WO2021248578A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2021248578A1
WO2021248578A1 PCT/CN2020/098639 CN2020098639W WO2021248578A1 WO 2021248578 A1 WO2021248578 A1 WO 2021248578A1 CN 2020098639 W CN2020098639 W CN 2020098639W WO 2021248578 A1 WO2021248578 A1 WO 2021248578A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
curvature
radius
ttl
Prior art date
Application number
PCT/CN2020/098639
Other languages
English (en)
French (fr)
Inventor
彭海潮
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Publication of WO2021248578A1 publication Critical patent/WO2021248578A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • the present invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
  • the lenses traditionally mounted on mobile phone cameras mostly adopt a three-element or four-element lens structure.
  • the five-element lens structures have gradually appeared in lens design, which is common
  • the five-element lens has good optical performance, its optical power, lens spacing and lens shape settings are still unreasonable, resulting in the lens structure having good optical performance, but cannot meet the requirements of wide-angle, wide-angle, Ultra-thin design requirements.
  • the purpose of the present invention is to provide an imaging optical lens, which aims to solve the problems of insufficient large aperture, wide-angle, and ultra-thinning of the traditional imaging optical lens.
  • an imaging optical lens from the object side to the image side, including: a first lens with positive refractive power, a second lens with negative refractive power, a third lens, and a first lens with positive refractive power.
  • a first lens with positive refractive power including: a first lens with positive refractive power, a second lens with negative refractive power, a third lens, and a first lens with positive refractive power.
  • the overall focal length of the imaging optical lens is f
  • the focal length of the second lens is f2
  • the Abbe number of the first lens is v1
  • the following relationship is satisfied: 58.00 ⁇ v1 ⁇ 82.00; -5.50 ⁇ f2/f ⁇ -3.50.
  • the on-axis distance from the image side surface of the third lens to the object side surface of the fourth lens is d6, and the on-axis distance from the image side surface of the fourth lens to the object side surface of the fifth lens is d8 , And satisfy the following relationship: 0.80 ⁇ d6/d8 ⁇ 1.20.
  • the radius of curvature of the object side surface of the fifth lens is R9
  • the radius of curvature of the image side surface of the fifth lens is R10
  • the focal length of the first lens is f1
  • the radius of curvature of the object side of the first lens is R1
  • the radius of curvature of the image side of the first lens is R2
  • the on-axis thickness of the first lens is Is d1
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship: 0.50 ⁇ f1/f ⁇ 1.61; -4.22 ⁇ (R1+R2)/(R1-R2) ⁇ -1.27; 0.07 ⁇ d1/ TTL ⁇ 0.23.
  • the radius of curvature of the object side surface of the second lens is R3
  • the radius of curvature of the image side surface of the second lens is R4
  • the axial thickness of the second lens is d3
  • the optical The total length is TTL and satisfies the following relationship: 1.20 ⁇ (R3+R4)/(R3-R4) ⁇ 11.57; 0.02 ⁇ d3/TTL ⁇ 0.07.
  • the focal length of the third lens is f3, the radius of curvature of the object side of the third lens is R5, the radius of curvature of the image side of the third lens is R6, and the on-axis thickness of the third lens Is d5, the total optical length of the camera optical lens is TTL, and satisfies the following relationship: -140.37 ⁇ f3/f ⁇ 72.19; 1.41 ⁇ (R5+R6)/(R5-R6) ⁇ 18.52; 0.04 ⁇ d5/TTL ⁇ 0.16.
  • the focal length of the fourth lens is f4
  • the radius of curvature of the object side of the fourth lens is R7
  • the radius of curvature of the image side of the fourth lens is R8, and the on-axis thickness of the fourth lens is Is d7
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship: 0.43 ⁇ f4/f ⁇ 1.43; 0.33 ⁇ (R7+R8)/(R7-R8) ⁇ 1.48; 0.06 ⁇ d7/TTL ⁇ 0.20.
  • the focal length of the fifth lens is f5, the radius of curvature of the object side of the fifth lens is R9, the radius of curvature of the image side of the fifth lens is R10, and the on-axis thickness of the fifth lens is Is d9, and the total optical length of the camera optical lens is TTL, and satisfies the following relationship: -1.46 ⁇ f5/f ⁇ -0.45; 0.70 ⁇ (R9+R10)/(R9-R10) ⁇ 2.73; 0.03 ⁇ d9/ TTL ⁇ 0.11.
  • the aperture value of the imaging optical lens is FNO, and the following relationship is satisfied: FNO ⁇ 1.66.
  • the image height of the imaging optical lens is IH
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: TTL/IH ⁇ 1.41.
  • the material of the first lens is glass.
  • the camera optical lens provided by the present invention satisfies the design requirements of large aperture, wide-angle and ultra-thinness, and is especially suitable for mobile phone camera lens components and mobile phone camera lens components composed of high-pixel CCD, CMOS and other imaging elements. WEB camera lens.
  • FIG. 1 is a schematic diagram of the structure of the imaging optical lens of the first embodiment
  • FIG. 2 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 3 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic diagram of the structure of the imaging optical lens of the second embodiment
  • FIG. 6 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 7 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic diagram of the structure of an imaging optical lens of the third embodiment.
  • FIG. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 11 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9.
  • the present invention provides an imaging optical lens 10 according to a first embodiment.
  • the left side is the object side
  • the right side is the image side.
  • the imaging optical lens 10 mainly includes five lenses. From the object side to the image side, the aperture S1, the first lens L1, the second lens L2, and the third lens Lens L3, fourth lens L4, and fifth lens L5.
  • a glass plate GF may be provided between the fifth lens L5 and the image plane Si, and the glass plate GF may be a glass cover plate or an optical filter.
  • the first lens L1 is made of glass
  • the second lens L2 is made of plastic
  • the third lens L3 is made of plastic
  • the fourth lens L4 is made of plastic
  • the fifth lens L5 is made of plastic.
  • the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens L5 may also be made of other materials.
  • the focal length of the entire imaging optical lens 10 is defined as f
  • the focal length of the second lens L2 is f2
  • the Abbe number of the first lens L1 is defined as v1, which satisfies the following relationship:
  • conditional formula (1) specifies the Abbe number of the first lens, which is beneficial to reduce the chromatic aberration of the system and improve the image quality within the conditional range.
  • Conditional formula (2) specifies the ratio of the focal length of the second lens to the overall focal length of the imaging optical lens 10, which helps to improve system performance within the conditional range.
  • the fourth lens position can be allocated effectively, which is helpful for field curvature correction.
  • the radius of curvature of the object side surface of the fifth lens L5 as R9
  • the radius of curvature of the image side surface of the fifth lens L5 as R10
  • the degree of deflection of the light passing through the lens can be alleviated, and aberrations can be effectively reduced.
  • 3.22 ⁇ R9/R10 ⁇ 5.95 is satisfied.
  • the first lens L1 has positive refractive power
  • the object side surface is convex at the paraxial position
  • the image side surface is concave at the paraxial position
  • the first lens L1 Define the overall focal length of the imaging optical lens 10 as f, and the focal length of the first lens L1 as f1, which satisfies the following relationship: 0.50 ⁇ f1/f ⁇ 1.61, which specifies the ratio of the focal length f1 of the first lens L1 to the overall focal length.
  • the first lens has an appropriate positive refractive power, which is beneficial to reduce system aberrations, and at the same time, is beneficial to the development of ultra-thin and wide-angle lenses.
  • 0.81 ⁇ f1/f ⁇ 1.29 is satisfied.
  • the curvature radius of the object side surface of the first lens L1 is R1
  • the curvature radius of the image side surface of the first lens L1 is R2, which satisfies the following relationship: -4.22 ⁇ (R1+R2)/(R1-R2) ⁇ -1.27, which is reasonable
  • the shape of the first lens L1 is controlled so that the first lens L1 can effectively correct the spherical aberration of the system. Preferably, it satisfies -2.64 ⁇ (R1+R2)/(R1-R2) ⁇ -1.59.
  • the axial thickness of the first lens L1 is d1
  • the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.07 ⁇ d1/TTL ⁇ 0.23.
  • 0.12 ⁇ d1/TTL ⁇ 0.19 is satisfied.
  • the second lens L2 has a negative refractive power
  • the object side surface is convex at the paraxial position
  • the image side surface is concave at the paraxial position.
  • the curvature radius of the object side surface of the second lens L2 as R3, and the curvature radius of the image side surface of the second lens L2 as R4, which satisfies the following relationship: 1.20 ⁇ (R3+R4)/(R3-R4) ⁇ 11.57, which specifies
  • 1.20 ⁇ (R3+R4)/(R3-R4) ⁇ 11.57 which specifies
  • 1.91 ⁇ (R3+R4)/(R3-R4) ⁇ 9.26 is satisfied.
  • the on-axis thickness of the second lens L2 is d3, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.02 ⁇ d3/TTL ⁇ 0.07. Within the range of the conditional formula, it is beneficial to realize ultra-thinness. Preferably, 0.04 ⁇ d3/TTL ⁇ 0.06 is satisfied.
  • the third lens L3 has a negative refractive power
  • the object side surface is convex at the paraxial position
  • the image side surface is concave at the paraxial position.
  • the system has better imaging Quality and low sensitivity.
  • it satisfies -87.73 ⁇ f3/f ⁇ 57.75.
  • the curvature radius of the object side surface of the third lens L3 is R5, and the curvature radius of the image side surface of the third lens L3 is R6, which satisfies the following relationship: 1.41 ⁇ (R5+R6)/(R5-R6) ⁇ 18.52, which can be effectively controlled
  • the shape of the third lens L3 is conducive to the molding of the third lens L3.
  • the degree of deflection of the light passing through the lens can be alleviated, and aberrations can be effectively reduced.
  • it satisfies 2.25 ⁇ (R5+R6)/(R5-R6) ⁇ 14.82.
  • the axial thickness of the third lens L3 is d5, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.04 ⁇ d5/TTL ⁇ 0.16. Within the range of the conditional formula, it is beneficial to realize ultra-thinness. Preferably, 0.07 ⁇ d5/TTL ⁇ 0.13 is satisfied.
  • the fourth lens L4 has a positive refractive power
  • the object side surface is convex at the paraxial position
  • the image side surface is convex at the paraxial position
  • the focal length of the fourth lens L4 as f4
  • the overall focal length of the imaging optical lens 10 as f, which satisfies the following relationship: 0.43 ⁇ f4/f ⁇ 1.43, which specifies the ratio of the focal length of the fourth lens to the focal length of the system.
  • Reasonable distribution makes the system have better imaging quality and lower sensitivity, which helps to improve the performance of the optical system within the scope of the conditional formula.
  • 0.69 ⁇ f4/f ⁇ 1.14 is satisfied.
  • the curvature radius of the object side surface of the fourth lens L4 is R7
  • the curvature radius of the image side surface of the fourth lens L4 is R8, which satisfies the following relationship: 0.33 ⁇ (R7+R8)/(R7-R8) ⁇ 1.48, which specifies the fourth lens
  • the axial thickness of the fourth lens L4 is d7, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relational expression: 0.06 ⁇ d7/TTL ⁇ 0.20. Within the range of the conditional expression, it is beneficial to achieve ultra-thinness. Preferably, 0.09 ⁇ d7/TTL ⁇ 0.16 is satisfied.
  • the fifth lens L5 has a negative refractive power
  • the object side surface is convex at the paraxial position
  • the image side surface is concave at the paraxial position.
  • the focal length f5 of the fifth lens L5 and the overall focal length of the imaging optical lens is f, which satisfies the following relationship: -1.46 ⁇ f5/f ⁇ -0.45.
  • the limitation on the fifth lens L5 can effectively make the light angle of the imaging lens smooth. Reduce tolerance sensitivity.
  • -0.91 ⁇ f5/f ⁇ -0.56 is satisfied.
  • the radius of curvature of the object side surface of the fifth lens L5 is R9
  • the radius of curvature of the image side surface of the fifth lens L5 is R10
  • the following relationship is satisfied: 0.70 ⁇ (R9+R10)/(R9-R10) ⁇ 2.73, which specifies the fifth
  • 0.70 ⁇ (R9+R10)/(R9-R10) ⁇ 2.73 which specifies the fifth
  • 1.13 ⁇ (R9+R10)/(R9-R10) ⁇ 2.19 is satisfied.
  • the axial thickness of the fifth lens L5 is d9, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relational expression: 0.03 ⁇ d9/TTL ⁇ 0.11. Within the range of the conditional expression, it is beneficial to realize ultra-thinness. Preferably, 0.06 ⁇ d9/TTL ⁇ 0.09 is satisfied.
  • the aperture value FNO of the overall imaging optical lens 10 is less than or equal to 1.66, thereby achieving a large aperture.
  • the image height of the imaging optical lens is IH
  • the total optical length of the imaging optical lens is TTL
  • TTL/IH ⁇ 1.41 which facilitates the realization of ultra-thinness.
  • the focal length of the entire imaging optical lens 10 is f
  • the combined focal length of the first lens L1 and the second lens L2 is f12, which satisfies the following relationship: 0.61 ⁇ f12/f ⁇ 1.92.
  • the aberration and distortion of the imaging optical lens 10 can be eliminated, and the back focal length of the imaging optical lens 10 can be suppressed to maintain the miniaturization of the imaging lens system group.
  • it satisfies 0.98 ⁇ f12/f ⁇ 1.54.
  • the surface of each lens can be set as an aspherical surface.
  • the aspherical surface can be easily made into a shape other than a spherical surface, and more control variables can be obtained to reduce aberrations, thereby reducing the use of lenses. Therefore, the total length of the imaging optical lens 10 can be effectively reduced.
  • both the object side surface and the image side surface of each lens are aspherical.
  • the imaging optical lens 10 can be reasonable The power, spacing, and shape of each lens are allocated, and various aberrations are corrected accordingly.
  • the camera optical lens 10 can not only have good optical imaging performance, but also meet the design requirements of large aperture, wide-angle, and ultra-thinness.
  • the imaging optical lens 10 of the present invention will be described below with examples.
  • the symbols described in each example are as follows.
  • the unit of focal length, distance on axis, radius of curvature, thickness on axis, position of inflection point, and position of stagnation point is mm.
  • TTL Total optical length (the on-axis distance from the object side of the first lens L1 to the image plane Si), in mm.
  • Aperture value FNO refers to the ratio of the effective focal length of the imaging optical lens to the entrance pupil diameter.
  • At least one of the object side surface and the image side surface of each lens may also be provided with an inflection point and/or a stagnation point to meet high-quality imaging requirements.
  • an inflection point and/or a stagnation point may also be provided with an inflection point and/or a stagnation point to meet high-quality imaging requirements.
  • the design data of the imaging optical lens 10 shown in FIG. 1 is shown below.
  • Table 1 lists the object side curvature radius and the image side curvature radius R of the first lens L1 to the fifth lens L5 constituting the imaging optical lens 10 in the first embodiment of the present invention, the axial thickness of each lens, and two adjacent lenses The distance between d, refractive index nd and Abbe number vd. It should be noted that in this embodiment, the units of R and d are both millimeters (mm).
  • R the radius of curvature at the center of the optical surface
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side surface of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the radius of curvature of the object side surface of the fifth lens L5;
  • R10 the radius of curvature of the image side surface of the fifth lens L5;
  • R11 the radius of curvature of the object side surface of the optical filter GF
  • R12 the radius of curvature of the image side surface of the optical filter GF
  • d0 the on-axis distance from the aperture S1 to the object side of the first lens L1;
  • d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
  • d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the optical filter GF;
  • d11 the axial thickness of the optical filter GF
  • d12 the on-axis distance from the image side surface of the optical filter GF to the image surface
  • nd the refractive index of d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • ndg the refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF.
  • Table 2 shows the aspheric surface data of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, and A20 are aspherical coefficients.
  • x is the vertical distance between a point on the aspheric curve and the optical axis
  • y is the depth of the aspheric surface (the point on the aspheric surface from the optical axis is x, and the vertical distance between the tangent plane tangent to the vertex on the aspheric optical axis ).
  • the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (3).
  • the present invention is not limited to the aspheric polynomial form represented by the formula (3).
  • Table 3 and Table 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of this embodiment.
  • P1R1 and P1R2 represent the object side and image side of the first lens L1 respectively
  • P2R1 and P2R2 represent the object side and image side of the second lens L2 respectively
  • P3R1 and P3R2 represent the object side and image side of the third lens L3 respectively
  • P4R1 and P4R2 represent the object side and image side of the fourth lens L4, respectively
  • P5R1 and P5R2 represent the object side and the image side of the fifth lens L5, respectively.
  • the corresponding data in the “reflection point position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • the data corresponding to the “stationary point position” column is the vertical distance from the stationary point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • the first embodiment satisfies various conditional expressions.
  • FIG. 4 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 10.
  • the curvature of field S in FIG. 4 is the curvature of field in the sagittal direction
  • T is the curvature of field in the meridional direction.
  • the entrance pupil diameter ENPD of the imaging optical lens 10 is 2.284 mm
  • the full-field image height IH is 3.259 mm
  • the diagonal field angle FOV is 79.30°
  • FIG. 5 is a schematic diagram of the structure of the imaging optical lens 20 in the second embodiment.
  • the second embodiment is basically the same as the first embodiment.
  • the meanings of the symbols in the following list are also the same as those in the first embodiment, so the same parts will not be omitted here. To repeat, only the differences are listed below.
  • the third lens L3 has positive refractive power, the object side surface is concave at the paraxial position, and the image side surface is convex at the paraxial position.
  • Table 5 and Table 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows the aspheric surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 7 and Table 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20.
  • FIG. 6 and 7 respectively show schematic diagrams of the axial aberration and the chromatic aberration of magnification after the light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, 470 nm, and 435 nm pass through the imaging optical lens 20.
  • FIG. 8 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 20.
  • the curvature of field S in FIG. 8 is the curvature of field in the sagittal direction
  • T is the curvature of field in the meridional direction.
  • the entrance pupil diameter ENPD of the imaging optical lens 20 is 2.260 mm
  • the full-field image height IH is 3.259 mm
  • the diagonal field angle FOV is 80.00°
  • FIG. 9 is a schematic diagram of the structure of the imaging optical lens 30 in the third embodiment.
  • the third embodiment is basically the same as the first embodiment.
  • the meanings of the symbols in the following list are also the same as those in the first embodiment, so the same parts will not be omitted here. To repeat, only the differences are listed below.
  • the third lens L3 has positive refractive power, the object side surface is concave at the paraxial position, and the image side surface is convex at the paraxial position.
  • Table 9 and Table 10 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 10 shows the aspheric surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 11 and Table 12 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 30.
  • Stagnation position 1 Stagnation position 2 P1R1 0 / / P1R2 0 / / P2R1 0 / / P2R2 0 / / P3R1 0 / / P3R2 0 / / P4R1 1 0.635 / P4R2 0 / / P5R1 2 0.235 2.095 P5R2 1 1.025 /
  • FIG. 10 and 11 respectively show schematic diagrams of the axial aberration and the chromatic aberration of magnification after light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, 470 nm, and 435 nm pass through the imaging optical lens 30.
  • FIG. 12 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 30.
  • the curvature of field S in FIG. 12 is the curvature of field in the sagittal direction
  • T is the curvature of field in the meridional direction.
  • the entrance pupil diameter ENPD of the imaging optical lens 30 is 2.302 mm
  • the full-field image height IH is 3.259 mm
  • the diagonal field angle FOV is 79.00°
  • Table 13 lists the values of the corresponding conditional expressions in the first embodiment, the second embodiment, and the third embodiment according to the above-mentioned conditional expressions, as well as the values of other related parameters.
  • Example 1 Example 2
  • Example 3 v1 74.64 59.46 81.60 f2/f -4.17 -3.53 -5.40 f 3.773 3.734 3.798 f1 3.867 3.764 4.074 f2 -15.715 -13.161 -20.514 f3 -264.808 99.732 182.773 f4 3.258 3.526 3.612 f5 -2.527 -2.719 -2.541 f12 4.675 4.783 4.669 Fno 1.65 1.65 1.65 TTL 4.590 4.590 4.591 IH 3.259 3.259 3.259 FOV 79.30° 80.00° 79.00°

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像光学镜头(10),由物侧至像侧依次包括:具有正屈折力的第一透镜(L1)、具有负屈折力的第二透镜(L2)、第三透镜(L3)、具有正屈折力的第四透镜(L4)及具有负屈折力的第五透镜(L5);其中,摄像光学镜头(10)整体的焦距为f,第二透镜(L2)的焦距为f2,第一透镜(L1)的阿贝数为v1,且满足下列关系式:58.00≤v1≤82.00;-5.50≤f2/f≤-3.50。摄像光学镜头(10)在具有良好的光学性能的同时,还满足大光圈、广角化、超薄化的设计要求。

Description

摄像光学镜头 【技术领域】
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
【背景技术】
随着摄像技术的发展,摄像光学镜头被广泛地应用在各式各样的电子产品中,例如智能手机、数码相机等。为方便携带,人们越来越追求电子产品的轻薄化,因此,具备良好成像品质的小型化摄像光学镜头俨然成为目前市场的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、或四片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,五片式透镜结构逐渐出现在镜头设计当中,常见的五片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足广角化、超薄化的设计要求。
因此,有必要提供一种具有良好的光学性能且满足大光圈、广角化、超薄化设计要求的摄像光学镜头。
【发明内容】
本发明的目的在于提供一种摄像光学镜头,旨在解决传统的摄像光学镜头大光圈、广角化、超薄化不充分的问题。
本发明的技术方案如下:一种摄像光学镜头,由物侧至像侧依次包括:具有正屈折力的第一透镜、具有负屈折力的第二透镜、第三透镜、具有正屈折力的第四透镜及具有负屈折力的第五透镜;
其中,所述摄像光学镜头整体的焦距为f,所述第二透镜的焦距为f2,所述第一透镜的阿贝数为v1,且满足下列关系式:58.00≤v1≤82.00;-5.50≤f2/f≤-3.50。
优选地,所述第三透镜的像侧面到所述第四透镜的物侧面的轴上距离为d6,所述第四透镜的像侧面到所述第五透镜的物侧面的轴上距离为d8,且满足下列关系式:0.80≤d6/d8≤1.20。
优选地,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,且满足下列关系式:3.00≤R9/R10≤6.00。
优选地,所述第一透镜的焦距为f1,所述第一透镜的物侧面的曲率半径为R1,所述第一透镜的像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.50≤f1/f≤1.61;-4.22≤(R1+R2)/(R1-R2)≤-1.27;0.07≤d1/TTL≤0.23。
优选地,所述第二透镜的物侧面的曲率半径为R3,所述第二透镜的像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:1.20≤(R3+R4)/(R3-R4)≤11.57;0.02≤d3/TTL≤0.07。
优选地,所述第三透镜的焦距为f3,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-140.37≤f3/f≤72.19;1.41≤(R5+R6)/(R5-R6)≤18.52;0.04≤d5/TTL≤0.16。
优选地,所述第四透镜的焦距为f4,所述第四透镜的物侧面的曲率半径为R7,所述第四透镜的像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.43≤f4/f≤1.43;0.33≤(R7+R8)/(R7-R8)≤1.48;0.06≤d7/TTL≤0.20。
优选地,所述第五透镜的焦距为f5,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-1.46≤f5/f≤-0.45;0.70≤(R9+R10)/(R9-R10)≤2.73;0.03≤d9/TTL≤0.11。
优选地,所述摄像光学镜头的光圈值为FNO,且满足下列关系式:FNO≤1.66。
优选地,所述摄像光学镜头的像高为IH,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:TTL/IH≤1.41。
优选地,所述第一透镜的材质为玻璃材质。
本发明的有益效果在于:
本发明提供的摄像光学镜头在具有良好光学性能的同时,满足大光圈、广角化和超薄化的设计要求,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
【附图说明】
为了更清楚地说明本发明实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示的摄像光学镜头的轴向像差示意图;
图3是图1所示的摄像光学镜头的倍率色差示意图;
图4是图1所示的摄像光学镜头的场曲及畸变示意图;
图5是第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示的摄像光学镜头的轴向像差示意图;
图7是图5所示的摄像光学镜头的倍率色差示意图;
图8是图5所示的摄像光学镜头的场曲及畸变示意图;
图9是第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示的摄像光学镜头的轴向像差示意图;
图11是图9所示的摄像光学镜头的倍率色差示意图;
图12是图9所示的摄像光学镜头的场曲及畸变示意图。
【具体实施方式】
下面结合附图和实施方式对本发明作进一步说明。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
请一并参阅图1至图4,本发明提供了第一实施方式的摄像光学镜头10。在图1中,左侧为物侧,右侧为像侧,摄像光学镜头10主要包括五个透镜,从物侧至像侧依次为光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5。在第五透镜L5与像面Si之间可设有玻璃平板GF,玻璃平板GF可以是玻璃盖板,也可以是光学过滤片。
在本实施方式中,第一透镜L1为玻璃材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质。在其他实施方式中,第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5也可以是其他材质。
在此,定义摄像光学镜头10整体的焦距为f,第二透镜L2的焦距为f2,第一透镜L1的阿贝数为v1,满足下列关系式:
58.00≤v1≤82.00     (1)
-5.50≤f2/f≤-3.50      (2)
其中,条件式(1)规定了第一透镜的阿贝数,在条件范围内有利于减小系统色差,提高像质。条件式(2)规定了第二透镜焦距与摄像光学镜头10整体焦距的比值,在条件范围内有助于提高系统性能。
定义第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离为d6,第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离为d8,满足下列关系式:0.80≤d6/d8≤1.20,当d6/d8满足条件式,可有效分配第四透镜位置,有助于场曲校正。
定义第五透镜L5的物侧面的曲率半径为R9,第五透镜L5的像侧面的曲率半径为R10,满足下列关系式:3.00≤R9/R10≤6.00,规定了第五透镜的形状,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足3.22≤R9/R10≤5.95。
本实施方式中,第一透镜L1具有正屈折力,其物侧面于近轴处为凸面,像侧面于近轴处为凹面。
定义摄像光学镜头10整体的焦距为f,第一透镜L1的焦距为f1,满足下列关系式:0.50≤f1/f≤1.61,规定了第一透镜L1的焦距f1与整体焦 距的比值。在规定的范围内时,第一透镜具有适当的正屈折力,有利于减小系统像差,同时有利于镜头向超薄化、广角化发展。优选地,满足0.81≤f1/f≤1.29。
第一透镜L1的物侧面的曲率半径为R1,第一透镜L1的像侧面的曲率半径为R2,满足下列关系式:-4.22≤(R1+R2)/(R1-R2)≤-1.27,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。优选地,满足-2.64≤(R1+R2)/(R1-R2)≤-1.59。
第一透镜L1的轴上厚度为d1,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.07≤d1/TTL≤0.23,在条件式范围内,有利于实现超薄化。优选地,满足0.12≤d1/TTL≤0.19。
本实施方式中,第二透镜L2具有负屈折力,其物侧面于近轴处为凸面,像侧面于近轴处为凹面。
定义第二透镜L2的物侧面的曲率半径为R3,第二透镜L2的像侧面的曲率半径为R4,满足下列关系式:1.20≤(R3+R4)/(R3-R4)≤11.57,规定了第二透镜L2的形状,在范围内时,随着镜头向超薄广角化发展,有利于补正轴上色像差问题。优选地,满足1.91≤(R3+R4)/(R3-R4)≤9.26。
第二透镜L2的轴上厚度为d3,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d3/TTL≤0.07,在条件式范围内,有利于实现超薄化。优选地,满足0.04≤d3/TTL≤0.06。
本实施方式中,第三透镜L3具有负屈折力,其物侧面于近轴处为凸面,像侧面于近轴处为凹面。
定义摄像光学镜头10整体的焦距为f,第三透镜L3的焦距为f3,且满足下列关系式:-140.37≤f3/f≤72.19,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-87.73≤f3/f≤57.75。
第三透镜L3的物侧面的曲率半径为R5,第三透镜L3的像侧面的曲率半径为R6,满足下列关系式:1.41≤(R5+R6)/(R5-R6)≤18.52,可有效控制第三透镜L3的形状,有利于第三透镜L3成型,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足2.25≤(R5+R6)/(R5-R6)≤14.82。
第三透镜L3的轴上厚度为d5,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.04≤d5/TTL≤0.16,在条件式范围内,有利于实现超薄化。优选地,满足0.07≤d5/TTL≤0.13。
本实施方式中,第四透镜L4具有正屈折力,其物侧面于近轴处为凸面,像侧面于近轴处为凸面。
定义第四透镜L4的焦距为f4,摄像光学镜头10整体的焦距为f,满足下列关系式:0.43≤f4/f≤1.43,规定了第四透镜焦距与系统焦距的比值,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性,在条件式范围内有助于提高光学系统性能。优选地,满足0.69≤f4/f≤1.14。
第四透镜L4物侧面的曲率半径为R7,第四透镜L4像侧面的曲率半 径为R8,满足下列关系式:0.33≤(R7+R8)/(R7-R8)≤1.48,规定了第四透镜L4的形状,在范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足0.53≤(R7+R8)/(R7-R8)≤1.18。
第四透镜L4的轴上厚度为d7,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.06≤d7/TTL≤0.20,在条件式范围内,有利于实现超薄化。优选地,满足0.09≤d7/TTL≤0.16。
本实施方式中,第五透镜L5具有负屈折力,其物侧面于近轴处为凸面,像侧面于近轴处为凹面。
定义第五透镜L5焦距f5,摄像光学镜头整体的焦距为f,满足下列关系式:-1.46≤f5/f≤-0.45,对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。优选地,满足-0.91≤f5/f≤-0.56。
第五透镜L5物侧面的曲率半径为R9,第五透镜L5像侧面的曲率半径为R10,且满足下列关系式:0.70≤(R9+R10)/(R9-R10)≤2.73,规定了第五透镜L5的形状,在范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足1.13≤(R9+R10)/(R9-R10)≤2.19。
第五透镜L5的轴上厚度为d9,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d9/TTL≤0.11,在条件式范围内,有利于实现超薄化。优选地,满足0.06≤d9/TTL≤0.09。
在本实施方式中,整体摄像光学镜头10的光圈值FNO小于或等于1.66,从而实现大光圈。
在本实施方式中,摄像光学镜头的像高为IH,摄像光学镜头的光学总长为TTL,且满足下列关系式:TTL/IH≤1.41,从而有利于实现超薄化。
本实施方式中,摄像光学镜头10整体的焦距为f,第一透镜L1与第二透镜L2的组合焦距为f12,满足下列关系式:0.61≤f12/f≤1.92。在此关系式范围内,可消除所述摄像光学镜头10的像差与歪曲,且可压制摄像光学镜头10的后焦距,维持影像镜片系统组小型化。优选的,满足0.98≤f12/f≤1.54。
此外,本实施方式提供的摄像光学镜头10中,各透镜的表面可以设置为非球面,非球面容易制作成球面以外的形状,获得较多的控制变数,用以消减像差,进而缩减透镜使用的数目,因此可以有效降低摄像光学镜头10的总长度。在本实施方式中,各个透镜的物侧面和像侧面均为非球面。
值得一提的是,由于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5具有如前所述的结构和参数关系,因此,摄像光学镜头10能够合理分配各透镜的光焦度、间隔和形状,并因此校正了各类像差。
如此,摄像光学镜头10实现了在具有良好光学成像性能的同时,还能满足大光圈、广角化、超薄化的设计要求。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻 点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到像面Si的轴上距离),单位为mm。
光圈值FNO:是指摄像光学镜头的有效焦距和入瞳直径的比值。
另外,各透镜的物侧面和像侧面中的至少一个上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
以下示出了图1所示的摄像光学镜头10的设计数据。
表1列出了本发明第一实施方式中构成摄像光学镜头10的第一透镜L1~第五透镜L5的物侧面曲率半径和像侧面曲率半径R、各透镜的轴上厚度以及相邻两透镜间的距离d、折射率nd及阿贝数vd。需要说明的是,本实施方式中,R与d的单位均为毫米(mm)。
【表1】
Figure PCTCN2020098639-appb-000001
上表中各符号的含义如下。
S1:光圈;
R:光学面中心处的曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:光学过滤片GF的物侧面的曲率半径;
R12:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度、透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到光学过滤片GF的物侧面的轴上距离;
d11:光学过滤片GF的轴上厚度;
d12:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure PCTCN2020098639-appb-000002
Figure PCTCN2020098639-appb-000003
在表2中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
y=(x 2/R)/{1+[1-(k+1)(x 2/R 2)] 1/2}+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20       (3)
其中,x是非球面曲线上的点与光轴的垂直距离,y是非球面深度(非球面上距离光轴为x的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
为方便起见,各个透镜面的非球面使用上述公式(3)中所示的非球面。但是,本发明不限于该公式(3)表示的非球面多项式形式。
表3、表4示出本实施例的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 0 / / /
P1R2 1 0.805 / /
P2R1 2 0.465 0.495 /
P2R2 0 / / /
P3R1 1 0.055 / /
P3R2 2 0.095 1.145 /
P4R1 2 0.095 1.335 /
P4R2 3 1.325 1.585 1.695
P5R1 3 0.145 1.285 2.405
P5R2 3 0.415 2.185 2.495
【表4】
  驻点个数 驻点位置1 驻点位置2
P1R1 0 / /
P1R2 0 / /
P2R1 0 / /
P2R2 0 / /
P3R1 1 0.095 /
P3R2 1 0.155 /
P4R1 1 0.165 /
P4R2 0 / /
P5R1 2 0.265 2.085
P5R2 1 1.125 /
另外,在后续的表13中,还列出了第一、二、三实施方式中各种参数与条件式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各条件式。
图2、图3分别示出了波长为650nm、610nm、555nm、510nm、470nm及435nm的光经过摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了波长为555nm的光经过摄像光学镜头10后的场曲及畸变示意图。图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,所述摄像光学镜头10的入瞳直径ENPD为2.284mm,全视场像高IH为3.259mm,对角线方向的视场角FOV为79.30°,使得摄像光学镜头10大光圈、广角、超薄,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第二实施方式)
图5是第二实施方式中摄像光学镜头20的结构示意图,第二实施方式与第一实施方式基本相同,以下列表中符号含义与第一实施方式也相同,故对于相同的部分此处不再赘述,以下仅列出不同点。
在本实施例方式中,第三透镜L3具有正屈折力,其物侧面于近轴处为凹面,像侧面于近轴处为凸面。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure PCTCN2020098639-appb-000004
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure PCTCN2020098639-appb-000005
Figure PCTCN2020098639-appb-000006
表7、表8示出摄像光学镜头20中各透镜的反曲点及驻点设计数据。
【表7】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 1 1.105 / /
P1R2 1 0.715 / /
P2R1 2 0.235 0.595 /
P2R2 0 / / /
P3R1 0 / / /
P3R2 1 1.075 / /
P4R1 2 0.155 1.415 /
P4R2 2 1.385 1.625 /
P5R1 2 0.175 1.265 /
P5R2 3 0.415 2.335 2.485
【表8】
  驻点个数 驻点位置1 驻点位置2
P1R1 0 / /
P1R2 0 / /
P2R1 2 0.435 0.705
P2R2 0 / /
P3R1 0 / /
P3R2 0 / /
P4R1 1 0.245 /
P4R2 0 / /
P5R1 2 0.325 2.275
P5R2 1 1.085 /
另外,在后续的表13中,还列出了第二实施方式中各种参数与条件式中已规定的参数所对应的值,显然,本实施方式的摄像光学镜头满足上述的条件式。
图6、图7分别示出了波长为650nm、610nm、555nm、510nm、470nm及435nm的光经过摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为555nm的光经过摄像光学镜头20后的场曲及畸变示意图。图8的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,所述摄像光学镜头20的入瞳直径ENPD为2.260mm,全视场像高IH为3.259mm,对角线方向的视场角FOV为80.00°,使得摄 像光学镜头20大光圈、广角、超薄,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第三实施方式)
图9是第三实施方式中摄像光学镜头30的结构示意图,第三实施方式与第一实施方式基本相同,以下列表中符号含义与第一实施方式也相同,故对于相同的部分此处不再赘述,以下仅列出不同点。
在本实施例方式中,第三透镜L3具有正屈折力,其物侧面于近轴处为凹面,像侧面于近轴处为凸面。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure PCTCN2020098639-appb-000007
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
Figure PCTCN2020098639-appb-000008
Figure PCTCN2020098639-appb-000009
表11、表12示出摄像光学镜头30中各透镜的反曲点及驻点设计数据。
【表11】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 0 / / /
P1R2 1 0.735 / /
P2R1 0 / / /
P2R2 0 / / /
P3R1 0 / / /
P3R2 1 1.215 / /
P4R1 2 0.405 1.405 /
P4R2 2 1.145 1.785 /
P5R1 3 0.135 1.065 2.375
P5R2 1 0.405 / /
【表12】
  驻点个数 驻点位置1 驻点位置2
P1R1 0 / /
P1R2 0 / /
P2R1 0 / /
P2R2 0 / /
P3R1 0 / /
P3R2 0 / /
P4R1 1 0.635 /
P4R2 0 / /
P5R1 2 0.235 2.095
P5R2 1 1.025 /
另外,在后续的表13中,还列出了第三实施方式中各种参数与条件式中已规定的参数所对应的值。显然,本实施方式的摄像光学镜头满足上述的条件式。
图10、图11分别示出了波长为650nm、610nm、555nm、510nm、470nm及435nm的光经过摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为555nm的光经过摄像光学镜头30后的场曲及畸变示意图。图12的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,所述摄像光学镜头30的入瞳直径ENPD为2.302mm,全视场像高IH为3.259mm,对角线方向的视场角FOV为79.00°,使得摄像光学镜头30大光圈、广角、超薄,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
以下表13根据上述条件式列出了第一实施方式、第二实施方式、第三实施方式中对应条件式的数值,以及其他相关参数的取值。
【表13】
参数及条件式 实施例1 实施例2 实施例3
v1 74.64 59.46 81.60
f2/f -4.17 -3.53 -5.40
f 3.773 3.734 3.798
f1 3.867 3.764 4.074
f2 -15.715 -13.161 -20.514
f3 -264.808 99.732 182.773
f4 3.258 3.526 3.612
f5 -2.527 -2.719 -2.541
f12 4.675 4.783 4.669
Fno 1.65 1.65 1.65
TTL 4.590 4.590 4.591
IH 3.259 3.259 3.259
FOV 79.30° 80.00° 79.00°
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (11)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头共包含五片透镜,五片所述透镜由物侧至像侧依次为:具有正屈折力的第一透镜、具有负屈折力的第二透镜、第三透镜、具有正屈折力的第四透镜及具有负屈折力的第五透镜;
    其中,所述摄像光学镜头整体的焦距为f,所述第二透镜的焦距为f2,所述第一透镜的阿贝数为v1,且满足下列关系式:
    58.00≤v1≤82.00;
    -5.50≤f2/f≤-3.50。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的像侧面到所述第四透镜的物侧面的轴上距离为d6,所述第四透镜的像侧面到所述第五透镜的物侧面的轴上距离为d8,且满足下列关系式:
    0.80≤d6/d8≤1.20。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,且满足下列关系式:
    3.00≤R9/R10≤6.00。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的焦距为f1,所述第一透镜的物侧面的曲率半径为R1,所述第一透镜的像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.50≤f1/f≤1.61;
    -4.22≤(R1+R2)/(R1-R2)≤-1.27;
    0.07≤d1/TTL≤0.23。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的物侧面的曲率半径为R3,所述第二透镜的像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    1.20≤(R3+R4)/(R3-R4)≤11.57;
    0.02≤d3/TTL≤0.07。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -140.37≤f3/f≤72.19;
    1.41≤(R5+R6)/(R5-R6)≤18.52;
    0.04≤d5/TTL≤0.16。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜 的焦距为f4,所述第四透镜的物侧面的曲率半径为R7,所述第四透镜的像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.43≤f4/f≤1.43;
    0.33≤(R7+R8)/(R7-R8)≤1.48;
    0.06≤d7/TTL≤0.20。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的焦距为f5,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -1.46≤f5/f≤-0.45;
    0.70≤(R9+R10)/(R9-R10)≤2.73;
    0.03≤d9/TTL≤0.11。
  9. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈值为FNO,且满足下列关系式:FNO≤1.66。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的像高为IH,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:TTL/IH≤1.41。
  11. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的材质为玻璃材质。
PCT/CN2020/098639 2020-06-09 2020-06-28 摄像光学镜头 WO2021248578A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010515335.2 2020-06-09
CN202010515335.2A CN111427135B (zh) 2020-06-09 2020-06-09 摄像光学镜头

Publications (1)

Publication Number Publication Date
WO2021248578A1 true WO2021248578A1 (zh) 2021-12-16

Family

ID=71551316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098639 WO2021248578A1 (zh) 2020-06-09 2020-06-28 摄像光学镜头

Country Status (4)

Country Link
US (1) US11782245B2 (zh)
JP (1) JP7083387B2 (zh)
CN (1) CN111427135B (zh)
WO (1) WO2021248578A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111352220B (zh) * 2020-05-26 2020-08-25 瑞声通讯科技(常州)有限公司 摄像光学镜头
JP6964813B1 (ja) * 2021-03-30 2021-11-10 ジョウシュウシ レイテック オプトロニクス カンパニーリミテッド 撮像レンズ
CN113900224B (zh) * 2021-09-24 2023-09-05 江西晶超光学有限公司 光学系统、取像模组及电子设备
CN116794803A (zh) * 2022-03-21 2023-09-22 浙江舜宇光学有限公司 成像镜片组
CN116774396B (zh) * 2023-06-21 2024-05-07 湖北华鑫光电有限公司 一种五片式架构微小型手机镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202837653U (zh) * 2011-09-28 2013-03-27 大立光电股份有限公司 光学成像镜片系统
CN103018887A (zh) * 2012-12-26 2013-04-03 浙江舜宇光学有限公司 微型摄像镜头
JP2013156389A (ja) * 2012-01-27 2013-08-15 Konica Minolta Inc 撮像レンズ、撮像装置、及び携帯端末
US20130250439A1 (en) * 2009-07-14 2013-09-26 Largan Precision Co., Ltd. Imaging lens system
CN103827722A (zh) * 2011-09-14 2014-05-28 柯尼卡美能达株式会社 摄像镜头、摄像装置以及便携终端以及数字设备
CN105842820A (zh) * 2015-02-03 2016-08-10 先进光电科技股份有限公司 光学成像系统
CN105866918A (zh) * 2015-02-06 2016-08-17 先进光电科技股份有限公司 光学成像系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI457594B (zh) * 2011-08-26 2014-10-21 Largan Precision Co Ltd 影像鏡頭
JP2016109871A (ja) * 2014-12-05 2016-06-20 Hoya株式会社 撮像光学系
TWI589947B (zh) * 2015-02-03 2017-07-01 先進光電科技股份有限公司 光學成像系統(一)
TWI663443B (zh) * 2015-02-06 2019-06-21 先進光電科技股份有限公司 光學成像系統(一)
CN110749977A (zh) * 2019-11-05 2020-02-04 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130250439A1 (en) * 2009-07-14 2013-09-26 Largan Precision Co., Ltd. Imaging lens system
CN103827722A (zh) * 2011-09-14 2014-05-28 柯尼卡美能达株式会社 摄像镜头、摄像装置以及便携终端以及数字设备
CN202837653U (zh) * 2011-09-28 2013-03-27 大立光电股份有限公司 光学成像镜片系统
JP2013156389A (ja) * 2012-01-27 2013-08-15 Konica Minolta Inc 撮像レンズ、撮像装置、及び携帯端末
CN103018887A (zh) * 2012-12-26 2013-04-03 浙江舜宇光学有限公司 微型摄像镜头
CN105842820A (zh) * 2015-02-03 2016-08-10 先进光电科技股份有限公司 光学成像系统
CN105866918A (zh) * 2015-02-06 2016-08-17 先进光电科技股份有限公司 光学成像系统

Also Published As

Publication number Publication date
US20210382276A1 (en) 2021-12-09
CN111427135A (zh) 2020-07-17
US11782245B2 (en) 2023-10-10
JP2021196600A (ja) 2021-12-27
JP7083387B2 (ja) 2022-06-10
CN111427135B (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
WO2021031236A1 (zh) 摄像光学镜头
WO2021248578A1 (zh) 摄像光学镜头
WO2021031233A1 (zh) 摄像光学镜头
WO2021237781A1 (zh) 摄像光学镜头
WO2022021512A1 (zh) 摄像光学镜头
WO2022011738A1 (zh) 摄像光学镜头
WO2021258441A1 (zh) 摄像光学镜头
WO2021196312A1 (zh) 摄像光学镜头
WO2021097929A1 (zh) 摄像光学镜头
WO2022062072A1 (zh) 摄像光学镜头
WO2022011740A1 (zh) 摄像光学镜头
WO2021248577A1 (zh) 摄像光学镜头
WO2022047986A1 (zh) 摄像光学镜头
WO2022057049A1 (zh) 摄像光学镜头
WO2022047985A1 (zh) 摄像光学镜头
WO2022047987A1 (zh) 摄像光学镜头
WO2022052269A1 (zh) 摄像光学镜头
WO2021097928A1 (zh) 摄像光学镜头
WO2021031237A1 (zh) 摄像光学镜头
WO2021031238A1 (zh) 摄像光学镜头
WO2022047988A1 (zh) 摄像光学镜头
WO2022000657A1 (zh) 摄像光学镜头
WO2022041383A1 (zh) 摄像光学镜头
WO2021168886A1 (zh) 摄像光学镜头
WO2022047992A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939700

Country of ref document: EP

Kind code of ref document: A1