WO2021097952A1 - 摄像光学镜头 - Google Patents
摄像光学镜头 Download PDFInfo
- Publication number
- WO2021097952A1 WO2021097952A1 PCT/CN2019/123897 CN2019123897W WO2021097952A1 WO 2021097952 A1 WO2021097952 A1 WO 2021097952A1 CN 2019123897 W CN2019123897 W CN 2019123897W WO 2021097952 A1 WO2021097952 A1 WO 2021097952A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- imaging optical
- optical lens
- curvature
- ttl
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
Definitions
- the present invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
- the photosensitive devices of general photographic lenses are nothing more than photosensitive coupled devices (CCD) or complementary metal oxide semiconductor devices (Complementary Metal).
- CCD photosensitive coupled devices
- CMOS Sensor complementary metal oxide semiconductor devices
- the lenses traditionally mounted in mobile phone cameras mostly adopt a three-element or four-element lens structure.
- the pixel area of the photosensitive device continues to shrink, and the system's requirements for image quality continue to increase, the five-element lens structure gradually appears in the lens design, and it is common Although the five-element lens has good optical performance, its optical power, lens pitch and lens shape settings are still unreasonable, resulting in the lens structure having good optical performance, but cannot meet the requirements of large aperture, Design requirements for ultra-thin and long focal length.
- the object of the present invention is to provide an imaging optical lens, which has good optical performance while meeting the design requirements of large aperture, ultra-thinness, and long focal length.
- the present invention provides an imaging optical lens which sequentially includes from the object side to the image side: a first lens with positive refractive power, a second lens with negative refractive power, and a first lens with positive refractive power. Three lenses, a fourth lens with negative refractive power, and a fifth lens with negative refractive power;
- the curvature radius of the object side surface of the first lens is R1, the curvature radius of the first lens image side surface is R2, the curvature radius of the second lens object side surface is R3, and the curvature radius of the second lens image side surface is R4, the radius of curvature of the object side of the third lens is R5, the radius of curvature of the image side of the third lens is R6, and the image side of the second lens is on the axis from the object side of the third lens
- the distance is d4
- the focal length of the imaging optical lens is f
- the focal length of the fifth lens is f5, which satisfies the following relationship:
- the on-axis distance between the image side surface of the third lens and the object side surface of the fourth lens is d6, the on-axis thickness of the fourth lens is d7, and the following relationship is satisfied:
- the focal length of the first lens is f1
- the on-axis thickness of the first lens is d1
- the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
- the focal length of the second lens is f2
- the on-axis thickness of the second lens is d3
- the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
- the focal length of the third lens is f3
- the axial thickness of the third lens is d5
- the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
- the focal length of the fourth lens is f4
- the radius of curvature of the object side of the fourth lens is R7
- the radius of curvature of the image side of the fourth lens is R8,
- the on-axis thickness of the fourth lens is d7
- the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
- the radius of curvature of the object side surface of the fifth lens is R9
- the radius of curvature of the image side surface of the fifth lens is R10
- the axial thickness of the fifth lens is d9
- the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
- the total optical length of the camera optical lens is TTL, and satisfies the following relationship: TTL/f ⁇ 0.89.
- the image height of the imaging optical lens is IH, and satisfies the following relationship: f/IH ⁇ 4.30.
- the aperture of the imaging optical lens is Fno, and the following relationship is satisfied: Fno ⁇ 2.25.
- the imaging optical lens according to the present invention has good optical performance, and has the characteristics of large aperture, long focal length, and ultra-thinness, and is especially suitable for mobile phones composed of high-pixel CCD, CMOS and other imaging elements.
- Camera lens assembly and WEB camera lens are examples of camera lens.
- FIG. 1 is a schematic diagram of the structure of the imaging optical lens of the first embodiment
- FIG. 2 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 1;
- FIG. 3 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
- FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
- FIG. 5 is a schematic diagram of the structure of the imaging optical lens of the second embodiment
- FIG. 6 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 5;
- FIG. 7 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 5;
- FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
- FIG. 9 is a schematic diagram of the structure of the imaging optical lens of the third embodiment.
- FIG. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 9;
- FIG. 11 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
- FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9.
- FIG. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention.
- the imaging optical lens 10 includes eight lenses. Specifically, the imaging optical lens 10 includes in order from the object side to the image side: an aperture S1, a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a third lens with positive refractive power.
- An optical element such as an optical filter GF may be provided between the fifth lens L5 and the image plane Si.
- the radius of curvature of the object side surface of the first lens L1 is defined as R1
- the radius of curvature of the image side surface of the first lens L1 is defined as R2, which satisfies the following relationship: -0.80 ⁇ (R1+R2)/( R1-R2) ⁇ -0.30, which specifies the shape of the first lens L1.
- R1+R2 the radius of curvature of the image side surface of the first lens L1
- the curvature radius of the object side surface of the second lens L2 is R3, and the curvature radius of the image side surface of the second lens L2 is R4, which satisfies the following relationship: 0.01 ⁇ (R3+R4)/(R3-R4) ⁇ 0.04, which is specified
- the sensitivity of the second lens L2 is low within the range of the conditional formula, which is beneficial to improve the production yield.
- the curvature radius of the object side surface of the third lens L3 is R5, and the curvature radius of the image side surface of the third lens L3 is R6, which satisfies the following relationship: 0.50 ⁇ (R5+R6)/(R5-R6) ⁇ 1.50, which is specified
- the shape of the third lens L3, within the scope of the conditional formula, can ease the degree of deflection of light passing through the lens, and effectively reduce aberrations.
- the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3 is d4, the focal length of the imaging optical lens 10 is f, and the following relationship is satisfied: 0.13 ⁇ d4/f ⁇ 0.18,
- the ratio of the on-axis distance d4 from the image side surface of the second lens L2 to the object side surface of the third lens L3 to the focal length f of the imaging optical lens 10 is specified, which facilitates the assembly of the lens within the scope of conditions.
- the focal length of the fifth lens L5 is f5, which satisfies the following relationship: -7.40 ⁇ f5/f ⁇ -5.40, which specifies the ratio of the focal length f5 of the fifth lens L5 to the focal length f of the imaging optical lens 10, which is within the range of the conditional expression Inside, it helps to correct the curvature of the system and improve the imaging quality.
- the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4 is d6, the on-axis thickness of the fourth lens L4 is d7, and the following relationship is satisfied: 0.15 ⁇ d6/ d7 ⁇ 0.25.
- the ratio of the on-axis distance d6 from the image side surface of the third lens L3 to the object side surface of the fourth lens L4 to the on-axis thickness d7 of the fourth lens L4 is specified, which is helpful for lens processing and lens assembly within the scope of the conditions. .
- the focal length of the first lens L1 is defined as f1, which satisfies the following relationship: 0.21 ⁇ f1/f ⁇ 0.67, which specifies the ratio of the focal length f1 of the first lens L1 to the focal length f of the imaging optical lens 10.
- the first lens L1 has an appropriate positive refractive power, which is beneficial to reduce system aberrations, and at the same time, is beneficial to the development of ultra-thin and wide-angle lenses.
- the total optical length of the imaging optical lens 10 is TTL, and the on-axis thickness of the first lens L1 is d1, which satisfies the following relationship: 0.08 ⁇ d1/TTL ⁇ 0.26. Within the range of the conditional expression, it is beneficial to achieve ultra-thinness .
- the focal length of the second lens L2 is defined as f2, which satisfies the following relational expression: -1.13 ⁇ f2/f ⁇ -0.33, which specifies the ratio of the focal length f2 of the second lens to the focal length f of the imaging optical lens 10, which is within the range of the conditional expression Inside, by controlling the negative refractive power of the second lens L2 in a reasonable range, it is beneficial to correct the aberration of the optical system.
- the on-axis thickness of the second lens L2 is d3, which satisfies the following relational expression: 0.01 ⁇ d3/TTL ⁇ 0.04. Within the range of the conditional expression, it is beneficial to realize ultra-thinness.
- the focal length of the third lens L3 is defined as f3, which satisfies the following relationship: 0.35 ⁇ f3/f ⁇ 1.22, which specifies the ratio of the focal length f3 of the third lens L3 to the focal length f of the imaging optical lens 10, which is within the range of the conditional expression , Through the reasonable distribution of optical power, the system has better imaging quality and lower sensitivity.
- the on-axis thickness of the third lens L3 is d5, which satisfies the following relational expression: 0.02 ⁇ d5/TTL ⁇ 0.09. Within the range of the conditional expression, it is beneficial to realize ultra-thinness.
- the focal length of the fourth lens L4 is defined as f4, which satisfies the following relationship: -1.28 ⁇ f4/f ⁇ -0.35, which specifies the ratio of the focal length f4 of the fourth lens L4 to the focal length f of the imaging optical lens 10, Within the range of the conditional expression, it helps to improve the performance of the optical system.
- the curvature radius of the object side surface of the fourth lens L4 is R7
- the curvature radius of the image side surface of the fourth lens L4 is R8, which satisfies the following relationship: 0.81 ⁇ (R7+R8)/(R7-R8) ⁇ 3.11.
- the shape of the fourth lens L4 is specified.
- the on-axis thickness of the fourth lens L4 is d7, which satisfies the following relational expression: 0.01 ⁇ d7/TTL ⁇ 0.06. Within the range of the conditional expression, it is beneficial to realize ultra-thinness.
- the on-axis thickness of the fifth lens L5 is d9, which satisfies the following relational expression: 0.04 ⁇ d9/TTL ⁇ 0.15. Within the range of the conditional expression, it is beneficial to realize ultra-thinness.
- TTL The total optical length of the camera optical lens is defined as TTL, and the following relationship is satisfied: TTL/f ⁇ 0.89, which is beneficial to realize ultra-thinness.
- the image height of the imaging optical lens is defined as IH, and the following relational expression is satisfied: f/IH ⁇ 4.30, which is conducive to achieving a long focal length.
- the aperture of the imaging optical lens is defined as Fno, and the following relationship is satisfied: Fno ⁇ 2.25, which is conducive to achieving a large aperture and good imaging performance.
- the imaging optical lens 10 achieves good optical imaging performance while also meeting the design requirements of large aperture, long focal length, and ultra-thinness; according to the characteristics of the imaging optical lens 10, the imaging optical lens 10
- the optical lens 10 is particularly suitable for mobile phone camera lens assemblies and WEB camera lenses composed of high-resolution CCD, CMOS, and other imaging elements.
- the imaging optical lens 10 of the present invention will be described below with an example.
- the symbols described in each example are as follows.
- the unit of focal length, distance on axis, radius of curvature, thickness on axis, position of inflection point, and position of stagnation point is mm.
- TTL total optical length (the on-axis distance from the object side of the first lens L1 to the image plane Si), the unit is mm;
- the object side and/or the image side of the lens can also be provided with inflection points and/or stagnation points to meet high-quality imaging requirements.
- inflection points and/or stagnation points for specific implementations, refer to the following.
- Table 1 and Table 2 show design data of the imaging optical lens 10 according to the first embodiment of the present invention.
- R The radius of curvature of the optical surface, and the radius of curvature of the center of the lens
- R1 the radius of curvature of the object side surface of the first lens L1;
- R2 the radius of curvature of the image side surface of the first lens L1;
- R3 the radius of curvature of the object side surface of the second lens L2;
- R4 the radius of curvature of the image side surface of the second lens L2;
- R5 the radius of curvature of the object side surface of the third lens L3;
- R6 the radius of curvature of the image side surface of the third lens L3;
- R7 the radius of curvature of the object side of the fourth lens L4;
- R8 the radius of curvature of the image side surface of the fourth lens L4;
- R9 the radius of curvature of the object side of the fifth lens L5;
- R10 the radius of curvature of the image side surface of the fifth lens L5;
- R11 the radius of curvature of the object side surface of the optical filter GF
- R12 the radius of curvature of the image side surface of the optical filter GF
- d0 the on-axis distance from the aperture S1 to the object side of the first lens L1;
- d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
- d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
- d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
- d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the optical filter GF;
- d11 the axial thickness of the optical filter GF
- d12 the on-axis distance from the image side surface of the optical filter GF to the image surface
- nd refractive index of d-line
- nd1 the refractive index of the d-line of the first lens L1;
- nd2 the refractive index of the d-line of the second lens L2;
- nd3 the refractive index of the d-line of the third lens L3;
- nd4 the refractive index of the d-line of the fourth lens L4;
- nd5 the refractive index of the d-line of the fifth lens L5;
- ndg the refractive index of the d-line of the optical filter GF
- vg Abbe number of optical filter GF.
- Table 2 shows the aspheric surface data of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
- k is the conic coefficient
- A4, A6, A8, A10, A12, A14, and A16 are the aspheric coefficients.
- the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (1).
- the present invention is not limited to the aspheric polynomial form represented by the formula (1).
- Table 3 and Table 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
- P1R1 and P1R2 represent the object side and image side of the first lens L1 respectively
- P2R1 and P2R2 represent the object side and image side of the second lens L2 respectively
- P3R1 and P3R2 represent the object side and image side of the third lens L3 respectively
- P4R1 and P4R2 represent the object side and image side of the fourth lens L4, respectively
- P5R1 and P5R2 represent the object side and the image side of the fifth lens L5, respectively.
- the corresponding data in the “reflection point position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
- the corresponding data in the “stationary point position” column is the vertical distance from the stationary point set on the surface of each lens to the optical axis of the imaging optical lens 10.
- FIG. 2 and 3 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 470 nm, 510 nm, 555 nm, 610 nm, and 650 nm pass through the imaging optical lens 10 of the first embodiment.
- FIG. 4 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 10 of the first embodiment.
- the field curvature S in FIG. is a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 10 of the first embodiment.
- Table 13 shows the values corresponding to the various numerical values in each of the first, second, third, and fourth embodiments and the parameters specified in the conditional expressions.
- the first embodiment satisfies various conditional expressions.
- the entrance pupil diameter of the imaging optical lens 10 is 3.969 mm
- the full-field image height is 2.040 mm
- the diagonal field angle is 25.46°, making the imaging optical lens 10 ultra-thin.
- the chromatic aberrations on axis and off axis are fully corrected, and it has excellent optical characteristics.
- the second embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment.
- the structure of the imaging optical lens 20 of the second embodiment is shown in Fig. 5, and only the differences are listed below.
- Table 5 and Table 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
- Table 6 shows the aspheric surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
- Table 7 and Table 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
- FIG. 6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 470 nm, 510 nm, 555 nm, 610 nm, and 650 nm pass through the imaging optical lens 20 of the second embodiment.
- FIG. 8 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 20 of the second embodiment.
- the entrance pupil diameter of the imaging optical lens is 3.969mm
- the full-field image height is 2.040mm
- the diagonal field angle is 25.86°, making the imaging optical lens 20 ultra-thin.
- the third embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment. Please refer to FIG. 9 for the structure of the imaging optical lens 30 of the third embodiment. Only the differences are listed below.
- Table 9 and Table 10 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.
- Table 10 shows the aspheric surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
- Table 11 and Table 12 show the inflection point and stagnation point design data of each lens in the imaging optical lens 30 of the third embodiment of the present invention.
- FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 470 nm, 510 nm, 555 nm, 610 nm, and 650 nm pass through the imaging optical lens 30 of the third embodiment.
- FIG. 12 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 30 of the third embodiment.
- the entrance pupil diameter of the imaging optical lens is 3.969 mm
- the full-field image height is 2.040 mm
- the diagonal field angle is 25.46°, making the imaging optical lens 30 ultra-thin.
- Embodiment 1 Embodiment 2 Embodiment 3 f 8.850 8.850 8.850 f1 3.733 3.942 3.647 f2 -4.327 -4.785 -5.007 f3 6.216 7.218 6.904 f4 -5.106 -5.649 -4.654 f5 -56.640 -64.100 -47.878 f12 8.101 8.021 7.254 (R1+R2)/(R1-R2) -0.581 -0.790 -0.410 (R3+R4)/(R3-R4) 0.026 0.039 0.011 (R5+R6)/(R5-R6) 0.892 1.322 0.510 d4/f 0.154 0.179 0.158 f5/f -6.400 -7.243 -5.410 Fno 2.23 2.23 2.23
- Fno is the aperture of the imaging optical lens.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
一种摄像光学镜头(10),涉及光学镜头领域,其自物侧至像侧依序包含:具有正屈折力的第一透镜(L1),具有负屈折力的第二透镜(L2),具有正屈折力的第三透镜(L3),具有负屈折力的第四透镜(L4),以及具有负屈折力的第五透镜(L5);且满足下列关系式:-0.80≤(R1+R2)/(R1-R2)≤-0.30;0.01≤(R3+R4)/(R3-R4)≤0.04;0.50≤(R5+R6)/(R5-R6)≤1.50;0.13≤d4/f≤0.18;-7.40≤f5/f≤-5.40,其具有良好光学性能的同时,满足大光圈、长焦距、超薄化的设计要求。
Description
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
发明概述
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式或四片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,五片式透镜结构逐渐出现在镜头设计当中,常见的五片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足大光圈、超薄化、长焦距的设计要求。
问题的解决方案
针对上述问题,本发明的目的在于提供一种摄像光学镜头,其具有良好光学性能的同时,满足大光圈、超薄化、长焦距的设计要求。
为解决上述技术问题,本发明提供一种摄像光学镜头,其自物侧至像侧依序包含:具有正屈折力的第一透镜,具有负屈折力的第二透镜,具有正屈折力的第 三透镜,具有负屈折力的第四透镜,以及具有负屈折力的第五透镜;
所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,满足下列关系式:
-0.80≤(R1+R2)/(R1-R2)≤-0.30;
0.01≤(R3+R4)/(R3-R4)≤0.04;
0.50≤(R5+R6)/(R5-R6)≤1.50;
0.13≤d4/f≤0.18;
-7.40≤f5/f≤-5.40。
优选的,所述第三透镜的像侧面到所述第四透镜的物侧面的轴上距离为d6,所述第四透镜的轴上厚度为d7,且满足下列关系式:
0.15≤d6/d7≤0.25。
优选的,所述第一透镜的焦距为f1,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.21≤f1/f≤0.67;
0.08≤d1/TTL≤0.26。
优选的,所述第二透镜的焦距为f2,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-1.13≤f2/f≤-0.33;
0.01≤d3/TTL≤0.04。
优选的,所述第三透镜的焦距为f3,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.35≤f3/f≤1.22;
0.02≤d5/TTL≤0.09。
优选的,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像 光学镜头的光学总长为TTL,且满足下列关系式:
-1.28≤f4/f≤-0.35;
0.81≤(R7+R8)/(R7-R8)≤3.11;
0.01≤d7/TTL≤0.06。
优选的,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-19.01≤(R9+R10)/(R9-R10)≤-4.69;
0.04≤d9/TTL≤0.15。
优选的,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:TTL/f≤0.89。
优选的,所述摄像光学镜头的像高为IH,且满足下列关系式:f/IH≥4.30。
优选的,所述摄像光学镜头的光圈为Fno,且满足下列关系式:Fno≤2.25。
发明的有益效果
本发明的有益效果在于:根据本发明的摄像光学镜头具有良好光学性能,且具有大光圈、长焦距、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
对附图的简要说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是实施方式一的摄像光学镜头的结构示意图;
图2是图1所示的摄像光学镜头的轴向像差示意图;
图3是图1所示的摄像光学镜头的倍率色差示意图;
图4是图1所示的摄像光学镜头的场曲及畸变示意图;
图5是实施方式二的摄像光学镜头的结构示意图;
图6是图5所示的摄像光学镜头的轴向像差示意图;
图7是图5所示的摄像光学镜头的倍率色差示意图;
图8是图5所示的摄像光学镜头的场曲及畸变示意图;
图9是实施方式三的摄像光学镜头的结构示意图;
图10是图9所示的摄像光学镜头的轴向像差示意图;
图11是图9所示的摄像光学镜头的倍率色差示意图;
图12是图9所示的摄像光学镜头的场曲及畸变示意图。
发明实施例
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
请参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括八个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、具有正屈折力的第一透镜L1,具有负屈折力的第二透镜L2,具有正屈折力的第三透镜L3,具有负屈折力的第四透镜L4,以及具有负屈折力的第五透镜L5。第五透镜L5和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
在本实施方式中,定义所述第一透镜L1物侧面的曲率半径为R1,所述第一透镜L1像侧面的曲率半径为R2,满足下列关系式:-0.80≤(R1+R2)/(R1-R2)≤-0.30,规定了第一透镜L1的形状,在条件式范围内,有利于系统球差校正,提高成像像质。
所述第二透镜L2物侧面的曲率半径为R3,所述第二透镜L2像侧面的曲率半径为R4,满足下列关系式:0.01≤(R3+R4)/(R3-R4)≤0.04,规定了第二透镜L2的形 状,在条件式范围内,第二透镜L2敏感度低,有利于提高生产良率。
所述第三透镜L3物侧面的曲率半径为R5,所述第三透镜L3像侧面的曲率半径为R6,满足下列关系式:0.50≤(R5+R6)/(R5-R6)≤1.50,规定了第三透镜L3的形状,在条件式范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。
所述第二透镜L2的像侧面到所述第三透镜L3的物侧面的轴上距离为d4,所述摄像光学镜头10的焦距为f,满足下列关系式:0.13≤d4/f≤0.18,规定了第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离d4与摄像光学镜头10的焦距f的比值,在条件范围内有助于镜头的组装。
所述第五透镜L5的焦距为f5,满足下列关系式:-7.40≤f5/f≤-5.40,规定了第五透镜L5的焦距f5与摄像光学镜头10的焦距f的比值,在条件式范围内,有助于系统场曲校正,提高成像品质。
定义所述第三透镜L3的像侧面到所述第四透镜L4的物侧面的轴上距离为d6,所述第四透镜L4的轴上厚度为d7,且满足下列关系式:0.15≤d6/d7≤0.25。规定了第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离d6与第四透镜L4的轴上厚度d7的比值,在条件范围内,有助于镜片的加工和镜头的组装。
定义所述第一透镜L1的焦距为f1,满足下列关系式:0.21≤f1/f≤0.67,规定了第一透镜L1的焦距f1与摄像光学镜头10的焦距f的比值。在条件式范围内时,第一透镜L1具有适当的正屈折力,有利于减小系统像差,同时有利于镜头向超薄化、广角化发展。
所述摄像光学镜头10的光学总长为TTL,所述第一透镜L1的轴上厚度为d1,满足下列关系式:0.08≤d1/TTL≤0.26,在条件式范围内,有利于实现超薄化。
定义所述第二透镜L2的焦距为f2,满足下列关系式:-1.13≤f2/f≤-0.33,规定了第二透镜的焦距f2与摄像光学镜头10的焦距f的比值,在条件式范围内,通过将第二透镜L2的负光焦度控制在合理范围,有利于矫正光学系统的像差。
所述第二透镜L2的轴上厚度为d3,满足下列关系式:0.01≤d3/TTL≤0.04,在条件式范围内,有利于实现超薄化。
定义所述第三透镜L3的焦距为f3,满足下列关系式:0.35≤f3/f≤1.22,规定了第三透镜L3的焦距f3与摄像光学镜头10的焦距f的比值,在条件式范围内,通过光 焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。
所述第三透镜L3的轴上厚度为d5,满足下列关系式:0.02≤d5/TTL≤0.09,在条件式范围内,有利于实现超薄化。
定义所述第四透镜L4的焦距为f4,满足下列关系式:-1.28≤f4/f≤-0.35,规定了第四透镜L4的焦距f4与所述摄像光学镜头10的焦距f的比值,在条件式范围内,有助于提高光学系统性能。
所述第四透镜L4物侧面的曲率半径为R7,所述第四透镜L4像侧面的曲率半径为R8,满足下列关系式:0.81≤(R7+R8)/(R7-R8)≤3.11。规定了第四透镜L4的形状,在条件式范围内,随着超薄化、广角化的发展,有利于补正轴外画角的像差等问题。
所述第四透镜L4的轴上厚度为d7,满足下列关系式:0.01≤d7/TTL≤0.06,在条件式范围内,有利于实现超薄化。
定义所述第五透镜L5物侧面的曲率半径为R9,所述第五透镜L5像侧面的曲率半径为R10,满足下列关系式:-19.01≤(R9+R10)/(R9-R10)≤-4.69,规定了第五透镜L5的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。
所述第五透镜L5的轴上厚度为d9,满足下列关系式:0.04≤d9/TTL≤0.15,在条件式范围内,有利于实现超薄化。
定义所述摄像光学镜头的光学总长为TTL,且满足下列关系式:TTL/f≤0.89,有利于实现超薄化。
定义所述摄像光学镜头的像高为IH,且满足下列关系式:f/IH≥4.30,有利于实现长焦距。
定义所述摄像光学镜头的光圈为Fno,且满足下列关系式:Fno≤2.25,有利于实现大光圈,使得成像性能好。
即当满足上述关系时,使得摄像光学镜头10实现了在具有良好光学成像性能的同时,还能满足大光圈、长焦距、超薄化的设计要求;根据该摄像光学镜头10的特性,该摄像光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到像面Si的轴上距离),单位为mm;
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
其中,各符号的含义如下。
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:光学过滤片GF的物侧面的曲率半径;
R12:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度与透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到光学过滤片GF的物侧面的轴上距离;
d11:光学过滤片GF的轴上厚度;
d12:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16是非球面系数。
y=(x
2/R)/[1+{1-(k+1)(x
2/R
2)}
1/2]+A4x
4+A6x
6+A8x
8+A10x
10+A12x
12+A14x
14+A16x
16 (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点 位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | |
P1R1 | 0 | 0 | 0 | 0 |
P1R2 | 2 | 1.535 | 1.725 | 0 |
P2R1 | 1 | 0.935 | 0 | 0 |
P2R2 | 0 | 0 | 0 | 0 |
P3R1 | 1 | 0.265 | 0 | 0 |
P3R2 | 0 | 0 | 0 | 0 |
P4R1 | 3 | 0.205 | 1.015 | 1.445 |
P4R2 | 1 | 1.505 | 0 | 0 |
P5R1 | 1 | 1.635 | 0 | 0 |
P5R2 | 0 | 0 | 0 | 0 |
【表4】
驻点个数 | 驻点位置1 | |
P1R1 | 0 | 0 |
P1R2 | 0 | 0 |
P2R1 | 1 | 1.575 |
P2R2 | 0 | 0 |
P3R1 | 1 | 0.415 |
P3R2 | 0 | 0 |
P4R1 | 1 | 0.375 |
P4R2 | 0 | 0 |
P5R1 | 0 | 0 |
P5R2 | 0 | 0 |
图2、图3分别示出了波长为470nm、510nm、555nm、610nm和650nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了波长为555nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表13示出各实施方式一、二、三、四中各种数值与条件式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头10的入瞳直径为3.969mm,全视场像高为2.040mm,对角线方向的视场角为25.46°,使得所述摄像光学镜头10超薄化、大光圈及长焦距,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,该第 二实施方式的摄像光学镜头20的结构形式请参图5所示,以下只列出不同点。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | |
P1R1 | 0 | 0 | 0 | 0 |
P1R2 | 1 | 0.995 | 0 | 0 |
P2R1 | 1 | 0.655 | 0 | 0 |
P2R2 | 0 | 0 | 0 | 0 |
P3R1 | 0 | 0 | 0 | 0 |
P3R2 | 0 | 0 | 0 | 0 |
P4R1 | 3 | 0.195 | 1.095 | 1.535 |
P4R2 | 2 | 0.565 | 0.945 | 0 |
P5R1 | 1 | 1.695 | 0 | 0 |
P5R2 | 0 | 0 | 0 | 0 |
【表8】
驻点个数 | 驻点位置1 | |
P1R1 | 0 | 0 |
P1R2 | 0 | 0 |
P2R1 | 1 | 1.205 |
P2R2 | 0 | 0 |
P3R1 | 0 | 0 |
P3R2 | 0 | 0 |
P4R1 | 1 | 0.345 |
P4R2 | 0 | 0 |
P5R1 | 0 | 0 |
P5R2 | 0 | 0 |
图6、图7分别示出了波长为470nm、510nm、555nm、610nm和650nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了波长为555nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。
以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学镜头满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为3.969mm,全视场像高为2.040mm,对角线方向的视场角为25.86°,使得所述摄像光学镜头20超薄化、大光圈及长焦距,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,该第三实施方式的摄像光学镜头30的结构形式请参图9所示,以下只列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | |
P1R1 | 0 | 0 | 0 | 0 |
P1R2 | 0 | 0 | 0 | 0 |
P2R1 | 1 | 1.245 | 0 | 0 |
P2R2 | 2 | 0.465 | 0.975 | 0 |
P3R1 | 1 | 0.405 | 0 | 0 |
P3R2 | 0 | 0 | 0 | 0 |
P4R1 | 3 | 0.275 | 0.865 | 1.255 |
P4R2 | 0 | 0 | 0 | 0 |
P5R1 | 1 | 1.665 | 0 | 0 |
P5R2 | 0 | 0 | 0 | 0 |
【表12】
驻点个数 | 驻点位置1 | 驻点位置2 | 驻点位置3 | |
P1R1 | 0 | 0 | 0 | 0 |
P1R2 | 0 | 0 | 0 | 0 |
P2R1 | 0 | 0 | 0 | 0 |
P2R2 | 0 | 0 | 0 | 0 |
P3R1 | 1 | 0.625 | 0 | 0 |
P3R2 | 0 | 0 | 0 | 0 |
P4R1 | 3 | 0.545 | 1.215 | 1.285 |
P4R2 | 0 | 0 | 0 | 0 |
P5R1 | 0 | 0 | 0 | 0 |
P5R2 | 0 | 0 | 0 | 0 |
图10、图11分别示出了波长为470nm、510nm、555nm、610nm和650nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了波长为555nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。
以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学镜头满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为3.969mm,全视场像高为2.040mm,对角线方向的视场角为25.46°,使得所述摄像光学镜头30超薄化、大光圈及长焦距,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
【表13】
参数及条件式 | 实施方式1 | 实施方式2 | 实施方式3 |
f | 8.850 | 8.850 | 8.850 |
f1 | 3.733 | 3.942 | 3.647 |
f2 | -4.327 | -4.785 | -5.007 |
f3 | 6.216 | 7.218 | 6.904 |
f4 | -5.106 | -5.649 | -4.654 |
f5 | -56.640 | -64.100 | -47.878 |
f12 | 8.101 | 8.021 | 7.254 |
(R1+R2)/(R1-R2) | -0.581 | -0.790 | -0.410 |
(R3+R4)/(R3-R4) | 0.026 | 0.039 | 0.011 |
(R5+R6)/(R5-R6) | 0.892 | 1.322 | 0.510 |
d4/f | 0.154 | 0.179 | 0.158 |
f5/f | -6.400 | -7.243 | -5.410 |
Fno | 2.23 | 2.23 | 2.23 |
其中,Fno为摄像光学镜头的光圈。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。
Claims (10)
- 一种摄像光学镜头,其特征在于,所述摄像光学镜头,自物侧至像侧依序包含:具有正屈折力的第一透镜,具有负屈折力的第二透镜,具有正屈折力的第三透镜,具有负屈折力的第四透镜,以及具有负屈折力的第五透镜;所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,满足下列关系式:-0.80≤(R1+R2)/(R1-R2)≤-0.30;0.01≤(R3+R4)/(R3-R4)≤0.04;0.50≤(R5+R6)/(R5-R6)≤1.50;0.13≤d4/f≤0.18;-7.40≤f5/f≤-5.40。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的像侧面到所述第四透镜的物侧面的轴上距离为d6,所述第四透镜的轴上厚度为d7,且满足下列关系式:0.15≤d6/d7≤0.25。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的焦距为f1,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.21≤f1/f≤0.67;0.08≤d1/TTL≤0.26。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的焦距为f2,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-1.13≤f2/f≤-0.33;0.01≤d3/TTL≤0.04。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.35≤f3/f≤1.22;0.02≤d5/TTL≤0.09。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-1.28≤f4/f≤-0.35;0.81≤(R7+R8)/(R7-R8)≤3.11;0.01≤d7/TTL≤0.06。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-19.01≤(R9+R10)/(R9-R10)≤-4.69;0.04≤d9/TTL≤0.15。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:TTL/f≤0.89。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的像高为IH,且满足下列关系式:f/IH≥4.30。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈为Fno,且满足下列关系式:Fno≤2.25。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911156034.9 | 2019-11-22 | ||
CN201911156034.9A CN110737076B (zh) | 2019-11-22 | 2019-11-22 | 摄像光学镜头 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021097952A1 true WO2021097952A1 (zh) | 2021-05-27 |
Family
ID=69273642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/123897 WO2021097952A1 (zh) | 2019-11-22 | 2019-12-09 | 摄像光学镜头 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110737076B (zh) |
WO (1) | WO2021097952A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111538139B (zh) * | 2020-07-13 | 2020-10-16 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
CN111679411B (zh) * | 2020-08-12 | 2020-11-06 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
CN111679413B (zh) * | 2020-08-12 | 2020-10-30 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
CN118655685A (zh) * | 2024-08-19 | 2024-09-17 | 江西联益光学有限公司 | 光学镜头 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110304928A1 (en) * | 2010-06-14 | 2011-12-15 | Olympus Corporation | Image pickup optical system and image pickup apparatus using the same |
CN103412396A (zh) * | 2013-04-12 | 2013-11-27 | 玉晶光电(厦门)有限公司 | 光学成像镜头及应用此镜头的电子装置 |
CN103454753A (zh) * | 2012-05-28 | 2013-12-18 | 大立光电股份有限公司 | 拾像光学镜片系统 |
CN204536635U (zh) * | 2014-05-08 | 2015-08-05 | 康达智株式会社 | 6枚光学元件构成的摄像镜头 |
CN105607227A (zh) * | 2014-11-19 | 2016-05-25 | 先进光电科技股份有限公司 | 光学成像系统 |
CN106950680A (zh) * | 2016-09-30 | 2017-07-14 | 瑞声科技(新加坡)有限公司 | 摄像镜头 |
-
2019
- 2019-11-22 CN CN201911156034.9A patent/CN110737076B/zh active Active
- 2019-12-09 WO PCT/CN2019/123897 patent/WO2021097952A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110304928A1 (en) * | 2010-06-14 | 2011-12-15 | Olympus Corporation | Image pickup optical system and image pickup apparatus using the same |
CN103454753A (zh) * | 2012-05-28 | 2013-12-18 | 大立光电股份有限公司 | 拾像光学镜片系统 |
CN103412396A (zh) * | 2013-04-12 | 2013-11-27 | 玉晶光电(厦门)有限公司 | 光学成像镜头及应用此镜头的电子装置 |
CN204536635U (zh) * | 2014-05-08 | 2015-08-05 | 康达智株式会社 | 6枚光学元件构成的摄像镜头 |
CN105607227A (zh) * | 2014-11-19 | 2016-05-25 | 先进光电科技股份有限公司 | 光学成像系统 |
CN106950680A (zh) * | 2016-09-30 | 2017-07-14 | 瑞声科技(新加坡)有限公司 | 摄像镜头 |
Also Published As
Publication number | Publication date |
---|---|
CN110737076A (zh) | 2020-01-31 |
CN110737076B (zh) | 2021-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021031233A1 (zh) | 摄像光学镜头 | |
WO2021237781A1 (zh) | 摄像光学镜头 | |
WO2021196257A1 (zh) | 摄像光学镜头 | |
WO2021248576A1 (zh) | 摄像光学镜头 | |
WO2021097952A1 (zh) | 摄像光学镜头 | |
WO2021248577A1 (zh) | 摄像光学镜头 | |
WO2021097929A1 (zh) | 摄像光学镜头 | |
WO2022047985A1 (zh) | 摄像光学镜头 | |
WO2021031277A1 (zh) | 摄像光学镜头 | |
WO2021031281A1 (zh) | 摄像光学镜头 | |
WO2021168887A1 (zh) | 摄像光学镜头 | |
WO2021168878A1 (zh) | 摄像光学镜头 | |
WO2021097928A1 (zh) | 摄像光学镜头 | |
WO2021097925A1 (zh) | 摄像光学镜头 | |
WO2021031238A1 (zh) | 摄像光学镜头 | |
WO2021168886A1 (zh) | 摄像光学镜头 | |
WO2021168879A1 (zh) | 摄像光学镜头 | |
WO2022057038A1 (zh) | 摄像光学镜头 | |
WO2022057050A1 (zh) | 摄像光学镜头 | |
WO2022062078A1 (zh) | 摄像光学镜头 | |
WO2021168885A1 (zh) | 摄像光学镜头 | |
WO2021253555A1 (zh) | 摄像光学镜头 | |
WO2021253518A1 (zh) | 摄像光学镜头 | |
WO2021168883A1 (zh) | 摄像光学镜头 | |
WO2021119894A1 (zh) | 摄像光学镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19953316 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19953316 Country of ref document: EP Kind code of ref document: A1 |