zh) 2019-11-22 2019-12-04 摄像光学镜头

Country Status (2)

Country Link
CN (1) CN110749979B (zh)
WO (1) WO2021097925A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11487089B2 (en) 2020-01-16 2022-11-01 Largan Precision Co., Ltd. Image capturing optical lens assembly including five lenses of +−++− or +−−+− refractive powers, imaging apparatus and electronic device
CN115437107A (zh) * 2021-06-03 2022-12-06 大立光电股份有限公司 摄影光学镜片系统、取像装置及电子装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111929823B (zh) * 2020-09-03 2021-10-01 诚瑞光学(苏州)有限公司 摄像光学镜头
JP2022074334A (ja) * 2020-11-04 2022-05-18 東京晨美光学電子株式会社 撮像レンズ

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106842508A (zh) * 2017-03-03 2017-06-13 瑞声科技(新加坡)有限公司 摄像光学镜头
CN106842506A (zh) * 2017-03-03 2017-06-13 瑞声科技(新加坡)有限公司 摄像光学镜头
CN106842507A (zh) * 2017-03-03 2017-06-13 瑞声科技(新加坡)有限公司 摄像光学镜头
CN106842523A (zh) * 2017-03-03 2017-06-13 瑞声科技(新加坡)有限公司 摄像光学镜头
CN106873128A (zh) * 2017-03-03 2017-06-20 瑞声科技(新加坡)有限公司 摄像光学镜头
CN107741629A (zh) * 2017-11-17 2018-02-27 瑞声声学科技(深圳)有限公司 摄像光学镜头
CN107765402A (zh) * 2017-11-17 2018-03-06 瑞声声学科技(深圳)有限公司 摄像光学镜头
US20180113281A1 (en) * 2016-10-20 2018-04-26 Newmax Technology Co., Ltd. Five-piece optical imaging lens
CN108008524A (zh) * 2017-11-17 2018-05-08 瑞声声学科技(深圳)有限公司 摄像光学镜头
CN110361852A (zh) * 2019-07-24 2019-10-22 Oppo广东移动通信有限公司 镜头、摄像模组及电子设备
CN110426813A (zh) * 2019-06-28 2019-11-08 江苏光腾光学有限公司 一种光学镜片组
CN110471170A (zh) * 2019-08-27 2019-11-19 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180113281A1 (en) * 2016-10-20 2018-04-26 Newmax Technology Co., Ltd. Five-piece optical imaging lens
CN106842508A (zh) * 2017-03-03 2017-06-13 瑞声科技(新加坡)有限公司 摄像光学镜头
CN106842506A (zh) * 2017-03-03 2017-06-13 瑞声科技(新加坡)有限公司 摄像光学镜头
CN106842507A (zh) * 2017-03-03 2017-06-13 瑞声科技(新加坡)有限公司 摄像光学镜头
CN106842523A (zh) * 2017-03-03 2017-06-13 瑞声科技(新加坡)有限公司 摄像光学镜头
CN106873128A (zh) * 2017-03-03 2017-06-20 瑞声科技(新加坡)有限公司 摄像光学镜头
CN107741629A (zh) * 2017-11-17 2018-02-27 瑞声声学科技(深圳)有限公司 摄像光学镜头
CN107765402A (zh) * 2017-11-17 2018-03-06 瑞声声学科技(深圳)有限公司 摄像光学镜头
CN108008524A (zh) * 2017-11-17 2018-05-08 瑞声声学科技(深圳)有限公司 摄像光学镜头
CN110426813A (zh) * 2019-06-28 2019-11-08 江苏光腾光学有限公司 一种光学镜片组
CN110361852A (zh) * 2019-07-24 2019-10-22 Oppo广东移动通信有限公司 镜头、摄像模组及电子设备
CN110471170A (zh) * 2019-08-27 2019-11-19 浙江舜宇光学有限公司 光学成像镜头

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11487089B2 (en) 2020-01-16 2022-11-01 Largan Precision Co., Ltd. Image capturing optical lens assembly including five lenses of +−++− or +−−+− refractive powers, imaging apparatus and electronic device
CN115437107A (zh) * 2021-06-03 2022-12-06 大立光电股份有限公司 摄影光学镜片系统、取像装置及电子装置
CN115437107B (zh) * 2021-06-03 2024-04-05 大立光电股份有限公司 摄影光学镜片系统、取像装置及电子装置

Also Published As

Publication number Publication date
CN110749979A (zh) 2020-02-04
CN110749979B (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2021031236A1 (zh) 摄像光学镜头
WO2021031233A1 (zh) 摄像光学镜头
WO2021237781A1 (zh) 摄像光学镜头
WO2021196257A1 (zh) 摄像光学镜头
WO2021097925A1 (zh) 摄像光学镜头
WO2021097929A1 (zh) 摄像光学镜头
WO2021196312A1 (zh) 摄像光学镜头
WO2021258441A1 (zh) 摄像光学镜头
WO2021248578A1 (zh) 摄像光学镜头
WO2021031281A1 (zh) 摄像光学镜头
WO2021097928A1 (zh) 摄像光学镜头
WO2021097952A1 (zh) 摄像光学镜头
WO2021031237A1 (zh) 摄像光学镜头
WO2022007029A1 (zh) 摄像光学镜头
WO2021168886A1 (zh) 摄像光学镜头
WO2021168884A1 (zh) 摄像光学镜头
WO2021168887A1 (zh) 摄像光学镜头
WO2021168878A1 (zh) 摄像光学镜头
WO2021127852A1 (zh) 摄像光学镜头
WO2021168885A1 (zh) 摄像光学镜头
WO2021119894A1 (zh) 摄像光学镜头
WO2021127895A1 (zh) 摄像光学镜头
WO2021031238A1 (zh) 摄像光学镜头
WO2021168892A1 (zh) 摄像光学镜头
WO2021184276A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953599

Country of ref document: EP

Kind code of ref document: A1