WO2022057050A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2022057050A1
WO2022057050A1 PCT/CN2020/125990 CN2020125990W WO2022057050A1 WO 2022057050 A1 WO2022057050 A1 WO 2022057050A1 CN 2020125990 W CN2020125990 W CN 2020125990W WO 2022057050 A1 WO2022057050 A1 WO 2022057050A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
optical lens
focal length
curvature
Prior art date
Application number
PCT/CN2020/125990
Other languages
English (en)
French (fr)
Inventor
陈晨曦阳
孙雯
寺岡弘之
Original Assignee
诚瑞光学(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(深圳)有限公司 filed Critical 诚瑞光学(深圳)有限公司
Publication of WO2022057050A1 publication Critical patent/WO2022057050A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only

Definitions

  • the invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
  • the lenses traditionally mounted on mobile phone cameras mostly adopt a three-piece or four-piece lens structure.
  • the common four-piece lens already has good optical performance, its optical power, lens spacing and lens shape setting are still unreasonable to a certain extent, resulting in the lens structure having good optical performance and unable to meet the large aperture. , wide-angle, ultra-thin design requirements.
  • the purpose of the present invention is to provide an imaging optical lens, which has good optical performance and at the same time meets the design requirements of large aperture, wide angle, and ultra-thinness.
  • an imaging optical lens the imaging optical lens includes a total of four lenses, and the four lenses are sequentially from the object side to the image side: a lens, a second lens with negative refractive power, a third lens with positive refractive power, and a fourth lens with negative refractive power;
  • the central radius of curvature of the object side of the first lens is R1
  • the central radius of curvature of the image side of the first lens is R2
  • the central radius of curvature of the object side of the second lens is R3
  • the central radius of curvature of the image side of the second lens is R3.
  • the central radius of curvature is R4, the central radius of curvature of the object side of the third lens is R5, the central radius of curvature of the image side of the third lens is R6, and the image side of the first lens reaches the object of the second lens.
  • the on-axis distance of the side surface is d2
  • the on-axis thickness of the second lens is d3, and the following relationship is satisfied: -0.40 ⁇ (R1+R2)/(R1-R2) ⁇ -0.20; 1.50 ⁇ (R3+R4 )/(R3-R4) ⁇ 2.00; 1.20 ⁇ (R5+R6)/(R5-R6) ⁇ 1.80, 1.52 ⁇ d3/d2 ⁇ 1.80.
  • the focal length of the first lens is f1
  • the focal length of the second lens is f2
  • the following relationship is satisfied: -0.70 ⁇ f1/f2 ⁇ -0.50.
  • the focal length of the imaging optical lens is f
  • the focal length of the first lens is f1
  • the axial thickness of the first lens is d1
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied Formula: 0.55 ⁇ f1/f ⁇ 1.89; 0.08 ⁇ d1/TTL ⁇ 0.28.
  • the focal length of the imaging optical lens is f
  • the focal length of the second lens is f2
  • the optical total length of the imaging optical lens is TTL, and the following relationship is satisfied: -4.19 ⁇ f2/f ⁇ -1.24; 0.04 ⁇ d3/TTL ⁇ 0.14.
  • the focal length of the imaging optical lens is f
  • the focal length of the third lens is f3
  • the axial thickness of the third lens is d5
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied Formula: 0.31 ⁇ f3/f ⁇ 0.93; 0.11 ⁇ d5/TTL ⁇ 0.33.
  • the focal length of the imaging optical lens is f
  • the focal length of the fourth lens is f4
  • the central radius of curvature of the object side of the fourth lens is R7
  • the central radius of curvature of the image side of the fourth lens is R8
  • the axial thickness of the fourth lens is d7
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: -1.64 ⁇ f4/f ⁇ -0.52; 1.12 ⁇ (R7+R8)/(R7 -R8) ⁇ 3.81; 0.05 ⁇ d7/TTL ⁇ 0.15.
  • the aperture value of the imaging optical lens is FNO, and satisfies the following relationship: FNO ⁇ 1.95.
  • the field of view of the imaging optical lens is FOV, and satisfies the following relationship: FOV ⁇ 79°.
  • the total optical length of the imaging optical lens is TTL
  • the image height of the imaging optical lens is IH
  • the focal length of the imaging optical lens is f
  • the combined focal length of the first lens and the second lens is f12
  • the following relationship is satisfied: 0.91 ⁇ f12/f ⁇ 3.90.
  • the imaging optical lens of the present invention has excellent optical characteristics, and has the characteristics of large aperture, wide angle, and ultra-thinness, and is especially suitable for mobile phones composed of high-pixel CCD, CMOS and other imaging elements.
  • Camera lens assembly and WEB camera lens are especially suitable for mobile phones composed of high-pixel CCD, CMOS and other imaging elements.
  • FIG. 1 is a schematic structural diagram of an imaging optical lens according to a first embodiment of the present invention
  • Fig. 2 is the axial aberration schematic diagram of the imaging optical lens shown in Fig. 1;
  • FIG. 3 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic structural diagram of an imaging optical lens according to a second embodiment of the present invention.
  • Fig. 6 is the axial aberration schematic diagram of the imaging optical lens shown in Fig. 5;
  • FIG. 7 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic structural diagram of an imaging optical lens according to a third embodiment of the present invention.
  • Fig. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in Fig. 9;
  • FIG. 11 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9 .
  • FIG. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention, and the imaging optical lens 10 includes four lenses in total. Specifically, the imaging optical lens 10 sequentially includes: an aperture S1, a first lens L1, a second lens L2, a third lens L3, and a fourth lens L4 from the object side to the image side. Optical elements such as an optical filter GF may be provided between the fourth lens L4 and the image plane Si.
  • the first lens L1 has a positive refractive power
  • the second lens L2 has a negative refractive power
  • the third lens L3 has a positive refractive power
  • the fourth lens L4 has a negative refractive power.
  • the first lens L1 is made of plastic material
  • the second lens L2 is made of plastic material
  • the third lens L3 is made of plastic material
  • the fourth lens L4 is made of plastic material.
  • each lens may also be made of other materials.
  • the central radius of curvature of the object side surface of the first lens L1 is defined as R1
  • the central radius of curvature of the image side surface of the first lens L1 is defined as R2, which satisfies the following relationship: -0.40 ⁇ (R1+R2)/(R1- R2) ⁇ -0.20, which specifies the shape of the first lens L1, and contributes to correcting spherical aberration and improving image quality within the range specified by the conditional expression.
  • the shape of the second lens L2 is suitable for lens processing within the range of the conditional expression.
  • the central radius of curvature of the object side of the third lens L3 as R5
  • the central radius of curvature of the image side of the third lens L3 as R6, and satisfy the following relationship: 1.20 ⁇ (R5+R6)/(R5-R6) ⁇ 1.80
  • the regulation According to the shape of the third lens L3, within the range specified by the conditional expression, the degree of deflection of the light passing through the lens can be alleviated, and the aberration can be effectively reduced.
  • the on-axis distance from the image side of the first lens L1 to the object side of the second lens L2 is defined as d2, the on-axis thickness of the second lens is d3, and the following relationship is satisfied: 1.52 ⁇ d3/d2 ⁇ 1.80, when d3/ When d2 satisfies the condition, the ratio of the on-axis thickness d3 of the second lens L2 to the on-axis distance d2 from the image side of the first lens L1 to the object side of the second lens L2 can be effectively allocated, reducing the system sensitivity and improving the production yield .
  • the focal length of the first lens L1 as f1
  • the focal length of the second lens L2 as f2
  • the ratio of the focal length f2 is conducive to balancing aberrations and improving imaging quality within the range of conditions.
  • the object side surface of the first lens L1 is convex at the paraxial position, and the image side surface is convex at the paraxial position.
  • the focal length of the imaging optical lens 10 is defined as f, and the focal length of the first lens L1 is f1, which satisfies the following relationship: 0.55 ⁇ f1/f ⁇ 1.89, which specifies that the focal length f1 of the first lens L1 and the focal length of the imaging optical lens 10
  • the first lens L1 has an appropriate positive refractive power, which is conducive to reducing the system aberration and is conducive to the development of the lens towards ultra-thin and wide-angle.
  • 0.89 ⁇ f1/f ⁇ 1.51 is satisfied.
  • the on-axis thickness of the first lens L1 is d1
  • the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.08 ⁇ d1/TTL ⁇ 0.28, within the range of the conditional formula, is conducive to realizing ultra-thinning.
  • 0.13 ⁇ d1/TTL ⁇ 0.22 is satisfied.
  • the object side surface of the second lens L2 is a convex surface at the paraxial position
  • the image side surface is a concave surface at the paraxial position
  • the focal length of the imaging optical lens 10 as f
  • the focal length of the second lens L2 as f2
  • f2 the focal length of the second lens L2
  • -4.19 ⁇ f2/f ⁇ -1.24 by controlling the negative optical power of the second lens L2 within a reasonable range , which is beneficial to correct the aberrations of the optical system.
  • -2.62 ⁇ f2/f ⁇ -1.55 is satisfied.
  • the on-axis thickness of the second lens L2 is d3, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.04 ⁇ d3/TTL ⁇ 0.14, within the range of the conditional formula, it is beneficial to realize ultra-thinning .
  • 0.06 ⁇ d3/TTL ⁇ 0.11 is satisfied.
  • the object side surface of the third lens L3 is concave at the paraxial position, and the image side surface is convex at the paraxial position.
  • the focal length of the third lens L3 is defined as f3, and the focal length of the imaging optical lens 10 is f, which satisfies the following relationship: 0.31 ⁇ f3/f ⁇ 0.93, through the reasonable distribution of optical power, the system has a better Imaging quality and lower sensitivity. Preferably, 0.49 ⁇ f3/f ⁇ 0.74 is satisfied.
  • the axial thickness of the third lens L3 is d5, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.11 ⁇ d5/TTL ⁇ 0.33, within the range of the conditional formula, it is beneficial to realize ultra-thinning .
  • 0.17 ⁇ d5/TTL ⁇ 0.26 is satisfied.
  • the object side surface of the fourth lens L4 is a convex surface at the paraxial position
  • the image side surface is a concave surface at the paraxial position
  • the focal length of the fourth lens L4 is defined as f4, and the focal length of the imaging optical lens 10 is f, which satisfies the following relationship: -1.64 ⁇ f4/f ⁇ -0.52, which specifies that the focal length f4 of the fourth lens L4 and the imaging optics
  • the ratio of the focal length f of the lens 10 contributes to improving the performance of the optical system within the range of the conditional expression.
  • -1.03 ⁇ f4/f ⁇ -0.65 is satisfied.
  • the central radius of curvature of the object side of the fourth lens L4 is R7
  • the central radius of curvature of the image side of the fourth lens L4 is R8, and the following relationship is satisfied: 1.12 ⁇ (R7+R8)/(R7-R8) ⁇ 3.81
  • the shape of the fourth lens L4 is specified, and within the range, with the development of ultra-thin and wide-angle, it is beneficial to correct problems such as aberration of the off-axis picture angle.
  • 1.79 ⁇ (R7+R8)/(R7-R8) ⁇ 3.05 is satisfied.
  • the axial thickness of the fourth lens L4 is d7, and the optical total length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.05 ⁇ d7/TTL ⁇ 0.15, within the range of the conditional formula, it is beneficial to realize ultra-thinning .
  • 0.07 ⁇ d7/TTL ⁇ 0.12 is satisfied.
  • the surface shapes of the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 and the fourth lens L4 can also be set to other concave and convex distributions.
  • the field of view FOV of the imaging optical lens 10 is greater than or equal to 79°, so as to achieve a wider angle.
  • the aperture value FNO of the imaging optical lens 10 is less than or equal to 1.95, thereby realizing a large aperture and the imaging performance of the imaging optical lens 10 is good.
  • the total optical length of the imaging optical lens 10 is TTL
  • the image height of the imaging optical lens 10 is IH, which satisfies TTL/IH ⁇ 1.76, thereby realizing ultra-thinning.
  • the focal length of the imaging optical lens 10 is f
  • the combined focal length of the first lens L1 and the second lens L2 is f12, which satisfies the following relationship: 0.91 ⁇ f12/f ⁇ 3.90, under the condition within the scope of the formula, the aberration and distortion of the imaging optical lens 10 can be eliminated, the back focal length of the imaging optical lens 10 can be suppressed, and the miniaturization of the imaging lens system group can be maintained.
  • 1.46 ⁇ f12/f ⁇ 3.12 is satisfied.
  • the imaging optical lens 10 can meet the design requirements of large aperture, wide angle and ultra-thinning while having good optical performance; according to the characteristics of the imaging optical lens 10, the imaging optical lens 10 is especially suitable for Mobile phone camera lens assembly and WEB camera lens composed of high-pixel CCD, CMOS and other imaging elements.
  • the imaging optical lens 10 of the present invention will be described below by way of examples.
  • the symbols described in each example are as follows.
  • the unit of focal length, on-axis distance, center curvature radius, on-axis thickness, inflection point position, and stagnation point position is mm.
  • TTL total optical length (the on-axis distance from the object side of the first lens L1 to the image plane Si), in mm;
  • Aperture value FNO refers to the ratio of the effective focal length of the imaging optical lens to the diameter of the entrance pupil.
  • an inflection point and/or a stagnation point may also be set on the object side and/or the image side of the lens to meet high-quality imaging requirements.
  • an inflection point and/or a stagnation point may also be set on the object side and/or the image side of the lens to meet high-quality imaging requirements.
  • Table 1 and Table 2 show design data of the imaging optical lens 10 according to the first embodiment of the present invention.
  • R the radius of curvature at the center of the optical surface
  • R1 the central radius of curvature of the object side surface of the first lens L1;
  • R2 the central curvature radius of the image side surface of the first lens L1;
  • R3 the central radius of curvature of the object side surface of the second lens L2;
  • R4 the central curvature radius of the image side surface of the second lens L2;
  • R5 the central radius of curvature of the object side surface of the third lens L3;
  • R6 the central curvature radius of the image side surface of the third lens L3;
  • R7 the central curvature radius of the object side surface of the fourth lens L4;
  • R8 the central curvature radius of the image side surface of the fourth lens L4;
  • R9 the central curvature radius of the object side of the optical filter GF
  • R10 the central curvature radius of the image side of the optical filter GF
  • d the on-axis thickness of the lens, the on-axis distance between the lenses
  • d0 the on-axis distance from the aperture S1 to the object side surface of the first lens L1;
  • d2 the on-axis distance from the image side of the first lens L1 to the object side of the second lens L2;
  • d4 the on-axis distance from the image side of the second lens L2 to the object side of the third lens L3;
  • d6 the on-axis distance from the image side of the third lens L3 to the object side of the fourth lens L4;
  • nd the refractive index of the d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • ndg the refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF.
  • Table 2 shows aspherical surface data of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, and A20 are aspheric coefficients.
  • x is the vertical distance between the point on the aspheric curve and the optical axis
  • y is the aspheric depth (the vertical distance between the point on the aspheric surface that is x from the optical axis and the tangent plane tangent to the vertex on the aspheric optical axis ).
  • the aspherical surface shown in the above formula (1) is used as the aspherical surface of each lens surface.
  • the present invention is not limited to the aspheric polynomial form represented by the formula (1).
  • Table 3 and Table 4 show the design data of the inflection point and the stagnation point of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
  • P1R1 and P1R2 respectively represent the object side and image side of the first lens L1
  • P2R1 and P2R2 respectively represent the object side and image side of the second lens L2
  • P3R1 and P3R2 respectively represent the object side and the image side of the third lens L3
  • P4R1 and P4R2 represent the object side and the image side of the fourth lens L4, respectively.
  • the corresponding data in the column of "invagination point position" is the vertical distance from the inflexion point set on the surface of each lens to the optical axis of the imaging optical lens 10 .
  • the corresponding data in the column of "stagnation point position” is the vertical distance from the stagnation point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • FIG. 2 and 3 respectively show schematic diagrams of axial aberration and magnification chromatic aberration of light with wavelengths of 470 nm, 510 nm, 555 nm, 610 nm, and 650 nm after passing through the imaging optical lens 10 of the first embodiment.
  • FIG. 4 shows a schematic diagram of the field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 10 of the first embodiment.
  • the field curvature S in FIG. 4 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction. .
  • Table 13 shows the values corresponding to various numerical values in the first, second, and third embodiments and the parameters specified in the conditional expressions.
  • the first embodiment satisfies each conditional expression.
  • the entrance pupil diameter ENPD of the imaging optical lens 10 is 1.112 mm, the full field of view image height IH is 1.830 mm, and the FOV in the diagonal direction is 79.80°.
  • the imaging optical lens 10 It meets the design requirements of large aperture, wide-angle, and ultra-thin, and its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • FIG. 5 shows an imaging optical lens 20 according to a second embodiment of the present invention.
  • the second embodiment is basically the same as the first embodiment, the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
  • Tables 5 and 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows aspherical surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Tables 7 and 8 show the inflection point and stagnation point design data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • FIG. 6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 470 nm, 510 nm, 555 nm, 610 nm, and 650 nm passes through the imaging optical lens 20 of the second embodiment.
  • FIG. 8 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 20 of the second embodiment.
  • the field curvature S in FIG. 8 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction.
  • the second embodiment satisfies each conditional expression.
  • the entrance pupil diameter ENPD of the imaging optical lens 20 is 1.113 mm
  • the full field of view image height IH is 1.830 mm
  • the FOV in the diagonal direction is 79.40°.
  • the imaging optical lens 20 It meets the design requirements of large aperture, wide-angle, and ultra-thin, and its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • FIG. 9 shows an imaging optical lens 30 according to a third embodiment of the present invention.
  • the third embodiment is basically the same as the first embodiment, the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
  • Table 9 and Table 10 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 10 shows aspherical surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 11 and Table 12 show the inflection point and stagnation point design data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 470 nm, 510 nm, 555 nm, 610 nm and 650 nm passes through the imaging optical lens 30 of the third embodiment.
  • FIG. 12 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 30 of the third embodiment.
  • the field curvature S in FIG. 12 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction.
  • Table 13 lists the numerical values corresponding to each conditional expression in the present embodiment according to the above-mentioned conditional expression. Obviously, the imaging optical lens 30 of the present embodiment satisfies the above-mentioned conditional expression.
  • the entrance pupil diameter ENPD of the imaging optical lens 30 is 1.108 mm
  • the full field of view image height IH is 1.830 mm
  • the field of view angle FOV in the diagonal direction is 80.00°.
  • the imaging optical lens 30 It meets the design requirements of large aperture, wide-angle, and ultra-thin, and its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • Example 1 Example 2
  • Example 3 (R1+R2)/(R1-R2) -0.34 -0.39 -0.22 (R3+R4)/(R3-R4) 1.74 1.53 1.95 (R5+R6)/(R5-R6) 1.52 1.77 1.23 d3/d2 1.63 1.53 1.78 f 2.168 2.170 2.160 f1 2.598 2.407 2.726 f2 -4.305 -4.541 -4.009 f3 1.325 1.347 1.336 f4 -1.684 -1.682 -1.772 f12 4.709 3.966 5.612 FNO 1.950 1.950 1.949 TTL 3.216 3.199 3.214 IH 1.830 1.830 1.830 FOV 79.80 79.40 80.00

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像光学镜头(10),涉及光学镜头领域,摄像光学镜头(10)共包含四片透镜,四片透镜由物侧至像侧依次为:具有正屈折力的第一透镜(L1),具有负屈折力的第二透镜(L2),具有正屈折力的第三透镜(L3),具有负屈折力的第四透镜(L4);且满足下列关系式:‑0.40≤(R1+R2)/(R1‑R2)≤‑0.20;1.50≤(R3+R4)/(R3‑R4)≤2.00;1.20≤(R5+R6)/(R5‑R6)≤1.80;1.52≤d3/d2≤1.80。摄像光学镜头(10)具有良好光学性能的同时满足大光圈、广角化、超薄化的设计要求。

Description

摄像光学镜头 技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式或四片式透镜结构。常见的四片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足大光圈、广角化、超薄化的设计要求。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,其具有良好光学性能的同时,满足大光圈、广角化、超薄化的设计要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头共包含四片透镜,所述四片透镜由物侧至像侧依次为:具有正屈折力的第一透镜,具有负屈折力的第二透镜,具有正屈折力的第三透镜,具有负屈折力的第四透镜;
所述第一透镜物侧面的中心曲率半径为R1,所述第一透镜像侧面的中心曲率半径为R2,所述第二透镜物侧面的中心曲率半径为R3,所述第二透镜像侧面的中心曲率半径为R4,所述第三透镜物侧面的中心曲率半径为R5,所述第三透镜像侧面的中心曲率半径为R6,所述第一透镜的像侧面到所述第二透镜的物侧面的轴上距离为d2,所述第二透镜的轴上厚度为d3,且满足下列关系式:-0.40≤(R1+R2)/(R1-R2)≤-0.20;1.50≤(R3+R4)/(R3-R4)≤2.00;1.20≤(R5+R6)/(R5-R6)≤1.80,1.52≤d3/d2≤1.80。
优选地,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,且满足下列关系式:-0.70≤f1/f2≤-0.50。
优选地,所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为 TTL,且满足下列关系式:0.55≤f1/f≤1.89;0.08≤d1/TTL≤0.28。
优选地,所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-4.19≤f2/f≤-1.24;0.04≤d3/TTL≤0.14。
优选地,所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.31≤f3/f≤0.93;0.11≤d5/TTL≤0.33。
优选地,所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的中心曲率半径为R7,所述第四透镜像侧面的中心曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-1.64≤f4/f≤-0.52;1.12≤(R7+R8)/(R7-R8)≤3.81;0.05≤d7/TTL≤0.15。
优选地,所述摄像光学镜头的光圈值为FNO,且满足下列关系式:FNO≤1.95。
优选地,所述摄像光学镜头的视场角为FOV,且满足下列关系式:FOV≥79°。
优选地,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,所述且满足下列关系式:TTL/IH≤1.76。
优选地,所述摄像光学镜头的焦距为f,所述第一透镜与所述第二透镜的组合焦距为f12,且满足下列关系式:0.91≤f12/f≤3.90。
本发明的有益效果在于:本发明的摄像光学镜头具有优秀的光学特性,且具有大光圈、广角化、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
为了更清楚地说明本发明实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10共包括四个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4。第四透镜L4和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
在本实施方式中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有正屈折力,第四透镜L4具有负屈折力。
在本实施方式中,第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质。在其他实施例中,各透镜也可以是其他材质。
在本实施方式中,定义第一透镜L1物侧面的中心曲率半径为R1,第一透镜L1像侧面的中心曲率半径为R2,满足下列关系式:-0.40≤(R1+R2)/(R1-R2)≤-0.20,规定了第一透镜L1的形状,在条件式规定范围内有助于校正球差,提高像质。
定义第二透镜L2物侧面的中心曲率半径为R3,第二透镜L2像侧面的中心曲率半径为R4,且满足下列关系式:1.50≤(R3+R4)/(R3-R4)≤2.00,规定了第二透镜L2的形状,在条件式范围内有利于镜片加工。
定义第三透镜L3物侧面的中心曲率半径为R5,第三透镜L3像侧面的中心曲率半径为R6,且满足下列关系式:1.20≤(R5+R6)/(R5-R6)≤1.80,规定了第三透镜L3的形状,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。
定义第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离为d2,第二透镜的轴上厚度为d3,且满足下列关系式:1.52≤d3/d2≤1.80,当d3/d2满足条件时,可有效分配第二透镜L2的轴上厚度d3与第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离d2的比值,降低系统敏感度,提高生产良率。
定义第一透镜L1的焦距为f1,第二透镜L2的焦距为f2,且满足 下列关系式:-0.70≤f1/f2≤-0.50,规定了第一透镜L1的焦距f1与第二透镜L2的焦距f2的比值,在条件范围内有利于平衡像差,提升成像品质。
本实施方式中,第一透镜L1的物侧面于近轴处为凸面,像侧面于近轴处为凸面。
定义所述摄像光学镜头10焦距为f,所述第一透镜L1的焦距为f1,满足下列关系式:0.55≤f1/f≤1.89,规定了第一透镜L1的焦距f1与摄像光学镜头10焦距f的比值,在规定的范围内时,第一透镜L1具有适当的正屈折力,有利于减小系统像差,同时有利于镜头向超薄化、广角化发展。优选地,满足0.89≤f1/f≤1.51。
所述第一透镜L1的轴上厚度为d1,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.08≤d1/TTL≤0.28,在条件式范围内,有利于实现超薄化。优选地,满足0.13≤d1/TTL≤0.22。
本实施方式中,第二透镜L2的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
定义所述摄像光学镜头10焦距为f,第二透镜L2的焦距为f2,满足下列关系式:-4.19≤f2/f≤-1.24,通过将第二透镜L2的负光焦度控制在合理范围,有利于矫正光学系统的像差。优选地,满足-2.62≤f2/f≤-1.55。
所述第二透镜L2的轴上厚度为d3,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.04≤d3/TTL≤0.14,在条件式范围内,有利于实现超薄化。优选地,满足0.06≤d3/TTL≤0.11。
本实施方式中,第三透镜L3的物侧面于近轴处为凹面,像侧面于近轴处为凸面。
定义所述第三透镜L3的焦距为f3,所述摄像光学镜头10的焦距为f,满足下列关系式:0.31≤f3/f≤0.93,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足0.49≤f3/f≤0.74。
所述第三透镜L3的轴上厚度为d5,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.11≤d5/TTL≤0.33,在条件式范围内,有利于实现超薄化。优选地,满足0.17≤d5/TTL≤0.26。
本实施方式中,第四透镜L4的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
定义所述第四透镜L4的焦距为f4,所述摄像光学镜头10的焦距为f,满足下列关系式:-1.64≤f4/f≤-0.52,规定了第四透镜L4的焦距f4与摄像光学镜头10的焦距f的比值,在条件式范围内有助于提高光学系统性能。优选地,满足-1.03≤f4/f≤-0.65。
所述第四透镜L4物侧面的中心曲率半径为R7,以及所述第四透镜L4像侧面的中心曲率半径为R8,且满足下列关系式: 1.12≤(R7+R8)/(R7-R8)≤3.81,规定了第四透镜L4的形状,在范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足1.79≤(R7+R8)/(R7-R8)≤3.05。
所述第四透镜L4的轴上厚度为d7,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.05≤d7/TTL≤0.15,在条件式范围内,有利于实现超薄化。优选地,满足0.07≤d7/TTL≤0.12。
可以理解的是,在其他实施方式中,第一透镜L1、第二透镜L2、第三透镜L3以及第四透镜L4的物侧面和像侧面的面型也可设置为其他凹、凸分布情况。
本实施方式中,所述摄像光学镜头10的视场角FOV大于或等于79°,从而实现广角化。
本实施方式中,所述摄像光学镜头10光圈值FNO小于或等于1.95,从而实现大光圈,摄像光学镜头10成像性能好。
本实施方式中,摄像光学镜头10的光学总长为TTL,摄像光学镜头10的像高为IH,满足TTL/IH≤1.76,从而实现超薄化。
本实施方式中,所述摄像光学镜头10的焦距为f,所述第一透镜L1与所述第二透镜L2的组合焦距为f12,满足下列关系式:0.91≤f12/f≤3.90,在条件式范围内,可消除所述摄像光学镜头10的像差与歪曲,且可压制摄像光学镜头10后焦距,维持影像镜片系统组小型化。优选的,满足1.46≤f12/f≤3.12。
当满足上述关系时,使得摄像光学镜头10具有良好光学性能的同时,能够满足大光圈、广角化、超薄化的设计要求;根据该摄像光学镜头10的特性,该摄像光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、中心曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到像面Si的轴上距离),单位为mm;
光圈值FNO:是指摄像光学镜头的有效焦距和入瞳直径的比值。
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
Figure PCTCN2020125990-appb-000001
Figure PCTCN2020125990-appb-000002
其中,各符号的含义如下。
S1:光圈;
R:光学面中心处的曲率半径;
R1:第一透镜L1的物侧面的中心曲率半径;
R2:第一透镜L1的像侧面的中心曲率半径;
R3:第二透镜L2的物侧面的中心曲率半径;
R4:第二透镜L2的像侧面的中心曲率半径;
R5:第三透镜L3的物侧面的中心曲率半径;
R6:第三透镜L3的像侧面的中心曲率半径;
R7:第四透镜L4的物侧面的中心曲率半径;
R8:第四透镜L4的像侧面的中心曲率半径;
R9:光学过滤片GF的物侧面的中心曲率半径;
R10:光学过滤片GF的像侧面的中心曲率半径;
d:透镜的轴上厚度、透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到光学过滤片GF的物侧面的轴上距离;
d9:光学过滤片GF的轴上厚度;
d10:光学过滤片GF的像侧面到像面Si的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure PCTCN2020125990-appb-000003
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
y=(x 2/R)/{1+[1-(k+1)(x 2/R 2)] 1/2}+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20            (1)
其中,x是非球面曲线上的点与光轴的垂直距离,y是非球面深度(非球面上距离光轴为x的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄 像光学镜头10光轴的垂直距离。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 1 0.385 /
P1R2 0 / /
P2R1 2 0.105 0.635
P2R2 1 0.315 /
P3R1 1 0.245 /
P3R2 1 0.665 /
P4R1 1 0.295 /
P4R2 1 0.395 /
【表4】
  驻点个数 驻点位置1
P1R1 0 /
P1R2 0 /
P2R1 1 0.175
P2R2 1 0.575
P3R1 1 0.695
P3R2 1 0.895
P4R1 1 0.575
P4R2 1 1.035
图2、图3分别示出了波长为470nm、510nm、555nm、610nm、650nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了波长为555nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表13示出各实施例一、二、三中各种数值与条件式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头10的入瞳直径ENPD为1.112mm,全视场像高IH为1.830mm,对角线方向的视场角FOV为79.80°,所述摄像光学镜头10满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第二实施方式)
图5所示为本发明第二实施方式的摄像光学镜头20。第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure PCTCN2020125990-appb-000004
Figure PCTCN2020125990-appb-000005
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure PCTCN2020125990-appb-000006
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 1 0.445 /
P1R2 0 / /
P2R1 2 0.085 0.655
P2R2 2 0.305 0.775
P3R1 1 0.635 /
P3R2 1 0.675 /
P4R1 2 0.335 1.115
P4R2 1 0.395 /
【表8】
  驻点个数 驻点位置1
P1R1 0 /
P1R2 0 /
P2R1 1 0.145
P2R2 1 0.555
P3R1 1 0.785
P3R2 1 0.885
P4R1 1 0.645
P4R2 1 1.045
图6、图7分别示出了波长为470nm、510nm、555nm、610nm、及650nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了波长为555nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。图8的场曲S是弧矢方向的场曲,T是子午方向的场曲。
如表13所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头20的入瞳直径ENPD为1.113mm,全视场像高IH为1.830mm,对角线方向的视场角FOV为79.40°,所述摄像光学镜头20满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第三实施方式)
图9所示为本发明第三实施方式的摄像光学镜头30。第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure PCTCN2020125990-appb-000007
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
Figure PCTCN2020125990-appb-000008
Figure PCTCN2020125990-appb-000009
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 1 0.365 / /
P1R2 0 / / /
P2R1 2 0.125 0.625 /
P2R2 1 0.325 / /
P3R1 3 0.195 0.555 0.665
P3R2 1 0.665 / /
P4R1 1 0.315 / /
P4R2 1 0.395 / /
【表12】
  驻点个数 驻点位置1
P1R1 1 0.545
P1R2 0 /
P2R1 1 0.205
P2R2 1 0.635
P3R1 1 0.365
P3R2 1 0.915
P4R1 1 0.615
P4R2 1 1.055
图10、图11分别示出了波长为470nm、510nm、555nm、610nm及650nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了波长为555nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。图12的场曲S是弧矢方向的场曲,T是子午方向的场曲。
以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学镜头30满足上述的条件式。
在本实施方式中,所述摄像光学镜头30的入瞳直径ENPD为1.108mm,全视场像高IH为1.830mm,对角线方向的视场角FOV为80.00°,所述摄像光学镜头30满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
【表13】
参数及条件式 实施例1 实施例2 实施例3
(R1+R2)/(R1-R2) -0.34 -0.39 -0.22
(R3+R4)/(R3-R4) 1.74 1.53 1.95
(R5+R6)/(R5-R6) 1.52 1.77 1.23
d3/d2 1.63 1.53 1.78
f 2.168 2.170 2.160
f1 2.598 2.407 2.726
f2 -4.305 -4.541 -4.009
f3 1.325 1.347 1.336
f4 -1.684 -1.682 -1.772
f12 4.709 3.966 5.612
FNO 1.950 1.950 1.949
TTL 3.216 3.199 3.214
IH 1.830 1.830 1.830
FOV 79.80 79.40 80.00
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (10)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头共包含四片透镜,所述四片透镜由物侧至像侧依次为:具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有正屈折力的第三透镜以及具有负屈折力的第四透镜;
    所述第一透镜物侧面的中心曲率半径为R1,所述第一透镜像侧面的中心曲率半径为R2,所述第二透镜物侧面的中心曲率半径为R3,所述第二透镜像侧面的中心曲率半径为R4,所述第三透镜物侧面的中心曲率半径为R5,所述第三透镜像侧面的中心曲率半径为R6,所述第一透镜的像侧面到所述第二透镜的物侧面的轴上距离为d2,所述第二透镜的轴上厚度为d3,且满足下列关系式:
    -0.40≤≤(R1+R2)/(R1-R2)≤-0.20;
    1.50≤(R3+R4)/(R3-R4)≤2.00;
    1.20≤(R5+R6)/(R5-R6)≤1.80;
    1.52≤d3/d2≤1.80。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,且满足下列关系式:
    -0.70≤f1/f2≤-0.50。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.55≤f1/f≤1.89;
    0.08≤d1/TTL≤0.28。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -4.19≤f2/f≤-1.24;
    0.04≤d3/TTL≤0.14。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.31≤f3/f≤0.93;
    0.11≤d5/TTL≤0.33。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的中心曲率半径为R7,所述第四透镜像侧面的中心曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -1.64≤f4/f≤-0.52;
    1.12≤(R7+R8)/(R7-R8)≤3.81;
    0.05≤d7/TTL≤0.15。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈值为FNO,且满足下列关系式:
    FNO≤1.95。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的视场角为FOV,且满足下列关系式:
    FOV≥79°。
  9. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,所述且满足下列关系式:
    TTL/IH≤1.76。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第一透镜与所述第二透镜的组合焦距为f12,且满足下列关系式:
    0.91≤f12/f≤3.90。
PCT/CN2020/125990 2020-09-19 2020-11-02 摄像光学镜头 WO2022057050A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010989295.5 2020-09-19
CN202010989295.5A CN111856732B (zh) 2020-09-19 2020-09-19 摄像光学镜头

Publications (1)

Publication Number Publication Date
WO2022057050A1 true WO2022057050A1 (zh) 2022-03-24

Family

ID=72968463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125990 WO2022057050A1 (zh) 2020-09-19 2020-11-02 摄像光学镜头

Country Status (4)

Country Link
US (1) US11586014B2 (zh)
JP (1) JP6932473B1 (zh)
CN (1) CN111856732B (zh)
WO (1) WO2022057050A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856732B (zh) * 2020-09-19 2020-12-04 瑞泰光学(常州)有限公司 摄像光学镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006301222A (ja) * 2005-04-20 2006-11-02 Nidec Copal Corp 超広角レンズ
CN107850756A (zh) * 2015-05-14 2018-03-27 大阪燃气化学有限公司 摄影透镜系统
CN108267842A (zh) * 2017-01-04 2018-07-10 先进光电科技股份有限公司 光学成像系统
CN108802969A (zh) * 2018-05-30 2018-11-13 广东旭业光电科技股份有限公司 一种光学成像透镜组
CN110554477A (zh) * 2018-05-31 2019-12-10 南昌欧菲精密光学制品有限公司 成像装置及电子装置
CN111856732A (zh) * 2020-09-19 2020-10-30 瑞泰光学(常州)有限公司 摄像光学镜头

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264498A (ja) * 2006-03-29 2007-10-11 Kyocera Corp 撮像レンズ、光学モジュール、および携帯端末
JP5096057B2 (ja) * 2007-07-10 2012-12-12 富士フイルム株式会社 撮像レンズ、およびカメラモジュールならびに撮像機器
TWI421559B (zh) * 2010-08-05 2014-01-01 Largan Precision Co Ltd 光學攝影鏡組
JP2012058407A (ja) * 2010-09-07 2012-03-22 Fujifilm Corp 撮像装置及び携帯情報端末
JP6324824B2 (ja) * 2014-06-27 2018-05-16 カンタツ株式会社 撮像レンズ
TWM511632U (zh) * 2015-02-03 2015-11-01 Largan Precision Co Ltd 相機模組及電子裝置
CN106932883B (zh) * 2015-12-30 2020-02-18 信泰光学(深圳)有限公司 光学镜头
TWI587000B (zh) * 2016-02-02 2017-06-11 大立光電股份有限公司 取像系統鏡組、取像裝置及電子裝置
TWI638199B (zh) * 2017-01-04 2018-10-11 先進光電科技股份有限公司 光學成像系統
TWI638200B (zh) * 2017-01-04 2018-10-11 先進光電科技股份有限公司 光學成像系統

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006301222A (ja) * 2005-04-20 2006-11-02 Nidec Copal Corp 超広角レンズ
CN107850756A (zh) * 2015-05-14 2018-03-27 大阪燃气化学有限公司 摄影透镜系统
CN108267842A (zh) * 2017-01-04 2018-07-10 先进光电科技股份有限公司 光学成像系统
CN108802969A (zh) * 2018-05-30 2018-11-13 广东旭业光电科技股份有限公司 一种光学成像透镜组
CN110554477A (zh) * 2018-05-31 2019-12-10 南昌欧菲精密光学制品有限公司 成像装置及电子装置
CN111856732A (zh) * 2020-09-19 2020-10-30 瑞泰光学(常州)有限公司 摄像光学镜头

Also Published As

Publication number Publication date
US11586014B2 (en) 2023-02-21
CN111856732B (zh) 2020-12-04
CN111856732A (zh) 2020-10-30
JP6932473B1 (ja) 2021-09-08
JP2022051645A (ja) 2022-04-01
US20220091371A1 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
WO2022047989A1 (zh) 摄像光学镜头
WO2022052258A1 (zh) 摄像光学镜头
WO2022021513A1 (zh) 摄像光学镜头
WO2022011739A1 (zh) 摄像光学镜头
WO2022021512A1 (zh) 摄像光学镜头
WO2021248578A1 (zh) 摄像光学镜头
WO2022057049A1 (zh) 摄像光学镜头
WO2022047987A1 (zh) 摄像光学镜头
WO2022057046A1 (zh) 摄像光学镜头
WO2022011740A1 (zh) 摄像光学镜头
WO2021248577A1 (zh) 摄像光学镜头
WO2022047985A1 (zh) 摄像光学镜头
WO2022062072A1 (zh) 摄像光学镜头
WO2022057048A1 (zh) 摄像光学镜头
WO2022052269A1 (zh) 摄像光学镜头
WO2022057047A1 (zh) 摄像光学镜头
WO2022047980A1 (zh) 摄像光学镜头
WO2022047986A1 (zh) 摄像光学镜头
WO2022016625A1 (zh) 摄像光学镜头
WO2022007029A1 (zh) 摄像光学镜头
WO2022000657A1 (zh) 摄像光学镜头
WO2022057050A1 (zh) 摄像光学镜头
WO2022057037A1 (zh) 摄像光学镜头
WO2022047991A1 (zh) 摄像光学镜头
WO2022088351A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953907

Country of ref document: EP

Kind code of ref document: A1