WO2022088347A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2022088347A1
WO2022088347A1 PCT/CN2020/132108 CN2020132108W WO2022088347A1 WO 2022088347 A1 WO2022088347 A1 WO 2022088347A1 CN 2020132108 W CN2020132108 W CN 2020132108W WO 2022088347 A1 WO2022088347 A1 WO 2022088347A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
optical lens
curvature
object side
Prior art date
Application number
PCT/CN2020/132108
Other languages
English (en)
French (fr)
Inventor
马健
陈佳
Original Assignee
诚瑞光学(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(深圳)有限公司 filed Critical 诚瑞光学(深圳)有限公司
Publication of WO2022088347A1 publication Critical patent/WO2022088347A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • G02B9/14Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - +
    • G02B9/16Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - + all the components being simple
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • G02B9/14Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - +

Definitions

  • the invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
  • the lenses traditionally mounted on mobile phone cameras mostly use a three-piece lens structure.
  • the pixel area of the photosensitive device is continuously reduced, and the requirements of the system for imaging quality are continuously improved.
  • the common three-piece lens has better optical quality
  • its optical power, lens spacing and lens shape setting are still unreasonable to some extent, resulting in that the lens structure cannot meet the design requirements of wide-angle and ultra-thin design while having good optical performance.
  • the purpose of the present invention is to provide an imaging optical lens, which has good optical performance and meets the design requirements of wide-angle and ultra-thinning.
  • an imaging optical lens sequentially includes from the object side to the image side: a first lens with a positive refractive power, a second lens with a negative refractive power A lens and a third lens with positive refractive power; wherein the focal length of the imaging optical lens is f, the focal length of the first lens is f1, the focal length of the second lens is f2, and the focal length of the third lens is f3, the central radius of curvature of the object side of the first lens is R1, the central radius of curvature of the image side of the first lens is R2, the central radius of curvature of the object side of the second lens is R3, the The central radius of curvature of the image side of the second lens is R4, the on-axis distance from the image side of the first lens to the object side of the second lens is d2, and the image side of the second lens to the third lens The on-axis distance of the object side of the lens is f, and the image side of the second lens to the third lens The on-axis distance of the object side of
  • the central radius of curvature of the object side surface of the third lens is R5
  • the central radius of curvature of the image side surface of the third lens is R6, and the following relationship is satisfied: -10.00 ⁇ (R5+R6)/(R5 -R6) ⁇ -3.00.
  • the on-axis thickness of the first lens is d1
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: -1.43 ⁇ (R1+R2)/(R1-R2) ⁇ -0.22; 0.06 ⁇ d1/TTL ⁇ 0.25.
  • the on-axis thickness of the second lens is d3, the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: -5.33 ⁇ (R3+R4)/(R3-R4) ⁇ -0.86; 0.04 ⁇ d3/TTL ⁇ 0.18.
  • the axial thickness of the third lens is d5
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: 0.07 ⁇ d5/TTL ⁇ 0.32.
  • the angle of view in the diagonal direction of the imaging optical lens is FOV, which satisfies the following relationship: FOV ⁇ 87.00°.
  • the image height of the imaging optical lens is IH
  • the optical total length of the imaging optical lens is TTL
  • the following relational formula is satisfied: TTL/IH ⁇ 1.45.
  • the combined focal length of the first lens and the second lens is f12, and satisfies the following relational formula: -112.19 ⁇ f12/f ⁇ 12.47.
  • the imaging optical lens of the present invention has excellent optical properties, and has the characteristics of wide-angle and ultra-thinning, and is especially suitable for mobile phone camera lens assemblies composed of high-pixel CCD, CMOS and other imaging elements and WEB camera lens.
  • FIG. 1 is a schematic structural diagram of an imaging optical lens according to a first embodiment of the present invention
  • Fig. 2 is the axial aberration schematic diagram of the imaging optical lens shown in Fig. 1;
  • FIG. 3 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic structural diagram of an imaging optical lens according to a second embodiment of the present invention.
  • Fig. 6 is the axial aberration schematic diagram of the imaging optical lens shown in Fig. 5;
  • FIG. 7 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic structural diagram of an imaging optical lens according to a third embodiment of the present invention.
  • Fig. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in Fig. 9;
  • FIG. 11 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9;
  • FIG. 13 is a schematic structural diagram of an imaging optical lens according to a fourth embodiment of the present invention.
  • Fig. 14 is a schematic diagram of axial aberration of the imaging optical lens shown in Fig. 13;
  • FIG. 15 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 13;
  • Fig. 16 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in Fig. 13;
  • FIG. 17 is a schematic structural diagram of an imaging optical lens according to a fifth embodiment of the present invention.
  • Fig. 18 is a schematic diagram of axial aberration of the imaging optical lens shown in Fig. 17;
  • Fig. 19 is a schematic diagram of magnification chromatic aberration of the imaging optical lens shown in Fig. 17;
  • FIG. 20 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 17 .
  • FIG. 1 is a schematic structural diagram of an imaging optical lens 10 according to a first embodiment of the present invention.
  • the imaging optical lens 10 includes three lenses. Specifically, the left side is the object side, and the right side is the image side.
  • the imaging optical lens 10 sequentially includes: a first lens L1 , an aperture S1 , a second lens L2 and a third lens L3 from the object side to the image side.
  • the first lens L1 has a positive refractive power
  • the second lens L2 has a negative refractive power
  • the third lens L3 has a positive refractive power
  • the first lens L1 is made of plastic material
  • the second lens L2 is made of plastic material
  • the third lens L3 is made of plastic material.
  • each lens may also be made of other materials.
  • the focal length of the imaging optical lens 10 is defined as f
  • the focal length of the first lens L1 is defined as f1, which satisfy the following relationship: 1.20 ⁇ f1/f ⁇ 1.80, which specifies the focal length of the first lens L1
  • the ratio of f1 to the focal length f of the imaging optical lens 10 can effectively balance the spherical aberration and field curvature of the imaging optical lens 10 .
  • the focal length of the imaging optical lens 10 is f
  • the focal length of the second lens L2 is defined as f2, which satisfies the following relationship: -2.00 ⁇ f2/f ⁇ -1.00, which defines the focal length f2 of the second lens L2 and the imaging optics.
  • the ratio of the focal length f of the lens 10 enables the imaging optical lens 10 to have better imaging quality and lower sensitivity through reasonable distribution of the focal length.
  • the focal length of the imaging optical lens 10 is f
  • the focal length of the third lens L3 is defined as f3, which satisfies the following relationship: 0.75 ⁇ f3/f ⁇ 1.10, which specifies that the focal length f3 of the third lens L3 and the imaging optical lens 10
  • the ratio of the focal length f to the focal lengths makes the imaging optical lens 10 have better imaging quality and lower sensitivity through reasonable distribution of the focal lengths.
  • the central radius of curvature of the object side of the first lens L1 is defined as R1, and the central radius of curvature of the image side of the first lens L1 is R2, which satisfies the following relationship: -6.00 ⁇ R2/R1 ⁇ -2.00, which specifies The shape of the first lens L1, within the range of the relational expression, can ease the degree of deflection of the light passing through the lens, thereby effectively reducing aberrations.
  • the central radius of curvature of the object side of the second lens L2 is defined as R3, and the central radius of curvature of the image side of the second lens L2 is R4, which satisfies the following relationship: 2.20 ⁇ R4/R3 ⁇ 8.00, which specifies the second The shape of the lens L2, within the range of the relational expression, is useful for correcting the axial chromatic aberration.
  • the on-axis distance from the image side of the first lens L1 to the object side of the second lens L2 is defined as d2, and the on-axis distance from the image side of the second lens L2 to the object side of the third lens L3 is d4, which satisfies the following relation: 1.50 ⁇ d2/d4 ⁇ 3.50.
  • the ratio of the on-axis distance d2 from the image side of the first lens L1 to the object side of the second lens L2 and the on-axis distance d4 from the image side of the second lens L2 to the object side of the third lens L3 is specified, within the range of the relational expression It helps to compress the total optical length TTL and realize the ultra-thin effect.
  • the central radius of curvature of the object side of the third lens L3 is defined as R5, and the central radius of curvature of the image side of the third lens L3 is R6, which satisfies the following relationship: -10.00 ⁇ (R5+R6)/(R5- R6) ⁇ -3.00.
  • the shape of the third lens L3 is specified, and within the range of the relational expression, it is advantageous to correct the aberration of the off-axis picture angle.
  • the object side surface of the first lens L1 is convex at the paraxial position, and the image side surface is convex at the paraxial position.
  • the central radius of curvature of the object side surface of the first lens L1 is R1, and the central radius of curvature of the image side surface of the first lens L1 is R2, which satisfy the following relationship: -1.43 ⁇ (R1+R2)/(R1-R2 ) ⁇ 0.22, the shape of the first lens L1 is reasonably controlled, so that the first lens L1 can effectively correct the spherical aberration of the imaging optical lens 10 .
  • -0.89 ⁇ (R1+R2)/(R1-R2) ⁇ -0.28 is satisfied.
  • the optical total length of the imaging optical lens 10 is defined as TTL, and the axial thickness of the first lens L1 is d1, which satisfies the following relationship: 0.06 ⁇ d1/TTL ⁇ 0.25, within the range of the relationship, it is beneficial to realize ultra-thin change.
  • 0.10 ⁇ d1/TTL ⁇ 0.20 is satisfied.
  • the object side surface of the second lens L2 is concave at the paraxial position, and the image side surface is convex at the paraxial position.
  • the central radius of curvature of the object side of the second lens L2 is R3, and the central radius of curvature of the image side of the second lens L2 is R4, which satisfy the following relationship: -5.33 ⁇ (R3+R4)/(R3-R4 ) ⁇ -0.86, which specifies the shape of the second lens L2.
  • the shape of the second lens L2 is within the range of the relational expression, as the imaging optical lens 10 becomes ultra-thin and wide-angle, it is beneficial to correct the problem of axial chromatic aberration.
  • -3.33 ⁇ (R3+R4)/(R3-R4) ⁇ -1.07 is satisfied.
  • the total optical length of the imaging optical lens 10 is TTL, and the on-axis thickness of the second lens L2 is defined as d3, which satisfies the following relationship: 0.04 ⁇ d3/TTL ⁇ 0.18, within the range of the relationship, it is beneficial to realize ultra-thin change.
  • 0.07 ⁇ d3/TTL ⁇ 0.15 is satisfied.
  • the object side surface of the third lens L3 is a convex surface at the paraxial position
  • the image side surface is a concave surface at the paraxial position
  • the total optical length of the imaging optical lens 10 is TTL, and the on-axis thickness of the third lens L3 is defined as d5, which satisfies the following relationship: 0.07 ⁇ d5/TTL ⁇ 0.32, within the range of the relationship, it is beneficial to realize ultra-thin change.
  • 0.12 ⁇ d5/TTL ⁇ 0.25 is satisfied.
  • the focal length of the imaging optical lens 10 is f
  • the combined focal length of the first lens L1 and the second lens L2 is f12, which satisfies the following relationship: -112.19 ⁇ f12/f ⁇ 12.47
  • the aberration and distortion of the imaging optical lens 10 can be eliminated, and the back focal length of the imaging optical lens 10 can be suppressed to maintain the miniaturization of the imaging lens system group.
  • -70.12 ⁇ f12/f ⁇ 9.98 is satisfied.
  • the surface shapes of the object side surface and the image side surface of the first lens L1 , the second lens L2 and the third lens L3 at the paraxial position can also be set to other concave and convex distributions.
  • the angle of view in the diagonal direction of the imaging optical lens 10 is FOV, which satisfies the following relationship: FOV ⁇ 87.00°, which is conducive to realizing wide-angle.
  • the image height of the imaging optical lens 10 is IH
  • the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: TTL/IH ⁇ 1.45, which is conducive to realizing ultra-thinning.
  • the imaging optical lens 10 can meet the design requirements of wide-angle and ultra-thin design while having good optical performance; according to the characteristics of the imaging optical lens 10, the imaging optical lens 10 is especially suitable for Mobile phone camera lens assembly and WEB camera lens composed of camera elements such as CCD and CMOS.
  • the imaging optical lens 10 of the present invention will be described below by way of examples.
  • the symbols described in each example are as follows.
  • the unit of focal length, on-axis distance, center curvature radius, on-axis thickness, inflection point position, and stagnation point position is mm.
  • TTL total optical length (the on-axis distance from the object side of the first lens L1 to the image plane Si), in mm;
  • Aperture value FNO refers to the ratio of the effective focal length of the imaging optical lens to the diameter of the entrance pupil.
  • an inflection point and/or a stagnation point may also be set on the object side and/or the image side of the lens to meet high-quality imaging requirements.
  • an inflection point and/or a stagnation point may also be set on the object side and/or the image side of the lens to meet high-quality imaging requirements.
  • Table 1 and Table 2 show design data of the imaging optical lens 10 according to the first embodiment of the present invention.
  • R the radius of curvature at the center of the optical surface
  • R1 the central radius of curvature of the object side surface of the first lens L1;
  • R2 the central curvature radius of the image side surface of the first lens L1;
  • R3 the central radius of curvature of the object side surface of the second lens L2;
  • R4 the central curvature radius of the image side surface of the second lens L2;
  • R5 the central radius of curvature of the object side surface of the third lens L3;
  • R6 the central curvature radius of the image side surface of the third lens L3;
  • d the on-axis thickness of the lens, the on-axis distance between the lenses
  • d0 the on-axis distance from the aperture S1 to the object side surface of the first lens L1;
  • d2 the on-axis distance from the image side of the first lens L1 to the object side of the second lens L2;
  • d4 the on-axis distance from the image side of the second lens L2 to the object side of the third lens L3;
  • nd the refractive index of the d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • Table 2 shows aspherical surface data of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, and A20 are aspheric coefficients.
  • x is the vertical distance of the point on the aspheric curve from the optical axis
  • y is the aspheric depth.
  • the aspherical surface shown in the above formula (1) is used as the aspherical surface of each lens surface.
  • the present invention is not limited to the aspheric polynomial form represented by the formula (1).
  • Table 3 and Table 4 show the design data of the inflection point and the stagnation point of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
  • P1R1 and P1R2 represent the object side and image side of the first lens L1 respectively
  • P2R1 and P2R2 respectively represent the object side and the image side of the second lens L2
  • P3R1 and P3R2 respectively represent the object side and the image side of the third lens L3.
  • the corresponding data in the column of "invagination point position" is the vertical distance from the inflexion point set on the surface of each lens to the optical axis of the imaging optical lens 10 .
  • the corresponding data in the column of "stagnation point position” is the vertical distance from the stagnation point set on the surface of each lens to the optical axis of the imaging optical lens 10 .
  • FIG. 4 shows a schematic diagram of the field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 10 of the first embodiment.
  • the field curvature S in FIG. 4 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction. .
  • Table 21 shows the values corresponding to various numerical values in the first, second, third, fourth, and fifth embodiments and the parameters specified in the conditional expressions.
  • the first embodiment satisfies each conditional expression.
  • the entrance pupil diameter ENPD of the imaging optical lens 10 is 0.723 mm
  • the image height IH of the full field of view is 1.750 mm
  • the FOV in the diagonal direction is 88.80°.
  • the imaging optical lens 10 To meet the design requirements of wide-angle and ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • FIG. 5 is a schematic structural diagram of the imaging optical lens 20 according to the second embodiment of the present invention.
  • the second embodiment is basically the same as the first embodiment, and the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
  • Tables 5 and 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows aspherical surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Tables 7 and 8 show the inflection point and stagnation point design data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • FIG. 6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, 470 nm and 430 nm passes through the imaging optical lens 20 of the second embodiment.
  • FIG. 8 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 20 of the second embodiment.
  • the field curvature S in FIG. 8 is the field curvature in the sagittal direction
  • T is the field curvature in the meridional direction.
  • the second embodiment satisfies each conditional expression.
  • the entrance pupil diameter ENPD of the imaging optical lens 20 is 0.713 mm
  • the full field of view image height IH is 1.750 mm
  • the field of view angle FOV in the diagonal direction is 89.00°.
  • the imaging optical lens 20 To meet the design requirements of wide-angle and ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • FIG. 9 is a schematic structural diagram of an imaging optical lens 30 according to a third embodiment of the present invention.
  • the third embodiment is basically the same as the first embodiment, and the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
  • Table 9 and Table 10 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 10 shows aspherical surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 11 and Table 12 show the inflection point and stagnation point design data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, 470 nm and 430 nm passes through the imaging optical lens 30 of the third embodiment.
  • FIG. 12 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 30 of the third embodiment.
  • the field curvature S in FIG. 12 is the field curvature in the sagittal direction
  • T is the field curvature in the meridional direction.
  • the third embodiment satisfies each conditional expression.
  • the entrance pupil diameter ENPD of the imaging optical lens 30 is 0.753 mm
  • the full field of view image height IH is 1.750 mm
  • the field of view angle FOV in the diagonal direction is 87.00°.
  • the imaging optical lens 30 To meet the design requirements of wide-angle and ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • FIG. 13 is a schematic structural diagram of an imaging optical lens 40 according to a fourth embodiment of the present invention.
  • the fourth embodiment is basically the same as the first embodiment, and the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
  • Table 13 and Table 14 show design data of the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • Table 14 shows aspherical surface data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • Table 15 and Table 16 show the inflection point and stagnation point design data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • FIG. 14 and 15 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, 470 nm and 430 nm passes through the imaging optical lens 40 of the fourth embodiment.
  • FIG. 16 shows a schematic diagram of the field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 40 of the fourth embodiment.
  • the field curvature S in FIG. 16 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction. .
  • the fourth embodiment satisfies each conditional expression.
  • the entrance pupil diameter ENPD of the imaging optical lens 40 is 0.718 mm
  • the image height IH of the full field of view is 1.750 mm
  • the FOV in the diagonal direction is 89.40°.
  • the imaging optical lens 40 To meet the design requirements of wide-angle and ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • FIG. 17 is a schematic structural diagram of an imaging optical lens 50 according to a fifth embodiment of the present invention.
  • the fifth embodiment is basically the same as the first embodiment, and the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
  • Table 17 and Table 18 show design data of the imaging optical lens 50 according to the fifth embodiment of the present invention.
  • Table 18 shows aspherical surface data of each lens in the imaging optical lens 50 according to the fifth embodiment of the present invention.
  • Table 19 and Table 20 show the inflection point and stagnation point design data of each lens in the imaging optical lens 50 according to the fifth embodiment of the present invention.
  • FIG. 20 shows a schematic diagram of the field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 50 of the fifth embodiment.
  • the field curvature S in FIG. 20 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction. .
  • Table 21 lists the numerical values corresponding to each conditional expression in the present embodiment according to the above-mentioned conditional expression. Obviously, the imaging optical lens 50 of the present embodiment satisfies the above-mentioned conditional expression.
  • the entrance pupil diameter ENPD of the imaging optical lens 50 is 0.710 mm
  • the full field of view image height IH is 1.750 mm
  • the FOV in the diagonal direction is 89.40°.
  • the imaging optical lens 50 To meet the design requirements of wide-angle and ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 f1/f 1.44 1.79 1.20 1.49 1.35 f2/f -1.56 -1.86 -1.16 -2.00 -1.01 f3/f 0.97 0.92 0.92 1.10 0.75
  • R4/R3 2.82 3.64 2.20 3.16 7.99 d2/d4 2.77 3.48 2.01 1.50 3.47 f 1.751 1.726 1.825 1.740 1.719 f1 2.521 3.098 2.197 2.587 2.320 f2 -2.740 -3.211 -2.117 -3.477 -1.733 f3 1.699 1.582 1.686 1.910 1.292 f12 9.965 14.354 12.799 6.673 -96.426 FNO 2.42 2.42 2.42 2.42 2.42 TTL 2.478 2.483 2.521 2.461 2.480 IH 1.750 1.750 1.750 1.750 1.750 FOV 88

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像光学镜头(10),其自物侧至像侧依序包括:第一透镜(L1)、第二透镜(L2)以及第三透镜(L3);其中,摄像光学镜头(10)的焦距为f,第一透镜(L1)的焦距为f1,第二透镜(L2)的焦距为f2,第三透镜(L3)的焦距为f3,第一透镜(L1)的物侧面的中心曲率半径为R1,第一透镜(L1)的像侧面的中心曲率半径为R2,第二透镜(L2)的物侧面的中心曲率半径为R3,第二透镜(L2)的像侧面的中心曲率半径为R4,第一透镜(L1)的像侧面到第二透镜(L2)的物侧面的轴上距离为d2,第二透镜(L2)的像侧面到第三透镜(L3)的物侧面的轴上距离为d4,且满足下列关系式:1.20≤f1/f≤1.80;‑2.00≤f2/f≤‑1.00;0.75≤f3/f≤1.10;‑6.00≤R2/R1≤‑2.00;2.20≤R4/R3≤8.00;1.50≤d2/d4≤3.50。摄像光学镜头(10)具有良好光学性能的同时,还满足广角化、超薄化的设计要求。

Description

摄像光学镜头 技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,常见的三片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足广角化、超薄化的设计要求。
因此,有必要提供一种具有良好的光学性能且满足广角化、超薄化设计要求的摄像光学镜头。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,其具有良好光学性能的同时,满足广角化、超薄化的设计要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头自物侧至像侧依序包括:具有正屈折力的第一透镜、具有负屈折力的第二透镜以及具有正屈折力的第三透镜;其中,所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第三透镜的焦距为f3,所述第一透镜的物侧面的中心曲率半径为R1,所述第一透镜的像侧面的中心曲率半径为R2,所述第二透镜的物侧面的中心曲率半径为R3,所述第二透镜的像侧面的中心曲率半径为R4,所述第一透镜的像侧面到所述第二透镜的物侧面的轴上距离为d2,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,且满足下列关系式:1.20≤f1/f≤1.80;-2.00≤f2/f≤-1.00;0.75≤f3/f≤1.10;-6.00≤R2/R1≤-2.00;2.20≤R4/R3≤8.00;1.50≤d2/d4≤3.50。
优选地,所述第三透镜的物侧面的中心曲率半径为R5,所述第三 透镜的像侧面的中心曲率半径为R6,且满足下列关系式:-10.00≤(R5+R6)/(R5-R6)≤-3.00。
优选地,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-1.43≤(R1+R2)/(R1-R2)≤-0.22;0.06≤d1/TTL≤0.25。
优选地,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-5.33≤(R3+R4)/(R3-R4)≤-0.86;0.04≤d3/TTL≤0.18。
优选地,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.07≤d5/TTL≤0.32。
优选地,所述摄像光学镜头的对角线方向的视场角为FOV,满足下列关系式:FOV≥87.00°。
优选地,所述摄像光学镜头的像高为IH,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:TTL/IH≤1.45。
优选地,所述第一透镜与所述第二透镜的组合焦距为f12,且满足下列关系式:-112.19≤f12/f≤12.47。
本发明的有益效果在于:本发明的摄像光学镜头具有优秀的光学特性,且具有广角化、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
为了更清楚地说明本发明实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图;
图13是本发明第四实施方式的摄像光学镜头的结构示意图;
图14是图13所示摄像光学镜头的轴向像差示意图;
图15是图13所示摄像光学镜头的倍率色差示意图;
图16是图13所示摄像光学镜头的场曲及畸变示意图;
图17是本发明第五实施方式的摄像光学镜头的结构示意图;
图18是图17所示摄像光学镜头的轴向像差示意图;
图19是图17所示摄像光学镜头的倍率色差示意图;
图20是图17所示摄像光学镜头的场曲及畸变示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10的结构示意图,该摄像光学镜头10包括三片透镜。具体的,左侧为物侧,右侧为像侧,摄像光学镜头10由物侧至像侧依序包括:第一透镜L1、光圈S1、第二透镜L2以及第三透镜L3。
在本实施方式中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有正屈折力。
在本实施方式中,第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质。在其他实施例中,各透镜也可以是其他材质。
在本实施方式中,定义所述摄像光学镜头10的焦距为f,所述第一透镜L1的焦距为f1,满足下列关系式:1.20≤f1/f≤1.80,规定了第一透镜L1的焦距f1与摄像光学镜头10的焦距f的比值,可以有效地平衡摄像光学镜头10的球差以及场曲量。
所述摄像光学镜头10的焦距为f,定义所述第二透镜L2的焦距为f2,满足下列关系式:-2.00≤f2/f≤-1.00,规定了第二透镜L2的焦距f2与摄像光学镜头10的焦距f的比值,通过焦距的合理分配,使得摄像光学镜头10具有较佳的成像品质和较低的敏感性。
所述摄像光学镜头10的焦距为f,定义所述第三透镜L3的焦距为f3,满足下列关系式:0.75≤f3/f≤1.10,规定了第三透镜L3的焦距f3与摄像光学镜头10的焦距f的比值,通过焦距的合理分配,使得摄像光学镜头10具有较佳的成像品质和较低的敏感性。
定义所述第一透镜L1的物侧面的中心曲率半径为R1,所述第一透镜L1的像侧面的中心曲率半径为R2,满足下列关系式:-6.00≤R2/R1≤-2.00,规定了第一透镜L1的形状,在关系式范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。
定义所述第二透镜L2的物侧面的中心曲率半径为R3,所述第二透镜L2的像侧面的中心曲率半径为R4,满足下列关系式:2.20≤R4/R3≤8.00,规定了第二透镜L2的形状,在关系式范围内,有利于补正轴上色像差。
定义所述第一透镜L1的像侧面到所述第二透镜L2的物侧面的轴上距离为d2,所述第二透镜L2的像侧面到所述第三透镜L3的物侧面的轴上距离为d4,满足下列关系式:1.50≤d2/d4≤3.50。规定了第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离d2与第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离d4的比值,在关系式范围内有助于压缩光学总长TTL,实现超薄化效果。
定义所述第三透镜L3的物侧面的中心曲率半径为R5,所述第三透镜L3的像侧面的中心曲率半径为R6,满足下列关系式:-10.00≤(R5+R6)/(R5-R6)≤-3.00。规定了第三透镜L3的形状,在关系式范围内,有利于补正轴外画角的像差。
本实施方式中,第一透镜L1的物侧面于近轴处为凸面,像侧面于近轴处为凸面。
所述第一透镜L1的物侧面的中心曲率半径为R1,所述第一透镜L1的像侧面的中心曲率半径为R2,满足下列关系式:-1.43≤(R1+R2)/(R1-R2)≤-0.22,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正摄像光学镜头10的球差。优选地,满足-0.89≤(R1+R2)/(R1-R2)≤-0.28。
定义所述摄像光学镜头10的光学总长为TTL,所述第一透镜L1的轴上厚度为d1,满足下列关系式:0.06≤d1/TTL≤0.25,在关系式范围内,有利于实现超薄化。优选地,满足0.10≤d1/TTL≤0.20。
本实施方式中,第二透镜L2的物侧面于近轴处为凹面,像侧面于近轴处为凸面。
所述第二透镜L2的物侧面的中心曲率半径为R3,所述第二透镜L2的像侧面的中心曲率半径为R4,满足下列关系式:-5.33≤(R3+R4)/(R3-R4)≤-0.86,规定了第二透镜L2的形状,在关系式范围内时,随着摄像光学镜头10向超薄化、广角化发展,有利于补正轴上色像差问题。优选地,满足-3.33≤(R3+R4)/(R3-R4)≤-1.07。
所述摄像光学镜头10的光学总长为TTL,定义所述第二透镜L2的轴上厚度为d3,满足下列关系式:0.04≤d3/TTL≤0.18,在关系式范围内,有利于实现超薄化。优选地,满足0.07≤d3/TTL≤0.15。
本实施方式中,第三透镜L3的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
所述摄像光学镜头10的光学总长为TTL,定义所述第三透镜L3的轴上厚度为d5,满足下列关系式:0.07≤d5/TTL≤0.32,在关系式范围内,有利于实现超薄化。优选地,满足0.12≤d5/TTL≤0.25。
在本实施方式中,所述摄像光学镜头10的焦距为f,所述第一透镜L1与所述第二透镜L2的组合焦距为f12,满足下列关系式:-112.19≤f12/f≤12.47,在条件式范围内,可消除所述摄像光学镜头10的像差与歪曲,且可压制摄像光学镜头10后焦距,维持影像镜片系统组小型化。优选的,满足-70.12≤f12/f≤9.98。
可以理解的是,在其他实施方式中,第一透镜L1、第二透镜L2以及第三透镜L3的物侧面和像侧面于近轴处的面型也可设置为其他凹、凸分布情况。
本实施方式中,所述摄像光学镜头10的对角线方向的视场角为FOV,满足下列关系式:FOV≥87.00°,从而有利于实现广角化。
本实施方式中,所述摄像光学镜头10的像高为IH,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:TTL/IH≤1.45,从而有利于实现超薄化。
当满足上述关系时,使得摄像光学镜头10具有良好光学性能的同时,能够满足广角化、超薄化的设计要求;根据该摄像光学镜头10的特性,该摄像光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、中心曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到像面Si的轴上距离),单位为mm;
光圈值FNO:是指摄像光学镜头的有效焦距和入瞳直径的比值。
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
Figure PCTCN2020132108-appb-000001
其中,各符号的含义如下。
S1:光圈;
R:光学面中心处的曲率半径;
R1:第一透镜L1的物侧面的中心曲率半径;
R2:第一透镜L1的像侧面的中心曲率半径;
R3:第二透镜L2的物侧面的中心曲率半径;
R4:第二透镜L2的像侧面的中心曲率半径;
R5:第三透镜L3的物侧面的中心曲率半径;
R6:第三透镜L3的像侧面的中心曲率半径;
d:透镜的轴上厚度、透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到像面Si的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure PCTCN2020132108-appb-000002
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
y=(x 2/R)/{1+[1-(k+1)(x 2/R 2)] 1/2}+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20      (1)
其中,x是非球面曲线上的点与光轴的垂直距离,y是非球面深度。(非球面上距离光轴为x的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 2 0.355 0.565
P1R2 1 0.425 /
P2R1 1 0.405 /
P2R2 1 0.485 /
P3R1 2 0.285 0.975
P3R2 2 0.365 1.365
【表4】
  驻点个数 驻点位置1 驻点位置2
P1R1 2 0.535 0.585
P1R2 0 / /
P2R1 0 / /
P2R2 0 / /
P3R1 1 0.685 /
P3R2 1 0.825 /
图2、图3分别示出了波长为650nm、610nm、555nm、510nm、470nm及430nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了波长为555nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表21示出各实施方式一、二、三、四、五中各种数值与条件式中已规定的参数所对应的值。
如表21所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头10的入瞳直径ENPD为0.723mm,全视场像高IH为1.750mm,对角线方向的视场角FOV为88.80°,所述摄像光学镜头10满足广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第二实施方式)
图5所示为本发明第二实施方式的摄像光学镜头20的结构示意图, 第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure PCTCN2020132108-appb-000003
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure PCTCN2020132108-appb-000004
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
  反曲点个数 反曲点位置1
P1R1 1 0.415
P1R2 0 /
P2R1 1 0.435
P2R2 1 0.505
P3R1 1 0.325
P3R2 1 0.435
【表8】
  驻点个数 驻点位置1
P1R1 0 /
P1R2 0 /
P2R1 0 /
P2R2 0 /
P3R1 1 0.765
P3R2 1 0.895
图6、图7分别示出了波长为650nm、610nm、555nm、510nm、470nm及430nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了波长为555nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。图8的场曲S是弧矢方向的场曲,T是子午方向的场曲。
如表21所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头20的入瞳直径ENPD为0.713mm,全视场像高IH为1.750mm,对角线方向的视场角FOV为89.00°,所述摄像光学镜头20满足广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第三实施方式)
图9所示为本发明第三实施方式的摄像光学镜头30的结构示意图,第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure PCTCN2020132108-appb-000005
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
Figure PCTCN2020132108-appb-000006
Figure PCTCN2020132108-appb-000007
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 1 0.375 /
P1R2 0 / /
P2R1 1 0.375 /
P2R2 1 0.445 /
P3R1 2 0.275 1.105
P3R2 2 0.325 1.305
【表12】
  驻点个数 驻点位置1 驻点位置2
P1R1 1 0.545 /
P1R2 0 / /
P2R1 0 / /
P2R2 0 / /
P3R1 2 0.855 1.245
P3R2 1 0.835 /
图10、图11分别示出了波长为650nm、610nm、555nm、510nm、470nm及430nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了波长为555nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。图12的场曲S是弧矢方向的场曲,T是子午方向的场曲。
如表21所示,第三实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头30的入瞳直径ENPD为0.753mm,全视场像高IH为1.750mm,对角线方向的视场角FOV为87.00°,所述摄像光学镜头30满足广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第四实施方式)
图13所示为本发明第四实施方式的摄像光学镜头40的结构示意图,第四实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表13、表14示出本发明第四实施方式的摄像光学镜头40的设计数据。
【表13】
Figure PCTCN2020132108-appb-000008
Figure PCTCN2020132108-appb-000009
表14示出本发明第四实施方式的摄像光学镜头40中各透镜的非球面数据。
【表14】
Figure PCTCN2020132108-appb-000010
表15、表16示出本发明第四实施方式的摄像光学镜头40中各透镜的反曲点以及驻点设计数据。
【表15】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 1 0.385 /
P1R2 0 / /
P2R1 1 0.415 /
P2R2 1 0.505 /
P3R1 2 0.315 1.135
P3R2 2 0.375 1.385
【表16】
  驻点个数 驻点位置1
P1R1 0 /
P1R2 0 /
P2R1 0 /
P2R2 0 /
P3R1 1 0.755
P3R2 1 0.915
图14、图15分别示出了波长为650nm、610nm、555nm、510nm、470nm及430nm的光经过第四实施方式的摄像光学镜头40后的轴向像差以及倍率色差示意图。图16则示出了波长为555nm的光经过第四实施方式的摄像光学镜头40后的场曲及畸变示意图,图16的场曲S是弧矢方向的场曲,T是子午方向的场曲。
如表21所示,第四实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头40的入瞳直径ENPD为0.718mm,全视场像高IH为1.750mm,对角线方向的视场角FOV为89.40°,所述摄像光学镜头40满足广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第五实施方式)
图17所示为本发明第五实施方式的摄像光学镜头50的结构示意图,第五实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表17、表18示出本发明第五实施方式的摄像光学镜头50的设计数据。
【表17】
Figure PCTCN2020132108-appb-000011
表18示出本发明第五实施方式的摄像光学镜头50中各透镜的非球面数据。
【表18】
Figure PCTCN2020132108-appb-000012
表19、表20示出本发明第五实施方式的摄像光学镜头50中各透镜的反曲点以及驻点设计数据。
【表19】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 1 0.365 /
P1R2 0 / /
P2R1 1 0.385 /
P2R2 1 0.455 /
P3R1 2 0.275 1.045
P3R2 2 0.405 1.385
【表20】
  驻点个数 驻点位置1 驻点位置2
P1R1 1 0.545 /
P1R2 0 / /
P2R1 0 / /
P2R2 1 0.595 /
P3R1 2 0.735 1.205
P3R2 1 0.865 /
图18、图19分别示出了波长为650nm、610nm、555nm、510nm、470nm及430nm的光经过第五实施方式的摄像光学镜头50后的轴向像差以及倍率色差示意图。图20则示出了波长为555nm的光经过第五实施方式的摄像光学镜头50后的场曲及畸变示意图,图20的场曲S是弧矢方向的场曲,T是子午方向的场曲。
以下表21按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学镜头50满足上述的条件式。
在本实施方式中,所述摄像光学镜头50的入瞳直径ENPD为0.710mm,全视场像高IH为1.750mm,对角线方向的视场角FOV为89.40°,所述摄像光学镜头50满足广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
【表21】
参数及条件式 实施例1 实施例2 实施例3 实施例4 实施例5
f1/f 1.44 1.79 1.20 1.49 1.35
f2/f -1.56 -1.86 -1.16 -2.00 -1.01
f3/f 0.97 0.92 0.92 1.10 0.75
R2/R1 -3.56 -5.89 -2.44 -6.00 -2.01
R4/R3 2.82 3.64 2.20 3.16 7.99
d2/d4 2.77 3.48 2.01 1.50 3.47
f 1.751 1.726 1.825 1.740 1.719
f1 2.521 3.098 2.197 2.587 2.320
f2 -2.740 -3.211 -2.117 -3.477 -1.733
f3 1.699 1.582 1.686 1.910 1.292
f12 9.965 14.354 12.799 6.673 -96.426
FNO 2.42 2.42 2.42 2.42 2.42
TTL 2.478 2.483 2.521 2.461 2.480
IH 1.750 1.750 1.750 1.750 1.750
FOV 88.80° 89.00° 87.00° 89.40° 89.40°
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (8)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头自物侧至像侧依序包括:具有正屈折力的第一透镜、具有负屈折力的第二透镜以及具有正屈折力的第三透镜;其中,所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第三透镜的焦距为f3,所述第一透镜的物侧面的中心曲率半径为R1,所述第一透镜的像侧面的中心曲率半径为R2,所述第二透镜的物侧面的中心曲率半径为R3,所述第二透镜的像侧面的中心曲率半径为R4,所述第一透镜的像侧面到所述第二透镜的物侧面的轴上距离为d2,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,且满足下列关系式:
    1.20≤f1/f≤1.80;
    -2.00≤f2/f≤-1.00;
    0.75≤f3/f≤1.10;
    -6.00≤R2/R1≤-2.00;
    2.20≤R4/R3≤8.00;
    1.50≤d2/d4≤3.50。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的物侧面的中心曲率半径为R5,所述第三透镜的像侧面的中心曲率半径为R6,且满足下列关系式:
    -10.00≤(R5+R6)/(R5-R6)≤-3.00。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -1.43≤(R1+R2)/(R1-R2)≤-0.22;
    0.06≤d1/TTL≤0.25。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -5.33≤(R3+R4)/(R3-R4)≤-0.86;
    0.04≤d3/TTL≤0.18。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.07≤d5/TTL≤0.32。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的对角线方向的视场角为FOV,满足下列关系式:
    FOV≥87.00°。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像 光学镜头的像高为IH,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    TTL/IH≤1.45。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜与所述第二透镜的组合焦距为f12,且满足下列关系式:
    -112.19≤f12/f≤12.47。
PCT/CN2020/132108 2020-10-31 2020-11-27 摄像光学镜头 WO2022088347A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011196255.1 2020-10-31
CN202011196255.1A CN112230381B (zh) 2020-10-31 2020-10-31 摄像光学镜头

Publications (1)

Publication Number Publication Date
WO2022088347A1 true WO2022088347A1 (zh) 2022-05-05

Family

ID=74121724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132108 WO2022088347A1 (zh) 2020-10-31 2020-11-27 摄像光学镜头

Country Status (4)

Country Link
US (1) US11573399B2 (zh)
JP (1) JP6926313B1 (zh)
CN (1) CN112230381B (zh)
WO (1) WO2022088347A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114637095A (zh) * 2022-03-11 2022-06-17 浙江舜宇光学有限公司 成像系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101201444A (zh) * 2006-12-15 2008-06-18 大立光电股份有限公司 成像透镜组
US20080285155A1 (en) * 2007-05-17 2008-11-20 Genius Electronic Optical Co., Ltd. Image-forming lens set
CN201837769U (zh) * 2010-06-30 2011-05-18 一品光学工业股份有限公司 三镜片光学取像镜头
CN204536638U (zh) * 2014-04-14 2015-08-05 康达智株式会社 摄像镜头
CN205880337U (zh) * 2016-07-07 2017-01-11 南昌欧菲光电技术有限公司 投影镜头及镜头装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226487A (ja) * 2003-01-20 2004-08-12 Seiko Epson Corp 撮像レンズ
JP2005227755A (ja) * 2004-01-13 2005-08-25 Miyota Kk 小型結像レンズ
JP2005345919A (ja) * 2004-06-04 2005-12-15 Seiko Precision Inc 撮像レンズ
KR20060062130A (ko) * 2004-12-03 2006-06-12 삼성전기주식회사 플라스틱 렌즈를 이용한 고해상도 광학계
CN101038413B (zh) * 2006-03-14 2011-04-13 富士能株式会社 摄像透镜
TWI340838B (en) * 2007-01-05 2011-04-21 Largan Precision Co Ltd Optical lens assembly for taking image
TWI407142B (zh) * 2010-03-09 2013-09-01 Largan Precision Co Ltd 攝像透鏡組
US9804360B2 (en) * 2014-10-17 2017-10-31 Zhejiang Sunny Optics Co., Ltd. Lens assembly
TWI561850B (en) * 2015-05-15 2016-12-11 Ability Opto Electronics Technology Co Ltd Optical image capturing system
KR101780432B1 (ko) * 2015-12-18 2017-09-21 주식회사 코렌 촬영 렌즈 광학계
CN106980173B (zh) * 2016-01-15 2019-06-11 新巨科技股份有限公司 广角成像镜片组
CN107589516A (zh) * 2016-07-07 2018-01-16 南昌欧菲光电技术有限公司 投影镜头及镜头装置
CN106094178B (zh) * 2016-07-18 2019-03-22 瑞声科技(新加坡)有限公司 摄像镜头
CN206906678U (zh) * 2017-06-30 2018-01-19 中山市众盈光学有限公司 一种高清手机成像镜头
CN109782421B (zh) * 2017-11-14 2021-01-08 新巨科技股份有限公司 三片式红外单波长投影镜片组
CN107861316B (zh) * 2017-12-13 2019-10-18 浙江舜宇光学有限公司 投影镜头
CN108427183A (zh) * 2018-05-04 2018-08-21 浙江舜宇光学有限公司 投影镜头
CN110515179B (zh) * 2019-08-16 2021-10-19 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111624744B (zh) * 2020-07-28 2020-10-27 瑞声通讯科技(常州)有限公司 摄像光学镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101201444A (zh) * 2006-12-15 2008-06-18 大立光电股份有限公司 成像透镜组
US20080285155A1 (en) * 2007-05-17 2008-11-20 Genius Electronic Optical Co., Ltd. Image-forming lens set
CN201837769U (zh) * 2010-06-30 2011-05-18 一品光学工业股份有限公司 三镜片光学取像镜头
CN204536638U (zh) * 2014-04-14 2015-08-05 康达智株式会社 摄像镜头
CN205880337U (zh) * 2016-07-07 2017-01-11 南昌欧菲光电技术有限公司 投影镜头及镜头装置

Also Published As

Publication number Publication date
JP6926313B1 (ja) 2021-08-25
US11573399B2 (en) 2023-02-07
CN112230381A (zh) 2021-01-15
JP2022073859A (ja) 2022-05-17
US20220137336A1 (en) 2022-05-05
CN112230381B (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
WO2022067954A1 (zh) 摄像光学镜头
WO2022052258A1 (zh) 摄像光学镜头
WO2022011739A1 (zh) 摄像光学镜头
WO2022021512A1 (zh) 摄像光学镜头
WO2022088356A1 (zh) 摄像光学镜头
WO2022057046A1 (zh) 摄像光学镜头
WO2022057049A1 (zh) 摄像光学镜头
WO2022011740A1 (zh) 摄像光学镜头
WO2022062072A1 (zh) 摄像光学镜头
WO2022047986A1 (zh) 摄像光学镜头
WO2022052269A1 (zh) 摄像光学镜头
WO2022088363A1 (zh) 摄像光学镜头
WO2022057048A1 (zh) 摄像光学镜头
WO2022041382A1 (zh) 摄像光学镜头
WO2022016625A1 (zh) 摄像光学镜头
WO2022007029A1 (zh) 摄像光学镜头
WO2022000657A1 (zh) 摄像光学镜头
WO2022088347A1 (zh) 摄像光学镜头
WO2022057050A1 (zh) 摄像光学镜头
WO2022088348A1 (zh) 摄像光学镜头
WO2022057037A1 (zh) 摄像光学镜头
WO2022047991A1 (zh) 摄像光学镜头
WO2022057038A1 (zh) 摄像光学镜头
WO2022088351A1 (zh) 摄像光学镜头
WO2022057035A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959506

Country of ref document: EP

Kind code of ref document: A1