WO2022088348A1 - 摄像光学镜头 - Google Patents
摄像光学镜头 Download PDFInfo
- Publication number
- WO2022088348A1 WO2022088348A1 PCT/CN2020/132109 CN2020132109W WO2022088348A1 WO 2022088348 A1 WO2022088348 A1 WO 2022088348A1 CN 2020132109 W CN2020132109 W CN 2020132109W WO 2022088348 A1 WO2022088348 A1 WO 2022088348A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- imaging optical
- optical lens
- curvature
- object side
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 149
- 230000014509 gene expression Effects 0.000 claims abstract description 17
- 238000003384 imaging method Methods 0.000 claims description 111
- 230000004075 alteration Effects 0.000 description 27
- 238000010586 diagram Methods 0.000 description 27
- 230000009286 beneficial effect Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 5
- 210000001747 pupil Anatomy 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0035—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/004—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/34—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
Definitions
- the invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
- the lenses traditionally mounted on mobile phone cameras mostly use three-piece or four-piece lens structures.
- the pixel area of the photosensitive device is continuously reduced, and the system's requirements for imaging quality are constantly improving.
- the common four-piece lens has better optical quality
- its optical power, lens spacing and lens shape setting are still unreasonable to some extent, resulting in that the lens structure cannot meet the design requirements of wide-angle while having good optical performance.
- the purpose of the present invention is to provide an imaging optical lens, which has good optical performance and meets the design requirements of wide-angle.
- an embodiment of the present invention provides an imaging optical lens, the imaging optical lens includes in sequence from the object side to the image side: a first lens with negative refractive power, a second lens with negative refractive power a lens, a third lens with positive refractive power, and a fourth lens with negative refractive power; wherein the focal length of the imaging optical lens is f, the focal length of the first lens is f1, and the focal length of the second lens is f2, the focal length of the fourth lens is f4, the central radius of curvature of the object side of the second lens is R3, the central radius of curvature of the image side of the second lens is R4, and the axis of the third lens
- the thickness is d5, the on-axis distance from the image side of the third lens to the object side of the fourth lens is d6, and the following relational expressions are satisfied: -2.70 ⁇ f1/f ⁇ -1.20; -3.00 ⁇ f2/f ⁇ -1.50; -3.50
- the central radius of curvature of the object side surface of the fourth lens is R7
- the central radius of curvature of the image side surface of the fourth lens is R8, and the following relationship is satisfied: -5.00 ⁇ (R7+R8)/(R7 -R8) ⁇ -2.50.
- the central radius of curvature of the object side of the first lens is R1
- the central radius of curvature of the image side of the first lens is R2
- the on-axis thickness of the first lens is d1
- the imaging optical lens The total optical length of TTL is TTL and satisfies the following relationship: 0.94 ⁇ (R1+R2)/(R1-R2) ⁇ 4.79; 0.03 ⁇ d1/TTL ⁇ 0.24.
- the on-axis thickness of the second lens is d3, the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: 0.61 ⁇ (R3+R4)/(R3-R4) ⁇ 3.00; 0.10 ⁇ d3/TTL ⁇ 0.40.
- the focal length of the third lens is f3, the central radius of curvature of the object side of the third lens is R5, the central radius of curvature of the image side of the third lens is R6, and the optical The total length is TTL and satisfies the following relationship: 0.21 ⁇ f3/f ⁇ 1.00; -0.50 ⁇ (R5+R6)/(R5-R6) ⁇ -0.09; 0.09 ⁇ d5/TTL ⁇ 0.39.
- the axial thickness of the fourth lens is d7, and the total optical length of the imaging optical lens is TTL, and satisfies the following relationship: 0.04 ⁇ d7/TTL ⁇ 0.26.
- the angle of view in the diagonal direction of the imaging optical lens is FOV, which satisfies the following relationship: FOV ⁇ 102.00°.
- the combined focal length of the first lens and the second lens is f12, and satisfies the following relational formula: -2.04 ⁇ f12/f ⁇ -0.44.
- the imaging optical lens of the present invention has excellent optical characteristics and wide-angle characteristics, and is especially suitable for mobile phone camera lens assemblies and WEB camera lenses composed of high-pixel CCD, CMOS and other imaging elements .
- FIG. 1 is a schematic structural diagram of an imaging optical lens according to a first embodiment of the present invention
- Fig. 2 is the axial aberration schematic diagram of the imaging optical lens shown in Fig. 1;
- FIG. 3 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 1;
- FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
- FIG. 5 is a schematic structural diagram of an imaging optical lens according to a second embodiment of the present invention.
- Fig. 6 is the axial aberration schematic diagram of the imaging optical lens shown in Fig. 5;
- FIG. 7 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 5;
- FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
- FIG. 9 is a schematic structural diagram of an imaging optical lens according to a third embodiment of the present invention.
- Fig. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in Fig. 9;
- FIG. 11 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 9;
- FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9;
- FIG. 13 is a schematic structural diagram of an imaging optical lens according to a fourth embodiment of the present invention.
- Fig. 14 is a schematic diagram of axial aberration of the imaging optical lens shown in Fig. 13;
- FIG. 15 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 13;
- FIG. 16 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 13 .
- FIG. 1 is a schematic structural diagram of an imaging optical lens 10 according to a first embodiment of the present invention.
- the imaging optical lens 10 includes four lenses. Specifically, the left side is the object side, and the right side is the image side.
- the imaging optical lens 10 sequentially includes: a first lens L1 , an aperture S1 , a second lens L2 , a third lens L3 and a fourth lens from the object side to the image side. L4.
- Optical elements such as an optical filter GF may be provided between the fourth lens L4 and the image plane Si.
- the first lens L1 has negative refractive power
- the second lens L2 has negative refractive power
- the third lens L3 has positive refractive power
- the fourth lens L4 has negative refractive power
- the first lens L1 is made of plastic material
- the second lens L2 is made of plastic material
- the third lens L3 is made of plastic material
- the fourth lens L4 is made of plastic material.
- each lens may also be made of other materials.
- the focal length of the imaging optical lens 10 is defined as f
- the focal length of the first lens L1 is defined as f1, which satisfy the following relationship: -2.70 ⁇ f1/f ⁇ -1.20, which defines the first lens L1
- the ratio of the focal length f1 to the focal length f of the imaging optical lens 10 can effectively balance the spherical aberration and field curvature of the imaging optical lens 10 .
- the focal length of the imaging optical lens 10 is f
- the focal length of the second lens L2 is defined as f2, which satisfies the following relationship: -3.00 ⁇ f2/f ⁇ -1.50, which defines the focal length f2 of the second lens L2 and the imaging optics.
- the ratio of the focal length f of the lens 10 makes the imaging optical lens 10 have better imaging quality and lower sensitivity through reasonable distribution of the focal power.
- the focal length of the imaging optical lens 10 is f
- the focal length of the fourth lens L4 is defined as f4, which satisfies the following relationship: -3.50 ⁇ f4/f ⁇ -2.00, which specifies that the focal length f4 of the fourth lens L4 and the imaging optics
- the ratio of the focal length f of the lens 10 makes the imaging optical lens 10 have better imaging quality and lower sensitivity through reasonable distribution of the focal power.
- the central radius of curvature of the object side of the second lens L2 is defined as R3, and the central radius of curvature of the image side of the second lens L2 is R4, which satisfies the following relationship: 3.00 ⁇ R3/R4 ⁇ 10.00, which specifies the second The shape of the lens L2, within the range of the relational expression, can moderate the degree of deflection of the light passing through the lens, thereby effectively reducing the aberration.
- the on-axis thickness of the third lens L3 is defined as d5, and the on-axis distance from the image side of the third lens L3 to the object side of the fourth lens L4 is d6, which satisfies the following relationship: 3.00 ⁇ d5/d6 ⁇ 6.00 . It specifies the ratio of the on-axis thickness d5 of the third lens L3 to the on-axis distance d6 from the image side of the third lens L3 to the object side of the fourth lens L4, which helps to compress the total optical length TTL within the range of the relational expression, and realizes ultra-high Thinning effect.
- the central radius of curvature of the object side of the fourth lens L4 is defined as R7, and the central radius of curvature of the image side of the fourth lens L4 is R8, which satisfies the following relationship: -5.00 ⁇ (R7+R8)/(R7- R8) ⁇ -2.50.
- the shape of the fourth lens L4 is specified, and within the range of the relational expression, it is advantageous to correct the aberration of the off-axis picture angle with the progress of widening the angle of view.
- the object side surface of the first lens L1 is a convex surface at the paraxial position
- the image side surface is a concave surface at the paraxial position
- the central radius of curvature of the object side of the first lens L1 is defined as R1, and the central radius of curvature of the image side of the first lens L1 is R2, which satisfies the following relationship: 0.94 ⁇ (R1+R2)/(R1-R2 ) ⁇ 4.79, the shape of the first lens L1 is reasonably controlled, so that the first lens L1 can effectively correct the spherical aberration of the imaging optical lens 10 .
- 1.50 ⁇ (R1+R2)/(R1-R2) ⁇ 3.83 is satisfied.
- the total optical length of the imaging optical lens 10 is TTL, and the on-axis thickness of the first lens L1 is defined as d1, which satisfies the following relationship: 0.03 ⁇ d1/TTL ⁇ 0.24, within the range of the relationship, it is beneficial to realize ultra-thin change.
- 0.04 ⁇ d1/TTL ⁇ 0.19 is satisfied.
- the object side surface of the second lens L2 is a convex surface at the paraxial position
- the image side surface is a concave surface at the paraxial position
- the central radius of curvature of the object side of the second lens L2 is defined as R3, and the central radius of curvature of the image side of the second lens L2 is R4, which satisfies the following relationship: 0.61 ⁇ (R3+R4)/(R3-R4 ) ⁇ 3.00, which specifies the shape of the second lens L2.
- R3+R4 the central radius of curvature of the image side of the second lens L2
- 0.61 ⁇ (R3+R4)/(R3-R4 ) ⁇ 3.00 which specifies the shape of the second lens L2.
- 0.98 ⁇ (R3+R4)/(R3-R4) ⁇ 2.40 is satisfied.
- the total optical length of the imaging optical lens 10 is TTL, and the on-axis thickness of the second lens L2 is defined as d3, which satisfies the following relationship: 0.10 ⁇ d3/TTL ⁇ 0.40, within the range of the relationship, it is beneficial to realize ultra-thin change.
- 0.16 ⁇ d3/TTL ⁇ 0.32 is satisfied.
- the object side surface of the third lens L3 is convex at the paraxial position, and the image side surface is convex at the paraxial position.
- the focal length of the imaging optical lens 10 is f, and the focal length of the third lens L3 is defined as f3, which satisfies the following relationship: 0.21 ⁇ f3/f ⁇ 1.00, through the reasonable distribution of the optical power, the imaging optical lens 10 has Better imaging quality and lower sensitivity. Preferably, 0.33 ⁇ f3/f ⁇ 0.80 is satisfied.
- the central radius of curvature of the object side of the third lens L3 is defined as R5, and the central radius of curvature of the image side of the third lens L3 is R6, which satisfies the following relationship: -0.50 ⁇ (R5+R6)/(R5- R6) ⁇ -0.09, which specifies the shape of the third lens L3, which is beneficial to the shaping of the third lens L3.
- R5+R6/(R5-R6) ⁇ -0.11 is satisfied.
- the total optical length of the imaging optical lens 10 is TTL, and the on-axis thickness of the third lens L3 is defined as d5, which satisfies the following relationship: 0.09 ⁇ d5/TTL ⁇ 0.39, within the range of the relationship, it is beneficial to realize ultra-thin change.
- 0.14 ⁇ d5/TTL ⁇ 0.32 is satisfied.
- the object side surface of the fourth lens L4 is concave at the paraxial position, and the image side surface is convex at the paraxial position.
- the optical total length of the imaging optical lens 10 is TTL, and the on-axis thickness of the fourth lens L4 is defined as d7, which satisfies the following relationship: 0.04 ⁇ d7/TTL ⁇ 0.26, within the range of the relationship, it is beneficial to realize ultra-thin change. Preferably, 0.06 ⁇ d7/TTL ⁇ 0.21 is satisfied.
- the focal length of the imaging optical lens 10 is f
- the combined focal length of the first lens L1 and the second lens L2 is f12, which satisfies the following relationship: -2.04 ⁇ f12/f ⁇ -0.44 , within the range of the conditional expression, the aberration and distortion of the imaging optical lens 10 can be eliminated, the back focal length of the imaging optical lens 10 can be suppressed, and the miniaturization of the imaging lens system group can be maintained.
- -1.27 ⁇ f12/f ⁇ -0.56 is satisfied.
- the surface shapes of the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3 and the fourth lens L4 at the paraxial position can also be set to other concave, Convex distribution.
- the angle of view in the diagonal direction of the imaging optical lens 10 is FOV, which satisfies the following relationship: FOV ⁇ 102.00°, which is beneficial to realize wide-angle.
- the imaging optical lens 10 can meet the design requirements of wide-angle while having good optical performance; Mobile phone camera lens assembly and WEB camera lens composed of camera components such as CMOS.
- the imaging optical lens 10 of the present invention will be described below by way of examples.
- the symbols described in each example are as follows.
- the unit of focal length, on-axis distance, center curvature radius, on-axis thickness, inflection point position, and stagnation point position is mm.
- TTL total optical length (the on-axis distance from the object side of the first lens L1 to the image plane Si), in mm;
- Aperture value FNO refers to the ratio of the effective focal length of the imaging optical lens to the diameter of the entrance pupil.
- an inflection point and/or a stagnation point may also be set on the object side and/or the image side of the lens to meet high-quality imaging requirements.
- an inflection point and/or a stagnation point may also be set on the object side and/or the image side of the lens to meet high-quality imaging requirements.
- Table 1 and Table 2 show design data of the imaging optical lens 10 according to the first embodiment of the present invention.
- R the radius of curvature at the center of the optical surface
- R1 the central radius of curvature of the object side surface of the first lens L1;
- R2 the central curvature radius of the image side surface of the first lens L1;
- R3 the central radius of curvature of the object side surface of the second lens L2;
- R4 the central curvature radius of the image side surface of the second lens L2;
- R5 the central radius of curvature of the object side surface of the third lens L3;
- R6 the central curvature radius of the image side surface of the third lens L3;
- R7 the central curvature radius of the object side surface of the fourth lens L4;
- R8 the central curvature radius of the image side surface of the fourth lens L4;
- R9 the central curvature radius of the object side of the optical filter GF
- R10 the central curvature radius of the image side of the optical filter GF
- d the on-axis thickness of the lens, the on-axis distance between the lenses
- d0 the on-axis distance from the aperture S1 to the object side surface of the first lens L1;
- d2 the on-axis distance from the image side of the first lens L1 to the object side of the second lens L2;
- d4 the on-axis distance from the image side of the second lens L2 to the object side of the third lens L3;
- d6 the on-axis distance from the image side of the third lens L3 to the object side of the fourth lens L4;
- nd the refractive index of the d-line
- nd1 the refractive index of the d-line of the first lens L1;
- nd2 the refractive index of the d-line of the second lens L2;
- nd3 the refractive index of the d-line of the third lens L3;
- nd4 the refractive index of the d-line of the fourth lens L4;
- ndg the refractive index of the d-line of the optical filter GF
- vg Abbe number of optical filter GF.
- Table 2 shows aspherical surface data of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
- k is the conic coefficient
- A4, A6, A8, A10, A12, A14, A16, A18, and A20 are aspheric coefficients.
- x is the vertical distance of the point on the aspheric curve from the optical axis
- y is the aspheric depth.
- the aspherical surface shown in the above formula (1) is used as the aspherical surface of each lens surface.
- the present invention is not limited to the aspheric polynomial form represented by the formula (1).
- Table 3 and Table 4 show the design data of the inflection point and the stagnation point of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
- P1R1 and P1R2 respectively represent the object side and image side of the first lens L1
- P2R1 and P2R2 respectively represent the object side and image side of the second lens L2
- P3R1 and P3R2 respectively represent the object side and the image side of the third lens L3
- P4R1 and P4R2 represent the object side and the image side of the fourth lens L4, respectively.
- the corresponding data in the column of "invagination point position" is the vertical distance from the inflexion point set on the surface of each lens to the optical axis of the imaging optical lens 10 .
- the corresponding data in the column of "stagnation point position” is the vertical distance from the stagnation point set on the surface of each lens to the optical axis of the imaging optical lens 10 .
- P2R2 2 0.105 0.665 / P3R1 1 0.415 / / P3R2 1 0.865 / / P4R1 3 0.415 0.575 0.815 P4R2 1 0.405 / /
- FIG. 4 shows a schematic diagram of the field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 10 of the first embodiment.
- the field curvature S in FIG. 4 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction. .
- Table 17 shows the values corresponding to the various numerical values in the first, second, third, and fourth embodiments and the parameters specified in the conditional expressions.
- the first embodiment satisfies each conditional expression.
- the entrance pupil diameter ENPD of the imaging optical lens 10 is 0.477
- the full field of view image height IH is 1.400 mm
- the FOV in the diagonal direction is 102.40°.
- the imaging optical lens 10 satisfies The wide-angle design requires that the on-axis and off-axis chromatic aberrations be fully corrected and have excellent optical characteristics.
- FIG. 5 is a schematic structural diagram of an imaging optical lens 20 according to a second embodiment of the present invention.
- the second embodiment is basically the same as the first embodiment, and the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
- Tables 5 and 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
- Table 6 shows aspherical surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
- Tables 7 and 8 show the inflection point and stagnation point design data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
- FIG. 6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, 470 nm and 430 nm passes through the imaging optical lens 20 of the second embodiment.
- FIG. 8 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 20 of the second embodiment.
- the field curvature S in FIG. 8 is the field curvature in the sagittal direction
- T is the field curvature in the meridional direction.
- the second embodiment satisfies each conditional expression.
- the entrance pupil diameter ENPD of the imaging optical lens 20 is 0.553 mm
- the image height IH of the full field of view is 1.400 mm
- the FOV in the diagonal direction is 102.00°.
- the imaging optical lens 20 To meet the design requirements of wide-angle, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
- FIG. 9 is a schematic structural diagram of an imaging optical lens 30 according to a third embodiment of the present invention.
- the third embodiment is basically the same as the first embodiment, and the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
- Table 9 and Table 10 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.
- Table 10 shows aspherical surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
- Table 11 and Table 12 show the inflection point and stagnation point design data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
- FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, 470 nm and 430 nm passes through the imaging optical lens 30 of the third embodiment.
- FIG. 12 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 30 of the third embodiment.
- the field curvature S in FIG. 12 is the field curvature in the sagittal direction
- T is the field curvature in the meridional direction.
- the third embodiment satisfies each conditional expression.
- the entrance pupil diameter ENPD of the imaging optical lens 30 is 0.467
- the image height IH of the full field of view is 1.400 mm
- the FOV in the diagonal direction is 102.40°.
- the imaging optical lens 30 satisfies The wide-angle design requires that the on-axis and off-axis chromatic aberrations be fully corrected and have excellent optical characteristics.
- FIG. 13 shows an imaging optical lens 40 according to a fourth embodiment of the present invention.
- the fourth embodiment is basically the same as the first embodiment, and the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
- Table 13 and Table 14 show design data of the imaging optical lens 40 according to the fourth embodiment of the present invention.
- Table 14 shows aspherical surface data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
- Table 15 and Table 16 show the inflection point and stagnation point design data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
- FIG. 14 and 15 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, 470 nm and 430 nm passes through the imaging optical lens 40 of the fourth embodiment.
- FIG. 16 shows a schematic diagram of the field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 40 of the fourth embodiment.
- the field curvature S in FIG. 16 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction. .
- Table 17 lists the numerical values corresponding to each conditional expression in the present embodiment according to the above-mentioned conditional expression. Obviously, the imaging optical lens 40 of the present embodiment satisfies the above-mentioned conditional expression.
- the entrance pupil diameter ENPD of the imaging optical lens 40 is 0.551 mm
- the image height IH of the full field of view is 1.400 mm
- the FOV in the diagonal direction is 102.80°.
- the imaging optical lens 40 To meet the design requirements of wide-angle, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
- Example 1 Example 2 Example 3 Example 4 f1/f -2.08 -1.26 -2.66 -2.09 f2/f -2.85 -2.20 -1.62 -2.13 f4/f -3.50 -2.30 -3.50 -2.44 R3/R4 5.06 3.00 9.97 6.16 d5/d6 5.53 4.39 5.51 3.46 f 1.049 1.216 1.028 1.213 f1 -2.178 -1.532 -2.738 -2.536 f2 -2.992 -2.675 -1.669 -2.588 f3 0.701 0.509 0.640 0.671 f4 -3.671 -2.796 -3.598 -2.960 f12 -1.068 -0.810 -0.888 -1.101 FNO 2.20 2.20 2.20 2.20 TTL 3.620 3.800 3.439 3.594 IH 1.400 1.400 1.400 1.400 FOV 102.40° 102.00° 102.40° 102.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
一种摄像光学镜头(10),其自物侧至像侧依序包括:具有负屈折力的第一透镜(L1)、具有负屈折力的第二透镜(L2)、具有正屈折力的第三透镜(L3)以及具有负屈折力的第四透镜(L4);其中,摄像光学镜头(10)的焦距为f,第一透镜(L1)的焦距为f1,第二透镜(L2)的焦距为f2,第四透镜(L4)的焦距为f4,第二透镜(L2)的物侧面的中心曲率半径为R3,第二透镜(L2)的像侧面的中心曲率半径为R4,第三透镜(L3)的轴上厚度为d5,第三透镜(L3)的像侧面到第四透镜(L4)的物侧面的轴上距离为d6,且满足下列关系式:-2.70≤f1/f≤-1.20;-3.00≤f2/f≤-1.50;-3.50≤f4/f≤-2.00;3.00≤R3/R4≤10.00;3.00≤d5/d6≤6.00。摄像光学镜头(10)具有良好光学性能的同时,还满足广角化的设计要求。
Description
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、四片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,常见的四片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足广角化的设计要求。
因此,有必要提供一种具有良好的光学性能且满足广角化的设计要求的摄像光学镜头。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,其具有良好光学性能的同时,满足广角化的设计要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头自物侧至像侧依序包括:具有负屈折力的第一透镜、具有负屈折力的第二透镜、具有正屈折力的第三透镜以及具有负屈折力的第四透镜;其中,所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第四透镜的焦距为f4,所述第二透镜的物侧面的中心曲率半径为R3,所述第二透镜的像侧面的中心曲率半径为R4,所述第三透镜的轴上厚度为d5,所述第三透镜的像侧面到所述第四透镜的物侧面的轴上距离为d6,且满足下列关系式:-2.70≤f1/f≤-1.20;-3.00≤f2/f≤-1.50;-3.50≤f4/f≤-2.00;3.00≤R3/R4≤10.00;3.00≤d5/d6≤6.00。
优选地,所述第四透镜的物侧面的中心曲率半径为R7,所述第四透镜的像侧面的中心曲率半径为R8,且满足下列关系式:-5.00≤(R7+R8)/(R7-R8)≤-2.50。
优选地,所述第一透镜的物侧面的中心曲率半径为R1,所述第一透镜的像侧面的中心曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.94≤(R1+R2)/(R1-R2)≤4.79;0.03≤d1/TTL≤0.24。
优选地,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.61≤(R3+R4)/(R3-R4)≤3.00;0.10≤d3/TTL≤0.40。
优选地,所述第三透镜的焦距为f3,所述第三透镜的物侧面的中心曲率半径为R5,所述第三透镜的像侧面的中心曲率半径为R6,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.21≤f3/f≤1.00;-0.50≤(R5+R6)/(R5-R6)≤-0.09;0.09≤d5/TTL≤0.39。
优选地,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.04≤d7/TTL≤0.26。
优选地,所述摄像光学镜头的对角线方向的视场角为FOV,满足下列关系式:FOV≥102.00°。
优选地,所述第一透镜与所述第二透镜的组合焦距为f12,且满足下列关系式:-2.04≤f12/f≤-0.44。
本发明的有益效果在于:本发明的摄像光学镜头具有优秀的光学特性,且具有广角化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
为了更清楚地说明本发明实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图;
图13是本发明第四实施方式的摄像光学镜头的结构示意图;
图14是图13所示摄像光学镜头的轴向像差示意图;
图15是图13所示摄像光学镜头的倍率色差示意图;
图16是图13所示摄像光学镜头的场曲及畸变示意图。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10的结构示意图,该摄像光学镜头10包括四片透镜。具体的,左侧为物侧,右侧为像侧,摄像光学镜头10由物侧至像侧依序包括:第一透镜L1、光圈S1、第二透镜L2、第三透镜L3以及第四透镜L4。第四透镜L4和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
在本实施方式中,第一透镜L1具有负屈折力,第二透镜L2具有负屈折力,第三透镜L3具有正屈折力,第四透镜L4具有负屈折力。
在本实施方式中,第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质。在其他实施例中,各透镜也可以是其他材质。
在本实施方式中,定义所述摄像光学镜头10的焦距为f,所述第一透镜L1的焦距为f1,满足下列关系式:-2.70≤f1/f≤-1.20,规定了第一透镜L1的焦距f1与摄像光学镜头10的焦距f的比值,可以有效地平衡摄像光学镜头10的球差以及场曲量。
所述摄像光学镜头10的焦距为f,定义所述第二透镜L2的焦距为f2,满足下列关系式:-3.00≤f2/f≤-1.50,规定了第二透镜L2的焦距f2与摄像光学镜头10的焦距f的比值,通过光焦度的合理分配,使得摄像光学镜头10具有较佳的成像品质和较低的敏感性。
所述摄像光学镜头10的焦距为f,定义所述第四透镜L4的焦距为f4,满足下列关系式:-3.50≤f4/f≤-2.00,规定了第四透镜L4的焦距f4与摄像光学镜头10的焦距f的比值,通过光焦度的合理分配,使得摄像光学镜头10具有较佳的成像品质和较低的敏感性。
定义所述第二透镜L2的物侧面的中心曲率半径为R3,所述第二透镜L2的像侧面的中心曲率半径为R4,满足下列关系式:3.00≤R3/R4≤10.00,规定了第二透镜L2的形状,在关系式范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。
定义所述第三透镜L3的轴上厚度为d5,所述第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离为d6,满足下列关系式:3.00≤ d5/d6≤6.00。规定了第三透镜L3的轴上厚度d5与第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离d6的比值,在关系式范围内有助于压缩光学总长TTL,实现超薄化效果。
定义所述第四透镜L4的物侧面的中心曲率半径为R7,所述第四透镜L4的像侧面的中心曲率半径为R8,满足下列关系式:-5.00≤(R7+R8)/(R7-R8)≤-2.50。规定了第四透镜L4的形状,在关系式范围内,随着广角化的发展,有利于补正轴外画角的像差。
本实施方式中,第一透镜L1的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
定义所述第一透镜L1的物侧面的中心曲率半径为R1,所述第一透镜L1的像侧面的中心曲率半径为R2,满足下列关系式:0.94≤(R1+R2)/(R1-R2)≤4.79,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正摄像光学镜头10的球差。优选地,满足1.50≤(R1+R2)/(R1-R2)≤3.83。
所述摄像光学镜头10的光学总长为TTL,定义所述第一透镜L1的轴上厚度为d1,满足下列关系式:0.03≤d1/TTL≤0.24,在关系式范围内,有利于实现超薄化。优选地,满足0.04≤d1/TTL≤0.19。
本实施方式中,第二透镜L2的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
定义所述第二透镜L2的物侧面的中心曲率半径为R3,所述第二透镜L2的像侧面的中心曲率半径为R4,满足下列关系式:0.61≤(R3+R4)/(R3-R4)≤3.00,规定了第二透镜L2的形状,在关系式范围内时,随着摄像光学镜头10向广角化发展,有利于补正轴上色像差问题。优选地,满足0.98≤(R3+R4)/(R3-R4)≤2.40。
所述摄像光学镜头10的光学总长为TTL,定义所述第二透镜L2的轴上厚度为d3,满足下列关系式:0.10≤d3/TTL≤0.40,在关系式范围内,有利于实现超薄化。优选地,满足0.16≤d3/TTL≤0.32。
本实施方式中,第三透镜L3的物侧面于近轴处为凸面,像侧面于近轴处为凸面。
所述摄像光学镜头10的焦距为f,定义所述第三透镜L3的焦距为f3,满足下列关系式:0.21≤f3/f≤1.00,通过光焦度的合理分配,使得摄像光学镜头10具有较佳的成像品质和较低的敏感性。优选地,满足0.33≤f3/f≤0.80。
定义所述第三透镜L3的物侧面的中心曲率半径为R5,所述第三透镜L3的像侧面的中心曲率半径为R6,满足下列关系式:-0.50≤(R5+R6)/(R5-R6)≤-0.09,规定了第三透镜L3的形状,有利于第三透镜L3成型,在关系式范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足-0.31≤(R5+R6)/(R5-R6)≤-0.11。
所述摄像光学镜头10的光学总长为TTL,定义所述第三透镜L3 的轴上厚度为d5,满足下列关系式:0.09≤d5/TTL≤0.39,在关系式范围内,有利于实现超薄化。优选地,满足0.14≤d5/TTL≤0.32。
本实施方式中,第四透镜L4的物侧面于近轴处为凹面,像侧面于近轴处为凸面。
所述摄像光学镜头10的光学总长为TTL,定义所述第四透镜L4的轴上厚度为d7,满足下列关系式:0.04≤d7/TTL≤0.26,在关系式范围内,有利于实现超薄化。优选地,满足0.06≤d7/TTL≤0.21。
在本实施方式中,所述摄像光学镜头10的焦距为f,所述第一透镜L1与所述第二透镜L2的组合焦距为f12,满足下列关系式:-2.04≤f12/f≤-0.44,在条件式范围内,可消除所述摄像光学镜头10的像差与歪曲,且可压制摄像光学镜头10后焦距,维持影像镜片系统组小型化。优选的,满足-1.27≤f12/f≤-0.56。
可以理解的是,在其他实施方式中,第一透镜L1、第二透镜L2、第三透镜L3以及第四透镜L4的物侧面和像侧面于近轴处的面型也可设置为其他凹、凸分布情况。
本实施方式中,所述摄像光学镜头10的对角线方向的视场角为FOV,满足下列关系式:FOV≥102.00°,从而有利于实现广角化。
当满足上述关系时,使得摄像光学镜头10具有良好光学性能的同时,能够满足广角化的设计要求;根据该摄像光学镜头10的特性,该摄像光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、中心曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到像面Si的轴上距离),单位为mm;
光圈值FNO:是指摄像光学镜头的有效焦距和入瞳直径的比值。
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
其中,各符号的含义如下。
S1:光圈;
R:光学面中心处的曲率半径;
R1:第一透镜L1的物侧面的中心曲率半径;
R2:第一透镜L1的像侧面的中心曲率半径;
R3:第二透镜L2的物侧面的中心曲率半径;
R4:第二透镜L2的像侧面的中心曲率半径;
R5:第三透镜L3的物侧面的中心曲率半径;
R6:第三透镜L3的像侧面的中心曲率半径;
R7:第四透镜L4的物侧面的中心曲率半径;
R8:第四透镜L4的像侧面的中心曲率半径;
R9:光学过滤片GF的物侧面的中心曲率半径;
R10:光学过滤片GF的像侧面的中心曲率半径;
d:透镜的轴上厚度、透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到光学过滤片GF的物侧面的轴上距离;
d9:光学过滤片GF的轴上厚度;
d10:光学过滤片GF的像侧面到像面Si的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球 面数据。
【表2】
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
y=(x
2/R)/{1+[1-(k+1)(x
2/R
2)]
1/2}+A4x
4+A6x
6+A8x
8+A10x
10+A12x
12+A14x
14+A16x
16+A18x
18+A20x
20 (1)
其中,x是非球面曲线上的点与光轴的垂直距离,y是非球面深度。(非球面上距离光轴为x的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | |
P1R1 | 0 | / | / | / |
P1R2 | 0 | / | / | / |
P2R1 | 0 | / | / | / |
P2R2 | 2 | 0.105 | 0.665 | / |
P3R1 | 1 | 0.415 | / | / |
P3R2 | 1 | 0.865 | / | / |
P4R1 | 3 | 0.415 | 0.575 | 0.815 |
P4R2 | 1 | 0.405 | / | / |
【表4】
驻点个数 | 驻点位置1 | |
P1R1 | 0 | / |
P1R2 | 0 | / |
P2R1 | 0 | / |
P2R2 | 1 | 0.205 |
P3R1 | 1 | 0.815 |
P3R2 | 1 | 0.945 |
P4R1 | 1 | 0.945 |
P4R2 | 1 | 0.975 |
图2、图3分别示出了波长为650nm、610nm、555nm、510nm、470nm及430nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了波长为555nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表17示出各实施方式一、二、三、四中各种数值与条件式中已规定的参数所对应的值。
如表17所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头10的入瞳直径ENPD为0.477,全视场像高IH为1.400mm,对角线方向的视场角FOV为102.40°,所述摄像光学镜头10满足广角化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第二实施方式)
图5所示为本发明第二实施方式的摄像光学镜头20的结构示意图,第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | |
P1R1 | 0 | / | / | / |
P1R2 | 0 | / | / | / |
P2R1 | 0 | / | / | / |
P2R2 | 2 | 0.085 | 0.565 | / |
P3R1 | 1 | 0.205 | / | / |
P3R2 | 1 | 0.715 | / | / |
P4R1 | 1 | 0.685 | / | / |
P4R2 | 3 | 0.475 | 0.845 | 0.895 |
【表8】
驻点个数 | 驻点位置1 | |
P1R1 | 0 | / |
P1R2 | 0 | / |
P2R1 | 0 | / |
P2R2 | 1 | 0.155 |
P3R1 | 1 | 0.545 |
P3R2 | 1 | 0.785 |
P4R1 | 1 | 0.805 |
P4R2 | 0 | / |
图6、图7分别示出了波长为650nm、610nm、555nm、510nm、470nm及430nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了波长为555nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。图8的场曲S是弧矢方向的场曲,T是子午方向的场曲。
如表17所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头20的入瞳直径ENPD为0.553mm,全视场像高IH为1.400mm,对角线方向的视场角FOV为102.00°,所述摄像光学镜头20满足广角化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第三实施方式)
图9所示为本发明第三实施方式的摄像光学镜头30的结构示意图,第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | 反曲点位置4 | |
P1R1 | 0 | / | / | / | / |
P1R2 | 1 | 0.335 | / | / | / |
P2R1 | 1 | 0.255 | / | / | / |
P2R2 | 2 | 0.115 | 0.635 | / | / |
P3R1 | 1 | 0.345 | / | / | / |
P3R2 | 1 | 0.915 | / | / | / |
P4R1 | 4 | 0.405 | 0.595 | 0.845 | 1.035 |
P4R2 | 3 | 0.405 | 0.815 | 1.045 | / |
【表12】
驻点个数 | 驻点位置1 | 驻点位置2 | |
P1R1 | 0 | / | / |
P1R2 | 0 | / | / |
P2R1 | 1 | 0.275 | / |
P2R2 | 1 | 0.235 | / |
P3R1 | 1 | 0.815 | / |
P3R2 | 1 | 0.985 | / |
P4R1 | 2 | 0.985 | 1.055 |
P4R2 | 1 | 1.185 | / |
图10、图11分别示出了波长为650nm、610nm、555nm、510nm、470nm及430nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了波长为555nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。图12的场曲S是弧矢方向的场曲,T是子午方向的场曲。
如表17所示,第三实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头30的入瞳直径ENPD为0.467,全视场像高IH为1.400mm,对角线方向的视场角FOV为102.40°,所述摄像光学镜头30满足广角化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第四实施方式)
图13所示为本发明第四实施方式的摄像光学镜头40,第四实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表13、表14示出本发明第四实施方式的摄像光学镜头40的设计数据。
【表13】
表14示出本发明第四实施方式的摄像光学镜头40中各透镜的非球面数据。
【表14】
表15、表16示出本发明第四实施方式的摄像光学镜头40中各透镜的反曲点以及驻点设计数据。
【表15】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | |
P1R1 | 0 | / | / | / |
P1R2 | 0 | / | / | / |
P2R1 | 0 | / | / | / |
P2R2 | 1 | 0.125 | / | / |
P3R1 | 1 | 0.445 | / | / |
P3R2 | 1 | 0.875 | / | / |
P4R1 | 3 | 0.415 | 0.615 | 0.815 |
P4R2 | 3 | 0.405 | 0.885 | 1.175 |
【表16】
驻点个数 | 驻点位置1 | |
P1R1 | 0 | / |
P1R2 | 0 | / |
P2R1 | 0 | / |
P2R2 | 1 | 0.225 |
P3R1 | 1 | 0.775 |
P3R2 | 0 | / |
P4R1 | 1 | 0.975 |
P4R2 | 0 | / |
图14、图15分别示出了波长为650nm、610nm、555nm、510nm、470nm及430nm的光经过第四实施方式的摄像光学镜头40后的轴向像差以及倍率色差示意图。图16则示出了波长为555nm的光经过第四实施方式的摄像光学镜头40后的场曲及畸变示意图,图16的场曲S是弧矢方向的场曲,T是子午方向的场曲。
以下表17按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学镜头40满足上述的条件式。
在本实施方式中,所述摄像光学镜头40的入瞳直径ENPD为0.551mm,全视场像高IH为1.400mm,对角线方向的视场角FOV为102.80°,所述摄像光学镜头40满足广角化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
【表17】
参数及条件式 | 实施例1 | 实施例2 | 实施例3 | 实施例4 |
f1/f | -2.08 | -1.26 | -2.66 | -2.09 |
f2/f | -2.85 | -2.20 | -1.62 | -2.13 |
f4/f | -3.50 | -2.30 | -3.50 | -2.44 |
R3/R4 | 5.06 | 3.00 | 9.97 | 6.16 |
d5/d6 | 5.53 | 4.39 | 5.51 | 3.46 |
f | 1.049 | 1.216 | 1.028 | 1.213 |
f1 | -2.178 | -1.532 | -2.738 | -2.536 |
f2 | -2.992 | -2.675 | -1.669 | -2.588 |
f3 | 0.701 | 0.509 | 0.640 | 0.671 |
f4 | -3.671 | -2.796 | -3.598 | -2.960 |
f12 | -1.068 | -0.810 | -0.888 | -1.101 |
FNO | 2.20 | 2.20 | 2.20 | 2.20 |
TTL | 3.620 | 3.800 | 3.439 | 3.594 |
IH | 1.400 | 1.400 | 1.400 | 1.400 |
FOV | 102.40° | 102.00° | 102.40° | 102.80° |
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。
Claims (8)
- 一种摄像光学镜头,其特征在于,所述摄像光学镜头自物侧至像侧依序包括:具有负屈折力的第一透镜、具有负屈折力的第二透镜、具有正屈折力的第三透镜以及具有负屈折力的第四透镜;其中,所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第四透镜的焦距为f4,所述第二透镜的物侧面的中心曲率半径为R3,所述第二透镜的像侧面的中心曲率半径为R4,所述第三透镜的轴上厚度为d5,所述第三透镜的像侧面到所述第四透镜的物侧面的轴上距离为d6,且满足下列关系式:-2.70≤f1/f≤-1.20;-3.00≤f2/f≤-1.50;-3.50≤f4/f≤-2.00;3.00≤R3/R4≤10.00;3.00≤d5/d6≤6.00。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的物侧面的中心曲率半径为R7,所述第四透镜的像侧面的中心曲率半径为R8,且满足下列关系式:-5.00≤(R7+R8)/(R7-R8)≤-2.50。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的物侧面的中心曲率半径为R1,所述第一透镜的像侧面的中心曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.94≤(R1+R2)/(R1-R2)≤4.79;0.03≤d1/TTL≤0.24。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.61≤(R3+R4)/(R3-R4)≤3.00;0.10≤d3/TTL≤0.40。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,所述第三透镜的物侧面的中心曲率半径为R5,所述第三透镜的像侧面的中心曲率半径为R6,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.21≤f3/f≤1.00;-0.50≤(R5+R6)/(R5-R6)≤-0.09;0.09≤d5/TTL≤0.39。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足 下列关系式:0.04≤d7/TTL≤0.26。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的对角线方向的视场角为FOV,满足下列关系式:FOV≥102.00°。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜与所述第二透镜的组合焦距为f12,且满足下列关系式:-2.04≤f12/f≤-0.44。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011196309.4 | 2020-10-31 | ||
CN202011196309.4A CN112230385B (zh) | 2020-10-31 | 2020-10-31 | 摄像光学镜头 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022088348A1 true WO2022088348A1 (zh) | 2022-05-05 |
Family
ID=74121685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/132109 WO2022088348A1 (zh) | 2020-10-31 | 2020-11-27 | 摄像光学镜头 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11366293B2 (zh) |
JP (1) | JP6935003B1 (zh) |
CN (1) | CN112230385B (zh) |
WO (1) | WO2022088348A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115437114B (zh) * | 2022-09-15 | 2024-09-27 | 广东省星聚宇光学股份有限公司 | 监控镜头以及监控镜头模组 |
WO2024191046A1 (ko) * | 2023-03-10 | 2024-09-19 | 삼성전자 주식회사 | 렌즈 어셈블리 및 그를 포함하는 전자 장치 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080266670A1 (en) * | 2007-04-26 | 2008-10-30 | Asia Optical Co., Inc | Fixed-focus lens system |
CN103257433A (zh) * | 2012-02-15 | 2013-08-21 | 大立光电股份有限公司 | 光学镜头系统 |
CN106997085A (zh) * | 2016-01-22 | 2017-08-01 | 大立光电股份有限公司 | 成像系统镜组、取像装置及电子装置 |
CN207123647U (zh) * | 2017-09-13 | 2018-03-20 | 浙江舜宇光学有限公司 | 摄像镜头 |
CN111505797A (zh) * | 2019-01-31 | 2020-08-07 | 大立光电股份有限公司 | 电子装置 |
CN111596445A (zh) * | 2020-07-22 | 2020-08-28 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
CN111751959A (zh) * | 2019-03-26 | 2020-10-09 | 大立光电股份有限公司 | 光学取像系统、取像装置及电子装置 |
CN112698473A (zh) * | 2019-10-23 | 2021-04-23 | 宁波舜宇车载光学技术有限公司 | 光学镜头及电子设备 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5252842B2 (ja) * | 2007-06-27 | 2013-07-31 | 京セラ株式会社 | 撮像レンズ |
TWI416196B (zh) * | 2011-04-15 | 2013-11-21 | Largan Precision Co Ltd | 影像擷取鏡頭 |
TWI447470B (zh) * | 2012-02-15 | 2014-08-01 | Largan Precision Co Ltd | 光學鏡頭 |
TWI474039B (zh) * | 2013-02-08 | 2015-02-21 | Largan Precision Co Ltd | 廣視角攝像鏡片組 |
TWI588518B (zh) * | 2016-01-22 | 2017-06-21 | 大立光電股份有限公司 | 成像系統鏡組、取像裝置及電子裝置 |
JP2018055059A (ja) * | 2016-09-30 | 2018-04-05 | オリンパス株式会社 | 撮像装置 |
JP6434066B2 (ja) * | 2017-01-23 | 2018-12-05 | カンタツ株式会社 | 撮像レンズ |
JP6501810B2 (ja) * | 2017-02-27 | 2019-04-17 | カンタツ株式会社 | 撮像レンズ |
WO2019052145A1 (zh) * | 2017-09-13 | 2019-03-21 | 浙江舜宇光学有限公司 | 摄像镜头 |
TWI725283B (zh) * | 2018-01-22 | 2021-04-21 | 大立光電股份有限公司 | 電子裝置 |
-
2020
- 2020-10-31 CN CN202011196309.4A patent/CN112230385B/zh not_active Expired - Fee Related
- 2020-11-27 WO PCT/CN2020/132109 patent/WO2022088348A1/zh active Application Filing
- 2020-12-28 US US17/134,558 patent/US11366293B2/en active Active
- 2020-12-30 JP JP2020219910A patent/JP6935003B1/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080266670A1 (en) * | 2007-04-26 | 2008-10-30 | Asia Optical Co., Inc | Fixed-focus lens system |
CN103257433A (zh) * | 2012-02-15 | 2013-08-21 | 大立光电股份有限公司 | 光学镜头系统 |
CN106997085A (zh) * | 2016-01-22 | 2017-08-01 | 大立光电股份有限公司 | 成像系统镜组、取像装置及电子装置 |
CN207123647U (zh) * | 2017-09-13 | 2018-03-20 | 浙江舜宇光学有限公司 | 摄像镜头 |
CN111505797A (zh) * | 2019-01-31 | 2020-08-07 | 大立光电股份有限公司 | 电子装置 |
CN111751959A (zh) * | 2019-03-26 | 2020-10-09 | 大立光电股份有限公司 | 光学取像系统、取像装置及电子装置 |
CN112698473A (zh) * | 2019-10-23 | 2021-04-23 | 宁波舜宇车载光学技术有限公司 | 光学镜头及电子设备 |
CN111596445A (zh) * | 2020-07-22 | 2020-08-28 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
Also Published As
Publication number | Publication date |
---|---|
JP2022073869A (ja) | 2022-05-17 |
CN112230385A (zh) | 2021-01-15 |
CN112230385B (zh) | 2022-04-12 |
US20220137335A1 (en) | 2022-05-05 |
JP6935003B1 (ja) | 2021-09-15 |
US11366293B2 (en) | 2022-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022047989A1 (zh) | 摄像光学镜头 | |
WO2022052258A1 (zh) | 摄像光学镜头 | |
WO2022016624A1 (zh) | 摄像光学镜头 | |
WO2022021513A1 (zh) | 摄像光学镜头 | |
WO2022021512A1 (zh) | 摄像光学镜头 | |
WO2022011738A1 (zh) | 摄像光学镜头 | |
WO2022057036A1 (zh) | 摄像光学镜头 | |
WO2022011740A1 (zh) | 摄像光学镜头 | |
WO2022062072A1 (zh) | 摄像光学镜头 | |
WO2022057046A1 (zh) | 摄像光学镜头 | |
WO2022047986A1 (zh) | 摄像光学镜头 | |
WO2022047985A1 (zh) | 摄像光学镜头 | |
WO2022088347A1 (zh) | 摄像光学镜头 | |
WO2022052269A1 (zh) | 摄像光学镜头 | |
WO2022057049A1 (zh) | 摄像光学镜头 | |
WO2022041382A1 (zh) | 摄像光学镜头 | |
WO2022047987A1 (zh) | 摄像光学镜头 | |
WO2022016625A1 (zh) | 摄像光学镜头 | |
WO2022007029A1 (zh) | 摄像光学镜头 | |
WO2022088348A1 (zh) | 摄像光学镜头 | |
WO2022062079A1 (zh) | 摄像光学镜头 | |
WO2022088346A1 (zh) | 摄像光学镜头 | |
WO2022047990A1 (zh) | 摄像光学镜头 | |
WO2022047988A1 (zh) | 摄像光学镜头 | |
WO2022057045A1 (zh) | 摄像光学镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20959507 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20959507 Country of ref document: EP Kind code of ref document: A1 |