WO2021119925A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2021119925A1
WO2021119925A1 PCT/CN2019/125669 CN2019125669W WO2021119925A1 WO 2021119925 A1 WO2021119925 A1 WO 2021119925A1 CN 2019125669 W CN2019125669 W CN 2019125669W WO 2021119925 A1 WO2021119925 A1 WO 2021119925A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
curvature
ttl
optical lens
Prior art date
Application number
PCT/CN2019/125669
Other languages
English (en)
French (fr)
Inventor
石荣宝
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Priority to PCT/CN2019/125669 priority Critical patent/WO2021119925A1/zh
Publication of WO2021119925A1 publication Critical patent/WO2021119925A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
  • the photosensitive devices of general photographic lenses are nothing more than photosensitive coupling devices (Charge Coupled Device, CCD) or complementary metal oxide semiconductor devices (Complementary Metal).
  • CCD Charge Coupled Device
  • CMOS Sensor complementary metal oxide semiconductor devices
  • the pixel size of photosensitive devices has been reduced.
  • today’s electronic products are characterized by the development trend of good functions, light, thin and short appearance. Therefore, it has The miniaturized camera lens with good image quality has become the mainstream in the current market.
  • the lenses traditionally mounted on mobile phone cameras mostly adopt a three-element or four-element lens structure.
  • the pixel area of photosensitive devices is shrinking, and the system's requirements for image quality continue to increase, five-element, six-element, and seven-element lens structures Gradually appeared in the lens design.
  • the optical power distribution, the lens thickness and shape are not set sufficiently, which leads to the problem of insufficient long focal length of the lens. Therefore, there is an urgent need for a telephoto camera lens with excellent optical characteristics, ultra-thin and fully corrected chromatic aberration.
  • the object of the present invention is to provide an imaging optical lens that can meet the requirements of ultra-thinness and telephoto while obtaining high imaging performance.
  • an embodiment of the present invention provides an imaging optical lens, the imaging optical lens sequentially includes from the object side to the image side: a first lens, a second lens, a third lens, a fourth lens, and Fifth lens
  • the focal length of the first lens is f1
  • the focal length of the second lens is f2
  • the focal length of the imaging optical lens is f
  • the axial thickness of the first lens is d1
  • the image side of the first lens The on-axis distance to the object side of the second lens is d2
  • the on-axis distance from the image side of the second lens to the object side of the third lens is d4
  • the on-axis distance of the third lens is d5, satisfies the following relationship:
  • the radius of curvature of the object side surface of the fifth lens is R9
  • the radius of curvature of the image side surface of the fifth lens is R10, which satisfies the following relationship:
  • the curvature radius of the object side surface of the first lens is R1
  • the curvature radius of the image side surface of the first lens is R2
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the radius of curvature of the object side surface of the second lens is R3
  • the radius of curvature of the image side surface of the second lens is R4
  • the axial thickness of the third lens is d3
  • the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
  • the focal length of the third lens is f3
  • the radius of curvature of the object side of the third lens is R5
  • the radius of curvature of the image side of the third lens is R6, and the total optical length of the imaging optical lens is TTL, and satisfy the following relationship:
  • the focal length of the fourth lens is f4
  • the radius of curvature of the object side of the fourth lens is R7
  • the radius of curvature of the image side of the fourth lens is R8,
  • the on-axis thickness of the fourth lens is d7
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the focal length of the fifth lens is f5
  • the radius of curvature of the object side of the fifth lens is R9
  • the radius of curvature of the image side of the fifth lens is R10
  • the on-axis thickness of the fifth lens is d9
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the total optical length of the imaging optical lens is TTL
  • the image height of the imaging optical lens is IH
  • the total optical length of the camera optical lens is TTL, and f/TTL>1.1.
  • the aperture F number of the imaging optical lens is less than or equal to 3.50.
  • the imaging optical lens according to the present invention has good optical performance, and has the characteristics of large aperture, telephoto, and ultra-thinness, and is especially suitable for mobile phones composed of high-pixel CCD, CMOS and other imaging elements.
  • Camera lens assembly and WEB camera lens are examples of the imaging optical lens according to the present invention.
  • FIG. 1 is a schematic diagram of the structure of an imaging optical lens according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 3 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic diagram of the structure of an imaging optical lens according to a second embodiment of the present invention.
  • FIG. 6 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 7 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic diagram of the structure of an imaging optical lens according to a third embodiment of the present invention.
  • FIG. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 11 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9.
  • FIG. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention.
  • the imaging optical lens 10 includes five lenses. Specifically, the imaging optical lens 10 includes an aperture S1, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5 in sequence from the object side to the image side.
  • An optical element such as an optical filter GF may be provided between the fifth lens L5 and the image plane Si.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens L5 are made of plastic materials.
  • the focal length of the first lens L1 as f1
  • the focal length of the overall imaging optical lens 10 as f, 0.30 ⁇ f1/f ⁇ 0.50, which specifies the ratio of the focal length of the first lens L1 to the focal length of the system, which is within the range of this conditional expression Helps improve the performance of the optical system.
  • it satisfies 0.33 ⁇ f1/f ⁇ 0.50.
  • the focal length of the second lens L2 is defined as f2, and the focal length of the overall imaging optical lens 10 is f, -0.80 ⁇ f2/f ⁇ -0.40.
  • f2/f meets the above conditions, the light of the second lens L2 can be effectively distributed
  • the focal power corrects the aberration of the optical system to improve the image quality.
  • the on-axis thickness of the first lens L1 as d1
  • the on-axis distance from the image side of the first lens L1 to the object side of the second lens L2 is d2, 40.00 ⁇ d1/d2 ⁇ 50.00, when d1/d2 satisfies the above Under conditions, it is conducive to aberration correction and improving imaging quality.
  • d1/d2 satisfies the above Under conditions, it is conducive to aberration correction and improving imaging quality.
  • the on-axis distance from the image side of the second lens L2 to the object side of the third lens L3 as d4, and the on-axis distance of the third lens L3 as d5, 1.80 ⁇ d4/d5 ⁇ 2.24, which defines the second lens L2
  • the ratio of the air separation distance to the third lens L3 and the thickness of the third lens L3 contributes to the processing of the lens and the assembly of the lens within the range of the above-mentioned conditional expression.
  • the radius of curvature of the object side surface of the fifth lens L5 as R9
  • the radius of curvature of the image side surface of the fifth lens L5 as R10
  • 2.00 ⁇ (R9+R10)/(R9-R10) ⁇ 5.00 which defines the shape of the fifth lens L5
  • the degree of deflection of light passing through the lens can be alleviated, and the phase difference can be effectively reduced.
  • the total optical length of the camera optical lens is defined as TTL.
  • the imaging optical lens 10 of the present invention When the focal length of the imaging optical lens 10 of the present invention, the focal length of each lens, the refractive index of the relevant lens, the total optical length of the imaging optical lens, the axial thickness and the radius of curvature satisfy the above-mentioned relational expressions, the imaging optical lens 10 can be made to have a high Performance, and meet the design requirements of low TTL.
  • the object side surface of the first lens L1 is convex at the paraxial position and has a positive refractive power.
  • the curvature radius R1 of the object side surface of the first lens L1 and the curvature radius R2 of the image side surface of the first lens L1 satisfy the following relationship: -2.42 ⁇ (R1+R2)/(R1-R2) ⁇ -0.29, reasonable control of the first lens
  • the shape of the lens enables the first lens to effectively correct the spherical aberration of the system; preferably, -1.51 ⁇ (R1+R2)/(R1-R2) ⁇ -0.36.
  • the on-axis thickness of the first lens L1 is d1, which satisfies the following relationship: 0.09 ⁇ d1/TTL ⁇ 0.30, which is beneficial to realize ultra-thinness.
  • the object side surface of the second lens L2 is concave at the paraxial position, and the image side surface is concave at the paraxial position, and has positive refractive power.
  • the curvature radius R3 of the object side surface of the second lens L2 and the curvature radius R4 of the image side surface of the second lens L2 satisfy the following relationship: -1.13 ⁇ (R3+R4)/(R3-R4) ⁇ 1.38, which specifies the second lens L2 When the shape is within the range, it is helpful to correct the problem of axial chromatic aberration. Preferably, -0.71 ⁇ (R3+R4)/(R3-R4) ⁇ 1.10.
  • the on-axis thickness of the second lens L2 is d3, which satisfies the following relationship: 0.01 ⁇ d3/TTL ⁇ 0.07, which is beneficial to realize ultra-thinness.
  • the image side surface of the third lens L3 is concave at the paraxial position.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the third lens L3 is f3
  • the following relationship is satisfied: -3.21 ⁇ f3/f ⁇ 2.14.
  • the system has better imaging quality and comparison.
  • Low sensitivity Preferably, -2.01 ⁇ f3/f ⁇ 1.71.
  • the curvature radius R5 of the object side surface of the third lens L3 and the curvature radius R6 of the image side surface of the third lens L3 satisfy the following relationship: -7.53 ⁇ (R5+R6)/(R5-R6) ⁇ 4.69, which specifies the third lens
  • the shape within the range specified by the conditional formula, can ease the deflection of light passing through the lens and effectively reduce aberrations.
  • the on-axis thickness of the third lens L3 is d5, which satisfies the following relationship: 0.02 ⁇ d5/TTL ⁇ 0.07, which is beneficial to realize ultra-thinness.
  • the object side surface of the fourth lens L4 is concave at the paraxial position, and the image side surface is convex at the paraxial position, and has positive refractive power.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the fourth lens L4 is f4 which satisfies the following relationship: 0.53 ⁇ f4/f ⁇ 2.22.
  • the system has better imaging quality and lower Sensitivity.
  • the curvature radius R7 of the object side surface of the fourth lens L4 and the curvature radius R8 of the image side surface of the fourth lens L4 satisfy the following relationship: 1.27 ⁇ (R7+R8)/(R7-R8) ⁇ 9.65, and the fourth lens L4 is specified
  • the shape of is within the range, it is helpful to correct the aberration of the off-axis angle of view.
  • the on-axis thickness of the fourth lens L4 is d7, which satisfies the following relationship: 0.02 ⁇ d7/TTL ⁇ 0.12, which is beneficial to realize ultra-thinness.
  • the object side surface of the fifth lens L5 is convex at the paraxial position, and the image side surface is concave at the paraxial position, and has a negative refractive power.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the fifth lens L5 is f5, which satisfies the following relationship: -3.10 ⁇ f5/f ⁇ -0.37.
  • the limitation on the fifth lens L5 can effectively make the light angle of the imaging lens smooth. Reduce tolerance sensitivity.
  • the on-axis thickness of the fifth lens L5 is d9, which satisfies the following relationship: 0.01 ⁇ d9/TTL ⁇ 0.06, which is beneficial to realize ultra-thinness.
  • the focal length of the overall imaging optical lens 10 is f
  • the combined focal length of the first lens and the second lens is f12
  • the following relationship is satisfied: 0.30 ⁇ f12/f ⁇ 1.36.
  • the aberration and distortion of the imaging optical lens can be eliminated, and the back focal length of the imaging optical lens can be suppressed, and the miniaturization of the imaging lens system group can be maintained.
  • the image height of the camera optical lens is defined as IH.
  • TTL/IH ⁇ 5.1 mm which is beneficial to realize ultra-thinness.
  • the focal length of the overall imaging optical lens 10 is f
  • the total optical length of the imaging optical lens 10 is TTL
  • f/TTL is greater than 1.1, which is beneficial to achieve a long focal length.
  • the aperture F number of the imaging optical lens 10 is less than or equal to 3.50. Large aperture, good imaging performance. Preferably, the aperture F number of the imaging optical lens 10 is less than or equal to 3.43.
  • the overall optical length TTL of the overall imaging optical lens 10 can be shortened as much as possible, and the characteristics of miniaturization can be maintained.
  • the imaging optical lens 10 of the present invention will be described below with an example.
  • the symbols described in each example are as follows.
  • the unit of focal length, distance on axis, radius of curvature, thickness on axis, position of inflection point, and position of stagnation point is mm.
  • TTL The total optical length of the camera optical lens, in mm;
  • the object side and/or the image side of the lens can also be provided with inflection points and/or stagnation points to meet high-quality imaging requirements.
  • inflection points and/or stagnation points for specific implementations, refer to the following.
  • Table 1 and Table 2 show design data of the imaging optical lens 10 according to the first embodiment of the present invention.
  • R The radius of curvature of the optical surface, and the radius of curvature of the center of the lens
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the radius of curvature of the object side surface of the fifth lens L5;
  • R10 the radius of curvature of the image side surface of the fifth lens L5;
  • R11 the radius of curvature of the object side of the optical filter GF
  • R12 the radius of curvature of the image side surface of the optical filter GF
  • d0 the on-axis distance from the aperture S1 to the object side of the first lens L1;
  • d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
  • d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the sixth lens L6;
  • d11 the axial thickness of the optical filter GF
  • d12 the on-axis distance from the image side surface of the optical filter GF to the image surface
  • nd refractive index of d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • ndg the refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF.
  • Table 2 shows the aspheric surface data of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, and A16 are the aspheric coefficients.
  • the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (1).
  • the present invention is not limited to the aspheric polynomial form represented by the formula (1).
  • Table 3 and Table 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
  • P1R1 and P1R2 represent the object side and image side of the first lens L1 respectively
  • P2R1 and P2R2 represent the object side and image side of the second lens L2 respectively
  • P3R1 and P3R2 represent the object side and image side of the third lens L3 respectively
  • P4R1 and P4R2 represent the object side and image side of the fourth lens L4, respectively
  • P5R1 and P5R2 represent the object side and the image side of the fifth lens L5, respectively.
  • the corresponding data in the “reflection point position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • the data corresponding to the “stationary point position” column is the vertical distance from the stationary point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • FIG. 2 and 3 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 650.0 nm, 610.0 nm, 555.0 nm, 510.0 nm, and 470.0 nm passes through the imaging optical lens 10 of the first embodiment.
  • Fig. 4 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555.0 nm after passing through the imaging optical lens 10 of the first embodiment.
  • the field curvature S in Fig. 4 is the field curvature in the sagittal direction, and T is the meridian direction. Field song.
  • Table 13 shows the values corresponding to the various values in each of Examples 1, 2, and 3 and the parameters that have been specified in the conditional expressions.
  • the first embodiment satisfies various conditional expressions.
  • the imaging optical lens has an entrance pupil diameter of 4.247mm, a full field of view image height of 2.502mm, a diagonal field of view angle of 19.49°, a long focal length, ultra-thin, and its axis,
  • the off-axis chromatic aberration is fully corrected and has excellent optical characteristics.
  • the second embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 5 and Table 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows the aspheric surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 7 and Table 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • FIG. 6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 650.0 nm, 610.0 nm, 555.0 nm, 510.0 nm, and 470.0 nm passes through the imaging optical lens 20 of the second embodiment.
  • FIG. 8 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555.0 nm passes through the imaging optical lens 20 of the second embodiment.
  • the second embodiment satisfies various conditional expressions.
  • the imaging optical lens has an entrance pupil diameter of 4.118mm, a full field of view image height of 2.502mm, a diagonal field of view angle of 19.99°, a long focal length, ultra-thin, and its axis,
  • the off-axis chromatic aberration is fully corrected and has excellent optical characteristics.
  • the third embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 9 and Table 10 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 10 shows the aspheric surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 11 and Table 12 show the inflection point and stagnation point design data of each lens in the imaging optical lens 30 of the third embodiment of the present invention.
  • FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 650.0 nm, 610.0 nm, 555.0 nm, 510.0 nm, and 470.0 nm passes through the imaging optical lens 30 of the third embodiment.
  • FIG. 12 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555.0 nm passes through the imaging optical lens 30 of the third embodiment.
  • the imaging optical lens has an entrance pupil diameter of 4.118mm, a full field of view image height of 2.502mm, a diagonal field of view angle of 20.04°, a long focal length, ultra-thin, and its axis,
  • the off-axis chromatic aberration is fully corrected and has excellent optical characteristics.

Abstract

一种摄像光学镜头(10,20,30),摄像光学镜头(10,20,30)自物侧至像侧依序包含:第一透镜(L1),第二透镜(L2),第三透镜(L3),第四透镜(L4),以及第五透镜(L5);满足下列关系式:0.30≤f1/f≤0.50;-0.80≤f2/f≤-0.40;40.00≤d1/d2≤50.00;1.80≤d4/d5≤2.24。摄像光学镜头(10,20,30)能获得高成像性能的同时,满足大光圈、广角化、超薄化的设计要求。

Description

摄像光学镜头 技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式或四片式透镜结构。并且,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,五片式、六片式、七片式透镜结构逐渐出现在镜头设计当中。但是现有结构光焦度分配,透镜厚度和形状设置不充分,导致镜头存在长焦距不充分的问题,因此迫切需求具有优秀的光学特征、超薄且色像差充分补正的长焦摄像镜头。
技术问题
针对上述问题,本发明的目的在于提供一种摄像光学镜头,能在获得高成像性能的同时,满足超薄化和长焦的要求。
技术解决方案
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜以及第五透镜;
所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述摄像光学镜头的 焦距为f,所述第一透镜的轴上厚度为d1,所述第一透镜的像侧面到所述第二透镜的物侧面的轴上距离为d2,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,所述第三透镜的轴上距离为d5,满足下列关系式:
0.30≤f1/f≤0.50;
-0.80≤f2/f≤-0.40;
40.00≤d1/d2≤50.00;
1.80≤d4/d5≤2.24。
优选的,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,满足下列关系式:
2.00≤(R9+R10)/(R9-R10)≤5.00。
优选的,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-2.42≤(R1+R2)/(R1-R2)≤-0.29;
0.09≤d1/TTL≤0.30。
优选的,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第三透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-1.13≤(R3+R4)/(R3-R4)≤1.38;
0.01≤d3/TTL≤0.07。
优选的,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-3.21≤f3/f≤2.14;
-7.53≤(R5+R6)/(R5-R6)≤4.69;
0.02≤d5/TTL≤0.07。
优选的,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7, 所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.53≤f4/f≤2.22;
1.27≤(R7+R8)/(R7-R8)≤9.65;
0.02≤d7/TTL≤0.12。
优选的,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-3.10≤f5/f≤-0.37;
0.01≤d9/TTL≤0.06。
优选的,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,TTL/IH≤5.1。
优选的,所述摄像光学镜头的光学总长为TTL,f/TTL>1.1。
优选的,所述摄像光学镜头的光圈F数小于或等于3.50。
有益效果
本发明的有益效果在于:根据本发明的摄像光学镜头具有良好光学性能,且具有大光圈、长焦、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图。
本发明的实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括五个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5。第五透镜L5和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5均为塑料材质。
定义所述第一透镜L1的焦距为f1,整体摄像光学镜头10的焦距为f,0.30≤f1/f≤0.50,规定了第一透镜L1的焦距与系统焦距的比值,在此条件式范围内有助于提高光学系统性能。优选的,满足0.33≤f1/f≤0.50。
定义所述第二透镜L2的焦距为f2,整体摄像光学镜头10的焦距为f,-0.80≤f2/f≤-0.40,当f2/f满足上述条件时,可有效分配第二透镜L2的光焦度,对光学系统的像差进行校正,进而提升成像品质。优选的,-0.78≤f2/f≤-0.50。
定义第一透镜L1的轴上厚度为d1,第一透镜L1的像侧面到所述第二透镜L2 的物侧面的轴上距离为d2,40.00≤d1/d2≤50.00,当d1/d2满足上述条件时,有利于像差校正,提升成像品质。优选的,40.16≤d1/d2≤50.00。
定义第二透镜L2的像侧面到所述第三透镜L3的物侧面的轴上距离为d4,第三透镜L3的轴上距离为d5,1.80≤d4/d5≤2.24,规定了第二透镜L2与第三透镜L3间空气间隔距离和第三透镜L3厚度的比值,在上述条件式范围内有助于镜片的加工和镜头的组装。优选的,1.81≤d4/d5≤2.24。
定义第五透镜L5物侧面的曲率半径为R9,第五透镜L5像侧面的曲率半径为R10,2.00≤(R9+R10)/(R9-R10)≤5.00,规定了第五透镜L5的形状,在上述条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小相差。优选的,2.10≤(R9+R10)/(R9-R10)≤5.00。
定义所述摄像光学镜头的光学总长为TTL。
当本发明所述摄像光学镜头10的焦距、各透镜的焦距、相关透镜的折射率、摄像光学镜头的光学总长、轴上厚度和曲率半径满足上述关系式时,可以使摄像光学镜头10具有高性能,且满足低TTL的设计需求。
本实施方式中,第一透镜L1的物侧面于近轴处为凸面,具有正屈折力。
第一透镜L1物侧面的曲率半径R1,第一透镜L1像侧面的曲率半径R2,满足下列关系式:-2.42≤(R1+R2)/(R1-R2)≤-0.29,合理控制第一透镜的形状,使得第一透镜能够有效地校正系统球差;优选的,-1.51≤(R1+R2)/(R1-R2)≤-0.36。
第一透镜L1的轴上厚度为d1,满足下列关系式:0.09≤d1/TTL≤0.30,有利于实现超薄化。优选的,0.14≤d1/TTL≤0.24。
本实施方式中,第二透镜L2的物侧面于近轴处为凹面,像侧面于近轴处为凹面,具有正屈折力。
第二透镜L2物侧面的曲率半径R3,第二透镜L2像侧面的曲率半径R4,满足下列关系式:-1.13≤(R3+R4)/(R3-R4)≤1.38,规定了第二透镜L2的形状,在范围内时,有利于补正轴上色像差问题。优选的,-0.71≤(R3+R4)/(R3-R4)≤1.10。
第二透镜L2的轴上厚度为d3,满足下列关系式:0.01≤d3/TTL≤0.07,有利于实现超薄化。优选的,0.02≤d3/TTL≤0.05。
本实施方式中,第三透镜L3的像侧面于近轴处为凹面。
整体摄像光学镜头10的焦距为f,第三透镜L3焦距f3,以及满足下列关系式:-3.21≤f3/f≤2.14,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的,-2.01≤f3/f≤1.71。
第三透镜L3物侧面的曲率半径R5,第三透镜L3像侧面的曲率半径R6,满足下列关系式:-7.53≤(R5+R6)/(R5-R6)≤4.69,规定了第三透镜的形状,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选的,-4.71≤(R5+R6)/(R5-R6)≤3.75。
第三透镜L3的轴上厚度为d5,满足下列关系式:0.02≤d5/TTL≤0.07,有利于实现超薄化。优选的,0.03≤d5/TTL≤0.06。
本实施方式中,第四透镜L4的物侧面于近轴处为凹面,像侧面于近轴处为凸面,具有正屈折力。
整体摄像光学镜头10的焦距为f,第四透镜L4焦距f4,满足下列关系式:0.53≤f4/f≤2.22,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的,0.84≤f4/f≤1.77。
第四透镜L4物侧面的曲率半径R7,第四透镜L4像侧面的曲率半径R8,满足下列关系式:1.27≤(R7+R8)/(R7-R8)≤9.65,规定的是第四透镜L4的形状,在范围内时,有利于补正轴外画角的像差等问题。优选的,2.04≤(R7+R8)/(R7-R8)≤7.72。
第四透镜L4的轴上厚度为d7,满足下列关系式:0.02≤d7/TTL≤0.12,有利于实现超薄化。优选的,0.03≤d7/TTL≤0.10。
本实施方式中,第五透镜L5的物侧面于近轴处为凸面,像侧面于近轴处为凹面,具有负屈折力。
整体摄像光学镜头10的焦距为f,第五透镜L5焦距f5,满足下列关系式:-3.10≤f5/f≤-0.37,对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。优选的,-1.94≤f5/f≤-0.47。
第五透镜L5的轴上厚度为d9,满足下列关系式:0.01≤d9/TTL≤0.06,有利于实现超薄化。优选的,0.02≤d9/TTL≤0.05。
本实施方式中,整体摄像光学镜头10的焦距为f,所述第一透镜与所述第二透镜的组合焦距为f12,且满足下列关系式:0.30≤f12/f≤1.36。借此,可消除摄 像光学镜头的像差与歪曲,且可压制摄像光学镜头后焦距,维持影像镜片系统组小型化。优选的,0.47≤f12/f≤1.09。
定义摄像光学镜头的像高为IH,本实施方式中,TTL/IH≤5.1毫米,有利于实现超薄化。
本实施方式中,整体摄像光学镜头10的焦距为f,摄像光学镜头10的光学总长为TTL,f/TTL大于1.1,有利于实现长焦距。
本实施方式中,摄像光学镜头10的光圈F数小于或等于3.50。大光圈,成像性能好。优选的,摄像光学镜头10的光圈F数小于或等于3.43。
如此设计,能够使得整体摄像光学镜头10的光学总长TTL尽量变短,维持小型化的特性。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:摄像光学镜头的光学总长,单位为mm;
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
Figure PCTCN2019125669-appb-000001
其中,各符号的含义如下。
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:光学过滤片GF的物侧面的曲率半径;
R12:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度与透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:光学过滤片GF的轴上厚度;
d12:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure PCTCN2019125669-appb-000002
Figure PCTCN2019125669-appb-000003
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16是非球面系数。
IH:像高
y=(x 2/R)/[1+{1-(k+1)(x 2/R 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16        (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1      
P1R2 2 0.615 1.345
P2R1 1 0.495  
P2R2      
P3R1      
P3R2 1 0.745  
P4R1      
P4R2      
P5R1 1 0.245  
P5R2 1 0.395  
【表4】
  驻点个数 驻点位置1
P1R1    
P1R2    
P2R1 1 0.885
P2R2    
P3R1    
P3R2    
P4R1    
P4R2    
P5R1 1 0.435
P5R2 1 0.765
图2、图3分别示出了波长为650.0nm、610.0nm、555.0nm、510.0nm、470.0nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为555.0nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表13示出各实例1、2、3中各种数值与条件式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为4.247mm,全视场像高为2.502mm,对角线方向的视场角为19.49°,长焦距、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure PCTCN2019125669-appb-000004
Figure PCTCN2019125669-appb-000005
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure PCTCN2019125669-appb-000006
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
  反曲点个数 反曲点位置1
P1R1    
P1R2    
P2R1 1 0.495
P2R2    
P3R1 1 0.625
P3R2    
P4R1    
P4R2    
P5R1 1 0.375
P5R2 1 0.555
【表8】
  驻点个数 驻点位置1
P1R1    
P1R2    
P2R1 1 0.975
P2R2    
P3R1 1 1.085
P3R2    
P4R1    
P4R2    
P5R1 1 0.675
P5R2 1 1.085
图6、图7分别示出了波长为650.0nm、610.0nm、555.0nm、510.0nm、470.0nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为555.0nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。
如表13所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为4.118mm,全视场像高为2.502mm,对角线方向的视场角为19.99°,长焦距、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure PCTCN2019125669-appb-000007
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
Figure PCTCN2019125669-appb-000008
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
  反曲点个数 反曲点位置1
P1R1    
P1R2 1 1.455
P2R1 1 0.265
P2R2    
P3R1    
P3R2 1 0.585
P4R1    
P4R2    
P5R1 1 0.255
P5R2 1 0.495
【表12】
  驻点个数 驻点位置1
P1R1    
P1R2    
P2R1 1 0.435
P2R2    
P3R1    
P3R2 1 1.195
P4R1    
P4R2    
P5R1 1 0.455
P5R2 1 1.155
图10、图11分别示出了波长为650.0nm、610.0nm、555.0nm、510.0nm、470.0nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为555.0nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。
以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为4.118mm,全视场像高为2.502mm,对角线方向的视场角为20.04°,长焦距、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
【表13】
Figure PCTCN2019125669-appb-000009
Figure PCTCN2019125669-appb-000010
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (10)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜以及第五透镜;
    所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述摄像光学镜头的焦距为f,所述第一透镜的轴上厚度为d1,所述第一透镜的像侧面到所述第二透镜的物侧面的轴上距离为d2,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,所述第三透镜的轴上距离为d5,满足下列关系式:
    0.30≤f1/f≤0.50;
    -0.80≤f2/f≤-0.40;
    40.00≤d1/d2≤50.00;
    1.80≤d4/d5≤2.24。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,满足下列关系式:
    2.00≤(R9+R10)/(R9-R10)≤5.00。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,
    所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -2.42≤(R1+R2)/(R1-R2)≤-0.29;
    0.09≤d1/TTL≤0.30。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第三透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -1.13≤(R3+R4)/(R3-R4)≤1.38;
    0.01≤d3/TTL≤0.07。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3, 所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -3.21≤f3/f≤2.14;
    -7.53≤(R5+R6)/(R5-R6)≤4.69;
    0.02≤d5/TTL≤0.07。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.53≤f4/f≤2.22;
    1.27≤(R7+R8)/(R7-R8)≤9.65;
    0.02≤d7/TTL≤0.12。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -3.10≤f5/f≤-0.37;
    0.01≤d9/TTL≤0.06。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,TTL/IH≤5.1。
  9. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长为TTL,f/TTL>1.1。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈F数小于或等于3.50。
PCT/CN2019/125669 2019-12-16 2019-12-16 摄像光学镜头 WO2021119925A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/125669 WO2021119925A1 (zh) 2019-12-16 2019-12-16 摄像光学镜头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/125669 WO2021119925A1 (zh) 2019-12-16 2019-12-16 摄像光学镜头

Publications (1)

Publication Number Publication Date
WO2021119925A1 true WO2021119925A1 (zh) 2021-06-24

Family

ID=76478098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125669 WO2021119925A1 (zh) 2019-12-16 2019-12-16 摄像光学镜头

Country Status (1)

Country Link
WO (1) WO2021119925A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008164A (ja) * 2010-06-22 2012-01-12 Olympus Corp 撮像光学系及びそれを有する撮像装置
CN106125255A (zh) * 2016-08-18 2016-11-16 瑞声科技(沭阳)有限公司 摄像镜头
CN108152922A (zh) * 2017-12-25 2018-06-12 瑞声声学科技(深圳)有限公司 摄像光学镜头
CN110398820A (zh) * 2019-06-30 2019-11-01 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110515182A (zh) * 2019-08-19 2019-11-29 瑞声通讯科技(常州)有限公司 摄像光学镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008164A (ja) * 2010-06-22 2012-01-12 Olympus Corp 撮像光学系及びそれを有する撮像装置
CN106125255A (zh) * 2016-08-18 2016-11-16 瑞声科技(沭阳)有限公司 摄像镜头
CN108152922A (zh) * 2017-12-25 2018-06-12 瑞声声学科技(深圳)有限公司 摄像光学镜头
CN110398820A (zh) * 2019-06-30 2019-11-01 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110515182A (zh) * 2019-08-19 2019-11-29 瑞声通讯科技(常州)有限公司 摄像光学镜头

Similar Documents

Publication Publication Date Title
WO2021196257A1 (zh) 摄像光学镜头
WO2021097925A1 (zh) 摄像光学镜头
WO2021031281A1 (zh) 摄像光学镜头
WO2021168889A1 (zh) 摄像光学镜头
WO2021127893A1 (zh) 摄像光学镜头
WO2021127827A1 (zh) 摄像光学镜头
WO2021119894A1 (zh) 摄像光学镜头
WO2021128261A1 (zh) 摄像光学镜头
WO2021109078A1 (zh) 摄像光学镜头
WO2021119925A1 (zh) 摄像光学镜头
WO2021237779A1 (zh) 摄像光学镜头
WO2021253555A1 (zh) 摄像光学镜头
WO2021127874A1 (zh) 摄像光学镜头
WO2021119928A1 (zh) 摄像光学镜头
WO2021128237A1 (zh) 摄像光学镜头
WO2021127899A1 (zh) 摄像光学镜头
WO2021127849A1 (zh) 摄像光学镜头
WO2021128235A1 (zh) 摄像光学镜头
WO2021127860A1 (zh) 摄像光学镜头
WO2021127850A1 (zh) 摄像光学镜头
WO2021128260A1 (zh) 摄像光学镜头
WO2021128144A1 (zh) 摄像光学镜头
WO2021128270A1 (zh) 摄像光学镜头
WO2021128132A1 (zh) 摄像光学镜头
WO2021127853A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956977

Country of ref document: EP

Kind code of ref document: A1