WO2022126700A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2022126700A1
WO2022126700A1 PCT/CN2020/138841 CN2020138841W WO2022126700A1 WO 2022126700 A1 WO2022126700 A1 WO 2022126700A1 CN 2020138841 W CN2020138841 W CN 2020138841W WO 2022126700 A1 WO2022126700 A1 WO 2022126700A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
optical lens
ttl
curvature
Prior art date
Application number
PCT/CN2020/138841
Other languages
English (en)
French (fr)
Inventor
阪口贵之
张磊
Original Assignee
诚瑞光学(深圳)有限公司
常州市瑞泰光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(深圳)有限公司, 常州市瑞泰光电有限公司 filed Critical 诚瑞光学(深圳)有限公司
Publication of WO2022126700A1 publication Critical patent/WO2022126700A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
  • the purpose of the present invention is to provide an imaging optical lens, which has good optical performance and at the same time meets the design requirements of large aperture, ultra-thinning, and wide-angle.
  • the imaging optical lens includes a total of six lenses, and the six lenses are sequentially from the object side to the image side: a first lens, a second lens with negative refractive power, a third lens with positive refractive power, a fourth lens with negative refractive power, a fifth lens with positive refractive power, and a sixth lens with negative refractive power;
  • the central radius of curvature of the image side of the second lens is R4
  • the central radius of curvature of the object side of the fourth lens is R7
  • the central radius of curvature of the image side of the fourth lens is R8,
  • the axial thickness of a lens is d1, the axial thickness of the second lens is d3, the axial distance from the image side of the fourth lens to the object side of the fifth lens is d8, and the fifth lens
  • the on-axis thickness is d9 and satisfies the following relationship: -3.50 ⁇ R4/R7 ⁇ -1.00;
  • the object side of the first lens is convex at the paraxial position; the focal length of the imaging optical lens is f, the focal length of the first lens is f1, and the central radius of curvature of the object side of the first lens is R1, the central curvature radius of the image side surface of the first lens is R2, the optical total length of the imaging optical lens is TTL, and the following relationship is satisfied: 0.29 ⁇ f1/f ⁇ 1.64; -3.34 ⁇ (R1+R2 )/(R1-R2) ⁇ 0.78; 0.08 ⁇ d1/TTL ⁇ 0.36.
  • the imaging optical lens satisfies the following relational expressions: 0.46 ⁇ f1/f ⁇ 1.31; -2.09 ⁇ (R1+R2)/(R1-R2) ⁇ 0.62; 0.12 ⁇ d1/TTL ⁇ 0.29.
  • the image side of the second lens is concave at the paraxial position; the focal length of the imaging optical lens is f, the focal length of the second lens is f2, and the central radius of curvature of the object side of the second lens is R3, and the total optical length of the imaging optical lens is TTL, and satisfies the following relationship: -4.80 ⁇ f2/f ⁇ -0.37; -0.78 ⁇ (R3+R4)/(R3-R4) ⁇ 3.44; 0.02 ⁇ d3 /TTL ⁇ 0.09.
  • the imaging optical lens satisfies the following relationship: -3.00 ⁇ f2/f ⁇ -0.46; -0.49 ⁇ (R3+R4)/(R3-R4) ⁇ 2.75; 0.03 ⁇ d3/TTL ⁇ 0.07.
  • the object side of the third lens is convex at the paraxial position, and the image side of the third lens is concave at the paraxial position;
  • the focal length of the imaging optical lens is f
  • the focal length of the third lens is f. is f3
  • the central radius of curvature of the side of the third lens is R5
  • the central radius of curvature of the image side of the third lens is R6,
  • the on-axis thickness of the third lens is d5
  • the optical The total length is TTL and satisfies the following relationship: 0.82 ⁇ f3/f ⁇ 7.00; -5.82 ⁇ (R5+R6)/(R5-R6) ⁇ -0.79; 0.03 ⁇ d5/TTL ⁇ 0.10.
  • the imaging optical lens satisfies the following relationship: 1.31 ⁇ f3/f ⁇ 5.60; -3.63 ⁇ (R5+R6)/(R5-R6) ⁇ -0.99; 0.05 ⁇ d5/TTL ⁇ 0.08.
  • the object side of the fourth lens is concave at the paraxial position, and the image side of the fourth lens is convex at the paraxial position;
  • the focal length of the imaging optical lens is f
  • the focal length of the fourth lens is f4
  • the axial thickness of the fourth lens is d7
  • the total optical length of the imaging optical lens is TTL, and the following relational expressions are satisfied: -62.08 ⁇ f4/f ⁇ -3.00; 0.04 ⁇ d7/TTL ⁇ 0.18.
  • the imaging optical lens satisfies the following relationship: -38.80 ⁇ f4/f ⁇ -3.75; 0.06 ⁇ d7/TTL ⁇ 0.14.
  • the object side of the fifth lens is convex at the paraxial position, and the image side of the fifth lens is convex at the paraxial position;
  • the focal length of the imaging optical lens is f
  • the focal length of the fifth lens is f. is f5
  • the central radius of curvature of the object side of the fifth lens is R9
  • the central radius of curvature of the image side of the fifth lens is R10
  • the total optical length of the imaging optical lens is TTL, and satisfies the following relationship: 0.39 ⁇ f5/f ⁇ 1.74; -1.79 ⁇ (R9+R10)/(R9-R10) ⁇ -0.20; 0.03 ⁇ d9/TTL ⁇ 0.17.
  • the imaging optical lens satisfies the following relationship: 0.63 ⁇ f5/f ⁇ 1.40; -1.12 ⁇ (R9+R10)/(R9-R10) ⁇ -0.25; 0.06 ⁇ d9/TTL ⁇ 0.14.
  • the object side of the sixth lens is convex at the paraxial position, and the image side of the sixth lens is concave at the paraxial position;
  • the focal length of the imaging optical lens is f
  • the focal length of the sixth lens is f6
  • the central radius of curvature of the object side of the sixth lens is R11
  • the central radius of curvature of the image side of the sixth lens is R12
  • the on-axis thickness of the sixth lens is d11
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: -2.94 ⁇ f6/f ⁇ -0.52; 1.38 ⁇ (R11+R12)/ (R11-R12) ⁇ 6.49; 0.03 ⁇ d11/TTL ⁇ 0.12.
  • the imaging optical lens satisfies the following relationship: -1.84 ⁇ f6/f ⁇ -0.65; 2.21 ⁇ (R11+R12)/(R11-R12) ⁇ 5.19; 0.04 ⁇ d11/TTL ⁇ 0.10.
  • the image height of the imaging optical lens is IH
  • the optical total length of the imaging optical lens is TTL
  • the following relational formula is satisfied: TTL/IH ⁇ 2.08.
  • the imaging optical lens satisfies the following relationship: TTL/IH ⁇ 2.04.
  • the FOV of the imaging optical lens is greater than or equal to 73.71°.
  • the FOV of the imaging optical lens is greater than or equal to 75.23°.
  • the aperture value FNO of the imaging optical lens is less than or equal to 2.83.
  • the aperture value FNO of the imaging optical lens is less than or equal to 2.78.
  • the focal length of the imaging optical lens is f
  • the combined focal length of the first lens and the second lens is f12
  • the following relationship is satisfied: 0.00 ⁇ f12/f ⁇ 6.58.
  • the imaging optical lens according to the present invention has excellent optical properties, and has the characteristics of large aperture, wide angle, and ultra-thinness, and is especially suitable for high-pixel CCD, CMOS and other imaging elements.
  • FIG. 1 is a schematic structural diagram of an imaging optical lens according to a first embodiment of the present invention
  • Fig. 2 is the axial aberration schematic diagram of the imaging optical lens shown in Fig. 1;
  • FIG. 3 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic structural diagram of an imaging optical lens according to a second embodiment of the present invention.
  • Fig. 6 is the axial aberration schematic diagram of the imaging optical lens shown in Fig. 5;
  • FIG. 7 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic structural diagram of an imaging optical lens according to a third embodiment of the present invention.
  • Fig. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in Fig. 9;
  • FIG. 11 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9 .
  • FIG. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention, and the imaging optical lens 10 includes a total of six lenses.
  • the imaging optical lens 10 from the object side to the image side, is: aperture S1, first lens L1, second lens L2, third lens L3, fourth lens L4, fifth lens L5, sixth lens Lens L6.
  • Optical elements such as an optical filter GF may be provided between the sixth lens L6 and the image plane Si.
  • the first lens L1 is made of plastic material
  • the second lens L2 is made of plastic material
  • the third lens L3 is made of plastic material
  • the fourth lens L4 is made of plastic material
  • the fifth lens L5 is made of plastic material
  • the sixth lens L6 is made of plastic material Made of plastic.
  • each lens may also be made of other materials.
  • the central radius of curvature of the image side surface of the second lens L2 is defined as R4
  • the central radius of curvature of the object side surface of the fourth lens L4 is defined as R7, which satisfies the following relationship: -3.50 ⁇ R4/R7 ⁇ -1.00, through the cooperation of the second lens L2 and the fourth lens L4, the chromatic aberration of the imaging system can be effectively corrected, and the balance of various aberrations can be achieved.
  • the on-axis thickness of the first lens L1 is defined as d1
  • the on-axis thickness of the second lens L2 is defined as d3, which satisfy the following relationship: 3.00 ⁇ d1/d3 ⁇ 5.00.
  • the ratio between the axial thickness of the first lens L1 and the axial thickness of the second lens L2 is specified, and when the ratio is within the range, it is beneficial to the development of the lens to a wider angle.
  • the central radius of curvature of the object side of the fourth lens L4 is defined as R7, and the central radius of curvature of the image side of the fourth lens L4 is R8, which satisfies the following relationship: -15.00 ⁇ (R7+R8)/(R7- R8) ⁇ -5.00, which specifies the shape of the fourth lens L4.
  • the object side surface of the first lens is convex at the paraxial position
  • the image side surface is convex at the paraxial position
  • the first lens L1 has a positive refractive power.
  • the object side surface and the image side surface of the first lens L1 can also be set to other concave and convex distributions.
  • the focal length of the imaging optical lens 10 is defined as f, and the focal length of the first lens L1 is f1, which satisfies the following relationship: 0.29 ⁇ f1/f ⁇ 1.64, which specifies the ratio of the focal length of the first lens L1 to the overall focal length.
  • the first lens L1 has an appropriate positive refractive power, which is conducive to reducing system aberrations, and is also conducive to the development of ultra-thin and wide-angle lenses.
  • 0.46 ⁇ f1/f ⁇ 1.31 is satisfied.
  • the central radius of curvature of the object side of the first lens L1 is R1
  • the central radius of curvature of the image side of the first lens L1 is R2, which satisfy the following relationship: -3.34 ⁇ (R1+R2)/(R1-R2 ) ⁇ 0.78, the shape of the first lens L1 is reasonably controlled, so that the first lens L1 can effectively correct the system spherical aberration.
  • -2.09 ⁇ (R1+R2)/(R1-R2) ⁇ 0.62 is satisfied.
  • the on-axis thickness of the first lens L1 is d1
  • the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.08 ⁇ d1/TTL ⁇ 0.36, within the range of the conditional formula, is conducive to realizing ultra-thinning.
  • 0.12 ⁇ d1/TTL ⁇ 0.29 is satisfied.
  • the object side surface of the second lens L2 is concave at the paraxial position
  • the image side surface is concave at the paraxial position
  • the second lens L2 has a negative refractive power
  • the focal length of the imaging optical lens 10 as f
  • the focal length of the second lens L2 as f2
  • f2 which satisfies the following relationship: -4.80 ⁇ f2/f ⁇ -0.37
  • the central curvature radius of the object side surface of the second lens L2 is defined as R3, which satisfies the following relationship: -0.78 ⁇ (R3+R4)/(R3-R4) ⁇ 3.44, which specifies the shape of the second lens L2, which is in the range As the lens develops to ultra-thin and wide-angle, it is beneficial to correct the problem of axial chromatic aberration. Preferably, -0.49 ⁇ (R3+R4)/(R3-R4) ⁇ 2.75 is satisfied.
  • the on-axis thickness of the second lens L2 is d3, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.02 ⁇ d3/TTL ⁇ 0.09, within the range of the conditional formula, it is beneficial to realize ultra-thinning .
  • 0.03 ⁇ d3/TTL ⁇ 0.07 is satisfied.
  • the object side surface of the third lens L3 is convex at the paraxial position, the image side surface is concave at the paraxial position, and the third lens L3 has a positive refractive power.
  • the focal length of the imaging optical lens 10 is defined as f, and the focal length of the third lens L3 is f3, which satisfies the following relationship: 0.82 ⁇ f3/f ⁇ 7.00, through the reasonable distribution of the optical power, the system has a better Imaging quality and lower sensitivity. Preferably, 1.31 ⁇ f3/f ⁇ 5.60 is satisfied.
  • the central radius of curvature of the object side of the third lens L3 is R5, and the central radius of curvature of the image side of the third lens L3 is R6, which satisfy the following relationship: -5.82 ⁇ (R5+R6)/(R5-R6) ⁇ -0.79, which specifies the shape of the third lens L3, which is beneficial to the shaping of the third lens L3.
  • the degree of deflection of the light passing through the lens can be eased, and aberrations can be effectively reduced.
  • -3.63 ⁇ (R5+R6)/(R5-R6) ⁇ -0.99 is satisfied.
  • the axial thickness of the third lens L3 is d5, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.03 ⁇ d5/TTL ⁇ 0.10, within the range of the conditional formula, it is beneficial to realize ultra-thinning .
  • 0.05 ⁇ d5/TTL ⁇ 0.08 is satisfied.
  • the object side surface of the fourth lens L4 is concave at the paraxial position, the image side surface is convex at the paraxial position, and the fourth lens L4 has a negative refractive power.
  • the focal length of the imaging optical lens 10 is defined as f, and the focal length of the fourth lens L4 is f4, which satisfies the following relationship: -62.08 ⁇ f4/f ⁇ -3.00. Best image quality and lower sensitivity. Preferably, -38.80 ⁇ f4/f ⁇ -3.75 is satisfied.
  • the axial thickness of the fourth lens L4 is d7, and the optical total length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.04 ⁇ d7/TTL ⁇ 0.18, within the range of the conditional formula, it is beneficial to realize ultra-thinning .
  • 0.06 ⁇ d7/TTL ⁇ 0.14 is satisfied.
  • the object side surface of the fifth lens L5 is convex at the paraxial position
  • the image side surface is convex at the paraxial position
  • the fifth lens L5 has a positive refractive power
  • the focal length of the imaging optical lens 10 is defined as f, and the focal length of the fifth lens L5 is f5, which satisfies the following relationship: 0.39 ⁇ f5/f ⁇ 1.74, the limitation on the fifth lens L5 can effectively make the imaging optical lens
  • the light angle of 10 is flat, reducing tolerance sensitivity.
  • 0.63 ⁇ f5/f ⁇ 1.17 is satisfied.
  • the central radius of curvature of the object side of the fifth lens L5 is R9
  • the central radius of curvature of the image side of the fifth lens L5 is R10
  • the following relationship is satisfied: -1.79 ⁇ (R9+R10)/(R9- R10) ⁇ -0.20, which specifies the shape of the fifth lens L5.
  • -1.12 ⁇ (R9+R10)/(R9-R10) ⁇ -0.25 is satisfied.
  • the optical total length of the imaging optical lens 10 is TTL, which satisfies the following relational expression: 0.03 ⁇ d9/TTL ⁇ 0.17, which is within the range of the conditional expression, which is favorable for realizing ultra-thinning.
  • 0.06 ⁇ d9/TTL ⁇ 0.14 is satisfied.
  • the object side surface of the sixth lens L6 is convex at the paraxial position, the image side surface is concave at the paraxial position, and the sixth lens L6 has a negative refractive power.
  • the focal length of the imaging optical lens 10 is defined as f, and the focal length of the sixth lens L6 is f6, which satisfies the following relationship: -2.94 ⁇ f6/f ⁇ -0.52. Best image quality and lower sensitivity. Preferably, -1.84 ⁇ f6/f ⁇ -0.65 is satisfied.
  • the central radius of curvature of the object side of the sixth lens L6 is R11
  • the central radius of curvature of the image side of the sixth lens L6 is R12
  • the following relationship is satisfied: 1.38 ⁇ (R11+R12)/(R11-R12 ) ⁇ 6.49, which specifies the shape of the sixth lens L6.
  • the shape of the sixth lens L6 is within the range of conditions, with the development of ultra-thin and wide-angle, it is beneficial to correct problems such as aberration of the off-axis picture angle.
  • 2.21 ⁇ (R11+R12)/(R11-R12) ⁇ 5.19 is satisfied.
  • the axial thickness of the sixth lens L6 is d11, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.03 ⁇ d11/TTL ⁇ 0.12, within the range of the conditional expression, it is beneficial to realize ultra-thinning .
  • 0.04 ⁇ d11/TTL ⁇ 0.10 is satisfied.
  • the image height of the imaging optical lens 10 is IH
  • the total optical length of the imaging optical lens 10 is TTL
  • TTL/IH ⁇ 2.08 which is beneficial to realize ultra-thinning.
  • TTL/IH ⁇ 2.04 is satisfied.
  • the FOV of the imaging optical lens 10 is greater than or equal to 73.71°, so as to achieve a wide angle.
  • the FOV of the imaging optical lens 10 is greater than or equal to 75.23°.
  • the aperture value FNO of the imaging optical lens 10 is less than or equal to 2.83, thereby realizing a large aperture and the imaging performance of the imaging optical lens is good.
  • the aperture value FNO of the imaging optical lens 10 is less than or equal to 2.78.
  • the focal length of the imaging optical lens 10 is defined as f
  • the combined focal length of the first lens L1 and the second lens L2 is f12
  • the following relationship is satisfied: 0.00 ⁇ f12/f ⁇ 6.58,
  • the aberration and distortion of the imaging optical lens 10 can be eliminated, and the back focal length of the imaging optical lens 10 can be suppressed, and the miniaturization of the imaging lens system group can be maintained.
  • 0.00 ⁇ f12/f ⁇ 5.27 is satisfied.
  • the imaging optical lens 10 has good optical performance, it can meet the design requirements of large aperture, wide angle, and ultra-thinning; according to the characteristics of the imaging optical lens 10, the imaging optical lens 10 is especially suitable for CCDs, Mobile phone camera lens assembly and WEB camera lens composed of camera components such as CMOS.
  • the imaging optical lens 10 of the present invention will be described below by way of examples.
  • the symbols described in each example are as follows.
  • the unit of focal length, on-axis distance, center curvature radius, on-axis thickness, inflection point position, and stagnation point position is mm.
  • TTL total optical length (the on-axis distance from the object side of the first lens L1 to the image plane Si), in mm;
  • Aperture value FNO refers to the ratio of the effective focal length of the imaging optical lens to the diameter of the entrance pupil.
  • an inflection point and/or a stagnation point may also be set on the object side and/or the image side of the lens to meet high-quality imaging requirements.
  • an inflection point and/or a stagnation point may also be set on the object side and/or the image side of the lens to meet high-quality imaging requirements.
  • Table 1 and Table 2 show design data of the imaging optical lens 10 according to the first embodiment of the present invention.
  • R the radius of curvature at the center of the optical surface
  • R1 the central radius of curvature of the object side surface of the first lens L1;
  • R2 the central curvature radius of the image side surface of the first lens L1;
  • R3 the central radius of curvature of the object side surface of the second lens L2;
  • R4 the central curvature radius of the image side surface of the second lens L2;
  • R5 the central radius of curvature of the object side surface of the third lens L3;
  • R6 the central curvature radius of the image side surface of the third lens L3;
  • R7 the central curvature radius of the object side surface of the fourth lens L4;
  • R8 the central curvature radius of the image side surface of the fourth lens L4;
  • R9 the central curvature radius of the object side surface of the fifth lens L5;
  • R10 the central curvature radius of the image side surface of the fifth lens L5;
  • R11 the central curvature radius of the object side surface of the sixth lens L6;
  • R12 the central curvature radius of the image side surface of the sixth lens L6;
  • R13 the central curvature radius of the object side of the optical filter GF
  • R14 the central curvature radius of the image side of the optical filter GF
  • d the on-axis thickness of the lens, the on-axis distance between the lenses
  • d0 the on-axis distance from the aperture S1 to the object side surface of the first lens L1;
  • d2 the on-axis distance from the image side of the first lens L1 to the object side of the second lens L2;
  • d4 the on-axis distance from the image side of the second lens L2 to the object side of the third lens L3;
  • d6 the on-axis distance from the image side of the third lens L3 to the object side of the fourth lens L4;
  • d10 the on-axis distance from the image side of the fifth lens L5 to the object side of the sixth lens L6;
  • d11 the on-axis thickness of the sixth lens L6;
  • d12 the on-axis distance from the image side of the sixth lens L6 to the object side of the optical filter GF;
  • nd the refractive index of the d line (the d line is green light with a wavelength of 550 nm);
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • nd6 the refractive index of the d-line of the sixth lens L6;
  • ndg the refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF.
  • Table 2 shows aspherical surface data of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
  • the aspherical surfaces of the respective lens surfaces are those shown in the following formula (1).
  • the present invention is not limited to the aspheric polynomial form represented by the formula (1).
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, A20 are the aspheric coefficients
  • c is the curvature at the center of the optical surface
  • r is the vertical distance between the point on the aspheric curve and the optical axis
  • z is the depth of the aspheric surface (the vertical distance between a point on the aspheric surface with a distance r from the optical axis and a tangent plane tangent to the vertex on the optical axis of the aspheric surface).
  • Table 3 and Table 4 show the design data of the inflection point and the stagnation point of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
  • P1R1 and P1R2 represent the object side and the image side of the first lens L1 respectively
  • P2R1 and P2R2 respectively represent the object side and the image side of the second lens L2
  • P3R1 and P3R2 respectively represent the object side and the image side of the third lens L3
  • P4R1 and P4R2 respectively represent the object side and image side of the fourth lens L4
  • P5R1 and P5R2 respectively represent the object side and the image side of the fifth lens L5
  • P6R1 and P6R2 respectively represent the object side and the image side of the sixth lens L6.
  • the corresponding data in the column of “inflection point position” is the vertical distance from the inflection point set on the surface of each lens to the optical axis of the imaging optical lens 10 .
  • the corresponding data in the column of "stagnation point position” is the vertical distance from the stagnation point set on the surface of each lens to the optical axis of the imaging optical lens 10 .
  • FIG. 2 and 3 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 486 nm, 588 nm and 656 nm passes through the imaging optical lens 10 of the first embodiment.
  • FIG. 4 shows a schematic diagram of the field curvature and distortion of light with a wavelength of 588 nm after passing through the imaging optical lens 10 of the first embodiment.
  • the field curvature S in FIG. 4 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction. .
  • Table 13 shows the values corresponding to various numerical values in the first, second, and third embodiments and the parameters specified in the conditional expressions.
  • the first embodiment satisfies each conditional expression.
  • the entrance pupil diameter ENPD of the imaging optical lens 10 is 1.231 mm
  • the full field of view image height IH is 2.671 mm
  • the FOV in the diagonal direction is 75.99°.
  • the imaging optical lens 10 It meets the design requirements of large aperture, wide-angle, and ultra-thin, and its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the second embodiment is basically the same as the first embodiment, the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
  • FIG. 5 shows an imaging optical lens 20 according to a second embodiment of the present invention.
  • Tables 5 and 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows aspherical surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 7 and Table 8 show the design data of the inflection point and the stagnation point of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • FIG. 6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 486 nm, 588 nm and 656 nm passes through the imaging optical lens 20 of the second embodiment.
  • FIG. 8 shows a schematic diagram of field curvature and distortion after light with a wavelength of 588 nm passes through the imaging optical lens 20 of the second embodiment.
  • the field curvature S in FIG. 8 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction.
  • the second embodiment satisfies each conditional expression.
  • the entrance pupil diameter ENPD of the imaging optical lens 20 is 1.230 mm
  • the full field of view image height IH is 2.671 mm
  • the FOV in the diagonal direction is 75.99°.
  • the imaging optical lens 20 It meets the design requirements of large aperture, wide-angle, and ultra-thin, and its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the third embodiment is basically the same as the first embodiment, the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
  • FIG. 9 shows an imaging optical lens 30 according to a third embodiment of the present invention.
  • Table 9 and Table 10 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 10 shows aspherical surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 11 and Table 12 show the inflection point and stagnation point design data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 486 nm, 588 nm and 656 nm passes through the imaging optical lens 30 of the third embodiment.
  • FIG. 12 shows a schematic diagram of field curvature and distortion after light with a wavelength of 588 nm passes through the imaging optical lens 30 of the third embodiment.
  • the field curvature S in FIG. 12 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction.
  • Table 13 lists the numerical values corresponding to each conditional expression in the present embodiment according to the above-mentioned conditional expression. Obviously, the imaging optical lens 30 of the present embodiment satisfies the above-mentioned conditional expression.
  • the entrance pupil diameter ENPD of the imaging optical lens 30 is 1.229 mm
  • the image height IH of the full field of view is 2.671 mm
  • the FOV in the diagonal direction is 76.01°.
  • the imaging optical lens 30 It meets the design requirements of large aperture, wide-angle, and ultra-thin, and its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • Example 2 Example 3 d1/d3 3.01 4.00 4.99 d8/d9 0.40 0.60 0.79 R4/R7 -3.49 -2.25 -1.01 (R7+R8)/(R7-R8) -14.99 -10.00 -5.01 f 3.384 3.380 3.378 f1 2.284 2.133 1.946 f2 -3.386 -2.474 -1.858 f3 15.783 7.805 5.552 f4 -105.040 -36.033 -19.698 f5 3.292 3.277 2.668 f6 -2.635 -2.754 -2.678 FNO 2.75 2.75 2.75 TTL 4.837 5.052 5.343 IH 2.671 2.671 2.671 FOV 75.99° 75.99° 76.01°

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种包含六片透镜的摄像光学镜头(10),涉及光学镜头领域,六片透镜自物侧至像侧依序为:第一透镜(L1)具有正屈折力,第二透镜(L2)具有负屈折力,第三透镜(L3)具有正屈折力,第四透镜(L4)具有负屈折力,第五透镜(L5)具有正屈折力,第六透镜(L6)具有负屈折力;第二透镜(L2)的像侧面的中心曲率半径为R4,第四透镜(L4)的物侧面的中心曲率半径为R7,第四透镜(L4)的像侧面的中心曲率半径为R8,第一透镜(L1)的轴上厚度为d1,第二透镜(L2)的轴上厚度为d3,第四透镜(L4)的像侧面到第五透镜(L5)的物侧面的轴上距离为d8,第五透镜(L5)的轴上厚度为d9,且满足下列关系式:-3.50≤R4/R7≤-1.00;3.00≤d1/d3≤5.00;0.40≤d8/d9≤0.80;-15.00≤(R7+R8)/(R7-R8)≤-5.00。这种摄像光学镜头(10)具有大光圈、广角化、超薄化的特性。

Description

摄像光学镜头 技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着各种智能设备的兴起,小型化摄像光学镜头的需求日渐提高,且由于感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄便携的外形为发展趋势,因此,具备良好成像品质的小型化摄像光学镜头俨然成为目前市场上的主流。为获得较佳的成像品质,多采用多片式透镜结构。并且,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,六片式透镜结构逐渐出现在镜头设计当中。迫切需要具有优秀的光学特征、体积小且像差被充分补正的广角摄像镜头。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,其具有良好光学性能的同时,满足大光圈、超薄化、广角化的设计要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头共包含六片透镜,所述六片透镜自物侧至像侧依序为:具有正屈折力的第一透镜,具有负屈折力的第二透镜,具有正屈折力的第三透镜,具有负屈折力的第四透镜,具有正屈折力的第五透镜,以及具有负屈折力的第六透镜;其中,所述第二透镜的像侧面的中心曲率半径为R4,所述第四透镜的物侧面的中心曲率半径为R7,所述第四透镜的像侧面的中心曲率半径为R8,所述第一透镜的轴上厚度为d1,所述第二透镜的轴上厚度为d3,所述第四透镜的像侧面到所述第五透镜的物侧面的轴上距离为d8,所述第五透镜的轴上厚度为d9,且满足下列关系式:-3.50≤R4/R7≤-1.00;3.00≤d1/d3≤5.00;0.40≤d8/d9≤0.80;-15.00≤(R7+R8)/(R7-R8)≤-5.00。
优选的,所述第一透镜的物侧面于近轴处为凸面;所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第一透镜的物侧面的中心曲率半径为R1,所述第一透镜的像侧面 的中心曲率半径为R2,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.29≤f1/f≤1.64;-3.34≤(R1+R2)/(R1-R2)≤0.78;0.08≤d1/TTL≤0.36。
优选的,所述摄像光学镜头满足下列关系式:0.46≤f1/f≤1.31;-2.09≤(R1+R2)/(R1-R2)≤0.62;0.12≤d1/TTL≤0.29。
优选的,所述第二透镜的像侧面于近轴处为凹面;所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第二透镜的物侧面的中心曲率半径为R3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-4.80≤f2/f≤-0.37;-0.78≤(R3+R4)/(R3-R4)≤3.44;0.02≤d3/TTL≤0.09。
优选的,所述摄像光学镜头满足下列关系式:-3.00≤f2/f≤-0.46;-0.49≤(R3+R4)/(R3-R4)≤2.75;0.03≤d3/TTL≤0.07。
优选的,所述第三透镜的物侧面于近轴处为凸面,所述第三透镜的像侧面于近轴处为凹面;所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜侧面的中心曲率半径为R5,所述第三透镜的像侧面的中心曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.82≤f3/f≤7.00;-5.82≤(R5+R6)/(R5-R6)≤-0.79;0.03≤d5/TTL≤0.10。
优选的,所述摄像光学镜头满足下列关系式:1.31≤f3/f≤5.60;-3.63≤(R5+R6)/(R5-R6)≤-0.99;0.05≤d5/TTL≤0.08。
优选的,所述第四透镜的物侧面于近轴处为凹面,所述第四透镜的像侧面于近轴处为凸面;所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-62.08≤f4/f≤-3.00;0.04≤d7/TTL≤0.18。
优选的,所述摄像光学镜头满足下列关系式:-38.80≤f4/f≤-3.75;0.06≤d7/TTL≤0.14。
优选的,所述第五透镜的物侧面于近轴处为凸面,所述第五透镜的像侧面于近轴处为凸面;所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜的物侧面的中心曲率半径为R9,所述第五透镜的像侧面的中心曲率半径为R10,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.39≤f5/f≤1.74;-1.79≤(R9+R10)/(R9-R10)≤-0.20;0.03≤d9/TTL≤0.17。
优选的,所述摄像光学镜头满足下列关系式:0.63≤f5/f≤1.40;-1.12≤(R9+R10)/(R9-R10)≤-0.25;0.06≤d9/TTL≤0.14。
优选的,所述第六透镜的物侧面于近轴处为凸面,所述第六透镜的像侧面于近轴处为凹面;
优选的,所述摄像光学镜头的焦距为f,所述第六透镜的焦距为f6,所述第六透镜的物侧面的中心曲率半径为R11,所述第六透镜的像侧面的中心曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-2.94≤f6/f≤-0.52;1.38≤(R11+R12)/(R11-R12)≤6.49;0.03≤d11/TTL≤0.12。
优选的,所述摄像光学镜头满足下列关系式:-1.84≤f6/f≤-0.65;2.21≤(R11+R12)/(R11-R12)≤5.19;0.04≤d11/TTL≤0.10。
优选的,所述摄像光学镜头的像高为IH,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:TTL/IH≤2.08。
优选的,所述摄像光学镜头满足下列关系式:TTL/IH≤2.04。
优选的,所述摄像光学镜头的视场角FOV大于或等于73.71°。
优选的,所述摄像光学镜头的视场角FOV大于或等于75.23°。
优选的,所述摄像光学镜头的光圈值FNO小于或等于2.83。
优选的,所述摄像光学镜头的光圈值FNO小于或等于2.78。
优选的,所述摄像光学镜头的焦距为f,所述第一透镜与所述第二透镜的组合焦距为f12,且满足下列关系式:0.00≤f12/f≤6.58。
本发明的有益效果在于:根据本发明的摄像光学镜头具有优秀的光学特性,且具有大光圈、广角化、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
为了更清楚地说明本发明实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10共包含六个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序为:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6。第六透镜L6和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
在本实施方式中,第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质,第六透镜L6为塑料材质。在其他可选的实施方式中,各透镜也可以是其他材质。
在本实施方式中,定义所述第二透镜L2的像侧面的中心曲率半径为R4,所述第四透镜L4的物侧面的中心曲率半径为R7,满足下列关系式:-3.50≤R4/R7≤-1.00,通过第二透镜L2和第四透镜L4的配合,可有效地矫正成像系统的色差,并且有利于实现各种像差的平衡。
定义所述第四透镜L4的像侧面到所述第五透镜L5的物侧面的轴上距离为d8,所述第五透镜L5的轴上厚度为d9,满足下列关系式:0.40≤d8/d9≤0.80,规定了第四透镜L4的像侧面到所述第五透镜L5的物侧面的轴上距离d8和第五透镜L5的轴上厚度d9的比值,在范围内时,有利于镜头向广角化发展。
定义所述第一透镜L1的轴上厚度为d1,所述第二透镜L2的轴上厚度为d3,满足下列关系式:3.00≤d1/d3≤5.00。规定了第一透镜L1的轴上厚度和第二透镜L2的轴上厚度的比值,在范围内时,有利于镜头向广角化发展。
定义所述第四透镜L4的物侧面的中心曲率半径为R7,所述第四透镜L4的像侧面的中心曲率半径为R8,满足下列关系式:-15.00≤(R7+R8)/(R7-R8)≤-5.00,规定的是第四透镜L4的形状,在范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。
本实施方式中,所述第一透镜的物侧面于近轴处为凸面,像侧面于近轴处为凸面,第一透镜L1具有正屈折力。在其他可选的实施方式中,第一透镜L1的物侧面和的像侧面也可设置为其他凹、凸分布情况。
定义所述摄像光学镜头10的焦距为f,所述第一透镜L1的焦距为f1,满足下列关系式:0.29≤f1/f≤1.64,规定了第一透镜L1的焦距与整体焦距的比值。在规定的范围内时,第一透镜L1具有适当的正屈折力,有利于减小系统像差,同时有利于镜头向超薄化、广角化发展。优选的,满足0.46≤f1/f≤1.31。
所述第一透镜L1的物侧面的中心曲率半径为R1,所述第一透镜L1的像侧面的中心曲率半径为R2,满足下列关系式:-3.34≤(R1+R2)/(R1-R2)≤0.78,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。优选地,满足-2.09≤(R1+R2)/(R1-R2)≤0.62。
所述第一透镜L1的轴上厚度为d1,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.08≤d1/TTL≤0.36,在条件式范围内,有利于实现超薄化。优选地,满足0.12≤d1/TTL≤0.29。
本实施方式中,第二透镜L2的物侧面于近轴处为凹面,像侧面于近轴处为凹面,第二透镜L2具有负屈折力。
定义所述摄像光学镜头10的焦距为f,所述第二透镜L2的焦距为f2,满足下列关系式:-4.80≤f2/f≤-0.37,通过将第二透镜L2的负光焦度控制在合理范围,有利于矫正光学系统的像差。
定义所述第二透镜L2的物侧面的中心曲率半径为R3,满足下列关系式:-0.78≤(R3+R4)/(R3-R4)≤3.44,规定了第二透镜L2的形状,在范围内时,随着镜头向超薄广角化发展,有利于补正轴上色像差问题。优选地,满足-0.49≤(R3+R4)/(R3-R4)≤2.75。
所述第二透镜L2的轴上厚度为d3,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d3/TTL≤0.09,在条件式范围内,有利于实现超薄化。优选地,满足0.03≤d3/TTL≤0.07。
本实施方式中,第三透镜L3的物侧面于近轴处为凸面,像侧面于近轴处为凹面,第三透镜L3具有正屈折力。
定义所述摄像光学镜头10的焦距为f,所述第三透镜L3的焦距为f3,满足下列关系式:0.82≤f3/f≤7.00,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足1.31≤f3/f≤5.60。
所述第三透镜L3的物侧面的中心曲率半径为R5,第三透镜L3的像侧面的中心曲率半径为R6,满足下列关系式:-5.82≤(R5+R6)/(R5-R6)≤-0.79,规定了第三透镜L3的形状,有利于第三透镜L3成型,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足-3.63≤(R5+R6)/(R5-R6)≤-0.99。
所述第三透镜L3的轴上厚度为d5,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d5/TTL≤0.10,在条件式范围内,有利于实现超薄化。优选地,满足0.05≤d5/TTL≤0.08。
本实施方式中,第四透镜L4的物侧面于近轴处为凹面,像侧面于近轴处为凸面,第四透镜L4具有负屈折力。
定义所述摄像光学镜头10的焦距为f,所述第四透镜L4的焦距为f4,满足下列关系式:-62.08≤f4/f≤-3.00,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-38.80≤f4/f≤-3.75。
所述第四透镜L4的轴上厚度为d7,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.04≤d7/TTL≤0.18,在条件式范围内,有利于实现超薄化。优选地,满足0.06≤d7/TTL≤0.14。
本实施方式中,第五透镜L5的物侧面于近轴处为凸面,像侧面于近轴处为凸面,第五透镜L5具有正屈折力。
定义所述摄像光学镜头10的焦距为f,所述第五透镜L5的焦距为f5,满足下列关系式:0.39≤f5/f≤1.74,对第五透镜L5的限定可有效的使得摄像光学镜头10的光线角度平缓,降低公差敏感度。优选地,满足0.63≤f5/f≤1.17。
所述第五透镜L5的物侧面的中心曲率半径为R9,所述第五透镜L5的像侧面的中心曲率半径为R10,且满足下列关系式:-1.79≤(R9+R10)/(R9-R10)≤-0.20,规定了第五透镜L5的形状,在范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足-1.12≤(R9+R10)/(R9-R10)≤-0.25。
所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d9/TTL≤0.17,在条件式范围内,有利于实现超薄化。优选地,满足0.06≤d9/TTL≤0.14。
本实施方式中,第六透镜L6的物侧面于近轴处为凸面,像侧面于近轴处为凹面,第六透镜L6具有负屈折力。
定义所述摄像光学镜头10的焦距为f,所述第六透镜L6的焦距为f6,满足下列关系式:-2.94≤f6/f≤-0.52,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-1.84≤f6/f≤-0.65。
所述第六透镜L6的物侧面的中心曲率半径为R11,所述第六透镜L6的像侧面的中心曲率半径为R12,且满足下列关系式:1.38≤(R11+R12)/(R11-R12)≤6.49,规定了第六透镜L6的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足2.21≤(R11+R12)/(R11-R12)≤5.19。
所述第六透镜L6的轴上厚度为d11,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d11/TTL≤0.12,在条件式范围内,有利于实现超薄化。优选地,满足0.04≤d11/TTL≤0.10。
本实施方式中,所述摄像光学镜头10的像高为IH,所述摄像光学镜头10的光学总长为TTL,且满足下列关系式:TTL/IH≤2.08,从而有利于实现超薄化。优选地,满足TTL/IH≤2.04。
本实施方式中,所述摄像光学镜头10的视场角FOV大于或等于73.71°,从而实现广角化。优选的,所述摄像光学镜头10的视场角FOV大于或等于75.23°。
本实施方式中,所述摄像光学镜头10光圈值FNO小于或等于2.83,从而实现大光圈,摄像光学镜头成像性能好。优选的,摄像光学镜头10的光圈值FNO小于或等于2.78。
本实施方式中,定义所述摄像光学镜头10的焦距为f,所述第一透镜L1与所述第二透镜L2的组合焦距为f12,且满足下列关系式:0.00≤f12/f≤6.58,借此,可消除摄像光学镜头10的像差与歪曲,且可压制摄像光学镜头10后焦距,维持影像镜片系统组小型化。优选的,满足0.00≤f12/f≤5.27。
摄像光学镜头10具有良好光学性能的同时,能够满足大光圈、广角化、超薄化的设计要求;根据该摄像光学镜头10的特性,该摄像光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、中心曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到像面Si的轴上距离),单位为mm;
光圈值FNO:是指摄像光学镜头的有效焦距和入瞳直径的比值。
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
Figure PCTCN2020138841-appb-000001
其中,各符号的含义如下。
S1:光圈;
R:光学面中心处的曲率半径;
R1:第一透镜L1的物侧面的中心曲率半径;
R2:第一透镜L1的像侧面的中心曲率半径;
R3:第二透镜L2的物侧面的中心曲率半径;
R4:第二透镜L2的像侧面的中心曲率半径;
R5:第三透镜L3的物侧面的中心曲率半径;
R6:第三透镜L3的像侧面的中心曲率半径;
R7:第四透镜L4的物侧面的中心曲率半径;
R8:第四透镜L4的像侧面的中心曲率半径;
R9:第五透镜L5的物侧面的中心曲率半径;
R10:第五透镜L5的像侧面的中心曲率半径;
R11:第六透镜L6的物侧面的中心曲率半径;
R12:第六透镜L6的像侧面的中心曲率半径;
R13:光学过滤片GF的物侧面的中心曲率半径;
R14:光学过滤片GF的像侧面的中心曲率半径;
d:透镜的轴上厚度、透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到光学过滤片GF的物侧面的轴上距离;
d13:光学过滤片GF的轴上厚度;
d14:光学过滤片GF的像侧面到像面Si的轴上距离;
nd:d线的折射率(d线为波长为550nm的绿光);
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure PCTCN2020138841-appb-000002
为方便起见,各个透镜面的非球面使用下述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
z=(cr 2)/{1+[1-(k+1)(c 2r 2)] 1/2}+A4r 4+A6r 6+A8r 8+A10r 10+A12r 12+A14r 14+A16r 16+A18r 18+A20r 20           (1)
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数,c是光学面中心处的曲率,r是非球面曲线上的点与光轴的垂直距离,z是非球面深度(非球面上距离光轴为r的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 1 0.575 /
P1R2 0 / /
P2R1 1 0.865 /
P2R2 1 0.305 /
P3R1 2 0.305 0.985
P3R2 2 0.385 1.015
P4R1 1 0.895 /
P4R2 1 1.035 /
P5R1 2 0.735 1.545
P5R2 2 0.075 0.815
P6R1 1 0.405 /
P6R2 1 0.485 /
【表4】
  驻点个数 驻点位置1 驻点位置2
P1R1 0 / /
P1R2 0 / /
P2R1 0 / /
P2R2 1 0.515 /
P3R1 1 0.495 /
P3R2 1 0.565 /
P4R1 0 / /
P4R2 0 / /
P5R1 1 1.125 /
P5R2 2 0.125 1.255
P6R1 1 0.755 /
P6R2 1 1.475 /
图2、图3分别示出了波长为486nm、588nm及656nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了波长为588nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表13示出各实施例一、二、三中各种数值与条件式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头10的入瞳直径ENPD为1.231mm,全视场像高IH为2.671mm,对角线方向的视场角FOV为75.99°,所述摄像光学镜头10满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
图5所示为本发明第二实施方式的摄像光学镜头20。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure PCTCN2020138841-appb-000003
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure PCTCN2020138841-appb-000004
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 0 / / /
P1R2 1 0.885 / /
P2R1 1 0.895 / /
P2R2 1 0.435 / /
P3R1 2 0.375 1.025 /
P3R2 2 0.475 1.215 /
P4R1 2 0.945 0.965 /
P4R2 1 1.015 / /
P5R1 2 0.705 1.525 /
P5R2 2 0.055 0.765 /
P6R1 3 0.425 1.635 1.745
P6R2 1 0.465 / /
【表8】
  驻点个数 驻点位置1 驻点位置2
P1R1 0 / /
P1R2 0 / /
P2R1 0 / /
P2R2 1 0.665 /
P3R1 1 0.595 /
P3R2 1 0.675 /
P4R1 0 / /
P4R2 0 / /
P5R1 1 1.125 /
P5R2 2 0.095 1.235
P6R1 1 0.795 /
P6R2 1 1.485 /
图6、图7分别示出了波长为486nm、588nm及656nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了波长为588nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。图8的场曲S是弧矢方向的场曲,T是子午方向的场曲。
如表13所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头20的入瞳直径ENPD为1.230mm,全视场像高IH为2.671mm,对角线方向的视场角FOV为75.99°,所述摄像光学镜头20满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
图9所示为本发明第三实施方式的摄像光学镜头30。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure PCTCN2020138841-appb-000005
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
Figure PCTCN2020138841-appb-000006
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3 反曲点位置4
P1R1 0 / / / /
P1R2 1 0.915 / / /
P2R1 1 0.935 / / /
P2R2 2 0.495 1.145 / /
P3R1 2 0.585 1.145 / /
P3R2 3 0.575 1.175 1.305 /
P4R1 2 0.965 1.285 / /
P4R2 1 1.025 / / /
P5R1 3 0.795 1.595 1.695 /
P5R2 4 0.145 0.875 1.645 1.745
P6R1 3 0.465 1.605 1.765 /
P6R2 1 0.495 / / /
【表12】
  驻点个数 驻点位置1 驻点位置2
P1R1 0 / /
P1R2 0 / /
P2R1 0 / /
P2R2 1 0.785 /
P3R1 1 0.915 /
P3R2 1 0.895 /
P4R1 0 / /
P4R2 0 / /
P5R1 1 1.205 /
P5R2 2 0.255 1.285
P6R1 1 0.915 /
P6R2 1 1.615 /
图10、图11分别示出了波长为486nm、588nm及656nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了波长为588nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。图12的场曲S是弧矢方向的场曲,T是子午方向的场曲。
以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学镜头30满足上述的条件式。
在本实施方式中,所述摄像光学镜头30的入瞳直径ENPD为1.229mm,全视场像高IH为2.671mm,对角线方向的视场角FOV为76.01°,所述摄像光学镜头30满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
【表13】
参数及条件式 实施例1 实施例2 实施例3
d1/d3 3.01 4.00 4.99
d8/d9 0.40 0.60 0.79
R4/R7 -3.49 -2.25 -1.01
(R7+R8)/(R7-R8) -14.99 -10.00 -5.01
f 3.384 3.380 3.378
f1 2.284 2.133 1.946
f2 -3.386 -2.474 -1.858
f3 15.783 7.805 5.552
f4 -105.040 -36.033 -19.698
f5 3.292 3.277 2.668
f6 -2.635 -2.754 -2.678
FNO 2.75 2.75 2.75
TTL 4.837 5.052 5.343
IH 2.671 2.671 2.671
FOV 75.99° 75.99° 76.01°
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (20)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头共包含六片透镜,所述六片透镜自物侧至像侧依序为:具有正屈折力的第一透镜,具有负屈折力的第二透镜,具有正屈折力的第三透镜,具有负屈折力的第四透镜,具有正屈折力的第五透镜,以及具有负屈折力的第六透镜;
    其中,所述第二透镜的像侧面的中心曲率半径为R4,所述第四透镜的物侧面的中心曲率半径为R7,所述第四透镜的像侧面的中心曲率半径为R8,所述第一透镜的轴上厚度为d1,所述第二透镜的轴上厚度为d3,所述第四透镜的像侧面到所述第五透镜的物侧面的轴上距离为d8,所述第五透镜的轴上厚度为d9,且满足下列关系式:
    -3.50≤R4/R7≤-1.00;
    3.00≤d1/d3≤5.00;
    0.40≤d8/d9≤0.80;
    -15.00≤(R7+R8)/(R7-R8)≤-5.00。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的物侧面于近轴处为凸面;
    所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第一透镜的物侧面的中心曲率半径为R1,所述第一透镜的像侧面的中心曲率半径为R2,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.29≤f1/f≤1.64;
    -3.34≤(R1+R2)/(R1-R2)≤0.78;
    0.08≤d1/TTL≤0.36。
  3. 根据权利要求2所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    0.46≤f1/f≤1.31;
    -2.09≤(R1+R2)/(R1-R2)≤0.62;
    0.12≤d1/TTL≤0.29。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的像侧面于近轴处为凹面;
    所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第二透镜的物侧面的中心曲率半径为R3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -4.80≤f2/f≤-0.37;
    -0.78≤(R3+R4)/(R3-R4)≤3.44;
    0.02≤d3/TTL≤0.09。
  5. 根据权利要求4所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    -3.00≤f2/f≤-0.46;
    -0.49≤(R3+R4)/(R3-R4)≤2.75;
    0.03≤d3/TTL≤0.07。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的物侧面于近轴处为凸面,所述第三透镜的像侧面于近轴处为凹面;
    所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜侧面的中心曲率半径为R5,所述第三透镜的像侧面的中心曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.82≤f3/f≤7.00;
    -5.82≤(R5+R6)/(R5-R6)≤-0.79;
    0.03≤d5/TTL≤0.10。
  7. 根据权利要求6所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    1.31≤f3/f≤5.60;
    -3.63≤(R5+R6)/(R5-R6)≤-0.99;
    0.05≤d5/TTL≤0.08。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的物侧面于近轴处为凹面,所述第四透镜的像侧面于近轴处为凸面;
    所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -62.08≤f4/f≤-3.00;
    0.04≤d7/TTL≤0.18。
  9. 根据权利要求8所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    -38.80≤f4/f≤-3.75;
    0.06≤d7/TTL≤0.14。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的物侧面于近轴处为凸面,所述第五透镜的像侧面于近轴处为凸面;
    所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜的物侧面的中心曲率半径为R9,所述第五透镜的像侧面的中心曲率半径为R10,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.39≤f5/f≤1.74;
    -1.79≤(R9+R10)/(R9-R10)≤-0.20;
    0.03≤d9/TTL≤0.17。
  11. 根据权利要求10所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    0.63≤f5/f≤1.40;
    -1.12≤(R9+R10)/(R9-R10)≤-0.25;
    0.06≤d9/TTL≤0.14。
  12. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜的物侧面于近轴处为凸面,所述第六透镜的像侧面于近轴处为凹面;
    所述摄像光学镜头的焦距为f,所述第六透镜的焦距为f6,所述第六透镜的物侧面的中心曲率半径为R11,所述第六透镜的像侧面的中心曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -2.94≤f6/f≤-0.52;
    1.38≤(R11+R12)/(R11-R12)≤6.49;
    0.03≤d11/TTL≤0.12。
  13. 根据权利要求12所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    -1.84≤f6/f≤-0.65;
    2.21≤(R11+R12)/(R11-R12)≤5.19;
    0.04≤d11/TTL≤0.10。
  14. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的像高为IH,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:TTL/IH≤2.08。
  15. 根据权利要求14所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:TTL/IH≤2.04。
  16. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的视场角FOV大于或等于73.71°。
  17. 根据权利要求16所述的摄像光学镜头,其特征在于,所述摄像光学镜头的视场角FOV大于或等于75.23°。
  18. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈值FNO小于或等于2.83。
  19. 根据权利要求18所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈值FNO小于或等于2.78。
  20. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第一透镜与所述第二透镜的组合焦距为f12,且满足下列关系式:0.00≤f12/f≤6.58。
PCT/CN2020/138841 2020-12-14 2020-12-24 摄像光学镜头 WO2022126700A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011462456.1 2020-12-14
CN202011462456.1A CN112230401B (zh) 2020-12-14 2020-12-14 摄像光学镜头

Publications (1)

Publication Number Publication Date
WO2022126700A1 true WO2022126700A1 (zh) 2022-06-23

Family

ID=74124594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138841 WO2022126700A1 (zh) 2020-12-14 2020-12-24 摄像光学镜头

Country Status (3)

Country Link
US (1) US20220187572A1 (zh)
CN (1) CN112230401B (zh)
WO (1) WO2022126700A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022205217A1 (zh) * 2021-03-31 2022-10-06 欧菲光集团股份有限公司 成像系统、摄像模组以及电子设备
US20230024433A1 (en) * 2021-07-19 2023-01-26 Meta Platforms Technologies, Llc Optical components having athermalization and aberration correction characteristics
TWI827073B (zh) * 2022-05-27 2023-12-21 大立光電股份有限公司 影像系統透鏡組、取像裝置及電子裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106842501A (zh) * 2016-06-20 2017-06-13 瑞声科技(新加坡)有限公司 摄像镜头
WO2017160093A1 (ko) * 2016-03-18 2017-09-21 주식회사 에이스솔루텍 촬영 렌즈 광학계
CN208752293U (zh) * 2017-04-14 2019-04-16 康达智株式会社 摄像镜头
CN110133824A (zh) * 2018-02-08 2019-08-16 先进光电科技股份有限公司 光学成像系统
CN110333590A (zh) * 2019-06-29 2019-10-15 瑞声光电科技(苏州)有限公司 摄像光学镜头

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330875B (zh) * 2014-07-07 2017-11-10 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头
JP2016114803A (ja) * 2014-12-16 2016-06-23 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
CN109669254B (zh) * 2016-01-29 2020-11-06 大立光电股份有限公司 摄像用光学透镜组、取像装置及电子装置
TWI601995B (zh) * 2017-01-18 2017-10-11 Largan Precision Co Ltd 影像擷取光學鏡組、取像裝置及電子裝置
CN108227121B (zh) * 2017-12-04 2020-08-25 瑞声光学解决方案私人有限公司 摄像光学镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017160093A1 (ko) * 2016-03-18 2017-09-21 주식회사 에이스솔루텍 촬영 렌즈 광학계
CN106842501A (zh) * 2016-06-20 2017-06-13 瑞声科技(新加坡)有限公司 摄像镜头
CN208752293U (zh) * 2017-04-14 2019-04-16 康达智株式会社 摄像镜头
CN110133824A (zh) * 2018-02-08 2019-08-16 先进光电科技股份有限公司 光学成像系统
CN110333590A (zh) * 2019-06-29 2019-10-15 瑞声光电科技(苏州)有限公司 摄像光学镜头

Also Published As

Publication number Publication date
CN112230401B (zh) 2021-05-07
CN112230401A (zh) 2021-01-15
US20220187572A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
WO2021253516A1 (zh) 摄像光学镜头
WO2022057036A1 (zh) 摄像光学镜头
WO2020134281A1 (zh) 摄像光学镜头
WO2022052258A1 (zh) 摄像光学镜头
WO2021253515A1 (zh) 摄像光学镜头
WO2022126700A1 (zh) 摄像光学镜头
WO2020134265A1 (zh) 摄像光学镜头
WO2022126699A1 (zh) 摄像光学镜头
WO2022057046A1 (zh) 摄像光学镜头
WO2020134279A1 (zh) 摄像光学镜头
WO2020134277A1 (zh) 摄像光学镜头
WO2022134183A1 (zh) 摄像光学镜头
WO2022134178A1 (zh) 摄像光学镜头
WO2022134177A1 (zh) 摄像光学镜头
WO2022062072A1 (zh) 摄像光学镜头
WO2022047985A1 (zh) 摄像光学镜头
WO2022011740A1 (zh) 摄像光学镜头
WO2022047986A1 (zh) 摄像光学镜头
WO2021168889A1 (zh) 摄像光学镜头
WO2022126707A1 (zh) 摄像光学镜头
WO2022126708A1 (zh) 摄像光学镜头
WO2022088349A1 (zh) 摄像光学镜头
WO2022057037A1 (zh) 摄像光学镜头
WO2022057045A1 (zh) 摄像光学镜头
WO2022088346A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965713

Country of ref document: EP

Kind code of ref document: A1