WO2021031236A1 - 摄像光学镜头 - Google Patents
摄像光学镜头 Download PDFInfo
- Publication number
- WO2021031236A1 WO2021031236A1 PCT/CN2019/103601 CN2019103601W WO2021031236A1 WO 2021031236 A1 WO2021031236 A1 WO 2021031236A1 CN 2019103601 W CN2019103601 W CN 2019103601W WO 2021031236 A1 WO2021031236 A1 WO 2021031236A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- curvature
- imaging optical
- radius
- optical lens
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0025—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/60—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
Definitions
- the present invention relates to the field of optical lenses, and in particular to an imaging optical lens suitable for portable terminal devices such as smart phones and digital cameras, and imaging devices such as monitors and PC lenses.
- the lenses traditionally mounted on mobile phone cameras mostly adopt three-element and four-element lens structures.
- the pixel area of the photosensitive device continues to shrink, and the system's requirements for image quality continue to increase, the five-element lens structure gradually appears in the lens design.
- the five-element lens can have good optical performance, the structure thickness and lens shape settings are still unreasonable, resulting in the camera lens having good optical performance, but cannot meet the wide-angle and ultra-thin design Claim.
- the object of the present invention is to provide a camera optical lens to solve the technical problem that the current camera optical lens cannot meet the design requirements of wide-angle and ultra-thin while having good optical performance.
- the imaging optical lens includes a first lens, a second lens, a third lens, a fourth lens, and a fifth lens in order from the object side to the image side.
- the first lens has Positive refractive power
- the second lens has negative refractive power
- the third lens has negative refractive power
- the fourth lens has positive refractive power
- the fifth lens has negative refractive power
- the curvature radius of the object side surface of the first lens is R1
- the curvature radius of the image side surface of the first lens is R2
- the curvature radius of the object side surface of the second lens is R3
- the curvature radius of the image side surface of the second lens is R4
- the radius of curvature of the object side of the third lens is R5
- the radius of curvature of the image side of the third lens is R6
- the radius of curvature of the fifth lens is R9
- the radius of curvature of the fifth lens is R9.
- the radius of curvature of the image side surface is R10
- the axial distance between the third lens and the fourth lens is d6
- the axial distance between the fourth lens and the fifth lens is d8, and the The thickness on the shaft is d9, which satisfies the following relationship:
- the curvature radius of the object side surface of the fourth lens is R7
- the curvature radius of the image side surface of the fourth lens is R8, which satisfies the following relationship:
- the focal length of the imaging optical lens is f
- the focal length of the first lens is f1
- the axial thickness of the first lens is d1
- the total optical length of the imaging optical lens is TTL, which satisfies the following Relationship:
- the focal length of the imaging optical lens is f
- the focal length of the second lens is f2
- the axial thickness of the second lens is d3
- the total optical length of the imaging optical lens is TTL, which satisfies the following Relationship:
- the focal length of the imaging optical lens is f
- the focal length of the third lens is f3
- the axial thickness of the third lens is d5
- the total optical length of the imaging optical lens is TTL, which satisfies the following Relationship:
- the focal length of the imaging optical lens is f
- the focal length of the fourth lens is f4
- the radius of curvature of the object side of the fourth lens is R7
- the radius of curvature of the image side of the fourth lens is R8,
- the axial thickness of the fourth lens is d7
- the total optical length of the imaging optical lens is TTL, which satisfies the following relationship:
- the focal length of the imaging optical lens is f
- the focal length of the fifth lens is f5
- the total optical length of the imaging optical lens is TTL, which satisfies the following relationship:
- the total optical length of the camera optical lens and the image height of the camera optical lens are TTL and IH respectively, and satisfy the following relationship:
- the combined focal length of the first lens and the second lens is f12, and the focal length of the imaging optical lens is f, which satisfies the following relationship:
- the beneficial effect of the present invention is that the imaging optical lens provided by the present invention has good optical performance and meets the design requirements of wide-angle and ultra-thinness, and is especially suitable for high-pixel CCD, CMOS and other imaging elements.
- FIG. 1 is a schematic diagram of the structure of an imaging optical lens in Embodiment 1 of the present invention.
- FIG. 2 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 1;
- FIG. 3 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
- FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
- FIG. 5 is a schematic diagram of the structure of the imaging optical lens in the second embodiment of the present invention.
- FIG. 6 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 5;
- FIG. 7 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 5;
- FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
- FIG. 9 is a schematic diagram of the structure of the imaging optical lens in the third embodiment of the present invention.
- FIG. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 9;
- FIG. 11 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
- FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9.
- FIG. 1 shows an imaging optical lens 10 according to Embodiment 1 of the present invention.
- the imaging optical lens 10 includes five lenses. Specifically, the imaging optical lens 10 includes an aperture S1, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5 in order from the object side to the image side.
- an optical element such as a glass plate GF is provided between the fifth lens L5 and the image plane Si.
- the glass plate GF can be a glass cover plate or an optical filter (filter), of course, it can be implemented in other ways. In this way, the glass plate GF can also be set in other positions.
- the first lens L1 has positive refractive power; the second lens L2 has negative refractive power; the third lens L3 has negative refractive power; the fourth lens L4 has positive refractive power; and the fifth lens L5 has negative refractive power.
- the curvature radius of the object side surface of the first lens L1 is defined as R1
- the curvature radius of the image side surface of the first lens L1 is R2, which satisfies the relationship: 0.04 ⁇ R1/R2 ⁇ 0.07, which defines the first
- the ratio range of the curvature radius of the object side surface of the lens L1 to the curvature radius of the image side surface defines the shape of the first lens L1.
- the spherical aberration and field of the optical system can be effectively balanced. Curvature.
- the curvature radius of the object side surface of the second lens L2 is defined as R3, and the curvature radius of the image side surface of the second lens L2 is R4, which satisfies the relationship: -3.60 ⁇ R3/R4 ⁇ -2.50, which specifies the second lens L2
- the ratio range of the radius of curvature of the object side surface to the radius of curvature of the image side surface defines the shape of the second lens L2.
- the curvature radius of the object side surface of the third lens L3 is defined as R5, and the curvature radius of the image side surface of the third lens L3 is R6, which satisfies the relationship: 1.55 ⁇ R5/R6 ⁇ 1.80, which defines the object surface of the third lens L3
- the range of the ratio of the radius of curvature of the side surface to the radius of curvature of the image side surface defines the shape of the third lens L3.
- the ratio range of the radius of curvature of the side surface to the radius of curvature of the image side surface defines the shape of the fifth lens L5. Within the range defined by the conditional expression, it contributes to high optical system performance.
- the on-axis distance between the fourth lens L4 and the fifth lens L5 is defined as d8, and the on-axis thickness of the fifth lens L5 is d9, which satisfies the relationship: 0.65 ⁇ d8/d9 ⁇ 0.85, which specifies the fourth
- the ratio of the distance on the L5 axis of the lens and the fifth lens to the thickness on the L5 axis of the fifth lens helps to compress the total length of the optical system within the scope of the conditional formula, and achieves an ultra-thinning effect.
- the axial distance between the third lens L3 and the fourth lens L4 is d6, and the axial distance between the fourth lens L4 and the fifth lens L5 is d8, and the relationship is satisfied: 0.56 ⁇ d6/d8 ⁇ 0.60, which specifies the on-axis distance between the third lens L3 and the fourth lens L4, and the ratio range of the on-axis distance between the fourth lens L4 and the fifth lens L5. Within the range specified by the conditional expression, it helps to compress The total length of the optical system achieves an ultra-thin effect.
- the curvature radius of the object side surface of the fourth lens L4 is defined as R7, and the curvature radius of the image side surface of the fourth lens L4 is R8, which satisfies the following relationship: 2.80 ⁇ R7/R8 ⁇ 3.00, which defines the fourth lens L4
- the ratio range of the radius of curvature of the object side surface to the radius of curvature of the image side surface defines the shape of the fourth lens L4.
- the on-axis thickness of the first lens L1 is defined as d1, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.06 ⁇ d1/TTL ⁇ 0.19, which specifies the on-axis thickness of the first lens L1 and the camera
- TTL total optical length of the optical lens 10 within the range specified by the conditional expression
- the focal length of the imaging optical lens is defined as f
- the focal length of the first lens L1 is f1
- the following relationship is satisfied: 0.42 ⁇ f1/f ⁇ 1.30, which specifies the ratio of the focal length of the first lens L1 to the overall focal length.
- the first lens L1 has an appropriate positive refractive power, which is beneficial to reduce system aberrations, and at the same time, is beneficial to the development of ultra-thin and wide-angle lenses.
- the on-axis thickness of the second lens L2 is defined as d3, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.03 ⁇ d3/TTL ⁇ 0.08, which specifies the on-axis thickness of the second lens L2 and the camera
- TTL total optical length of the imaging optical lens
- the focal length of the imaging optical lens is defined as f, and the focal length of the second lens L2 is f2, which satisfies the relationship: -4.84 ⁇ f2/f ⁇ -1.36, which specifies the focal length of the second lens L2 and the imaging optical lens 10
- the ratio of the total focal length by controlling the negative refractive power of the second lens L2 in a reasonable range, is beneficial to correct the aberration of the optical system.
- the curvature radius of the object side surface of the second lens L2 as R3, and the curvature radius of the image side surface of the second lens L2 as R4, which satisfies the relationship: 0.22 ⁇ (R3+R4)/(R3-R4) ⁇ 0.84;
- the shape of the second lens L2 is specified.
- the lens is within the range, as the lens becomes ultra-thin and wide-angle, it is beneficial to correct the problem of axial chromatic aberration.
- the on-axis thickness of the third lens L3 is defined as d5, and the total optical length of the imaging optical lens is TTL, which satisfies the relationship: 0.03 ⁇ d5/TTL ⁇ 0.11, which specifies the on-axis thickness of the third lens L3 and imaging optics
- TTL total optical length of the imaging optical lens
- the focal length of the imaging optical lens is defined as f
- the focal length of the third lens L3 is f3, which satisfies the relationship: -12.52 ⁇ f3/f ⁇ -3.21, which specifies the focal length of the third lens L3 and the imaging optical lens 10
- the ratio of the total focal length, through the reasonable distribution of the optical power, makes the system have better imaging quality and lower sensitivity.
- the radius of curvature of the object side surface of the third lens L3 as R5
- the radius of curvature of the image side surface of the third lens L3 as R6, which satisfies the relationship: 1.77 ⁇ (R5+R6)/(R5-R6) ⁇ 6.88
- the shape of the third lens L3 can be effectively controlled, which facilitates the molding of the third lens L3, and avoids the formation of poor molding and stress due to excessive surface curvature of the third lens L3.
- the on-axis thickness of the fourth lens L4 is defined as d7, and the total optical length of the imaging optical lens is TTL, which satisfies the relationship: 0.08 ⁇ d7/TTL ⁇ 0.26, which specifies the on-axis thickness of the fourth lens L4 and imaging optics
- TTL total optical length of the imaging optical lens
- the focal length of the imaging optical lens as f
- the focal length of the fourth lens L4 as f4
- the focal length of the fourth lens L4 which satisfies the relationship: 0.43 ⁇ f4/f ⁇ 1.42, which specifies the focal length of the fourth lens L4 and the total focal length of the imaging optical lens 10
- the radius of curvature of the object side surface of the fourth lens L4 as R7
- the radius of curvature of the image side surface of the fourth lens L4 as R8, which satisfies the relationship: 1.01 ⁇ (R7+R8)/(R7-R8) ⁇ 3.15
- the ratio between the sum of the radius of curvature of the object side surface of the fourth lens L4 and the radius of curvature of the image side surface and the difference between the radius of curvature of the object side surface of the fourth lens L4 and the radius of curvature of the image side surface is specified, thereby specifying This is the shape of the fourth lens L4.
- it is within the range with the development of ultra-thin and wide-angle, it is helpful to correct the aberration of the off-axis angle of view.
- the on-axis thickness of the fifth lens L5 is defined as d9, and the total optical length of the imaging optical lens is TTL, which satisfies the relationship: 0.05 ⁇ d9/TTL ⁇ 0.21, which specifies the on-axis thickness of the fifth lens L5 and imaging optics
- TTL total optical length of the imaging optical lens
- the focal length of the imaging optical lens is defined as f
- the focal length of the fifth lens L5 is f5, which satisfies the relationship: -1.95 ⁇ f5/f ⁇ -0.59, which stipulates the focal length of the fifth lens L5 and the imaging optical lens 10
- the ratio of the focal length, thereby, the limitation of the fifth lens L5 can effectively make the light angle of the imaging lens gentle and reduce the tolerance sensitivity.
- the total optical length of the camera optical lens is defined as TTL, and the image height of the camera optical lens is IH, which satisfies the relationship: TTL/IH ⁇ 1.50, which is beneficial to realize ultra-thinness.
- the focal length of the imaging optical lens as f
- the combined focal length of the first lens L1 and the second lens L2 is f12, which satisfies the relationship: 0.61 ⁇ f12/f ⁇ 1.93, which can eliminate the aberration and distortion of the imaging optical lens. And it can suppress the back focal length of the camera optical lens and maintain the miniaturization of the image lens system group.
- the imaging optical lens 10 can meet the design requirements of wide-angle and ultra-thin design while having good optical performance. According to the characteristics of the imaging optical lens 10, the imaging optical lens 10 is particularly It is suitable for mobile phone camera lens assembly and WEB camera lens composed of high-resolution CCD, CMOS and other imaging elements.
- the surface of each lens can be set as an aspherical surface, and the aspherical surface can be easily made into a shape other than a spherical surface, and more control variables can be obtained to reduce aberrations, thereby reducing the use of lenses. Therefore, the total length of the imaging optical lens 10 of the present invention can be effectively reduced.
- the object side surface and the image side surface of each lens are both aspherical.
- TTL Total optical length (the on-axis distance from the object side of the first lens L1 to the imaging surface), in mm.
- the object side and/or the image side of the lens may also be provided with inflection points and/or stagnation points to meet high-quality imaging requirements.
- inflection points and/or stagnation points may also be provided with inflection points and/or stagnation points to meet high-quality imaging requirements.
- FIG. 1 is a schematic diagram of the structure of an imaging optical lens 10 in the first embodiment.
- the design data of the imaging optical lens 10 in the first embodiment of the present invention is shown below.
- Table 1 and Table 2 show design data of the imaging optical lens 10 of the first embodiment of the present invention. It should be noted that, in this embodiment, the unit of distance, radius, and center thickness is millimeter (mm).
- R the radius of curvature of the optical surface
- R1 the radius of curvature of the object side surface of the first lens L1;
- R2 the radius of curvature of the image side surface of the first lens L1;
- R3 the radius of curvature of the object side of the second lens L2;
- R4 the radius of curvature of the image side surface of the second lens L2;
- R5 the radius of curvature of the object side surface of the third lens L3;
- R6 the radius of curvature of the image side surface of the third lens L3;
- R7 the radius of curvature of the object side of the fourth lens L4;
- R8 the radius of curvature of the image side surface of the fourth lens L4;
- R9 the radius of curvature of the object side surface of the fifth lens L5;
- R10 the radius of curvature of the image side surface of the fifth lens L5;
- R11 the curvature radius of the object side of the optical filter GF
- R12 the radius of curvature of the image side surface of the optical filter GF
- d the on-axis thickness of the lens or the on-axis distance between adjacent lenses
- d0 the on-axis distance from the aperture S1 to the object side of the first lens L1;
- d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
- d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
- d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
- d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the optical filter GF;
- d11 the axial thickness of the optical filter GF
- nd refractive index of d-line
- nd1 the refractive index of the first lens L1;
- nd2 the refractive index of the second lens L2
- nd3 the refractive index of the third lens L3;
- nd4 the refractive index of the fourth lens L4
- nd5 the refractive index of the fifth lens L5;
- ndg the refractive index of the optical filter GF
- vg Abbe number of optical filter GF.
- k is the conic coefficient
- A4, A6, A8, A10, A12, A14, A16, A18, and A20 are aspherical coefficients.
- the aspheric surface of each lens in this embodiment preferably uses the non-curved surface of the following conditional expression.
- conditional expression is only an example, and in fact, it is not limited to what is expressed in the conditional expression.
- Aspheric polynomial form is only an example, and in fact, it is not limited to what is expressed in the conditional expression. Aspheric polynomial form.
- Table 3 and Table 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of the embodiment of the present invention.
- P1R1 and P1R2 represent the object side and image side of the first lens L1 respectively
- P2R1 and P2R2 represent the object side and image side of the second lens L2 respectively
- P3R1 and P3R2 represent the object side and image side of the third lens L3 respectively
- P4R1 and P4R2 represent the object side and image side of the fourth lens L4, respectively
- P5R1 and P5R2 represent the object side and the image side of the fifth lens L5, respectively.
- the corresponding data in the “reflection point position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
- the data corresponding to the “stationary point position” column is the vertical distance from the stationary point set on the surface of each lens to the optical axis of the imaging optical lens 10.
- FIG. 4 shows a schematic diagram of field curvature and distortion of light with a wavelength of 546 nm after passing through the imaging optical lens 10 of the first embodiment.
- the curvature of field S in FIG. 4 is the curvature of field in the sagittal direction
- T is the curvature of field in the meridional direction.
- Table 13 shows the values corresponding to the various values in the first, second, and third embodiments and the parameters specified in the conditional expressions.
- the first embodiment satisfies each conditional expression.
- the entrance pupil diameter of the imaging optical lens 10 is 1.639 mm
- the full-field image height is 2.784 mm
- the diagonal viewing angle is 79.00°, which makes the imaging optical lens 10 wide-angle and super Thinning, the on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
- FIG. 5 is a schematic diagram of the structure of the imaging optical lens 20 in the second embodiment.
- the second embodiment is basically the same as the first embodiment.
- the meanings of the symbols in the following list are also the same as those in the first embodiment. Therefore, the same parts will not be repeated here. List the differences.
- Table 5 and Table 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
- Table 7 and Table 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20 of the embodiment of the present invention.
- FIG. 6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 435 nm, 486 nm, 546 nm, 587 nm, and 656 nm pass through the imaging optical lens 20 of the first embodiment.
- FIG. 8 shows a schematic diagram of field curvature and distortion after light with a wavelength of 546 nm passes through the imaging optical lens 10 of the first embodiment.
- the curvature of field S in FIG. 8 is the curvature of field in the sagittal direction
- T is the curvature of field in the meridional direction.
- the second embodiment satisfies each conditional expression.
- the entrance pupil diameter of the imaging optical lens 20 is 1.639mm, the full-field image height is 2.784mm, and the diagonal field angle is 79.30°, which makes the imaging optical lens 20 wide-angle and super Thinning, the on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
- FIG. 9 is a schematic diagram of the structure of the imaging optical lens 30 in the third embodiment.
- the third embodiment is basically the same as the first embodiment.
- the meanings of the symbols in the following list are also the same as those in the first embodiment. Therefore, the same parts will not be repeated here. List the differences.
- Table 9 and Table 10 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.
- Table 11 and Table 12 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 30 of the embodiment of the present invention.
- FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 435 nm, 486 nm, 546 nm, 587 nm, and 656 nm pass through the imaging optical lens 30 of the first embodiment.
- FIG. 12 shows a schematic diagram of field curvature and distortion after light having a wavelength of 546 nm passes through the imaging optical lens 30 of the first embodiment.
- the curvature of field S in FIG. 12 is the curvature of field in the sagittal direction
- T is the curvature of field in the meridional direction.
- the third embodiment satisfies each conditional expression.
- the entrance pupil diameter of the imaging optical lens 30 is 1.639 mm
- the full-field image height is 2.784 mm
- the diagonal field angle is 79.40°, which makes the imaging optical lens 30 wide-angle , Ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
- Table 13 lists the values of some of the conditional expressions in the first embodiment, the second embodiment, and the third embodiment and the values of other related parameters according to the above-mentioned conditional expressions.
- Example 3 R1/R2 0.06 0.05 0.07 R3/R4 -3.18 -3.55 -2.51 R5/R6 1.61 1.56 1.79 R9/R10 3.05 2.82 3.19 d8/d9 0.78 0.84 0.66 d6/d8 0.58 0.59 0.57 f 3.279 3.270 3.266 f1 2.728 2.811 2.834 f2 -6.709 -6.881 -7.907 f3 -20.532 -18.060 -15.703 f4 2.828 3.046 3.082 f5 -2.882 -3.192 -3.175 f12 4.033 4.216 4.006 FNO 2.00 2.00 1.99 1.99
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
一种摄像光学镜头(10),由物侧至像侧依序包括:有正屈折力的第一透镜(L1)、有负屈折力的第二透镜(L2)、有负屈折力的第三透镜(L3)、有正屈折力的第四透镜(L4)及有负屈折力的第五透镜(L5)。第一透镜(L1)物侧面和像侧面的曲率半径分别为R1和R2,第二透镜(L2)物侧面和像侧面的曲率半径分别为R3和R4,第三透镜(L3)物侧面和像侧面的曲率半径分别为R5和R6,第五透镜(L5)物侧面和像侧面的曲率半径分别为R9和R10,第三透镜(L3)与第四透镜(L4)、第四透镜(L4)与第五透镜(L5)的轴上距离分别为d6及d8,第五透镜(L5)的轴上厚度为d9,满足:0.04≤R1/R2≤0.07;-3.60≤R3/R4≤-2.50;1.55≤R5/R6≤1.80;2.80≤R9/R10≤3.20;0.65≤d8/d9≤0.85;0.56≤d6/d8≤0.60。
Description
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
随着科学技术的不断发展,电子设备的功能不断完善,除了传统的数码相机和独立的摄像头、监控器等,诸如平板电脑、手机等便携电子设备也配备了摄像光学镜头,并且要求手机等电子设备中的镜头在具备良好成像品质的同时满足轻薄化要求,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、四片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,五片式透镜结构逐渐出现在镜头设计当中,常见的五片式透镜虽然能够具有较好的光学性能,但是结构厚度和透镜形状设置仍然具有一定的不合理性,导致摄像镜头在具有良好光学性能的同时,无法满足广角化和超薄化的设计要求。
因此,有必要提供一种摄像光学镜头以解决上述问题。
【发明内容】
本发明的目的在于提供一种摄像光学镜头,以解决目前摄像光学镜头在具有良好光学性能的同时,无法满足广角化和超薄化的设计要求的技术问题。
本发明的技术方案如下:
提供了一种摄像光学镜头,所述摄像光学镜头,由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜以及第五透镜,所述第一 透镜具有正屈折力,所述第二透镜具有负屈折力,所述第三透镜具有负屈折力,所述第四透镜具有正屈折力,所述第五透镜具有负屈折力;
所述第一透镜物侧面的曲率半径为R1,所述第一透镜的像侧面的曲率半径为R2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜的像侧面的曲率半径为R4,所述第三透镜物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第五透镜物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,所述第三透镜与所述第四透镜的轴上距离为d6,所述第四透镜与所述第五透镜的轴上距离为d8,所述第五透镜的轴上厚度为d9,满足下列关系式:
0.04≤R1/R2≤0.07;
-3.60≤R3/R4≤-2.50;
1.55≤R5/R6≤1.80;
2.80≤R9/R10≤3.20;
0.65≤d8/d9≤0.85;
0.56≤d6/d8≤0.60。
作为一种改进,所述第四透镜物侧面的曲率半径为R7,所述第四透镜的像侧面的曲率半径为R8,满足下列关系式:
2.80≤R7/R8≤3.00。
作为一种改进,所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
0.06≤d1/TTL≤0.19;
-2.30≤(R1+R2)/(R1-R2)≤-0.73;
0.42≤f1/f≤1.30。
作为一种改进,所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
0.03≤d3/TTL≤0.08;
-4.84≤f2/f≤-1.36;
0.22≤(R3+R4)/(R3-R4)≤0.84。
作为一种改进,所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
0.03≤d5/TTL≤0.11;
1.77≤(R5+R6)/(R5-R6)≤6.88;
-12.52≤f3/f≤-3.21。
作为一种改进,所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜的像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
0.08≤d7/TTL≤0.26;
0.43≤f4/f≤1.42;
1.01≤(R7+R8)/(R7-R8)≤3.15。
作为一种改进,所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
0.05≤d9/TTL≤0.21;
-1.95≤f5/f≤-0.59;
0.96≤(R9+R10)/(R9-R10)≤3.15。
作为一种改进,所述摄像光学镜头的光学总长和所述摄像光学镜头的像高分别为TTL及IH,满足下列关系式:
TTL/IH≤1.50。
作为一种改进,所述第一透镜与所述第二透镜的组合焦距为f12,所述摄像光学镜头的焦距为f,满足下列关系式:
0.61≤f12/f≤1.93。
本发明的有益效果在于:本发明提供的摄像光学镜头,在具有良好光学性能的同时,满足广角化和超薄化的设计要求,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
图1是本发明实施方式一中摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明实施方式二中摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明实施方式三中摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图。
指定图1为摘要附图。
下面结合附图和实施方式对本发明作进一步说明。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
以下为实施方式一:
请一并参阅图1至图4,本发明提供了一种摄像光学镜头10。图1所示为本发明实施方式一的摄像光学镜头10,该摄像光学镜头10包括五个透镜。具体地,摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一 透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5。本实施方式中,在第五透镜L5和像面Si之间设置有玻璃平板GF等光学元件,其中玻璃平板GF可以是玻璃盖板,也可以是光学过滤片(filter),当然在其他可实施方式中,玻璃平板GF还可以设置在其他位置。
本实施方式中,第一透镜L1具有正屈折力;第二透镜L2具有负屈折力;第三透镜L3具有负屈折力;第四透镜L4具有正屈折力;第五透镜L5具有负屈折力。
在本实施方式中,定义第一透镜L1物侧面的曲率半径为R1,所述第一透镜L1的像侧面的曲率半径为R2,满足关系式:0.04≤R1/R2≤0.07,规定了第一透镜L1的物侧面的曲率半径与其像侧面的曲率半径的比值范围,借此,规定了第一透镜L1的形状,在该条件式规定的范围内,可以有效地平衡光学系统的球差以及场曲量。
定义所述第二透镜L2物侧面的曲率半径为R3,所述第二透镜L2的像侧面的曲率半径为R4,满足关系式:-3.60≤R3/R4≤-2.50,规定了第二透镜L2的物侧面的曲率半径与其像侧面的曲率半径的比值范围,借此,规定了第二透镜L2的形状,在该条件式规定的范围内,可以缓和光线经过镜片的偏折程度,有效减小系统像差。
定义所述第三透镜L3物侧面的曲率半径为R5,所述第三透镜L3的像侧面的曲率半径为R6,满足关系式:1.55≤R5/R6≤1.80,规定了第三透镜L3的物侧面的曲率半径与其像侧面的曲率半径的比值范围,借此,规定了第三透镜L3的形状,在该条件式规定的范围内,有利于补正轴上色像差。
定义所述第五透镜L5物侧面的曲率半径为R9,所述第五透镜L5的像侧面的曲率半径为R10,满足关系式:2.80≤R9/R10≤3.20,规定了第五透镜L5的物侧面的曲率半径与其像侧面的曲率半径的比值范围,借此,规定了第五透镜L5的形状,在该条件式规定的范围内,有助于高光学系统性能。
定义所述第四透镜L4与所述第五透镜L5的轴上距离为d8,所述第五透镜L5的轴上厚度为d9,满足关系式:0.65≤d8/d9≤0.85,规定了第四 透镜与第五透镜L5轴上距离与第五透镜L5轴上厚度的比值,在条件式范围内有助于压缩光学系统总长,实现超薄化效果。
定义所述第三透镜L3与所述第四透镜L4的轴上距离为d6,所述第四透镜L4与所述第五透镜L5的轴上距离为d8,满足关系式:0.56≤d6/d8≤0.60,规定了第三透镜L3与第四透镜L4的轴上间距,与第四透镜L4和第五透镜L5的轴上距离的比值范围,在该条件式规定的范围内,有助于压缩光学系统总长,实现超薄化效果。
定义所述第四透镜L4物侧面的曲率半径为R7,所述第四透镜L4的像侧面的曲率半径为R8,满足下列关系式:2.80≤R7/R8≤3.00,规定了第四透镜L4的物侧面的曲率半径与其像侧面的曲率半径的比值范围,借此,规定了第四透镜L4的形状,在该条件式规定的范围内,随着超薄广角化的发展,有助于补正轴外画角的像差等问题。
定义所述第一透镜L1的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.06≤d1/TTL≤0.19,规定了第一透镜L1的轴上厚度与摄像光学镜头10的光学总长TTL的比值,在满足该条件式规定的范围内,有利于实现超薄化。
定义所述摄像光学镜头的焦距为f,所述第一透镜L1的焦距为f1,满足下列关系式:0.42≤f1/f≤1.30,规定了第一透镜L1的焦距与整体焦距的比值。在规定的范围内时,第一透镜L1具有适当的正屈折力,有利于减小系统像差,同时有利于镜头向超薄化、广角化发展。
定义第一透镜L1物侧面的曲率半径为R1,所述第一透镜L1的像侧面的曲率半径为R2,满足关系式:-2.30≤(R1+R2)/(R1-R2)≤-0.73;规定了第一透镜L1的物侧面的曲率半径与其像侧面的曲率半径的和,与该第一透镜L1的物侧面的曲率半径与其像侧面的曲率半径的差之间的比值,借此,合理控制第一透镜的形状,使得第一透镜能够有效地校正系统球差。
定义所述第二透镜L2的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.03≤d3/TTL≤0.08,规定了第二透镜L2的轴上厚度与摄像光学镜头10的光学总长TTL的比值。在满足该条件式规定 的范围内,有利于实现超薄化。
定义所述摄像光学镜头的焦距为f,所述第二透镜L2的焦距为f2,满足关系式:-4.84≤f2/f≤-1.36,规定了第二透镜L2的焦距与摄像光学镜头10的总焦距的比值,通过将第二透镜L2的负光焦度控制在合理范围,有利于矫正光学系统的像差。
定义所述第二透镜L2物侧面的曲率半径为R3,所述第二透镜L2的像侧面的曲率半径为R4,满足关系式:0.22≤(R3+R4)/(R3-R4)≤0.84;规定了第二透镜L2的形状,在范围内时,随着镜头向超薄广角化发展,有利于补正轴上色像差问题。
定义所述第三透镜L3的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,满足关系式:0.03≤d5/TTL≤0.11,规定了第三透镜L3的轴上厚度与摄像光学镜头10的光学总长TTL的比值,在满足该条件式规定的范围内,有利于实现超薄化。
定义所述摄像光学镜头的焦距为f,所述第三透镜L3的焦距为f3,满足关系式:-12.52≤f3/f≤-3.21,规定了第三透镜L3的焦距与摄像光学镜头10的总焦距的比值,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。
定义所述第三透镜L3物侧面的曲率半径为R5,所述第三透镜L3的像侧面的曲率半径为R6,满足关系式:1.77≤(R5+R6)/(R5-R6)≤6.88,规定了第三透镜L3的物侧面的曲率半径与其像侧面的曲率半径的和,与该第三透镜L3的物侧面的曲率半径与其像侧面的曲率半径的差之间的比值,在满足该条件式规定的范围内,可有效控制第三透镜L3的形状,有利于第三透镜L3成型,并避免因第三透镜L3的表面曲率过大而导致成型不良与应力产生。
定义所述第四透镜L4的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,满足关系式:0.08≤d7/TTL≤0.26,规定了第四透镜L4的轴上厚度与摄像光学镜头10的光学总长TTL的比值,在满足该条件式规定的范围内,有利于实现超薄化。
定义所述摄像光学镜头的焦距为f,所述第四透镜L4的焦距为f4,满足关系式:0.43≤f4/f≤1.42,规定了第四透镜L4的焦距与摄像光学镜头10的总焦距的比值,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。
定义所述第四透镜L4物侧面的曲率半径为R7,所述第四透镜L4的像侧面的曲率半径为R8,满足关系式:1.01≤(R7+R8)/(R7-R8)≤3.15,规定了第四透镜L4的物侧面的曲率半径与其像侧面的曲率半径的和,与该第四透镜L4的物侧面的曲率半径与其像侧面的曲率半径的差之间的比值,借此,规定的是第四透镜L4的形状,在范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。
定义所述第五透镜L5的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,满足关系式:0.05≤d9/TTL≤0.21,规定了第五透镜L5的轴上厚度与摄像光学镜头10的光学总长TTL的比值。在满足该条件式规定的范围内,有助于实现超薄化。
定义所述摄像光学镜头的焦距为f,所述第五透镜L5的焦距为f5,满足关系式:-1.95≤f5/f≤-0.59,规定了第五透镜L5的焦距与摄像光学镜头10的焦距的比值,借此,对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。
定义所述第五透镜L5物侧面的曲率半径为R9,所述第五透镜L5的像侧面的曲率半径为R10,满足关系式:0.96≤(R9+R10)/(R9-R10)≤3.15,规定了第五透镜L5的物侧面的曲率半径与其像侧面的曲率半径的和,与该第五透镜L5的物侧面的曲率半径与其像侧面的曲率半径的差之间的比值,借此,规定的是第五透镜L5的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。
定义所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,满足关系式:TTL/IH≤1.50,有利于实现超薄化。
定义摄像光学镜头的焦距为f,第一透镜L1与第二透镜L2的组合焦距为f12,满足关系式:0.61≤f12/f≤1.93,借此,可消除摄像光学镜头 的像差与歪曲,且可压制摄像光学镜头后焦距,维持影像镜片系统组小型化。
即当满足上述关系时,使得摄像光学镜头10实现了在具有良好光学性能的同时,还能满足广角化、超薄化的设计要求;根据该摄像光学镜头10的特性,该摄像光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
此外,本发明提供的摄像光学镜头10中,各透镜的表面可以设置为非球面,非球面可以容易制作成球面以外的形状,获得较多的控制变数,用以消减像差,进而缩减透镜使用的数目,因此可以有效降低本发明摄像光学镜头10的总长度。本发明实施例中,各个透镜的物侧面和像侧面均为非球面。
各实例中所记载的符号如下所示,焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到成像面的轴上距离),单位为mm。
优选的,透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下。
图1是实施方式一中摄像光学镜头10的结构示意图。以下示出了本发明实施方式一中摄像光学镜头10的设计数据。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。需要说明的是,本实施方式中,距离、半径和中心厚度的单位为毫米(mm)。
【表1】
上表中各符号的含义如下。
S1:光圈;
R:光学面的曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:光学过滤片GF的物侧面的曲率半径;
R12:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度或相邻透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到光学过滤片GF的物侧面的轴上距离;
d11:光学过滤片GF的轴上厚度;
d12:光学过滤片GF的像侧面到像面Si的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的折射率;
nd2:第二透镜L2的折射率;
nd3:第三透镜L3的折射率;
nd4:第四透镜L4的折射率;
nd5:第五透镜L5的折射率;
ndg:光学过滤片GF的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
vg:光学过滤片GF的阿贝数。
【表2】
在表2中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
需要说明的是,本实施方式中各透镜的非球面优选的使用下述条件式的非曲面,但是,下述条件式的具体形式仅为一个示例,实际上,并不限于条件式中表示的非球面多项式形式。
Y=(x
2/R)/{1+[1-(1+k)(x
2/R
2)]
1/2}+A
4x
4+A
6x
6+A
8x
8+A
10x
10+A
12x
12+A
14x
14+A
16x
16+A
18x
18+A
20x
20
表3、表4示出本发明实施例的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
【表4】
驻点个数 | 驻点位置1 | |
P1R1 | 0 | |
P1R2 | 1 | 0.315 |
P2R1 | 1 | 0.485 |
P2R2 | 0 | |
P3R1 | 1 | 0.315 |
P3R2 | 1 | 0.525 |
P4R1 | 0 | |
P4R2 | 0 | |
P5R1 | 1 | 0.435 |
P5R2 | 1 | 1.255 |
图2、图3分别示出了波长为435nm、486nm、546nm、587nm和656nm的光经过实施方式一的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为546nm的光经过实施方式一的摄像光学镜头10后的场曲及畸变示意图。图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表13示出各实施方式一、二、三中各种数值与条件式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各条件式。
在本实施方式中,摄像光学镜头10的入瞳直径为1.639mm,全视场像高为2.784mm,对角线方向的视场角为79.00°,使得所述摄像光学镜 头10广角化、超薄化,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
以下为实施方式二:
图5是实施方式二中摄像光学镜头20的结构示意图,实施方式二与实施方式一基本相同,以下列表中符号含义与实施方式一也相同,故对于相同的部分此处不再赘述,以下仅列出不同点。
表5、表6示出本发明实施方式二的摄像光学镜头20的设计数据。
【表5】
【表6】
表7、表8示出本发明实施例的摄像光学镜头20中各透镜的反曲点及驻点设计数据。
【表7】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | |
P1R1 | 1 | 0.675 | ||
P1R2 | 1 | 0.155 | ||
P2R1 | 1 | 0.305 | ||
P2R2 | 0 | |||
P3R1 | 1 | 0.195 | ||
P3R2 | 2 | 0.275 | 0.805 | |
P4R1 | 2 | 0.835 | 0.915 | |
P4R2 | 3 | 0.955 | 1.125 | 1.185 |
P5R1 | 2 | 0.245 | 1.495 | |
P5R2 | 1 | 0.505 |
【表8】
图6、图7分别示出了波长为435nm、486nm、546nm、587nm和656nm的光经过实施方式一的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为546nm的光经过实施方式一的摄像光学镜头10后的场曲及畸变示意图。图8的场曲S是弧矢方向的场曲,T是子午方向的场曲。
如表13所示,第二实施方式满足各条件式。
在本实施方式中,摄像光学镜头20的入瞳直径为1.639mm,全视场像高为2.784mm,对角线方向的视场角为79.30°,使得所述摄像光学镜头20广角化、超薄化,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
以下为实施方式三:
图9是实施方式三中摄像光学镜头30的结构示意图,实施方式三与实施方式一基本相同,以下列表中符号含义与实施方式一也相同,故对于相同的部分此处不再赘述,以下仅列出不同点。
表9、表10示出本发明实施方式三的摄像光学镜头30的设计数据。
【表9】
【表10】
表11、表12示出本发明实施例的摄像光学镜头30中各透镜的反曲点及驻点设计数据。
【表11】
【表12】
驻点个数 | 驻点位置1 | |
P1R1 | 0 | |
P1R2 | 1 | 0.275 |
P2R1 | 1 | 0.485 |
P2R2 | 0 | |
P3R1 | 1 | 0.295 |
P3R2 | 1 | 0.475 |
P4R1 | 0 | |
P4R2 | 0 | |
P5R1 | 1 | 0.425 |
P5R2 | 1 | 1.325 |
图10、图11分别示出了波长为435nm、486nm、546nm、587nm和656nm的光经过实施方式一的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为546nm的光经过实施方式一的摄像光学镜头30后的场曲及畸变示意图。图12的场曲S是弧矢方向的场曲,T是子午方向的场曲。
如表13所示,第三实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头30的入瞳直径为1.639mm,全视场像高为2.784mm,对角线方向的视场角为79.40°,使得所述摄像光学镜 头30广角化、超薄化,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
以下表13根据上述条件式列出了实施方式一、实施方式二、实施方式三中部分条件式的数值,以及其他相关参数的取值。
【表13】
实施例1 | 实施例2 | 实施例3 | |
R1/R2 | 0.06 | 0.05 | 0.07 |
R3/R4 | -3.18 | -3.55 | -2.51 |
R5/R6 | 1.61 | 1.56 | 1.79 |
R9/R10 | 3.05 | 2.82 | 3.19 |
d8/d9 | 0.78 | 0.84 | 0.66 |
d6/d8 | 0.58 | 0.59 | 0.57 |
f | 3.279 | 3.270 | 3.266 |
f1 | 2.728 | 2.811 | 2.834 |
f2 | -6.709 | -6.881 | -7.907 |
f3 | -20.532 | -18.060 | -15.703 |
f4 | 2.828 | 3.046 | 3.082 |
f5 | -2.882 | -3.192 | -3.175 |
f12 | 4.033 | 4.216 | 4.006 |
FNO | 2.00 | 2.00 | 1.99 |
以上的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。
Claims (9)
- 一种摄像光学镜头,其特征在于,所述摄像光学镜头,由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜以及第五透镜,所述第一透镜具有正屈折力,所述第二透镜具有负屈折力,所述第三透镜具有负屈折力,所述第四透镜具有正屈折力,所述第五透镜具有负屈折力;所述第一透镜物侧面的曲率半径为R1,所述第一透镜的像侧面的曲率半径为R2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜的像侧面的曲率半径为R4,所述第三透镜物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第五透镜物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,所述第三透镜与所述第四透镜的轴上距离为d6,所述第四透镜与所述第五透镜的轴上距离为d8,所述第五透镜的轴上厚度为d9,满足下列关系式:0.04≤R1/R2≤0.07;-3.60≤R3/R4≤-2.50;1.55≤R5/R6≤1.80;2.80≤R9/R10≤3.20;0.65≤d8/d9≤0.85;0.56≤d6/d8≤0.60。
- 根据权利要求1所述的摄像光学镜头,其特征在于:所述第四透镜物侧面的曲率半径为R7,所述第四透镜的像侧面的曲率半径为R8,满足下列关系式:2.80≤R7/R8≤3.00。
- 根据权利要求1所述的摄像光学镜头,其特征在于:所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.06≤d1/TTL≤0.19;-2.30≤(R1+R2)/(R1-R2)≤-0.73;0.42≤f1/f≤1.30。
- 根据权利要求1所述的摄像光学镜头,其特征在于:所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.03≤d3/TTL≤0.08;-4.84≤f2/f≤-1.36;0.22≤(R3+R4)/(R3-R4)≤0.84。
- 根据权利要求1所述的摄像光学镜头,其特征在于:所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.03≤d5/TTL≤0.11;1.77≤(R5+R6)/(R5-R6)≤6.88;-12.52≤f3/f≤-3.21。
- 根据权利要求1所述的摄像光学镜头,其特征在于:所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜的像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.08≤d7/TTL≤0.26;0.43≤f4/f≤1.42;1.01≤(R7+R8)/(R7-R8)≤3.15。
- 根据权利要求1所述的摄像光学镜头,其特征在于:所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.05≤d9/TTL≤0.21;-1.95≤f5/f≤-0.59;0.96≤(R9+R10)/(R9-R10)≤3.15。
- 根据权利要求1所述的摄像光学镜头,其特征在于:所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,满足下列关系式:TTL/IH≤1.50。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜与所述第二透镜的组合焦距为f12,所述摄像光学镜头的焦距为f,满足下列关系式:0.61≤f12/f≤1.93。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910764606.5 | 2019-08-19 | ||
CN201910764606.5A CN110515182B (zh) | 2019-08-19 | 2019-08-19 | 摄像光学镜头 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021031236A1 true WO2021031236A1 (zh) | 2021-02-25 |
Family
ID=68626578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/103601 WO2021031236A1 (zh) | 2019-08-19 | 2019-08-30 | 摄像光学镜头 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11493738B2 (zh) |
JP (1) | JP6896923B2 (zh) |
CN (1) | CN110515182B (zh) |
WO (1) | WO2021031236A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021119928A1 (zh) * | 2019-12-16 | 2021-06-24 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
WO2021119888A1 (zh) * | 2019-12-16 | 2021-06-24 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
WO2021119925A1 (zh) * | 2019-12-16 | 2021-06-24 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
WO2021127822A1 (zh) * | 2019-12-23 | 2021-07-01 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
WO2021134321A1 (zh) * | 2019-12-30 | 2021-07-08 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
CN111090166B (zh) * | 2020-03-19 | 2020-07-10 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
WO2021184276A1 (zh) * | 2020-03-19 | 2021-09-23 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
CN111123484B (zh) * | 2020-03-30 | 2020-07-10 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
CN111929829B (zh) * | 2020-09-03 | 2021-04-13 | 诚瑞光学(苏州)有限公司 | 摄像光学镜头 |
KR20220147335A (ko) * | 2021-04-27 | 2022-11-03 | 엘지이노텍 주식회사 | 광학계 및 이를 포함하는 카메라 모듈 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201926811U (zh) * | 2010-12-23 | 2011-08-10 | 大立光电股份有限公司 | 光学摄影镜头组 |
CN201965293U (zh) * | 2011-02-22 | 2011-09-07 | 大立光电股份有限公司 | 影像撷取镜组 |
US20120081595A1 (en) * | 2010-10-04 | 2012-04-05 | Olympus Corporation | Image taking optical system and image pickup apparatus equipped with same |
KR20120094730A (ko) * | 2011-02-17 | 2012-08-27 | 주식회사 코렌 | 촬영 렌즈 광학계 |
US20140063596A1 (en) * | 2012-09-05 | 2014-03-06 | Pil Sun Jung | Photographing lens optical system |
CN105093493A (zh) * | 2015-03-06 | 2015-11-25 | 玉晶光电(厦门)有限公司 | 便携式电子装置与其光学成像镜头 |
CN105739059A (zh) * | 2014-11-12 | 2016-07-06 | 大立光电股份有限公司 | 摄影用光学镜组、取像装置及电子装置 |
CN105892014A (zh) * | 2015-10-09 | 2016-08-24 | 瑞声科技(新加坡)有限公司 | 摄像镜头 |
CN106054354A (zh) * | 2015-04-14 | 2016-10-26 | 康达智株式会社 | 摄像镜头 |
CN106802472A (zh) * | 2016-12-14 | 2017-06-06 | 瑞声科技(新加坡)有限公司 | 摄像光学镜头 |
CN106802467A (zh) * | 2016-12-14 | 2017-06-06 | 瑞声科技(新加坡)有限公司 | 摄像光学镜头 |
CN106980168A (zh) * | 2016-12-14 | 2017-07-25 | 瑞声科技(新加坡)有限公司 | 摄像光学镜头 |
US20180164546A1 (en) * | 2016-12-11 | 2018-06-14 | Zhejiang Sunny Optics Co., Ltd. | Image Pickup Optical Lens System |
CN108459391A (zh) * | 2017-02-17 | 2018-08-28 | 大立光电股份有限公司 | 影像撷取光学透镜组、取像装置及电子装置 |
KR20180102741A (ko) * | 2017-03-08 | 2018-09-18 | 주식회사 엔투에이 | 내면반사가 완화된 초소형 촬상 렌즈 시스템 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI440924B (zh) * | 2011-09-06 | 2014-06-11 | Largan Precision Co Ltd | 影像鏡頭組 |
JP5727679B2 (ja) * | 2012-08-29 | 2015-06-03 | 富士フイルム株式会社 | 撮像レンズおよび撮像レンズを備えた撮像装置 |
CN103018887B (zh) * | 2012-12-26 | 2015-08-05 | 浙江舜宇光学有限公司 | 微型摄像镜头 |
JP5886230B2 (ja) * | 2013-03-29 | 2016-03-16 | 富士フイルム株式会社 | 撮像レンズおよび撮像レンズを備えた撮像装置 |
-
2019
- 2019-08-19 CN CN201910764606.5A patent/CN110515182B/zh active Active
- 2019-08-30 WO PCT/CN2019/103601 patent/WO2021031236A1/zh active Application Filing
-
2020
- 2020-08-12 JP JP2020136523A patent/JP6896923B2/ja active Active
- 2020-08-13 US US16/993,246 patent/US11493738B2/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120081595A1 (en) * | 2010-10-04 | 2012-04-05 | Olympus Corporation | Image taking optical system and image pickup apparatus equipped with same |
CN201926811U (zh) * | 2010-12-23 | 2011-08-10 | 大立光电股份有限公司 | 光学摄影镜头组 |
KR20120094730A (ko) * | 2011-02-17 | 2012-08-27 | 주식회사 코렌 | 촬영 렌즈 광학계 |
CN201965293U (zh) * | 2011-02-22 | 2011-09-07 | 大立光电股份有限公司 | 影像撷取镜组 |
US20140063596A1 (en) * | 2012-09-05 | 2014-03-06 | Pil Sun Jung | Photographing lens optical system |
CN105739059A (zh) * | 2014-11-12 | 2016-07-06 | 大立光电股份有限公司 | 摄影用光学镜组、取像装置及电子装置 |
CN105093493A (zh) * | 2015-03-06 | 2015-11-25 | 玉晶光电(厦门)有限公司 | 便携式电子装置与其光学成像镜头 |
CN106054354A (zh) * | 2015-04-14 | 2016-10-26 | 康达智株式会社 | 摄像镜头 |
CN105892014A (zh) * | 2015-10-09 | 2016-08-24 | 瑞声科技(新加坡)有限公司 | 摄像镜头 |
US20180164546A1 (en) * | 2016-12-11 | 2018-06-14 | Zhejiang Sunny Optics Co., Ltd. | Image Pickup Optical Lens System |
CN106802472A (zh) * | 2016-12-14 | 2017-06-06 | 瑞声科技(新加坡)有限公司 | 摄像光学镜头 |
CN106802467A (zh) * | 2016-12-14 | 2017-06-06 | 瑞声科技(新加坡)有限公司 | 摄像光学镜头 |
CN106980168A (zh) * | 2016-12-14 | 2017-07-25 | 瑞声科技(新加坡)有限公司 | 摄像光学镜头 |
CN108459391A (zh) * | 2017-02-17 | 2018-08-28 | 大立光电股份有限公司 | 影像撷取光学透镜组、取像装置及电子装置 |
KR20180102741A (ko) * | 2017-03-08 | 2018-09-18 | 주식회사 엔투에이 | 내면반사가 완화된 초소형 촬상 렌즈 시스템 |
Also Published As
Publication number | Publication date |
---|---|
JP6896923B2 (ja) | 2021-06-30 |
US20210055523A1 (en) | 2021-02-25 |
JP2021033302A (ja) | 2021-03-01 |
CN110515182A (zh) | 2019-11-29 |
CN110515182B (zh) | 2021-01-08 |
US11493738B2 (en) | 2022-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021031234A1 (zh) | 摄像光学镜头 | |
WO2022047989A1 (zh) | 摄像光学镜头 | |
WO2021031236A1 (zh) | 摄像光学镜头 | |
WO2021031233A1 (zh) | 摄像光学镜头 | |
WO2021253517A1 (zh) | 摄像光学镜头 | |
WO2021237781A1 (zh) | 摄像光学镜头 | |
WO2021248578A1 (zh) | 摄像光学镜头 | |
WO2021258441A1 (zh) | 摄像光学镜头 | |
WO2021196312A1 (zh) | 摄像光学镜头 | |
WO2021097929A1 (zh) | 摄像光学镜头 | |
WO2022047985A1 (zh) | 摄像光学镜头 | |
WO2021168878A1 (zh) | 摄像光学镜头 | |
WO2021168884A1 (zh) | 摄像光学镜头 | |
WO2021097928A1 (zh) | 摄像光学镜头 | |
WO2021031237A1 (zh) | 摄像光学镜头 | |
WO2021097925A1 (zh) | 摄像光学镜头 | |
WO2021031238A1 (zh) | 摄像光学镜头 | |
WO2022088348A1 (zh) | 摄像光学镜头 | |
WO2022062079A1 (zh) | 摄像光学镜头 | |
WO2022047988A1 (zh) | 摄像光学镜头 | |
WO2021168879A1 (zh) | 摄像光学镜头 | |
WO2021168889A1 (zh) | 摄像光学镜头 | |
WO2021168886A1 (zh) | 摄像光学镜头 | |
WO2021127852A1 (zh) | 摄像光学镜头 | |
WO2022057037A1 (zh) | 摄像光学镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19942253 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19942253 Country of ref document: EP Kind code of ref document: A1 |