WO2021253518A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2021253518A1
WO2021253518A1 PCT/CN2020/100354 CN2020100354W WO2021253518A1 WO 2021253518 A1 WO2021253518 A1 WO 2021253518A1 CN 2020100354 W CN2020100354 W CN 2020100354W WO 2021253518 A1 WO2021253518 A1 WO 2021253518A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
optical lens
ttl
curvature
Prior art date
Application number
PCT/CN2020/100354
Other languages
English (en)
French (fr)
Inventor
新田耕二
张磊
崔元善
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Publication of WO2021253518A1 publication Critical patent/WO2021253518A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/005Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for correction of secondary colour or higher-order chromatic aberrations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
  • the photosensitive devices of general photographic lenses are nothing more than photosensitive coupling devices (Charge Coupled Device, CCD) or complementary metal oxide semiconductor devices (Complementary Metal -Oxide Semiconductor Sensor, CMOS Sensor), and due to the advancement of semiconductor manufacturing technology, the pixel size of photosensitive devices has been reduced, and nowadays electronic products are developed with good functions, thin and short appearance, so they have The miniaturized camera lens with good image quality has become the mainstream in the current market.
  • CCD Charge Coupled Device
  • CMOS Sensor complementary metal oxide semiconductor devices
  • the lenses traditionally mounted on mobile phone cameras mostly adopt a three-element or four-element lens structure.
  • the pixel area of photosensitive devices is shrinking, and the system's requirements for imaging quality continue to increase, five-element, six-element, and seven-element lens structures Gradually appearing in lens design.
  • the common six-element lens already has good optical performance, its optical power, lens spacing and lens shape settings are still unreasonable, resulting in the lens structure having good optical performance At the same time, it cannot meet the design requirements of large aperture, ultra-thin, and wide-angle.
  • the object of the present invention is to provide an imaging optical lens, which has good optical performance and meets the design requirements of large aperture, ultra-thin, and wide-angle.
  • the embodiments of the present invention provide an imaging optical lens, the imaging optical lens includes a total of six lenses, and the six lenses in order from the object side to the image side are: The first lens, the second lens with negative refractive power, the third lens with negative refractive power, the fourth lens with positive refractive power, the fifth lens with positive refractive power, and the sixth lens with negative refractive power;
  • the radius of curvature of the object side of the second lens is R3
  • the radius of curvature of the object side of the third lens is R5
  • the radius of curvature of the object side of the fourth lens is R7
  • the curvature of the fourth lens is R7.
  • the radius of curvature is R8, the radius of curvature of the object side of the fifth lens is R9
  • the radius of curvature of the image side of the fifth lens is R10
  • the radius of curvature of the object side of the sixth lens is R11
  • the radius of curvature of the sixth lens is R11.
  • the radius of curvature of is R12, and satisfies the following relationship: 1.00 ⁇ R10/(R11+R12) ⁇ 10.00; 0.60 ⁇ R9/(R7+R8) ⁇ 1.80; 1.00 ⁇ R5/R3 ⁇ 3.00.
  • the object side surface of the first lens is convex at the paraxial position, and the image side surface is concave at the paraxial position;
  • the focal length of the imaging optical lens is f
  • the focal length of the first lens is f1
  • the focal length of the first lens is f1.
  • the curvature radius of the object side of a lens is R1
  • the curvature radius of the image side of the first lens is R2
  • the axial thickness of the first lens is d1
  • the total optical length of the imaging optical lens is TTL
  • the imaging optical lens satisfies the following relationship: 0.63 ⁇ f1/f ⁇ 0.99; -2.05 ⁇ (R1+R2)/(R1-R2) ⁇ -1.21; 0.10 ⁇ d1/TTL ⁇ 0.16.
  • the object side surface of the second lens is convex at the paraxial position, and the image side surface is concave at the paraxial position;
  • the focal length of the imaging optical lens is f
  • the focal length of the second lens is f2
  • the focal length of the second lens is f2.
  • the curvature radius of the image side surface of the two lenses is R4, the on-axis thickness of the second lens is d3, the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: -3.95 ⁇ f2/f ⁇ -1.11; 1.08 ⁇ (R3+R4)/(R3-R4) ⁇ 5.19; 0.02 ⁇ d3/TTL ⁇ 0.06.
  • the imaging optical lens satisfies the following relationship: -2.47 ⁇ f2/f ⁇ -1.39; 1.73 ⁇ (R3+R4)/(R3-R4) ⁇ 4.15; 0.03 ⁇ d3/TTL ⁇ 0.06.
  • the object side surface of the third lens is convex at the paraxial position, and the image side surface is concave at the paraxial position;
  • the focal length of the imaging optical lens is f
  • the focal length of the third lens is f3
  • the focal length of the third lens is f3.
  • the curvature radius of the image side of the three lenses is R6, the on-axis thickness of the third lens is d5, the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: -28.78 ⁇ f3/f ⁇ -9.44; 3.12 ⁇ (R5+R6)/(R5-R6) ⁇ 12.73; 0.03 ⁇ d5/TTL ⁇ 0.09.
  • the imaging optical lens satisfies the following relationship: -26.00 ⁇ f3/f ⁇ -11.80; 5.00 ⁇ (R5+R6)/(R5-R6) ⁇ 10.18; 0.05 ⁇ d5/TTL ⁇ 0.08.
  • the object side surface of the fourth lens is convex at the paraxial position, and the image side surface is concave at the paraxial position;
  • the focal length of the imaging optical lens is f
  • the focal length of the fourth lens is f4
  • the focal length of the fourth lens is f4.
  • the on-axis thickness of the four lenses is d7
  • the total optical length of the imaging optical lens is TTL, and satisfies the following relationship: 2.39 ⁇ f4/f ⁇ 23.05; -19.03 ⁇ (R7+R8)/(R7-R8) ⁇ - 1.35; 0.03 ⁇ d7/TTL ⁇ 0.09.
  • the imaging optical lens satisfies the following relationship: 3.83 ⁇ f4/f ⁇ 18.44; -14.00 ⁇ (R7+R8)/(R7-R8) ⁇ -1.69; 0.04 ⁇ d7/TTL ⁇ 0.08.
  • the object side surface of the fifth lens is convex at the paraxial position, and the image side surface is convex at the paraxial position;
  • the focal length of the imaging optical lens is f
  • the focal length of the fifth lens is f5
  • the focal length of the fifth lens is f5.
  • the axial thickness of the five lenses is d9
  • the total optical length of the imaging optical lens is TTL, and satisfies the following relationship: 0.47 ⁇ f5/f ⁇ 1.42; 0.31 ⁇ (R9+R10)/(R9-R10) ⁇ 1.34; 0.09 ⁇ d9/TTL ⁇ 0.33.
  • the imaging optical lens satisfies the following relationship: 0.76 ⁇ f5/f ⁇ 1.14; 0.50 ⁇ (R9+R10)/(R9-R10) ⁇ 1.08; 0.09 ⁇ d9/TTL ⁇ 0.26.
  • the object side surface of the sixth lens is concave at the paraxial position, and the image side surface is concave at the paraxial position;
  • the focal length of the imaging optical lens is f
  • the focal length of the sixth lens is f6, and the focal length of the sixth lens is f6.
  • the on-axis thickness of the six lenses is d11
  • the total optical length of the imaging optical lens is TTL, and satisfies the following relationship: -1.28 ⁇ f6/f ⁇ -0.40; 0.02 ⁇ (R11+R12)/(R11-R12) ⁇ 0.57; 0.05 ⁇ d11/TTL ⁇ 0.14.
  • the imaging optical lens satisfies the following relationship: -0.80 ⁇ f6/f ⁇ -0.50; 0.03 ⁇ (R11+R12)/(R11-R12) ⁇ 0.45; 0.07 ⁇ d11/TTL ⁇ 0.11.
  • the aperture value FNO of the imaging optical lens is less than or equal to 1.97.
  • the aperture value FNO of the imaging optical lens is less than or equal to 1.93.
  • the total optical length TTL of the imaging optical lens is less than or equal to 7.15 mm.
  • the total optical length TTL of the imaging optical lens is less than or equal to 6.82 mm.
  • the imaging optical lens according to the present invention has excellent optical characteristics, and has the characteristics of large aperture, wide-angle, and ultra-thin. It is especially suitable for high-pixel CCD, CMOS and other imaging elements. Mobile phone camera lens assembly and WEB camera lens.
  • FIG. 1 is a schematic diagram of the structure of an imaging optical lens according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 3 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic diagram of the structure of an imaging optical lens according to a second embodiment of the present invention.
  • FIG. 6 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 7 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic diagram of the structure of an imaging optical lens according to a third embodiment of the present invention.
  • FIG. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 11 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9.
  • FIG. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention.
  • the imaging optical lens 10 includes six lenses. Specifically, the imaging optical lens 10 includes in order from the object side to the image side: an aperture S1, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens. Lens L6.
  • Optical elements such as an optical filter GF may be provided between the sixth lens L6 and the image plane Si.
  • the first lens L1 has positive refractive power
  • the second lens L2 has negative refractive power
  • the third lens L3 has negative refractive power
  • the fourth lens L4 has positive refractive power
  • the fifth lens L5 has positive refractive power
  • the sixth lens L6 has negative refractive power.
  • the first lens L1 is made of plastic material
  • the second lens L2 is made of plastic material
  • the third lens L3 is made of plastic material
  • the fourth lens L4 is made of plastic material
  • the fifth lens L5 is made of plastic material
  • the sixth lens L6 It is made of plastic.
  • each lens can also be made of other materials.
  • the radius of curvature of the image side surface of the fifth lens L5 is defined as R10
  • the radius of curvature of the object side surface of the sixth lens L6 is R11
  • the radius of curvature of the image side surface of the sixth lens L6 is R12, which satisfies The following relational expression: 1.00 ⁇ R10/(R11+R12) ⁇ 10.00.
  • This relational expression specifies the ratio of the radius of curvature of the image side surface of the fifth lens L5 to the sum of the radius of curvature of the image side surface of the sixth lens L6 and the radius of curvature of the object side surface.
  • the radius of curvature of the object side of the fourth lens L4 is R7
  • the radius of curvature of the image side of the fourth lens L4 is R8,
  • the radius of curvature of the object side of the fifth lens L5 is R9, which satisfies the following relationship: 0.60 ⁇ R9/(R7+R8) ⁇ 1.80.
  • This relational expression specifies the ratio of the curvature radius of the fifth lens L5 and the sum of the curvature radius of the image side surface of the fourth lens L4 and the curvature radius of the object side surface.
  • the radius of curvature of the object side of the second lens L2 as R3
  • the radius of curvature of the object side of the third lens L3 as R5, which satisfies the following relationship: 1.00 ⁇ R5/R3 ⁇ 3.00
  • the ratio of the radius of curvature to the radius of curvature of the object side surface of the second lens can prevent the shape of the third lens from being too curved, which is beneficial to reduce the sensitivity of the imaging optical lens to the decentering of the second lens and improve the production yield.
  • the object side surface of the first lens L1 is convex at the paraxial position, and the image side surface is concave at the paraxial position.
  • the focal length of the imaging optical lens 10 is defined as f, and the focal length of the first lens L1 is f1, which satisfies the following relationship: 0.40 ⁇ f1/f ⁇ 1.24, which specifies the focal length of the first lens and the focal length of the imaging optical lens
  • the first lens has an appropriate positive refractive power, which is conducive to reducing system aberrations and at the same time conducive to the development of ultra-thin and wide-angle lenses.
  • 0.63 ⁇ f1/f ⁇ 0.99 is satisfied.
  • the curvature radius of the object side surface of the first lens L1 is R1
  • the curvature radius of the image side surface of the first lens L1 is R2, which satisfies the following relationship: -3.28 ⁇ (R1+R2)/(R1-R2) ⁇ -0.97, which is reasonable
  • the shape of the first lens L1 is controlled so that the first lens L1 can effectively correct the spherical aberration of the system.
  • the axial thickness of the first lens L1 is d1
  • the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.06 ⁇ d1/TTL ⁇ 0.19.
  • 0.10 ⁇ d1/TTL ⁇ 0.16 is satisfied.
  • the object side surface of the second lens L2 is convex at the paraxial position, and the image side surface is concave at the paraxial position.
  • the focal length of the imaging optical lens 10 as f
  • the focal length of the second lens L2 as f2
  • f2 which satisfies the following relationship: -3.95 ⁇ f2/f ⁇ -1.11, by controlling the negative power of the second lens L2 In a reasonable range, it is helpful to correct the aberration of the optical system.
  • it satisfies -2.47 ⁇ f2/f ⁇ -1.39.
  • the curvature radius of the object side surface of the second lens L2 is R3, and the curvature radius of the image side surface of the second lens L2 is R4, which satisfies the following relationship: 1.08 ⁇ (R3+R4)/(R3-R4) ⁇ 5.19, which is specified
  • R3+R4/(R3-R4) ⁇ 5.19 which is specified
  • the shape of the second lens L2 is within the range, as the lens becomes ultra-thin and wide-angle, it is beneficial to correct the problem of axial chromatic aberration.
  • the on-axis thickness of the second lens L2 is d3, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.02 ⁇ d3/TTL ⁇ 0.06. Within the range of the conditional expression, it is beneficial to realize ultra-thinness . Preferably, 0.03 ⁇ d3/TTL ⁇ 0.06 is satisfied.
  • the object side surface of the third lens L3 is convex at the paraxial position, and the image side surface is concave at the paraxial position.
  • the focal length of the imaging optical lens 10 as f
  • the focal length of the third lens L3 as f3
  • the system has a relatively high Good imaging quality and low sensitivity.
  • it satisfies -26.00 ⁇ f3/f ⁇ -11.80.
  • the curvature radius of the object side surface of the third lens L3 is R5, and the curvature radius of the image side surface of the third lens L3 is R6, which satisfies the following relationship: 3.12 ⁇ (R5+R6)/(R5-R6) ⁇ 12.73, which is specified
  • the shape of the third lens L3 can relax the degree of deflection of light passing through the lens within the range specified by the conditional expression, and effectively reduce aberrations.
  • 5.00 ⁇ (R5+R6)/(R5-R6) ⁇ 10.18 is satisfied.
  • the axial thickness of the third lens L3 is d5, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.03 ⁇ d5/TTL ⁇ 0.09. Within the range of the conditional formula, it is beneficial to achieve ultra-thinness . Preferably, 0.05 ⁇ d5/TTL ⁇ 0.08 is satisfied.
  • the object side surface of the fourth lens L4 is convex at the paraxial position, and the image side surface is concave at the paraxial position.
  • the focal length of the imaging optical lens 10 as f
  • the focal length of the fourth lens L4 as f4
  • the system has better Image quality and lower sensitivity.
  • 3.83 ⁇ f4/f ⁇ 18.44 is satisfied.
  • the curvature radius of the object side surface of the fourth lens L4 is R7
  • the curvature radius of the image side surface of the fourth lens L4 is R8, and the following relationship is satisfied: -19.03 ⁇ (R7+R8)/(R7-R8) ⁇ -1.35, stipulates the shape of the fourth lens L4. When it is within the range, with the development of ultra-thin and wide-angle, it is helpful to correct the aberration of the off-axis angle of view. Preferably, -14.00 ⁇ (R7+R8)/(R7-R8) ⁇ -1.69 is satisfied.
  • the axial thickness of the fourth lens L4 is d7, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.03 ⁇ d7/TTL ⁇ 0.09. Within the range of the conditional formula, it is beneficial to realize ultra-thinness . Preferably, 0.04 ⁇ d7/TTL ⁇ 0.08 is satisfied.
  • the object side surface of the fifth lens L5 is convex at the paraxial position, and the image side surface is convex at the paraxial position.
  • the focal length of the imaging optical lens 10 is defined as f, and the focal length of the fifth lens L5 is f5, which satisfies the following relationship: 0.47 ⁇ f5/f ⁇ 1.42.
  • the limitation on the fifth lens L5 can effectively make the imaging lens
  • the light angle is gentle, reducing tolerance sensitivity.
  • 0.76 ⁇ f5/f ⁇ 1.14 is satisfied.
  • the curvature radius of the object side surface of the fifth lens L5 is R9
  • the curvature radius of the image side surface of the fifth lens L5 is R10, which satisfies the following relationship: 0.31 ⁇ (R9+R10)/(R9-R10) ⁇ 1.34, which is specified
  • 0.50 ⁇ (R9+R10)/(R9-R10) ⁇ 1.08 is satisfied.
  • the object side surface of the sixth lens L6 is concave at the paraxial position, and the image side surface is concave at the paraxial position.
  • the focal length of the overall imaging optical lens 10 as f
  • the focal length of the sixth lens L6 as f6
  • f6 which satisfies the following relationship: -1.28 ⁇ f6/f ⁇ -0.40.
  • the reasonable distribution of the optical power makes the system better The imaging quality and lower sensitivity.
  • it satisfies -0.80 ⁇ f6/f ⁇ -0.50.
  • the curvature radius of the object side surface of the sixth lens L6 is R11
  • the curvature radius of the image side surface of the sixth lens L6 is R12
  • the following relationship is satisfied: 0.02 ⁇ (R11+R12)/(R11-R12) ⁇ 0.57
  • the shape of the sixth lens L6 is specified.
  • the condition is within the range, with the development of ultra-thin and wide-angle, it is beneficial to correct the aberration of the off-axis angle of view.
  • 0.03 ⁇ (R11+R12)/(R11-R12) ⁇ 0.45 is satisfied.
  • the on-axis thickness of the sixth lens L6 is d11, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.05 ⁇ d11/TTL ⁇ 0.14. Within the range of the conditional expression, it is beneficial to achieve ultra-thinness . Preferably, 0.07 ⁇ d11/TTL ⁇ 0.11 is satisfied.
  • the total optical length TTL of the imaging optical lens 10 is less than or equal to 7.15 mm, which is beneficial to realize ultra-thinness.
  • the total optical length TTL of the imaging optical lens 10 is less than or equal to 6.82 mm.
  • the aperture value FNO of the imaging optical lens 10 is less than or equal to 1.97, so as to achieve a large aperture, and the imaging optical lens has good imaging performance.
  • the aperture value FNO of the imaging optical lens 10 is less than or equal to 1.93.
  • Such a design can make the total optical length TTL of the overall imaging optical lens 10 as short as possible and maintain the characteristics of miniaturization.
  • the imaging optical lens 10 can meet the design requirements of large aperture, wide-angle, and ultra-thin while having good optical performance. According to the characteristics of the optical lens 10, the optical lens 10 is particularly suitable for high Mobile phone camera lens assembly and WEB camera lens composed of CCD, CMOS and other imaging elements for pixels.
  • the imaging optical lens 10 of the present invention will be described below with examples.
  • the symbols described in each example are as follows.
  • the unit of focal length, on-axis distance, radius of curvature, on-axis thickness, inflection point position, and stagnation point position is mm.
  • TTL total optical length (the on-axis distance from the object side of the first lens L1 to the imaging surface), in mm;
  • Aperture value FNO refers to the ratio of the effective focal length of the imaging optical lens to the entrance pupil diameter.
  • the object side and/or the image side of the lens can also be provided with inflection points and/or stagnation points to meet high-quality imaging requirements.
  • inflection points and/or stagnation points for specific implementations, refer to the following.
  • Table 1 and Table 2 show design data of the imaging optical lens 10 according to the first embodiment of the present invention.
  • R the radius of curvature at the center of the optical surface
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side surface of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the radius of curvature of the object side surface of the fifth lens L5;
  • R10 the radius of curvature of the image side surface of the fifth lens L5;
  • R11 the radius of curvature of the object side surface of the sixth lens L6;
  • R12 the radius of curvature of the image side surface of the sixth lens L6;
  • R13 the radius of curvature of the object side surface of the optical filter GF
  • R14 the radius of curvature of the image side surface of the optical filter GF
  • d0 the on-axis distance from the aperture S1 to the object side of the first lens L1;
  • d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
  • d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the sixth lens L6;
  • d11 the on-axis thickness of the sixth lens L6;
  • d12 the on-axis distance from the image side surface of the sixth lens L6 to the object side surface of the optical filter GF;
  • d14 the on-axis distance from the image side surface of the optical filter GF to the image surface
  • nd the refractive index of d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • nd6 the refractive index of the d-line of the sixth lens L6;
  • ndg the refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF.
  • Table 2 shows the aspheric surface data of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, A20 are aspherical coefficients.
  • x is the vertical distance between a point on the aspheric curve and the optical axis
  • y is the depth of the aspheric surface (the point on the aspheric surface from the optical axis is x, and the vertical distance between the tangent plane tangent to the vertex on the aspheric optical axis )
  • the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (1).
  • the present invention is not limited to the aspheric polynomial form represented by the formula (1).
  • Table 3 and Table 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
  • P1R1 and P1R2 represent the object side and image side of the first lens L1 respectively
  • P2R1 and P2R2 represent the object side and image side of the second lens L2 respectively
  • P3R1 and P3R2 represent the object side and image side of the third lens L3 respectively.
  • P4R1 and P4R2 represent the object side and image side of the fourth lens L4
  • P5R1 and P5R2 represent the object side and the image side of the fifth lens L5
  • P6R1 and P6R2 represent the object side and the image side of the sixth lens L6, respectively.
  • the corresponding data in the “reflection point position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • the data corresponding to the “stationary point position” column is the vertical distance from the stationary point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • P2R2 0 / / P3R1 1 0.575 / P3R2 1 0.445 / P4R1 1 0.445 / P4R2 2 0.545 1.345 P5R1 1 0.865 / P5R2 0 / / P6R1 0 / / P6R2 1 1.635 /
  • FIG. 2 and 3 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 470 nm, 555 nm, and 650 nm pass through the imaging optical lens 10 of the first embodiment.
  • Fig. 4 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 10 of the first embodiment.
  • the field curvature S in Fig. 4 is the field curvature in the sagittal direction, and T is the field curvature in the meridian direction. song.
  • Table 13 shows the values corresponding to the various values in each of Examples 1, 2, and 3 and the parameters that have been specified in the conditional expressions.
  • the first embodiment satisfies various conditional expressions.
  • the entrance pupil diameter ENPD of the imaging optical lens is 2.885mm
  • the full-field image height IH is 4.595mm
  • the diagonal field angle FOV is 78.64°
  • the imaging optical lens 10 satisfies The design requirements of large aperture, wide-angle, and ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the second embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 6 shows the aspheric surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 7 and Table 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • P5R1 4 0.235 1.485 1.865 2.095 P5R2 1 2.385 / / P6R1 1 2.125 / / / P6R2 3 0.775 3.385 3.655 /
  • FIG. 6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 470 nm, 555 nm, and 650 nm pass through the imaging optical lens 20 of the second embodiment.
  • FIG. 8 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 20 of the second embodiment.
  • the second embodiment satisfies various conditional expressions.
  • the entrance pupil diameter ENPD of the imaging optical lens is 2.875 mm
  • the full field of view image height IH is 4.595 mm
  • the diagonal field of view FOV is 78.62°
  • the imaging optical lens 20 satisfies The design requirements of large aperture, wide-angle, and ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the third embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 10 shows the aspheric surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 11 and Table 12 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 30 of the third embodiment of the present invention.
  • P1R2 1 1.315 / / / P2R1 0 / / / P2R2 0 / / / / P3R1 2 0.375 1.065 / / P3R2 2 0.355 1.185 / / P4R1 3 0.335 1.085 1.605 / P4R2 3 0.215 1.115 1.785 / P5R1 4 0.245 1.475 1.885 2.105 P5R2 1 2.375 / / / P6R1 1 2.115 / / / P6R2 2 0.765 3.355 / /
  • Stagnation position 1 Stagnation position 2 P1R1 0 / / P1R2 0 / / P2R1 0 / / P2R2 0 / / P3R1 2 0.665 1.195 P3R2 2 0.645 1.385 P4R1 2 0.615 1.365 P4R2 2 0.365 1.455 P5R1 1 0.415 / P5R2 0 / / P6R1 0 / / P6R2 1 1.595 /
  • FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 470 nm, 555 nm, and 650 nm pass through the imaging optical lens 30 of the third embodiment.
  • FIG. 12 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 30 of the third embodiment.
  • the entrance pupil diameter ENPD of the imaging optical lens is 2.875 mm
  • the full field of view image height IH is 4.595 mm
  • the diagonal field of view FOV is 78.62°
  • the imaging optical lens 30 satisfies The design requirements of large aperture, wide-angle, and ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明涉及光学镜头领域,公开了一种摄像光学镜头,该摄像光学镜头共包含六片透镜,六片所述透镜自物侧至像侧依序为:具有正屈折力的第一透镜,具有负屈折力的第二透镜,具有负屈折力的第三透镜,具有正屈折力的第四透镜,具有正屈折力的第五透镜,具有负屈折力的第六透镜;且满足下列关系式:1.00≤R10/(R11+R12)≤10.00;0.60≤R9/(R7+R8)≤1.80;1.00≤R5/R3≤3.00。本发明提供的摄像光学镜头具有良好光学性能的同时,满足大光圈、广角化、超薄化的设计要求。

Description

摄像光学镜头 技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式或四片式透镜结构。并且,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,五片式、六片式、七片式透镜结构逐渐出现在镜头设计当中,常见的六片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足大光圈、超薄化、广角化的设计要求。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,其具有良好光学性能的同时,满足大光圈、超薄化、广角化的设计要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头共包含六片透镜,六片所述透镜自物侧至像侧依序为:具有正屈折力的第一透镜,具有负屈折力的第二透镜,具有负屈折力的第三透镜,具有正屈折力的第四透镜,具有正屈折力的第五透镜,具有负屈折力的第六透镜;
其中,所述第二透镜物侧面的曲率半径为R3,所述第三透镜物侧面的曲率半径为R5,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第五透镜物侧面的曲率半径为R9, 所述第五透镜像侧面的曲率半径为R10,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,且满足下列关系式:1.00≤R10/(R11+R12)≤10.00;0.60≤R9/(R7+R8)≤1.80;1.00≤R5/R3≤3.00。
优选地,所述第一透镜的物侧面于近轴处为凸面,像侧面于近轴处为凹面;所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.40≤f1/f≤1.24;-3.28≤(R1+R2)/(R1-R2)≤-0.97;0.06≤d1/TTL≤0.19。
优选地,所述摄像光学镜头满足下列关系式:0.63≤f1/f≤0.99;-2.05≤(R1+R2)/(R1-R2)≤-1.21;0.10≤d1/TTL≤0.16。
优选地,所述第二透镜的物侧面于近轴处为凸面,像侧面于近轴处为凹面;所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-3.95≤f2/f≤-1.11;1.08≤(R3+R4)/(R3-R4)≤5.19;0.02≤d3/TTL≤0.06。
优选地,所述摄像光学镜头满足下列关系式:-2.47≤f2/f≤-1.39;1.73≤(R3+R4)/(R3-R4)≤4.15;0.03≤d3/TTL≤0.06。
优选地,所述第三透镜的物侧面于近轴处为凸面,像侧面于近轴处为凹面;所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-28.78≤f3/f≤-9.44;3.12≤(R5+R6)/(R5-R6)≤12.73;0.03≤d5/TTL≤0.09。
优选地,所述摄像光学镜头满足下列关系式:-26.00≤f3/f≤-11.80;5.00≤(R5+R6)/(R5-R6)≤10.18;0.05≤d5/TTL≤0.08。
优选地,所述第四透镜的物侧面于近轴处为凸面,像侧面于近轴处为凹面;所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:2.39≤f4/f≤23.05;-19.03≤(R7+R8)/(R7-R8)≤-1.35;0.03≤d7/TTL≤0.09。
优选地,所述摄像光学镜头满足下列关系式:3.83≤f4/f≤18.44;-14.00≤(R7+R8)/(R7-R8)≤-1.69;0.04≤d7/TTL≤0.08。
优选地,所述第五透镜的物侧面于近轴处为凸面,像侧面于近轴处为凸面;所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为 TTL,且满足下列关系式:0.47≤f5/f≤1.42;0.31≤(R9+R10)/(R9-R10)≤1.34;0.09≤d9/TTL≤0.33。
优选地,所述摄像光学镜头满足下列关系式:0.76≤f5/f≤1.14;0.50≤(R9+R10)/(R9-R10)≤1.08;0.09≤d9/TTL≤0.26。
优选地,所述第六透镜的物侧面于近轴处为凹面,像侧面于近轴处为凹面;所述摄像光学镜头的焦距为f,所述第六透镜的焦距为f6,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-1.28≤f6/f≤-0.40;0.02≤(R11+R12)/(R11-R12)≤0.57;0.05≤d11/TTL≤0.14。
优选地,所述摄像光学镜头满足下列关系式:-0.80≤f6/f≤-0.50;0.03≤(R11+R12)/(R11-R12)≤0.45;0.07≤d11/TTL≤0.11。
优选地,所述摄像光学镜头的光圈值FNO小于或等于1.97。
优选地,所述摄像光学镜头的光圈值FNO小于或等于1.93。
优选地,所述摄像光学镜头的光学总长TTL小于或等于7.15毫米。
优选地,所述摄像光学镜头的光学总长TTL小于或等于6.82毫米。
本发明的有益效果在于:根据本发明的摄像光学镜头具有优秀的光学特性,且具有大光圈、广角化、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
为了更清楚地说明本发明实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括六个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6。第六透镜L6和像面Si之间可设置有光学过滤片GF等光学元件。
在本实施方式中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有正屈折力,第六透镜L6具有负屈折力。
在本实施方式中,第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质,第六透镜L6为塑料材质。在其他实施例中,各透镜也可以是其他材质。
在本实施方式中,定义所述第五透镜L5像侧面的曲率半径为R10,所述第六透镜L6物侧面的曲率半径为R11,所述第六透镜L6像侧面的曲率半径为R12,满足下列关系式:1.00≤R10/(R11+R12)≤10.00。该关系式规定了第五透镜L5像侧面的曲率半径和第六透镜L6的像侧面的曲率半径与物侧面曲率半径之和的比值,在规定范围内,随着广角 化的发展,有利于提高光学系统性能。
定义所述第四透镜L4物侧面的曲率半径为R7,所述第四透镜L4像侧面的曲率半径为R8,所述第五透镜L5物侧面的曲率半径为R9,满足下列关系式:0.60≤R9/(R7+R8)≤1.80。该关系式规定了第五透镜L5物侧面的曲率半径和第四透镜L4的像侧面曲率半径与物侧面曲率半径之和的比值,在规定范围内,随着广角化的发展,有利于降低摄像光学镜头对第四透镜偏芯的敏感度,提高生产良率。
定义所述第二透镜L2物侧面的曲率半径为R3,所述第三透镜L3物侧面的曲率半径为R5,满足下列关系式:1.00≤R5/R3≤3.00,通过控制第三透镜物侧面的曲率半径与第二透镜物侧面的曲率半径的比值,可以防止第三透镜的形态过于弯曲,有利于降低摄像光学镜头对第二透镜偏芯的敏感度,提高生产良率。
本实施方式中,第一透镜L1的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
定义所述摄像光学镜头10的焦距为f,所述第一透镜L1的焦距为f1,满足下列关系式:0.40≤f1/f≤1.24,规定了第一透镜的焦距与摄像光学镜头的焦距的比值,在规定的范围内时,第一透镜具有适当的正屈折力,有利于减小系统像差,同时有利于镜头向超薄化、广角化发展。优选地,满足0.63≤f1/f≤0.99。
第一透镜L1物侧面的曲率半径为R1,所述第一透镜L1像侧面的曲率半径为R2,满足下列关系式:-3.28≤(R1+R2)/(R1-R2)≤-0.97,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。优选地,满足-2.05≤(R1+R2)/(R1-R2)≤-1.21。
所述第一透镜L1的轴上厚度为d1,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.06≤d1/TTL≤0.19,在条件式范围内,有利于实现超薄化。优选地,满足0.10≤d1/TTL≤0.16。
本实施方式中,第二透镜L2的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
定义所述摄像光学镜头10的焦距为f,所述第二透镜L2的焦距为f2,满足下列关系式:-3.95≤f2/f≤-1.11,通过将第二透镜L2的负光焦度控制在合理范围,有利于矫正光学系统的像差。优选地,满足-2.47≤f2/f≤-1.39。
所述第二透镜L2物侧面的曲率半径为R3,所述第二透镜L2像侧面的曲率半径为R4,满足下列关系式:1.08≤(R3+R4)/(R3-R4)≤5.19,规定了第二透镜L2的形状,在范围内时,随着镜头向超薄广角化发展,有利于补正轴上色像差问题。优选地,满足1.73≤(R3+R4)/(R3-R4)≤ 4.15。
所述第二透镜L2的轴上厚度为d3,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d3/TTL≤0.06,在条件式范围内,有利于实现超薄化。优选地,满足0.03≤d3/TTL≤0.06。
本实施方式中,第三透镜L3的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
定义所述摄像光学镜头10的焦距为f,所述第三透镜L3的焦距为f3,满足下列关系式:-28.78≤f3/f≤-9.44,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-26.00≤f3/f≤-11.80。
所述第三透镜L3物侧面的曲率半径为R5,所述第三透镜L3像侧面的曲率半径为R6,满足下列关系式:3.12≤(R5+R6)/(R5-R6)≤12.73,规定了第三透镜L3的形状,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足5.00≤(R5+R6)/(R5-R6)≤10.18。
所述第三透镜L3的轴上厚度为d5,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d5/TTL≤0.09,在条件式范围内,有利于实现超薄化。优选地,满足0.05≤d5/TTL≤0.08。
本实施方式中,第四透镜L4的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
定义所述摄像光学镜头10的焦距为f,所述第四透镜L4的焦距为f4,满足下列关系式:2.39≤f4/f≤23.05,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足3.83≤f4/f≤18.44。
所述第四透镜L4物侧面的曲率半径为R7,以及所述第四透镜L4像侧面的曲率半径为R8,且满足下列关系式:-19.03≤(R7+R8)/(R7-R8)≤-1.35,规定了第四透镜L4的形状,在范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足-14.00≤(R7+R8)/(R7-R8)≤-1.69。
所述第四透镜L4的轴上厚度为d7,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d7/TTL≤0.09,在条件式范围内,有利于实现超薄化。优选地,满足0.04≤d7/TTL≤0.08。
本实施方式中,第五透镜L5的物侧面于近轴处为凸面,像侧面于近轴处为凸面。
定义所述摄像光学镜头10的焦距为f,所述第五透镜L5的焦距为f5,满足下列关系式:0.47≤f5/f≤1.42,对第五透镜L5的限定可有效 的使得摄像镜头的光线角度平缓,降低公差敏感度。优选地,满足0.76≤f5/f≤1.14。
所述第五透镜L5物侧面的曲率半径为R9,所述第五透镜L5像侧面的曲率半径为R10,满足下列关系式:0.31≤(R9+R10)/(R9-R10)≤1.34,规定了第五透镜L5的形状,在范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足0.50≤(R9+R10)/(R9-R10)≤1.08。
所述第五透镜L5的轴上厚度为d9,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.09≤d9/TTL≤0.33,在条件式范围内,有利于实现超薄化。优选地,满足0.09≤d9/TTL≤0.26。
本实施方式中,第六透镜L6的物侧面于近轴处为凹面,像侧面于近轴处为凹面。
定义整体摄像光学镜头10的焦距为f,所述第六透镜L6的焦距为f6,满足下列关系式:-1.28≤f6/f≤-0.40,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-0.80≤f6/f≤-0.50。
所述第六透镜L6物侧面的曲率半径为R11,所述第六透镜L6像侧面的曲率半径为R12,且满足下列关系式:0.02≤(R11+R12)/(R11-R12)≤0.57,规定了第六透镜L6的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足0.03≤(R11+R12)/(R11-R12)≤0.45。
所述第六透镜L6的轴上厚度为d11,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.05≤d11/TTL≤0.14,在条件式范围内,有利于实现超薄化。优选地,满足0.07≤d11/TTL≤0.11。
本实施方式中,摄像光学镜头10的光学总长TTL小于或等于7.15毫米,有利于实现超薄化。优选的,摄像光学镜头10的光学总长TTL小于或等于6.82毫米。
本实施方式中,摄像光学镜头10的光圈值FNO小于或等于1.97,从而实现大光圈,摄像光学镜头成像性能好。优选的,摄像光学镜头10的光圈值FNO小于或等于1.93。
如此设计,能够使得整体摄像光学镜头10的光学总长TTL尽量变短,维持小型化的特性。
当满足上述关系时,使得摄像光学镜头10具有良好光学性能的同时,能够满足大光圈、广角化、超薄化的设计要求;根据该光学镜头10的特性,该光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到成像面的轴上距离),单位为mm;
光圈值FNO:是指摄像光学镜头的有效焦距和入瞳直径的比值。
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
Figure PCTCN2020100354-appb-000001
其中,各符号的含义如下。
S1:光圈;
R:光学面中心处的曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:第六透镜L6的物侧面的曲率半径;
R12:第六透镜L6的像侧面的曲率半径;
R13:光学过滤片GF的物侧面的曲率半径;
R14:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度、透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到光学过滤片GF的物侧面的轴上距离;
d13:光学过滤片GF的轴上厚度;
d14:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure PCTCN2020100354-appb-000002
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、 A20是非球面系数。
y=(x 2/R)/{1+[1-(k+1)(x 2/R 2)] 1/2}+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20             (1)
其中,x是非球面曲线上的点与光轴的垂直距离,y是非球面深度(非球面上距离光轴为x的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 0 / / /
P1R2 1 1.315 / /
P2R1 0 / / /
P2R2 0 / / /
P3R1 2 0.335 1.085 /
P3R2 2 0.245 1.145 /
P4R1 3 0.245 1.065 1.435
P4R2 3 0.295 1.055 1.685
P5R1 3 0.465 1.535 2.005
P5R2 2 2.115 2.385 /
P6R1 2 2.095 2.775 /
P6R2 2 0.725 3.485 /
【表4】
  驻点个数 驻点位置1 驻点位置2
P1R1 0 / /
P1R2 0 / /
P2R1 0 / /
P2R2 0 / /
P3R1 1 0.575 /
P3R2 1 0.445 /
P4R1 1 0.445 /
P4R2 2 0.545 1.345
P5R1 1 0.865 /
P5R2 0 / /
P6R1 0 / /
P6R2 1 1.635 /
图2、图3分别示出了波长为470nm、555nm、650nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为555nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表13示出各实例1、2、3中各种数值与条件式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为2.885mm,全视场像高IH为4.595mm,对角线方向的视场角FOV为78.64°,所述摄像光学镜头10满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure PCTCN2020100354-appb-000003
Figure PCTCN2020100354-appb-000004
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure PCTCN2020100354-appb-000005
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3 反曲点位置4
P1R1 0 / / / /
P1R2 1 1.175 / / /
P2R1 0 / / / /
P2R2 0 / / / /
P3R1 2 0.405 1.105 / /
P3R2 2 0.385 1.225 / /
P4R1 3 0.355 1.085 1.605 /
P4R2 3 0.255 1.115 1.795 /
P5R1 4 0.235 1.485 1.865 2.095
P5R2 1 2.385 / / /
P6R1 1 2.125 / / /
P6R2 3 0.775 3.385 3.655 /
【表8】
  驻点个数 驻点位置1 驻点位置2
P1R1 0 / /
P1R2 0 / /
P2R1 0 / /
P2R2 0 / /
P3R1 2 0.705 1.215
P3R2 1 0.715 /
P4R1 2 0.675 1.325
P4R2 2 0.435 1.425
P5R1 1 0.385 /
P5R2 0 / /
P6R1 0 / /
P6R2 1 1.595 /
图6、图7分别示出了波长为470nm、555nm、650nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为555nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。
如表13所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为2.875mm,全视场像高IH为4.595mm,对角线方向的视场角FOV为78.62°,所述摄像光学镜头20满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure PCTCN2020100354-appb-000006
Figure PCTCN2020100354-appb-000007
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
Figure PCTCN2020100354-appb-000008
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3 反曲点位置4
P1R1 0 / / / /
P1R2 1 1.315 / / /
P2R1 0 / / / /
P2R2 0 / / / /
P3R1 2 0.375 1.065 / /
P3R2 2 0.355 1.185 / /
P4R1 3 0.335 1.085 1.605 /
P4R2 3 0.215 1.115 1.785 /
P5R1 4 0.245 1.475 1.885 2.105
P5R2 1 2.375 / / /
P6R1 1 2.115 / / /
P6R2 2 0.765 3.355 / /
【表12】
  驻点个数 驻点位置1 驻点位置2
P1R1 0 / /
P1R2 0 / /
P2R1 0 / /
P2R2 0 / /
P3R1 2 0.665 1.195
P3R2 2 0.645 1.385
P4R1 2 0.615 1.365
P4R2 2 0.365 1.455
P5R1 1 0.415 /
P5R2 0 / /
P6R1 0 / /
P6R2 1 1.595 /
图10、图11分别示出了波长为470nm、555nm、650nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为555nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。
以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为2.875mm,全视场像高IH为4.595mm,对角线方向的视场角FOV为78.62°,所述摄像光学镜头30满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
【表13】
参数及条件式 实施例1 实施例2 实施例3
R10/(R11+R12) 1.00 9.99 5.00
R9/(R7+R8) 0.60 1.80 1.20
R5/R3 2.99 1.01 2.00
f 5.462 5.461 5.486
f1 4.512 4.324 4.343
f2 -10.788 -9.121 -9.237
f3 -78.592 -78.430 -77.669
f4 83.934 26.149 26.491
f5 5.185 5.178 5.192
f6 -3.495 -3.328 -3.260
f12 6.549 6.749 6.718
FNO 1.89 1.90 1.91
TTL 6.495 6.497 6.497
IH 4.595 4.595 4.595
FOV 78.64° 78.62° 78.62°
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (17)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头共包含六片透镜,六片所述透镜自物侧至像侧依序为:具有正屈折力的第一透镜,具有负屈折力的第二透镜,具有负屈折力的第三透镜,具有正屈折力的第四透镜,具有正屈折力的第五透镜,具有负屈折力的第六透镜;
    其中,所述第二透镜物侧面的曲率半径为R3,所述第三透镜物侧面的曲率半径为R5,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,且满足下列关系式:
    1.00≤R10/(R11+R12)≤10.00;
    0.60≤R9/(R7+R8)≤1.80;
    1.00≤R5/R3≤3.00。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的物侧面于近轴处为凸面,像侧面于近轴处为凹面;
    所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.40≤f1/f≤1.24;
    -3.28≤(R1+R2)/(R1-R2)≤-0.97;
    0.06≤d1/TTL≤0.19。
  3. 根据权利要求2所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    0.63≤f1/f≤0.99;
    -2.05≤(R1+R2)/(R1-R2)≤-1.21;
    0.10≤d1/TTL≤0.16。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的物侧面于近轴处为凸面,像侧面于近轴处为凹面;
    所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -3.95≤f2/f≤-1.11;
    1.08≤(R3+R4)/(R3-R4)≤5.19;
    0.02≤d3/TTL≤0.06。
  5. 根据权利要求4所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    -2.47≤f2/f≤-1.39;
    1.73≤(R3+R4)/(R3-R4)≤4.15;
    0.03≤d3/TTL≤0.06。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的物侧面于近轴处为凸面,像侧面于近轴处为凹面;
    所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -28.78≤f3/f≤-9.44;
    3.12≤(R5+R6)/(R5-R6)≤12.73;
    0.03≤d5/TTL≤0.09。
  7. 根据权利要求6所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    -26.00≤f3/f≤-11.80;
    5.00≤(R5+R6)/(R5-R6)≤10.18;
    0.05≤d5/TTL≤0.08。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的物侧面于近轴处为凸面,像侧面于近轴处为凹面;
    所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    2.39≤f4/f≤23.05;
    -19.03≤(R7+R8)/(R7-R8)≤-1.35;
    0.03≤d7/TTL≤0.09。
  9. 根据权利要求8所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    3.83≤f4/f≤18.44;
    -14.00≤(R7+R8)/(R7-R8)≤-1.69;
    0.04≤d7/TTL≤0.08。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的物侧面于近轴处为凸面,像侧面于近轴处为凸面;
    所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.47≤f5/f≤1.42;
    0.31≤(R9+R10)/(R9-R10)≤1.34;
    0.09≤d9/TTL≤0.33。
  11. 根据权利要求10所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    0.76≤f5/f≤1.14;
    0.50≤(R9+R10)/(R9-R10)≤1.08;
    0.09≤d9/TTL≤0.26。
  12. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜的物侧面于近轴处为凹面,像侧面于近轴处为凹面;
    所述摄像光学镜头的焦距为f,所述第六透镜的焦距为f6,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -1.28≤f6/f≤-0.40;
    0.02≤(R11+R12)/(R11-R12)≤0.57;
    0.05≤d11/TTL≤0.14。
  13. 根据权利要求12所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    -0.80≤f6/f≤-0.50;
    0.03≤(R11+R12)/(R11-R12)≤0.45;
    0.07≤d11/TTL≤0.11。
  14. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈值FNO小于或等于1.97。
  15. 根据权利要求14所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈值FNO小于或等于1.93。
  16. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光 学镜头的光学总长TTL小于或等于7.15毫米。
  17. 根据权利要求16所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长TTL小于或等于6.82毫米。
PCT/CN2020/100354 2020-06-16 2020-07-06 摄像光学镜头 WO2021253518A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010545141.7A CN111458852B (zh) 2020-06-16 2020-06-16 摄像光学镜头
CN202010545141.7 2020-06-16

Publications (1)

Publication Number Publication Date
WO2021253518A1 true WO2021253518A1 (zh) 2021-12-23

Family

ID=71685534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100354 WO2021253518A1 (zh) 2020-06-16 2020-07-06 摄像光学镜头

Country Status (4)

Country Link
US (1) US11209617B1 (zh)
JP (1) JP6940254B1 (zh)
CN (1) CN111458852B (zh)
WO (1) WO2021253518A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115220203B (zh) * 2022-09-15 2023-01-20 江西联创电子有限公司 光学成像镜头

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109307922A (zh) * 2017-07-26 2019-02-05 大立光电股份有限公司 影像透镜系统组、取像装置及电子装置
CN109459841A (zh) * 2018-12-31 2019-03-12 瑞声光电科技(常州)有限公司 广角镜头
CN110412737A (zh) * 2019-06-30 2019-11-05 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110888221A (zh) * 2018-09-07 2020-03-17 大立光电股份有限公司 电子装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447473B (zh) * 2011-03-25 2014-08-01 Largan Precision Co Ltd 攝影用光學鏡頭組
TWI432772B (zh) * 2011-06-10 2014-04-01 Largan Precision Co Ltd 光學影像擷取透鏡組
TWI435138B (zh) * 2011-06-20 2014-04-21 Largan Precision Co 影像拾取光學系統
TWI431312B (zh) * 2011-06-28 2014-03-21 Largan Precision Co Ltd 光學影像拾取鏡片組
TWI437258B (zh) * 2011-08-05 2014-05-11 Largan Precision Co Ltd 拾像光學鏡組
TWI449948B (zh) * 2012-11-30 2014-08-21 Largan Precision Co Ltd 影像擷取光學鏡組
JP2014115431A (ja) * 2012-12-07 2014-06-26 Konica Minolta Inc 撮像レンズ、撮像装置、及び携帯端末
TWI461779B (zh) * 2013-04-25 2014-11-21 Largan Precision Co Ltd 結像鏡組
TWI457592B (zh) * 2013-07-01 2014-10-21 Largan Precision Co Ltd 光學影像拾取系統鏡頭組
JP6226376B2 (ja) * 2013-12-25 2017-11-08 カンタツ株式会社 撮像レンズ
JP6226377B2 (ja) * 2014-01-23 2017-11-08 カンタツ株式会社 撮像レンズ
TWI470268B (zh) * 2014-03-21 2015-01-21 Largan Precision Co Ltd 光學影像鏡組、取像裝置及可攜裝置
TWI500961B (zh) * 2014-07-04 2015-09-21 Largan Precision Co Ltd 成像光學透鏡組、取像裝置及電子裝置
TWI500960B (zh) * 2014-07-04 2015-09-21 Largan Precision Co Ltd 攝影光學系統、取像裝置及可攜裝置
TWI533019B (zh) * 2014-08-29 2016-05-11 大立光電股份有限公司 攝像透鏡系統、取像裝置及電子裝置
TWI519809B (zh) * 2014-12-05 2016-02-01 大立光電股份有限公司 取像光學鏡片組、取像裝置及電子裝置
TWI531815B (zh) * 2014-12-30 2016-05-01 大立光電股份有限公司 攝像光學鏡片組、取像裝置及電子裝置
US10254510B2 (en) * 2015-01-07 2019-04-09 Zhejiang Sunny Optics Co., Ltd. Camera lens
CN106324810B (zh) * 2015-06-29 2019-08-06 亚太精密工业(深圳)有限公司 成像镜头
JP6640163B2 (ja) * 2017-09-29 2020-02-05 カンタツ株式会社 撮像レンズ
TWI625567B (zh) * 2017-10-16 2018-06-01 大立光電股份有限公司 成像用光學鏡頭、取像裝置及電子裝置
JP2019120864A (ja) * 2018-01-10 2019-07-22 三星電子株式会社Samsung Electronics Co.,Ltd. 撮像レンズ
CN208795916U (zh) * 2018-09-20 2019-04-26 南昌欧菲精密光学制品有限公司 光学摄像镜头组、取像模组和电子装置
CN209044159U (zh) * 2018-11-07 2019-06-28 浙江舜宇光学有限公司 摄像光学系统
CN109459842B (zh) * 2018-12-31 2019-05-10 瑞声光电科技(常州)有限公司 摄像光学镜头
CN110262001B (zh) * 2019-06-29 2021-11-26 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110262009B (zh) * 2019-06-30 2021-08-17 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110658612A (zh) * 2019-11-13 2020-01-07 玉晶光电(厦门)有限公司 光学成像镜头
CN111025603B (zh) * 2020-01-06 2021-11-30 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109307922A (zh) * 2017-07-26 2019-02-05 大立光电股份有限公司 影像透镜系统组、取像装置及电子装置
CN110888221A (zh) * 2018-09-07 2020-03-17 大立光电股份有限公司 电子装置
CN109459841A (zh) * 2018-12-31 2019-03-12 瑞声光电科技(常州)有限公司 广角镜头
CN110412737A (zh) * 2019-06-30 2019-11-05 瑞声科技(新加坡)有限公司 摄像光学镜头

Also Published As

Publication number Publication date
CN111458852B (zh) 2020-09-18
JP6940254B1 (ja) 2021-09-22
US20210389556A1 (en) 2021-12-16
CN111458852A (zh) 2020-07-28
JP2021196592A (ja) 2021-12-27
US11209617B1 (en) 2021-12-28

Similar Documents

Publication Publication Date Title
WO2022047989A1 (zh) 摄像光学镜头
WO2021253516A1 (zh) 摄像光学镜头
WO2021168910A1 (zh) 摄像光学镜头
WO2021168905A1 (zh) 摄像光学镜头
WO2021253515A1 (zh) 摄像光学镜头
WO2021248576A1 (zh) 摄像光学镜头
WO2021196257A1 (zh) 摄像光学镜头
WO2021253517A1 (zh) 摄像光学镜头
WO2021248577A1 (zh) 摄像光学镜头
WO2020134277A1 (zh) 摄像光学镜头
WO2021253554A1 (zh) 摄像光学镜头
WO2022011740A1 (zh) 摄像光学镜头
WO2021031281A1 (zh) 摄像光学镜头
WO2021232497A1 (zh) 摄像光学镜头
WO2021168889A1 (zh) 摄像光学镜头
WO2021253518A1 (zh) 摄像光学镜头
WO2021253555A1 (zh) 摄像光学镜头
WO2022126707A1 (zh) 摄像光学镜头
WO2022057050A1 (zh) 摄像光学镜头
WO2021168890A1 (zh) 摄像光学镜头
WO2021128195A1 (zh) 摄像光学镜头
WO2021127827A1 (zh) 摄像光学镜头
WO2021109078A1 (zh) 摄像光学镜头
WO2021128238A1 (zh) 摄像光学镜头
WO2021031286A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940906

Country of ref document: EP

Kind code of ref document: A1