WO2021031238A1 - 摄像光学镜头 - Google Patents
摄像光学镜头 Download PDFInfo
- Publication number
- WO2021031238A1 WO2021031238A1 PCT/CN2019/103613 CN2019103613W WO2021031238A1 WO 2021031238 A1 WO2021031238 A1 WO 2021031238A1 CN 2019103613 W CN2019103613 W CN 2019103613W WO 2021031238 A1 WO2021031238 A1 WO 2021031238A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- imaging optical
- curvature
- radius
- optical lens
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/60—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
Definitions
- This application relates to the field of optical lenses, and in particular to a photographic optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as camera devices such as monitors and PC lenses.
- the photosensitive devices of general photographic lenses are nothing more than charge-coupled devices (CCD) or complementary metal oxide semiconductor devices (Complementary Metal).
- CCD charge-coupled devices
- CMOS Sensor complementary metal oxide semiconductor devices
- the lenses traditionally mounted on mobile phone cameras often adopt three-element, four-element, or even five-element or six-element lens structures.
- the pixel area of photosensitive devices continues to shrink, and the system's requirements for image quality continue to increase, although the common five-element lens already has better optics Performance, but its optical power, lens spacing and lens shape settings are still unreasonable, resulting in the lens structure having good optical performance, while being unable to meet the design requirements of large aperture, ultra-thin, and wide-angle.
- the purpose of this application is to provide an imaging optical lens, which aims to solve the problems of insufficient wide-angle and ultra-thinning of traditional imaging optical lenses.
- An imaging optical lens from the object side to the image side, including: a first lens with positive refractive power, a second lens with negative refractive power, a third lens with negative refractive power, and a fourth lens with positive refractive power And a fifth lens with negative refractive power;
- the overall focal length of the imaging optical lens is f
- the focal length of the first lens is f1
- the focal length of the second lens is f2
- the focal length of the fourth lens is f4
- the axis of the first lens The upper thickness is d1
- the radius of curvature of the object side of the second lens is R3
- the radius of curvature of the object side of the fifth lens is R9
- the radius of curvature of the image side of the fifth lens is R10, which satisfies the following relationship formula:
- the focal length of the fifth lens is f5, which satisfies the following relationship:
- the curvature radius of the object side surface of the first lens is R1
- the curvature radius of the image side surface of the first lens is R2
- the total optical length of the imaging optical lens is TTL, which satisfies the following relationship :
- the curvature radius of the image side surface of the second lens is R4
- the axial thickness of the second lens is d3
- the total optical length of the imaging optical lens is TTL, which satisfies the following relationship:
- the focal length of the third lens is f3
- the radius of curvature of the object side of the third lens is R5
- the radius of curvature of the image side of the third lens is R6, and the third lens
- the on-axis thickness of is d5
- the total optical length of the camera optical lens is TTL, which satisfies the following relationship:
- the radius of curvature of the object side of the fourth lens is R7
- the radius of curvature of the image side of the fourth lens is R8
- the axial thickness of the fourth lens is d7
- the imaging The total optical length of the optical lens is TTL, which satisfies the following relationship:
- the axial thickness of the fifth lens is d9, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship:
- the field of view of the imaging optical lens is FOV, and the following relationship is satisfied:
- the total optical length of the camera optical lens is TTL
- the image height of the camera optical lens is IH, which satisfies the following relationship:
- the imaging optical lens according to this application has good optical performance, and has the characteristics of large aperture, wide-angle, and ultra-thinness, and is especially suitable for high-pixel CCD, CMOS and other imaging elements Mobile phone camera lens assembly and WEB camera lens.
- FIG. 1 is a schematic diagram of the structure of the imaging optical lens of the first embodiment
- FIG. 2 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 1;
- FIG. 3 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
- FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
- FIG. 5 is a schematic diagram of the structure of the imaging optical lens of the second embodiment
- FIG. 6 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 5;
- FIG. 7 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 5;
- FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
- FIG. 9 is a schematic diagram of the structure of the imaging optical lens of the third embodiment.
- FIG. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 9;
- FIG. 11 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
- FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9.
- the present application provides an imaging optical lens 10 according to the first embodiment.
- the left side is the object side
- the right side is the image side.
- the imaging optical lens 10 mainly includes five lenses arranged coaxially. From the object side to the image side, there are a first lens L1, a second lens L2, and a second lens. Three lens L3, fourth lens L4 and fifth lens L5.
- An aperture S1 is also provided on the object side of the first lens L1, and a glass plate GF is provided between the fifth lens L5 and the image plane Si.
- the glass plate GF may be a glass cover plate or an optical filter.
- the first lens L1 has positive refractive power
- the second lens L2 has negative refractive power
- the third lens L3 has negative refractive power
- the fourth lens L4 has positive refractive power
- the fifth lens L5 has negative refractive power.
- the focal length of the imaging optical lens 10 is f
- the focal length of the first lens L1 is f1
- the focal length of the second lens L2 is f2
- the focal length of the fourth lens L4 is f4
- the axial thickness of the first lens L1 is d1
- the radius of curvature of the object side surface of the second lens L2 is R3
- the radius of curvature of the object side surface of the fifth lens L5 is R9
- the radius of curvature of the image side surface of the fifth lens L5 is R10.
- conditional expression (1) specifies the ratio of the focal length of the first lens L1 to the focal length of the second lens L2. Within the range specified by the conditional expression (1), the spherical aberration and field curvature of the imaging optical lens 10 can be effectively balanced the amount.
- Conditional expression (2) specifies the ratio of the sum of the focal length of the first lens L1 and the focal length of the fourth lens L4 to the total focal length of the imaging optical lens 10. Within the range specified by the conditional expression (2), through reasonable allocation of focal lengths, The imaging optical lens 10 can be made to have better imaging quality and lower sensitivity.
- Conditional expression (3) specifies the ratio of the on-axis thickness of the first lens L1 to the total focal length of the imaging optical lens 10. Within the range specified by the conditional expression (3), it helps to compress the total length of the imaging optical lens 10 and achieve super Thinning effect.
- Conditional expression (4) specifies the ratio of the radius of curvature of the object side surface of the third lens L3 to the total focal length of the imaging optical lens 10. Within the range specified by the conditional expression (4), it helps to improve the optical performance of the imaging optical lens 10 .
- conditional expression (5) specifies the shape of the fifth lens L5. Within the range specified by the conditional expression (5), the degree of deflection of the light passing through the lens can be relaxed, and aberrations can be effectively reduced.
- the focal length of the fifth lens L5 is f5, and f5 and f satisfy the following relationship:
- the conditional formula (6) specifies the ratio of the focal length of the fifth lens L5 to the total focal length of the imaging optical lens 10. Within the range specified by the conditional formula (6), through a reasonable allocation of focal lengths, the imaging optical lens 10 can be better The imaging quality and lower sensitivity.
- the radius of curvature of the object side of the first lens L1 is R1
- the radius of curvature of the image side of the first lens L1 is R2
- the total optical length of the imaging optical lens 10 is TTL, f1, f, R1, R2, d1, TTL satisfies the following relationship:
- conditional formula (7) specifies the ratio of the focal length of the first lens L1 to the total focal length of the imaging optical lens 10.
- the first lens L1 has an appropriate positive refractive power, which is beneficial to Reduce system aberrations and at the same time facilitate the development of ultra-thin and wide-angle lenses.
- conditional expression (8) specifies the shape of the first lens L1, and within the range specified by the conditional expression (8), the first lens L1 can effectively correct the system spherical aberration.
- conditional expression (9) specifies the ratio of the thickness of the first lens L1 to the total optical length of the imaging optical lens 10, and within the range specified by the conditional expression (9), it is beneficial to realize the ultra-thinning effect.
- the curvature radius of the image side surface of the second lens L2 is R4, and the on-axis thickness of the second lens L2 is d3, f2, f, R3, R4, d3, and TTL satisfy the following relationship:
- conditional expression (10) specifies the ratio of the focal length of the second lens L2 to the total focal length of the imaging optical lens 10. Within the range specified by the conditional expression (10), the negative refractive power of the second lens L2 is controlled at A reasonable range is beneficial to correct the aberration of the optical system.
- conditional expression (11) specifies the shape of the second lens L2. Within the range specified by the conditional expression (11), as the imaging optical lens 10 becomes ultra-thin and wide-angle, it is beneficial to correct the problem of axial aberration.
- conditional expression (12) specifies the ratio of the thickness of the second lens L2 to the total optical length of the imaging optical lens 10, and within the range specified by the conditional expression (12), it is beneficial to realize the ultra-thinning effect.
- the focal length of the third lens L3 is f3
- the radius of curvature of the object side of the third lens L3 is R5
- the radius of curvature of the image side of the third lens L3 is R6,
- the on-axis thickness of the third lens L3 is d5, f3, f, R5, R6, d5, TTL satisfy the following relations:
- conditional formula (13) specifies the ratio of the focal length of the third lens L3 to the total focal length of the imaging optical lens 10. Within the range specified by the conditional formula (13), through a reasonable distribution of optical power, the imaging optical lens can be made 10 has better imaging quality and lower sensitivity.
- Conditional expression (14) specifies the shape of the third lens L3. Within the range specified by conditional expression (14), it is conducive to the molding of the third lens L3, and avoids poor molding caused by excessive surface curvature of the third lens L3. Stress is generated.
- conditional expression (15) specifies the ratio of the thickness of the third lens L3 to the total optical length of the imaging optical lens 10, and within the range specified by the conditional expression (15), it is beneficial to realize the ultra-thinning effect.
- the curvature radius of the object side surface of the fourth lens L4 is R7
- the curvature radius of the image side surface of the fourth lens L4 is R8,
- the axial thickness of the fourth lens L4 is d7, f4, f, R7, R8 , D7, TTL satisfy the following relationship:
- conditional formula (16) specifies the ratio of the focal length of the fourth lens L4 to the total focal length of the imaging optical lens 10. Within the range specified by the conditional formula (16), through a reasonable distribution of optical power, the imaging optical lens can be made 10 has better imaging quality and lower sensitivity.
- Conditional expression (17) specifies the shape of the fourth lens L4. Within the range specified by conditional expression (17), with the development of ultra-thin and wide-angle, it is beneficial to correct problems such as off-axis aberrations.
- the conditional expression (18) specifies the ratio of the thickness of the fourth lens L4 to the total optical length of the imaging optical lens 10, and within the range specified by the conditional expression (18), it is beneficial to realize the ultra-thinning effect.
- the on-axis thickness of the fifth lens L5 is d9, and d9 and TTL satisfy the following relationship:
- conditional expression (19) specifies the ratio of the thickness of the fifth lens L5 to the total optical length of the imaging optical lens 10, and within the range specified by the conditional expression (19), it is beneficial to realize the ultra-thinning effect.
- the surface of each lens can be set as an aspherical surface.
- the aspherical surface can be easily made into a shape other than a spherical surface, and more control variables can be obtained to reduce aberrations, thereby reducing lens usage Therefore, the total length of the imaging optical lens 10 can be effectively reduced.
- both the object side surface and the image side surface of each lens are aspherical.
- the imaging optical lens 10 can be reasonable Allocate the power, spacing and shape of each lens, and therefore correct various aberrations.
- TTL/IH 1.55, FOV ⁇ 74.00°
- TTL is the total optical length of the imaging optical lens
- IH is the image height of the imaging optical lens
- FOV is the angle of view.
- the imaging optical lens 10 can not only have good optical imaging performance, but also meet the design requirements of wide-angle and ultra-thinness.
- the imaging optical lens 10 of the present application will be described below with an example.
- the symbols described in each example are as follows.
- the units of focal length, on-axis distance, radius of curvature, on-axis thickness, total optical length, inflection point position, and stagnation point position are all mm.
- At least one of the object side surface and the image side surface of each lens may be provided with an inflection point and/or a stagnation point to meet the requirements of high-quality imaging.
- an inflection point and/or a stagnation point to meet the requirements of high-quality imaging.
- the design data of the imaging optical lens 10 shown in FIG. 1 is shown below.
- Table 1 lists the object side curvature radius and the image side curvature radius R of the first lens L1 to the fifth lens L5 constituting the imaging optical lens 10 in Embodiment 1 of the present application, the on-axis thickness of each lens, and the distance between two adjacent lenses. Distance d, refractive index nd and Abbe number ⁇ d.
- R the radius of curvature of the optical surface, and the radius of curvature of the center of the lens
- R1 the radius of curvature of the object side surface of the first lens L1;
- R2 the radius of curvature of the image side surface of the first lens L1;
- R3 the radius of curvature of the object side of the second lens L2;
- R4 the radius of curvature of the image side surface of the second lens L2;
- R5 the radius of curvature of the object side surface of the third lens L3;
- R6 the radius of curvature of the image side surface of the third lens L3;
- R7 the radius of curvature of the object side of the fourth lens L4;
- R8 the radius of curvature of the image side surface of the fourth lens L4;
- R9 the radius of curvature of the object side surface of the fifth lens L5;
- R10 the radius of curvature of the image side surface of the fifth lens L5;
- R11 the curvature radius of the object side surface of the glass plate GF
- R12 the curvature radius of the image side surface of the glass plate GF
- d0 the on-axis distance from the aperture S1 to the object side of the first lens L1;
- d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
- d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
- d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
- d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the glass plate GF;
- d11 the axial thickness of the glass plate GF
- nd refractive index of d-line
- nd1 the refractive index of the d-line of the first lens L1;
- nd2 the refractive index of the d-line of the second lens L2;
- nd3 the refractive index of the d-line of the third lens L3;
- nd4 the refractive index of the d-line of the fourth lens L4;
- nd5 the refractive index of the d-line of the fifth lens L5;
- ndg the refractive index of the d-line of the glass plate GF
- vg Abbe number of glass plate GF.
- k is the conic coefficient
- A4, A6, A8, A10, A12, A14, A16, and A20 are aspheric coefficients.
- the aspheric surface of each lens surface uses the aspheric surface shown in the above formula.
- this application is not limited to the aspheric polynomial form expressed by this formula.
- Table 3 and Table 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of this embodiment.
- P1R1 and P1R2 represent the object side and image side of the first lens L1 respectively
- P2R1 and P2R2 represent the object side and image side of the second lens L2 respectively
- P3R1 and P3R2 represent the object side and image side of the third lens L3 respectively
- P4R1 and P4R2 represent the object side and image side of the fourth lens L4, respectively
- P5R1 and P5R2 represent the object side and the image side of the fifth lens L5, respectively.
- the corresponding data in the “reflection point position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
- the data corresponding to the “stationary point position” column is the vertical distance from the stationary point set on the surface of each lens to the optical axis of the imaging optical lens 10.
- FIG. 4 shows a schematic diagram of field curvature and distortion of light with a wavelength of 546 nm after passing through the imaging optical lens 10.
- the curvature of field S in FIG. 4 is the curvature of field in the sagittal direction
- T is the curvature of field in the meridional direction.
- the image height of the imaging optical lens 10 is IH
- the field of view is FOV
- the camera optical lens 10 has a large aperture, ultra-thin, wide-angle, and excellent imaging performance.
- FIG. 5 is a schematic diagram of the structure of the imaging optical lens 20 in the second embodiment.
- the second embodiment is basically the same as the first embodiment.
- the meanings of the symbols in the following list are also the same as those in the first embodiment. Therefore, the same parts will not be repeated here. List the differences.
- Table 5 and Table 6 show the design data of the imaging optical lens 20 in the second embodiment of the present application.
- k is the conic coefficient
- A4, A6, A8, A10, A12, A14, A16, and A20 are aspheric coefficients.
- the aspheric surface of each lens surface uses the aspheric surface shown in the above formula.
- this application is not limited to the aspheric polynomial form expressed by this formula.
- Table 7 and Table 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20.
- Table 13 also lists the values corresponding to various parameters and conditional expressions in the second embodiment.
- FIG. 6 and 7 respectively show schematic diagrams of the axial aberration and the chromatic aberration of magnification after the light with wavelengths of 435 nm, 486 nm, 546 nm, 587 nm and 656 nm passes through the imaging optical lens 20.
- FIG. 8 shows a schematic diagram of field curvature and distortion of light with a wavelength of 546 nm after passing through the imaging optical lens 20.
- the curvature of field S in FIG. 8 is the curvature of field in the sagittal direction
- T is the curvature of field in the meridional direction.
- the image height of the imaging optical lens 20 is IH
- the field of view is FOV
- the camera optical lens 20 has a large aperture, ultra-thin, wide-angle, and has excellent imaging performance.
- FIG. 9 is a schematic diagram of the structure of the imaging optical lens 30 in the third embodiment.
- the third embodiment is basically the same as the first embodiment.
- the meanings of the symbols in the following list are also the same as those in the first embodiment. Therefore, the same parts will not be repeated here. List the differences.
- Table 9 and Table 10 show the design data of the imaging optical lens 30 in the third embodiment of the present application.
- k is the conic coefficient
- A4, A6, A8, A10, A12, A14, A16, A18, and A20 are aspherical coefficients.
- y (x 2 /R)/[1+ ⁇ 1-(k+1)(x 2 /R 2 ) ⁇ 1/2 ]+A4x 4 +A6x 6 +A8x 8 +A10x 10 +A12x 12 +A14x 14 +A16x 16 +A18x 18 +A20x 20
- the aspheric surface of each lens surface uses the aspheric surface shown in the above formula.
- this application is not limited to the aspheric polynomial form expressed by this formula.
- Table 11 and Table 12 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 30.
- FIG. 10 and 11 respectively show schematic diagrams of the axial aberration and the chromatic aberration of magnification after the light with wavelengths of 435 nm, 486 nm, 546 nm, 587 nm and 656 nm passes through the imaging optical lens 30.
- Fig. 12 shows a schematic diagram of field curvature and distortion of light with a wavelength of 546 nm after passing through the imaging optical lens 30.
- the curvature of field S in FIG. 12 is the curvature of field in the sagittal direction, and T is the curvature of field in the meridional direction.
- the image height of the imaging optical lens 30 is IH
- the field of view is FOV
- the camera optical lens 30 has a large aperture, ultra-thin, wide-angle, and excellent imaging performance.
- Example 1 Example 2
- Example 3 Remarks f1/f2 -0.29 -0.25 -0.35 Conditional (1) (f1+f4)/f 1.24 1.21 1.30 Conditional expression (2) d1/f 0.19 0.18 0.21 Conditional expression (3) R3/f 3.13 2.81 3.49 Conditional (4) (R9+R10)/(R9-R10) -0.26 -0.28 -0.24 Conditional (5) f 3.361 3.300 3.217 To f1 2.397 2.457 2.400 To f2 -8.216 -9.749 -6.881 To f3 -19.309 -12.311 -23.423 To f4 1.762 1.531 1.774 To f5 -1.348 -1.161 -1.428 To f12 3.003 3.005 3.159 To FNO 2.20 2.20 2.20 To
- f12 is the combined focal length of the first lens L1 and the second lens L2.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本申请提供了一种摄像光学镜头,由物侧至像侧的方向上,摄像光学镜头依次包括具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有负屈折力的第三透镜、具有正屈折力的第四透镜及具有负屈折力的第五透镜。其中,摄像光学镜头整体的焦距为f,第一透镜的焦距为f1,第二透镜的焦距为f2,第四透镜的焦距为f4,第一透镜的轴上厚度为d1,第二透镜的物侧面的曲率半径为R3,第五透镜的物侧面的曲率半径为R9,第五透镜的像侧面的曲率半径为R10,满足下列关系式:-0.35≤f1/f2≤-0.25;1.20≤(f1+f4)/f≤1.30;0.18≤d1/f≤0.22;2.80≤R3/f≤3.50;-0.28≤(R9+R10)/(R9-R10)≤-0.24。该摄像光学镜头具有良好的光学性能,还满足广角化、超薄化的设计要求。
Description
本申请涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、四片式甚至是五片式、六片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,常见的五片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足大光圈、超薄化、广角化的设计要求。
【申请内容】
本申请的目的在于提供一种摄像光学镜头,旨在解决传统的摄像光学镜头广角化、超薄化不充分的问题。
本申请的技术方案如下:
一种摄像光学镜头,由物侧至像侧依次包括:具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有负屈折力的第三透镜、具有正屈折力的第四透镜及具有负屈折力的第五透镜;
其中,所述摄像光学镜头整体的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第四透镜的焦距为f4,所述第一透镜的轴上厚度为d1,所述第二透镜的物侧面的曲率半径为R3,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,满足下列关系式:
-0.35≤f1/f2≤-0.25;
1.20≤(f1+f4)/f≤1.30;
0.18≤d1/f≤0.22;
2.80≤R3/f≤3.50;
-0.28≤(R9+R10)/(R9-R10)≤-0.24。
在其中一个实施例中,所述第五透镜的焦距为f5,满足下列关系式:
-0.45≤f5/f≤-0.35。
在其中一个实施例中,所述第一透镜的物侧面的曲率半径为R1,所述第一透镜的像侧面的曲率半径为R2,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
0.36≤f1/f≤1.12;
-2.89≤(R1+R2)/(R1-R2)≤-0.95;
0.08≤d1/TTL≤0.27。
在其中一个实施例中,所述第二透镜的像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
-5.91≤f2/f≤-1.43;
0.91≤(R3+R4)/(R3-R4)≤3.61;
0.03≤d3/TTL≤0.09。
在其中一个实施例中,所述第三透镜的焦距为f3,所述第三透镜的物 侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
-14.56≤f3/f≤-2.49;
-6.18≤(R5+R6)/(R5-R6)≤-0.96;
0.04≤d5/TTL≤0.12。
在其中一个实施例中,所述第四透镜的物侧面的曲率半径为R7,所述第四透镜的像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
0.23≤f4/f≤0.83;
0.52≤(R7+R8)/(R7-R8)≤1.86;
0.11≤d7/TTL≤0.39。
在其中一个实施例中,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
0.03≤d9/TTL≤0.20。
在其中一个实施例中,所述摄像光学镜头的视场角为FOV,满足下列关系式:
FOV≥74.00°。
在其中一个实施例中,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,满足下列关系式:
TTL/IH≤1.55。
本申请的有益效果在于:
本申请相对于现有技术而言,根据本申请的摄像光学镜头具有良好光学性能,且具有大光圈、广角化、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
图1是实施方式一的摄像光学镜头的结构示意图;
图2是图1所示的摄像光学镜头的轴向像差示意图;
图3是图1所示的摄像光学镜头的倍率色差示意图;
图4是图1所示的摄像光学镜头的场曲及畸变示意图;
图5是实施方式二的摄像光学镜头的结构示意图;
图6是图5所示的摄像光学镜头的轴向像差示意图;
图7是图5所示的摄像光学镜头的倍率色差示意图;
图8是图5所示的摄像光学镜头的场曲及畸变示意图;
图9是实施方式三的摄像光学镜头的结构示意图;
图10是图9所示的摄像光学镜头的轴向像差示意图;
图11是图9所示的摄像光学镜头的倍率色差示意图;
图12是图9所示的摄像光学镜头的场曲及畸变示意图。
下面结合附图和实施方式对本申请作进一步说明。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。
以下为实施方式一:
请一并参阅图1至图4,本申请提供了实施方式一的摄像光学镜头10。在图1中,左侧为物侧,右侧为像侧,摄像光学镜头10主要包括同轴设置的五个透镜,从物侧至像侧依次为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5。在第一透镜L1的物侧面还设有光圈S1,在第五透镜L5与像面Si之间设有玻璃平板GF,玻璃平板GF可以是玻璃盖板,也可以是光学过滤片。
在本实施方式中,第一透镜L1具有正屈折力,第二透镜L2具有负屈 折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有负屈折力。
其中,摄像光学镜头10整体的焦距为f,第一透镜L1的焦距为f1,第二透镜L2的焦距为f2,第四透镜L4的焦距为f4,第一透镜L1的轴上厚度为d1,第二透镜L2的物侧面的曲率半径为R3,第五透镜L5的物侧面的曲率半径为R9,第五透镜L5的像侧面的曲率半径为R10。f、f1、f2、f4、d1、R3、R9、R10满足下列关系式:
-0.35≤f1/f2≤-0.25 (1)
1.20≤(f1+f4)/f≤1.30 (2)
0.18≤d1/f≤0.22 (3)
2.80≤R3/f≤3.50 (4)
-0.28≤(R9+R10)/(R9-R10)≤-0.24 (5)
其中,条件式(1)规定了第一透镜L1的焦距与第二透镜L2的焦距的比值,在条件式(1)规定的范围内,可以有效地平衡摄像光学镜头10的球差以及场曲量。
条件式(2)规定了第一透镜L1的焦距与第四透镜L4的焦距之和与摄像光学镜头10的总焦距的比值,在条件式(2)规定的范围内,通过焦距的合理分配,可以使得摄像光学镜头10具有较佳的成像品质和较低的敏感性。
条件式(3)规定了第一透镜L1的轴上厚度与摄像光学镜头10的总焦距的比值,在条件式(3)规定的范围内,有助于压缩摄像光学镜头10的总长,实现超薄化效果。
条件式(4)规定了第三透镜L3的物侧面的曲率半径与摄像光学镜头10的总焦距的比值,在条件式(4)规定的范围内,有助于提高摄像光学镜头10的光学性能。
条件式(5)规定了第五透镜L5的形状,在条件式(5)规定的范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。
在本实施方式中,第五透镜L5的焦距为f5,f5与f满足下列关系式:
-0.45≤f5/f≤-0.35 (6)
条件式(6)规定了第五透镜L5的焦距与摄像光学镜头10的总焦距的比值,在条件式(6)规定的范围内,通过焦距的合理分配,可以使得摄像光学镜头10具有较佳的成像品质和较低的敏感性。
在本实施方式中,第一透镜L1的物侧面的曲率半径为R1,第一透镜L1的像侧面的曲率半径为R2,摄像光学镜头10的光学总长为TTL,f1、f、R1、R2、d1、TTL满足下列关系式:
0.36≤f1/f≤1.12 (7)
-2.89≤(R1+R2)/(R1-R2)≤-0.95 (8)
0.08≤d1/TTL≤0.27 (9)
其中,条件式(7)规定了第一透镜L1的焦距与摄像光学镜头10的总焦距的比值,在条件式(7)规定的范围内,第一透镜L1具有适当的正屈折力,有利于减小系统像差,同时有利于镜头向超薄化、广角化发展。
条件式(8)规定了第一透镜L1的形状,在条件式(8)规定的范围内,使得第一透镜L1能够有效地校正系统球差。
条件式(9)规定了第一透镜L1的厚度与摄像光学镜头10光学总长的比值,在条件式(9)规定的范围内,有利于实现超薄化效果。
在本实施方式中,第二透镜L2的像侧面的曲率半径为R4,第二透镜L2的轴上厚度为d3,f2、f、R3、R4、d3、TTL满足下列关系式:
-5.91≤f2/f≤-1.43 (10)
0.91≤(R3+R4)/(R3-R4)≤3.61 (11)
0.03≤d3/TTL≤0.09 (12)
其中,条件式(10)规定了第二透镜L2的焦距与摄像光学镜头10的总焦距的比值,在条件式(10)规定的范围内,通过将第二透镜L2的负光焦度控制在合理范围,有利于矫正光学系统的像差。
条件式(11)规定了第二透镜L2的形状,在条件式(11)规定的范围内,随着摄像光学镜头10向超薄广角化发展,有利于补正轴上像差问题。
条件式(12)规定了第二透镜L2的厚度与摄像光学镜头10光学总长 的比值,在条件式(12)规定的范围内,有利于实现超薄化效果。
在本实施方式中,第三透镜L3的焦距为f3,第三透镜L3的物侧面的曲率半径为R5,第三透镜L3的像侧面的曲率半径为R6,第三透镜L3的轴上厚度为d5,f3、f、R5、R6、d5、TTL满足下列关系式:
-14.56≤f3/f≤-2.49 (13)
-6.18≤(R5+R6)/(R5-R6)≤-0.96 (14)
0.04≤d5/TTL≤0.12 (15)
其中,条件式(13)规定了第三透镜L3的焦距与摄像光学镜头10的总焦距的比值,在条件式(13)规定的范围内,通过光焦度的合理分配,可以使得摄像光学镜头10具有较佳的成像品质和较低的敏感性。
条件式(14)规定了第三透镜L3的形状,在条件式(14)规定的范围内,有利于第三透镜L3成型,并避免因第三透镜L3的表面曲率过大而导致成型不良与应力产生。
条件式(15)规定了第三透镜L3的厚度与摄像光学镜头10光学总长的比值,在条件式(15)规定的范围内,有利于实现超薄化效果。
在本实施方式中,第四透镜L4的物侧面的曲率半径为R7,第四透镜L4的像侧面的曲率半径为R8,第四透镜L4的轴上厚度为d7,f4、f、R7、R8、d7、TTL满足下列关系式:
0.23≤f4/f≤0.83 (16)
0.52≤(R7+R8)/(R7-R8)≤1.86 (17)
0.11≤d7/TTL≤0.39 (18)
其中,条件式(16)规定了第四透镜L4的焦距与摄像光学镜头10的总焦距的比值,在条件式(16)规定的范围内,通过光焦度的合理分配,可以使得摄像光学镜头10具有较佳的成像品质和较低的敏感性。
条件式(17)规定了第四透镜L4的形状,在条件式(17)规定的范围内,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。
条件式(18)规定了第四透镜L4的厚度与摄像光学镜头10光学总长的比值,在条件式(18)规定的范围内,有利于实现超薄化效果。
在本实施方式中,第五透镜L5的轴上厚度为d9,d9与TTL满足下列关系式:
0.03≤d9/TTL≤0.20 (19)
条件式(19)规定了第五透镜L5的厚度与摄像光学镜头10光学总长的比值,在条件式(19)规定的范围内,有利于实现超薄化效果。
此外,本实施方式提供的摄像光学镜头10中,各透镜的表面可以设置为非球面,非球面容易制作成球面以外的形状,获得较多的控制变数,用以消减像差,进而缩减透镜使用的数目,因此可以有效降低摄像光学镜头10的总长度。在本实施方式中,各个透镜的物侧面和像侧面均为非球面。
值得一提的是,由于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5具有如前所述的结构和参数关系,因此,摄像光学镜头10能够合理分配各透镜的光焦度、间隔和形状,并因此校正了各类像差。
本实施方式中:TTL/IH≤1.55,FOV≥74.00°,其中,TTL为摄像光学镜头10的光学总长,IH为摄像光学镜头10的像高,FOV为视场角。如此,摄像光学镜头10实现了在具有良好光学成像性能的同时,还能满足广角化、超薄化的设计要求。
下面将用实例进行说明本申请的摄像光学镜头10。各实例中所记载的符号如下所示。而且,焦距、轴上距离、曲率半径、轴上厚度、光学总长、反曲点位置、驻点位置的单位均为mm。
另外,各透镜的物侧面和像侧面中的至少一个上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
以下示出了图1所示的摄像光学镜头10的设计数据。
表1列出了本申请实施方式一中构成摄像光学镜头10的第一透镜L1~第五透镜L5的物侧面曲率半径和像侧面曲率半径R、各透镜的轴上厚度、相邻两透镜间的距离d、折射率nd及阿贝数νd。
【表1】
上表中各符号的含义如下。
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:玻璃平板GF的物侧面的曲率半径;
R12:玻璃平板GF的像侧面的曲率半径;
d:透镜的轴上厚度、透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到玻璃平板GF的物侧面的轴上距离;
d11:玻璃平板GF的轴上厚度;
d12:玻璃平板GF的像侧面到像面Si的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
ndg:玻璃平板GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
vg:玻璃平板GF的阿贝数。
【表2】
在表2中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A20是非球面系数。
y=(x
2/R)/[1+{1-(k+1)(x
2/R
2)}
1/2]+A4x
4+A6x
6+A8x
8+A10x
10+A12x
12+A14x
14+A16x
16+A20x
20
为方便起见,各个透镜面的非球面使用上述公式中所示的非球面。但是,本申请不限于该公式表示的非球面多项式形式。
【表3】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | |
P1R1 | |||
P1R2 | 1 | 0.265 | |
P2R1 | |||
P2R2 | |||
P3R1 | |||
P3R2 | 2 | 0.725 | 0.775 |
P4R1 | 2 | 0.855 | 1.015 |
P4R2 | 2 | 0.885 | 1.375 |
P5R1 | 1 | 0.895 |
P5R2 | 2 | 0.435 | 2.015 |
【表4】
驻点个数 | 驻点位置1 | |
P1R1 | ||
P1R2 | 1 | 0.495 |
P2R1 | ||
P2R2 | ||
P3R1 | ||
P3R2 | ||
P4R1 | ||
P4R2 | ||
P5R1 | 1 | 1.775 |
P5R2 | 1 | 0.975 |
表3、表4示出本实施例的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
另外,在后续的表13中,还列出了实施方式一中各种参数、条件式所对应的值。
图2、图3分别示出了波长为435nm、486nm、546nm、587nm和656nm的光经过摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了波长为546nm的光经过摄像光学镜头10后的场曲及畸变示意图。图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,摄像光学镜头10的像高为IH,视场角为FOV,入瞳直径为ENPD,其中,IH=2.59mm,对角线方向的FOV=74.20°, ENPD=1.528,如此,摄像光学镜头10具有大光圈、超薄、广角,且具有优秀的成像性能。
以下为实施方式二:
图5是实施方式二中摄像光学镜头20的结构示意图,实施方式二与实施方式一基本相同,以下列表中符号含义与实施方式一也相同,故对于相同的部分此处不再赘述,以下仅列出不同点。
表5、表6示出本申请实施方式二的摄像光学镜头20的设计数据。
【表5】
【表6】
在表6中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A20是非球面系数。
y=(x
2/R)/[1+{1-(k+1)(x
2/R
2)}
1/2]+A4x
4+A6x
6+A8x
8+A10x
10+A12x
12+A14x
14+A16x
16+A20x
20
为方便起见,各个透镜面的非球面使用上述公式中所示的非球面。但是,本申请不限于该公式表示的非球面多项式形式。
表7、表8示出摄像光学镜头20中各透镜的反曲点及驻点设计数据。
【表7】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | |
P1R1 | 1 | 0.745 | ||
P1R2 | 1 | 0.285 | ||
P2R1 | ||||
P2R2 | ||||
P3R1 | ||||
P3R2 | ||||
P4R1 | 3 | 0.845 | 1.055 | 1.135 |
P4R2 | 2 | 0.855 | 1.515 | |
P5R1 | 2 | 0.935 | 1.755 | |
P5R2 | 1 | 0.555 |
【表8】
驻点个数 | 驻点位置1 | |
P1R1 | ||
P1R2 | 1 | 0.605 |
P2R1 | ||
P2R2 | ||
P3R1 | ||
P3R2 | ||
P4R1 | ||
P4R2 | ||
P5R1 | ||
P5R2 | 1 | 1.335 |
另外,在后续的表13中,还列出了实施方式二中各种参数、条件式所对应的值。
图6、图7分别示出了波长为435nm、486nm、546nm、587nm和656nm的光经过摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为546nm的光经过摄像光学镜头20后的场曲及畸变示意图。图8的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,摄像光学镜头20的像高为IH,视场角为FOV,入瞳直径为ENPD,其中,IH=2.59mm,对角线方向的FOV=75.00°,ENPD=1.500,如此,摄像光学镜头20具有大光圈、超薄、广角,且具有优秀的成像性能。
以下为实施方式三:
图9是实施方式三中摄像光学镜头30的结构示意图,实施方式三与实施方式一基本相同,以下列表中符号含义与实施方式一也相同,故对于相同的部分此处不再赘述,以下仅列出不同点。
表9、表10示出本申请实施方式三的摄像光学镜头30的设计数据。
【表9】
【表10】
在表10中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
y=(x
2/R)/[1+{1-(k+1)(x
2/R
2)}
1/2]+A4x
4+A6x
6+A8x
8+A10x
10+A12x
12+A14x
14+A16x
16+A18x
18+A20x
20
为方便起见,各个透镜面的非球面使用上述公式中所示的非球面。但是,本申请不限于该公式表示的非球面多项式形式。
表11、表12示出摄像光学镜头30中各透镜的反曲点及驻点设计数据。
【表11】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | |
P1R1 | |||
P1R2 | 2 | 0.325 | 0.625 |
P2R1 | |||
P2R2 | |||
P3R1 | |||
P3R2 | |||
P4R1 | 2 | 0.825 | 0.985 |
P4R2 | 2 | 0.895 | 1.245 |
P5R1 | 1 | 0.855 | |
P5R2 | 2 | 0.475 | 1.735 |
【表12】
驻点个数 | 驻点位置1 | 驻点位置2 | |
P1R1 | |||
P1R2 | 1 | 0.535 | |
P2R1 | |||
P2R2 | |||
P3R1 | |||
P3R2 | |||
P4R1 | |||
P4R2 | |||
P5R1 | 1 | 1.575 | |
P5R2 | 2 | 1.075 | 2.015 |
另外,在后续的表13中,还列出了实施方式三中各种参数、条件式所对应的值。
图10、图11分别示出了波长为435nm、486nm、546nm、587nm和656nm的光经过摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示 出了,波长为546nm的光经过摄像光学镜头30后的场曲及畸变示意图。图12的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,摄像光学镜头30的像高为IH,视场角为FOV,入瞳直径为ENPD,其中,IH=2.59mm,对角线方向的FOV=76.00°,ENPD=1.462,如此,摄像光学镜头30具有大光圈、超薄、广角,且具有优秀的成像性能。
以下表13根据上述条件式列出了实施方式一、实施方式二、实施方式三中对应参数、条件式(1)、(2)、(3)、(4)、(5)的数值。
【表13】
参数及条件式 | 实施例1 | 实施例2 | 实施例3 | 备注 |
f1/f2 | -0.29 | -0.25 | -0.35 | 条件式(1) |
(f1+f4)/f | 1.24 | 1.21 | 1.30 | 条件式(2) |
d1/f | 0.19 | 0.18 | 0.21 | 条件式(3) |
R3/f | 3.13 | 2.81 | 3.49 | 条件式(4) |
(R9+R10)/(R9-R10) | -0.26 | -0.28 | -0.24 | 条件式(5) |
f | 3.361 | 3.300 | 3.217 | |
f1 | 2.397 | 2.457 | 2.400 | |
f2 | -8.216 | -9.749 | -6.881 | |
f3 | -19.309 | -12.311 | -23.423 | |
f4 | 1.762 | 1.531 | 1.774 | |
f5 | -1.348 | -1.161 | -1.428 | |
f12 | 3.003 | 3.005 | 3.159 | |
FNO | 2.20 | 2.20 | 2.20 |
其中,f12为第一透镜L1与第二透镜L2的组合焦距。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。
Claims (9)
- 一种摄像光学镜头,其特征在于,由物侧至像侧依次包括:具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有负屈折力的第三透镜、具有正屈折力的第四透镜及具有负屈折力的第五透镜;其中,所述摄像光学镜头整体的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第四透镜的焦距为f4,所述第一透镜的轴上厚度为d1,所述第二透镜的物侧面的曲率半径为R3,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,满足下列关系式:-0.35≤f1/f2≤-0.25;1.20≤(f1+f4)/f≤1.30;0.18≤d1/f≤0.22;2.80≤R3/f≤3.50;-0.28≤(R9+R10)/(R9-R10)≤-0.24。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的焦距为f5,满足下列关系式:-0.45≤f5/f≤-0.35。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的物侧面的曲率半径为R1,所述第一透镜的像侧面的曲率半径为R2,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.36≤f1/f≤1.12;-2.89≤(R1+R2)/(R1-R2)≤-0.95;0.08≤d1/TTL≤0.27。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,满足下列关系式:-5.91≤f2/f≤-1.43;0.91≤(R3+R4)/(R3-R4)≤3.61;0.03≤d3/TTL≤0.09。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,满足下列关系式:-14.56≤f3/f≤-2.49;-6.18≤(R5+R6)/(R5-R6)≤-0.96;0.04≤d5/TTL≤0.12。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的物侧面的曲率半径为R7,所述第四透镜的像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.23≤f4/f≤0.83;0.52≤(R7+R8)/(R7-R8)≤1.86;0.11≤d7/TTL≤0.39。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.03≤d9/TTL≤0.20。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的视场角为FOV,满足下列关系式:FOV≥74.00°。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,满足下列关系式:TTL/IH≤1.55。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910765487.5 | 2019-08-19 | ||
CN201910765487.5A CN110531492B (zh) | 2019-08-19 | 2019-08-19 | 摄像光学镜头 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021031238A1 true WO2021031238A1 (zh) | 2021-02-25 |
Family
ID=68663804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/103613 WO2021031238A1 (zh) | 2019-08-19 | 2019-08-30 | 摄像光学镜头 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11480772B2 (zh) |
JP (1) | JP6883694B2 (zh) |
CN (1) | CN110531492B (zh) |
WO (1) | WO2021031238A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI750615B (zh) | 2020-01-16 | 2021-12-21 | 大立光電股份有限公司 | 取像用光學透鏡組、取像裝置及電子裝置 |
JP7545279B2 (ja) | 2020-09-28 | 2024-09-04 | 東京晨美光学電子株式会社 | 撮像レンズ |
JP7555792B2 (ja) * | 2020-11-04 | 2024-09-25 | 東京晨美光学電子株式会社 | 撮像レンズ |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010282000A (ja) * | 2009-06-04 | 2010-12-16 | Optical Logic Inc | 撮像レンズ |
CN102132188A (zh) * | 2008-08-25 | 2011-07-20 | 柯尼卡美能达精密光学株式会社 | 摄影透镜、摄影装置和便携式终端 |
CN105892014A (zh) * | 2015-10-09 | 2016-08-24 | 瑞声科技(新加坡)有限公司 | 摄像镜头 |
CN109358414A (zh) * | 2018-12-24 | 2019-02-19 | 浙江舜宇光学有限公司 | 光学成像系统 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5607398B2 (ja) * | 2009-04-07 | 2014-10-15 | 富士フイルム株式会社 | 撮像レンズおよび撮像装置、ならびに携帯端末機器 |
TWI406027B (zh) * | 2010-04-08 | 2013-08-21 | Largan Precision Co Ltd | 取像用光學鏡頭 |
JP5578275B2 (ja) * | 2011-03-25 | 2014-08-27 | コニカミノルタ株式会社 | 撮像光学系、撮像装置およびデジタル機器 |
JP2014123092A (ja) * | 2012-11-26 | 2014-07-03 | Digitaloptics Corp | 撮像光学系及びそれを有する撮像装置 |
US9696523B1 (en) * | 2015-12-28 | 2017-07-04 | Newmax Technology Co., Ltd. | Optical imaging lens |
JP5953449B1 (ja) * | 2016-04-08 | 2016-07-20 | エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. | 撮像レンズ |
CN107167900B (zh) * | 2017-07-25 | 2022-09-06 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN108627954B (zh) * | 2018-05-15 | 2024-01-23 | 辽宁中蓝光电科技有限公司 | 一种摄像透镜组 |
CN110007442B (zh) * | 2019-05-08 | 2021-06-22 | 诚瑞光学(苏州)有限公司 | 摄像光学镜头 |
-
2019
- 2019-08-19 CN CN201910765487.5A patent/CN110531492B/zh active Active
- 2019-08-30 WO PCT/CN2019/103613 patent/WO2021031238A1/zh active Application Filing
-
2020
- 2020-08-12 US US16/991,052 patent/US11480772B2/en active Active
- 2020-08-12 JP JP2020136354A patent/JP6883694B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102132188A (zh) * | 2008-08-25 | 2011-07-20 | 柯尼卡美能达精密光学株式会社 | 摄影透镜、摄影装置和便携式终端 |
JP2010282000A (ja) * | 2009-06-04 | 2010-12-16 | Optical Logic Inc | 撮像レンズ |
CN105892014A (zh) * | 2015-10-09 | 2016-08-24 | 瑞声科技(新加坡)有限公司 | 摄像镜头 |
CN109358414A (zh) * | 2018-12-24 | 2019-02-19 | 浙江舜宇光学有限公司 | 光学成像系统 |
Also Published As
Publication number | Publication date |
---|---|
CN110531492B (zh) | 2021-04-13 |
US20210055522A1 (en) | 2021-02-25 |
CN110531492A (zh) | 2019-12-03 |
JP2021033301A (ja) | 2021-03-01 |
JP6883694B2 (ja) | 2021-06-09 |
US11480772B2 (en) | 2022-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021031233A1 (zh) | 摄像光学镜头 | |
WO2021031236A1 (zh) | 摄像光学镜头 | |
WO2021237781A1 (zh) | 摄像光学镜头 | |
WO2021031240A1 (zh) | 摄像光学镜头 | |
WO2021248578A1 (zh) | 摄像光学镜头 | |
WO2022052258A1 (zh) | 摄像光学镜头 | |
WO2021097929A1 (zh) | 摄像光学镜头 | |
WO2022057046A1 (zh) | 摄像光学镜头 | |
WO2021097952A1 (zh) | 摄像光学镜头 | |
WO2021097925A1 (zh) | 摄像光学镜头 | |
WO2022041382A1 (zh) | 摄像光学镜头 | |
WO2022007029A1 (zh) | 摄像光学镜头 | |
WO2021168878A1 (zh) | 摄像光学镜头 | |
WO2021031238A1 (zh) | 摄像光学镜头 | |
WO2021097928A1 (zh) | 摄像光学镜头 | |
WO2021031237A1 (zh) | 摄像光学镜头 | |
WO2022041383A1 (zh) | 摄像光学镜头 | |
WO2022062079A1 (zh) | 摄像光学镜头 | |
WO2022047988A1 (zh) | 摄像光学镜头 | |
WO2022000657A1 (zh) | 摄像光学镜头 | |
WO2021168886A1 (zh) | 摄像光学镜头 | |
WO2022047984A1 (zh) | 摄像光学镜头 | |
WO2022047991A1 (zh) | 摄像光学镜头 | |
WO2022047992A1 (zh) | 摄像光学镜头 | |
WO2022057034A1 (zh) | 摄像光学镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19942391 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19942391 Country of ref document: EP Kind code of ref document: A1 |