WO2020134265A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2020134265A1
WO2020134265A1 PCT/CN2019/108707 CN2019108707W WO2020134265A1 WO 2020134265 A1 WO2020134265 A1 WO 2020134265A1 CN 2019108707 W CN2019108707 W CN 2019108707W WO 2020134265 A1 WO2020134265 A1 WO 2020134265A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
optical lens
ttl
curvature
Prior art date
Application number
PCT/CN2019/108707
Other languages
English (en)
French (fr)
Inventor
寺岡弘之
张磊
王燕妹
吴双
Original Assignee
瑞声通讯科技(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声通讯科技(常州)有限公司 filed Critical 瑞声通讯科技(常州)有限公司
Publication of WO2020134265A1 publication Critical patent/WO2020134265A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Definitions

  • the invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal devices such as smart phones and digital cameras, and imaging devices such as monitors and PC lenses.
  • the photosensitive device of general photographic lenses is nothing more than a photosensitive coupling device (Charge Coupled Device, CCD) or a complementary metal oxide semiconductor device (Complementary Metal) -Oxide Semicondctor Sensor, CMOS Sensor), and due to the advancement of semiconductor manufacturing technology, the pixel size of the photosensitive device has been reduced.
  • CCD Charge Coupled Device
  • CMOS Sensor complementary metal oxide semiconductor device
  • today's electronic products have a trend of good function, thin and thin appearance, so they have good
  • the imaging quality of the miniaturized camera lens has become the mainstream on the market.
  • the lenses traditionally mounted on mobile phone cameras mostly use three-piece or four-piece lens structures.
  • the object of the present invention is to provide an imaging optical lens that can meet the requirements of ultra-thin and wide-angle while achieving high imaging performance.
  • an imaging optical lens which includes, in order from the object side to the image side, a first lens, a second lens, a third lens, and a fourth lens , A fifth lens, and a sixth lens; the second lens has a positive refractive power, and the third lens has a positive refractive power;
  • the focal length of the first lens is f1
  • the focal length of the third lens is f3
  • the radius of curvature of the object side of the third lens is R5
  • the radius of curvature of the image side of the third lens is R6, satisfying the following relationship : 1.40 ⁇ f1/f3 ⁇ 5.00; 2.50 ⁇ R5/R6 ⁇ 6.00.
  • the imaging optical lens satisfies the following relationship: 1.43 ⁇ f1/f3 ⁇ 4.95; 2.53 ⁇ R5/R6 ⁇ 5.94.
  • the first lens has a positive refractive power, its object side is convex on the paraxial axis, and its image side is concave on the paraxial axis;
  • the focal length of the imaging optical lens is f
  • the radius of curvature of the object side of the first lens is R1
  • the radius of curvature of the image side of the first lens is R2
  • the total optical length of the imaging optical lens is TTL
  • the The on-axis thickness of the first lens is d1, and the following relationship is satisfied: 0.54 ⁇ f1/f ⁇ 4.55; -17.96 ⁇ (R1+R2)/(R1-R2) ⁇ -1.29; 0.05 ⁇ d1/TTL ⁇ 0.16.
  • the imaging optical lens satisfies the following relationship: 0.87 ⁇ f1/f ⁇ 3.64; -11.23 ⁇ (R1+R2)/(R1-R2) ⁇ -1.62; 0.07 ⁇ d1/TTL ⁇ 0.13.
  • the focal length of the imaging optical lens is f
  • the focal length of the second lens is f2
  • the object side of the second lens is convex on the paraxial axis
  • the radius of curvature of the object side of the second lens is R3
  • the radius of curvature of the image side of the second lens is R4
  • the axial thickness of the second lens is d3
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: 0.64 ⁇ f2/f ⁇ 4.32;- 3.75 ⁇ (R3+R4)/(R3-R4) ⁇ -0.41; 0.04 ⁇ d3/TTL ⁇ 0.13.
  • the imaging optical lens satisfies the following relationship: 1.02 ⁇ f2/f ⁇ 3.46; -2.35 ⁇ (R3+R4)/(R3-R4) ⁇ -0.52; 0.06 ⁇ d3/TTL ⁇ 0.10.
  • the focal length of the imaging optical lens is f
  • the object side surface of the third lens is concave on the paraxial axis
  • the image side surface is convex on the paraxial axis
  • the on-axis thickness of the third lens is d5
  • the imaging The total optical length of the optical lens is TTL, and the following relationship is satisfied: 0.31 ⁇ f3/f ⁇ 1.13; 0.70 ⁇ (R5+R6)/(R5-R6) ⁇ 3.44; 0.05 ⁇ d5/TTL ⁇ 0.16.
  • the imaging optical lens satisfies the following relationship: 0.49 ⁇ f3/f ⁇ 0.901.13 ⁇ (R5+R6)/(R5-R6) ⁇ 2.75; 0.07 ⁇ d5/TTL ⁇ 0.13.
  • the fourth lens has a negative refractive power, and its object side is concave on the paraxial axis; the focal length of the imaging optical lens is f, the focal length of the fourth lens is f4, and the object side of the fourth lens
  • the radius of curvature is R7
  • the radius of curvature of the image side of the fourth lens is R8,
  • the axial thickness of the fourth lens is d7
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: -0.98 ⁇ f4/f ⁇ -0.28; -2.04 ⁇ (R7+R8)/(R7-R8) ⁇ -0.54; 0.03 ⁇ d7/TTL ⁇ 0.10.
  • the imaging optical lens satisfies the following relationship: -0.61 ⁇ f4/f ⁇ -0.35; -1.28 ⁇ (R7+R8)/(R7-R8) ⁇ -0.68; 0.05 ⁇ d7/TTL ⁇ 0.08.
  • the fifth lens has a positive refractive power, its object side is convex on the paraxial axis, and its image side is convex on the paraxial axis; the focal length of the imaging optical lens is f, and the focal length of the fifth lens is f5 ,
  • the radius of curvature of the object side of the fifth lens is R9
  • the radius of curvature of the image side of the fifth lens is R10
  • the axial thickness of the fifth lens is d9
  • the total optical length of the imaging optical lens is TTL
  • the imaging optical lens satisfies the following relationship: 0.59 ⁇ f5/f ⁇ 1.09; 0.25 ⁇ (R9+R10)/(R9-R10) ⁇ 0.46; 0.10 ⁇ d9/TTL ⁇ 0.19.
  • the sixth lens has a negative refractive power, its object side is convex on the paraxial axis, and its image side is concave on the paraxial axis; the focal length of the imaging optical lens is f, and the focal length of the sixth lens is f6 ,
  • the radius of curvature of the object side of the sixth lens is R11
  • the radius of curvature of the image side of the sixth lens is R12
  • the axial thickness of the sixth lens is d11
  • the total optical length of the imaging optical lens is TTL
  • the imaging optical lens satisfies the following relationship: -0.98 ⁇ f6/f ⁇ -0.62; 0.97 ⁇ (R11+R12)/(R11-R12) ⁇ 1.55; 0.11 ⁇ d11/TTL ⁇ 0.19.
  • the focal length of the imaging optical lens is f
  • the combined focal length of the first lens and the second lens is f12
  • the following relationship is satisfied: 0.41 ⁇ f12/f ⁇ 1.43.
  • the imaging optical lens satisfies the following relationship: 0.66 ⁇ f12/f ⁇ 1.15.
  • the total optical length TTL of the camera optical lens is less than or equal to 4.84 mm.
  • the total optical length TTL of the imaging optical lens is less than or equal to 4.62 mm.
  • the aperture F number of the imaging optical lens is less than or equal to 2.88.
  • the aperture F number of the imaging optical lens is less than or equal to 2.83.
  • the beneficial effect of the present invention is that the imaging optical lens according to the present invention has excellent optical characteristics, is ultra-thin, wide-angle and has sufficient correction of chromatic aberration, and is particularly suitable for mobile phone imaging lenses composed of high-pixel CCD, CMOS and other imaging elements Components and WEB camera lens.
  • FIG. 1 is a schematic structural diagram of an imaging optical lens according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of the axial aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 3 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic structural view of an imaging optical lens according to a second embodiment of the invention.
  • FIG. 6 is a schematic diagram of the axial aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 7 is a schematic diagram of magnification chromatic aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic structural view of an imaging optical lens according to a third embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the axial aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 11 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9.
  • FIG. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention.
  • the imaging optical lens 10 includes six lenses. Specifically, the imaging optical lens 10 includes, in order from the object side to the image side, an aperture S1, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth Lens L6.
  • An optical element such as an optical filter GF may be provided between the sixth lens L6 and the image plane Si.
  • the first lens L1 is made of plastic
  • the second lens L2 is made of plastic
  • the third lens L3 is made of plastic
  • the fourth lens L4 is made of plastic
  • the fifth lens L5 is made of plastic
  • the sixth lens L6 is made of plastic.
  • the second lens L2 has a positive refractive power
  • the third lens L3 has a positive refractive power
  • the focal length of the first lens L1 is defined as f1
  • the focal length of the third lens is defined as f3, 1.40 ⁇ f1/f3 ⁇ 5.00. It is beneficial to the system's ability to obtain a good balance of field curvature, so as to effectively improve the image quality. Preferably, 1.43 ⁇ f1/f3 ⁇ 4.95 is satisfied.
  • the radius of curvature of the object side of the third lens is defined as R5, and the radius of curvature of the image side of the third lens is R6, 2.50 ⁇ R5/R6 ⁇ 6.00, which can effectively control the shape of the third lens L3.
  • R5 The radius of curvature of the object side of the third lens
  • R6 2.50 ⁇ R5/R6 ⁇ 6.00, which can effectively control the shape of the third lens L3.
  • the imaging optical lens 10 of the present invention When the focal length of the imaging optical lens 10 of the present invention, the focal length of each lens, the refractive index of the related lens, the total optical length of the imaging optical lens, the axial thickness and the radius of curvature satisfy the above relationship, the imaging optical lens 10 can have a high Performance, and meet the design requirements of low TTL.
  • the object side surface of the first lens L1 is convex at the paraxial axis, and the image side surface is concave at the paraxial axis, and has a positive refractive power.
  • the focal length of the overall imaging optical lens 10 is defined as f, 0.54 ⁇ f1/f ⁇ 4.55, which defines the positive refractive power of the first lens L1.
  • f 0.54 ⁇ f1/f ⁇ 4.55
  • the positive refractive power of the first lens L1 will be too strong, making it difficult to correct problems such as aberration, and it is not conducive to the development of the lens to a wide angle.
  • the positive refractive power of the first lens becomes too weak, making it difficult for the lens to progress toward ultrathinness.
  • 0.87 ⁇ f1/f ⁇ 3.64 is satisfied.
  • the radius of curvature of the object side of the first lens L1 is R1
  • the radius of curvature of the image side of the first lens L1 is R2, satisfying the following relationship: -17.96 ⁇ (R1+R2)/(R1-R2) ⁇ -1.29, reasonable control
  • the shape of a lens enables the first lens to effectively correct the spherical aberration of the system; preferably, -11.23 ⁇ (R1+R2)/(R1-R2) ⁇ -1.62.
  • the axial thickness of the first lens L1 is d1
  • the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.05 ⁇ d1/TTL ⁇ 0.16, which is conducive to achieving ultra-thinness.
  • the object side surface of the second lens L2 is convex on the paraxial axis.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the second lens L2 is f2, which satisfies the following relationship: 0.64 ⁇ f2/f ⁇ 4.32.
  • the radius of curvature of the object side of the second lens L2 is R3, and the radius of curvature of the image side of the second lens L2 is R4, which satisfies the following relationship: -3.75 ⁇ (R3+R4)/(R3-R4) ⁇ -0.41, which specifies the When the shape of the two lens L2 is outside the range, it is difficult to correct the aberration problem as the lens progresses toward ultra-thin and wide-angle.
  • the on-axis thickness of the second lens L2 is d3, which satisfies the following relationship: 0.04 ⁇ d3/TTL ⁇ 0.13, which is advantageous for achieving ultra-thinness.
  • the object side surface of the third lens L3 is concave on the paraxial axis, and the image side surface is convex on the paraxial axis;
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the third lens L3 is f3, which satisfies the following relationship: 0.31 ⁇ f3/f ⁇ 1.13, which is beneficial to the system's ability to obtain a good balance of field curvature to effectively improve image quality.
  • the curvature radius of the object side of the third lens L3 is R5, and the curvature radius of the image side of the third lens L3 is R6, satisfying the following relationship: 0.70 ⁇ (R5+R6)/(R5-R6) ⁇ 3.44, which can effectively control the third
  • the shape of the lens L3 facilitates the molding of the third lens L3, and avoids molding defects and stress due to excessive surface curvature of the third lens L3.
  • the on-axis thickness of the third lens L3 is d5, which satisfies the following relationship: 0.05 ⁇ d5/TTL ⁇ 0.16, which is advantageous for achieving ultra-thinness.
  • the object side surface of the fourth lens L4 is concave at the paraxial axis and has a negative refractive power.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the fourth lens L4 is f4, which satisfies the following relationship: -0.98 ⁇ f4/f ⁇ -0.28.
  • the system has better imaging quality and better Low sensitivity.
  • the radius of curvature R7 on the object side of the fourth lens L4 and the radius of curvature R8 on the image side of the fourth lens L4 satisfy the following relationship: -2.04 ⁇ (R7+R8)/(R7-R8) ⁇ -0.54, which specifies the fourth When the shape of the lens L4 is outside the range, with the development of ultra-thin wide angle, it is difficult to correct the aberration of the off-axis picture angle.
  • the on-axis thickness of the fourth lens L4 is d7, which satisfies the following relationship: 0.03 ⁇ d7/TTL ⁇ 0.10, which is advantageous for achieving ultra-thinness.
  • the object side surface of the fifth lens L5 is convex on the paraxial axis, and the image side surface is convex on the paraxial axis, which has a positive refractive power.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the fifth lens L5 is f5, which satisfies the following relationship: 0.37 ⁇ f5/f ⁇ 1.36.
  • the limitation of the fifth lens L5 can effectively make the light angle of the camera lens smooth and reduce Tolerance sensitivity.
  • the radius of curvature of the object side of the fifth lens L5 is R9
  • the radius of curvature of the image side of the fifth lens L5 is R10, which satisfies the following relationship: 0.16 ⁇ (R9+R10)/(R9-R10) ⁇ 0.58, which specifies the fifth
  • 0.25 ⁇ (R9+R10)/(R9-R10) ⁇ 0.46 0.25 ⁇ (R9+R10)/(R9-R10) ⁇ 0.46.
  • the on-axis thickness of the fifth lens L5 is d9, which satisfies the following relationship: 0.06 ⁇ d9/TTL ⁇ 0.24, which is advantageous for achieving ultrathinness.
  • 0.10 ⁇ d9/TTL 0.10 ⁇ d9/TTL ⁇ 0.19.
  • the object side surface of the sixth lens L6 has a convex surface at the paraxial axis, and the image side surface has a concave surface at the paraxial axis, which has a negative refractive power.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the sixth lens L6 is f6, which satisfies the following relationship: -1.56 ⁇ f6/f ⁇ -0.49.
  • the system has better imaging quality and better Low sensitivity.
  • the radius of curvature of the object side of the sixth lens L6 is R11
  • the radius of curvature of the image side of the sixth lens L6 is R12, which satisfies the following relationship: 0.61 ⁇ (R11+R12)/(R11-R12) ⁇ 1.93, which specifies the sixth
  • 0.61 ⁇ (R11+R12)/(R11-R12) ⁇ 1.93 which specifies the sixth
  • the on-axis thickness of the sixth lens L6 is d11, which satisfies the following relationship: 0.07 ⁇ d11/TTL ⁇ 0.23, which is advantageous for achieving ultra-thinness.
  • 0.11 ⁇ d11/TTL 0.11 ⁇ d11/TTL ⁇ 0.19.
  • the focal length of the imaging optical lens is f
  • the combined focal length of the first lens and the second lens is f12
  • the following relationship is satisfied: 0.41 ⁇ f12/f ⁇ 1.43.
  • the aberration and distortion of the imaging optical lens can be eliminated, and the back focal length of the imaging optical lens can be suppressed to maintain the miniaturization of the imaging lens system group.
  • the total optical length TTL of the imaging optical lens 10 is less than or equal to 4.84 mm, which is advantageous for achieving ultra-thinness.
  • the total optical length TTL of the imaging optical lens 10 is less than or equal to 4.62 mm.
  • the imaging optical lens 10 has a large aperture, the F-number of the aperture is less than or equal to 2.88, and the imaging performance is good.
  • the aperture F number of the imaging optical lens 10 is less than or equal to 2.83.
  • the overall optical length TTL of the overall imaging optical lens 10 can be made as short as possible, and the characteristics of miniaturization can be maintained.
  • the imaging optical lens 10 of the present invention will be described below with examples.
  • the symbols described in each example are as follows.
  • the unit of focal length, on-axis distance, radius of curvature, on-axis thickness, position of inverse curvature point and stagnation point is mm.
  • TTL optical length (the distance from the object side of the first lens L1 to the axis of the imaging surface) in mm;
  • the object side and/or image side of the lens may also be provided with a reflex point and/or a stagnation point to meet the high-quality imaging requirements.
  • a reflex point and/or a stagnation point may also be provided with a stagnation point to meet the high-quality imaging requirements.
  • Table 1 and Table 2 show the design data of the imaging optical lens 10 according to the first embodiment of the present invention.
  • R the radius of curvature of the optical surface and the center radius of curvature when the lens is used
  • R1 radius of curvature of the object side of the first lens L1;
  • R2 radius of curvature of the image side of the first lens L1;
  • R3 radius of curvature of the object side of the second lens L2;
  • R4 radius of curvature of the image side of the second lens L2;
  • R5 radius of curvature of the object side of the third lens L3;
  • R6 radius of curvature of the image side of the third lens L3;
  • R7 radius of curvature of the object side of the fourth lens L4;
  • R8 radius of curvature of the image side of the fourth lens L4;
  • R9 radius of curvature of the object side of the fifth lens L5;
  • R10 radius of curvature of the image side of the fifth lens L5;
  • R11 radius of curvature of the object side of the sixth lens L6;
  • R12 radius of curvature of the image side of the sixth lens L6;
  • R13 radius of curvature of the object side of the optical filter GF
  • R14 Radius of curvature of the image side of the optical filter GF
  • d2 the axial distance between the image side of the first lens L1 and the object side of the second lens L2;
  • d4 the axial distance between the image side of the second lens L2 and the object side of the third lens L3;
  • d6 the axial distance between the image side of the third lens L3 and the object side of the fourth lens L4;
  • d10 on-axis distance from the image side of the fifth lens L5 to the object side of the sixth lens L6;
  • d12 the axial distance between the image side of the sixth lens L6 and the object side of the optical filter GF;
  • d14 the axial distance from the image side of the optical filter GF to the image plane
  • nd refractive index of d-line
  • nd1 refractive index of the d-line of the first lens L1;
  • nd2 refractive index of the d-line of the second lens L2;
  • nd3 refractive index of the d-line of the third lens L3;
  • nd4 refractive index of the d-line of the fourth lens L4;
  • nd5 refractive index of the d-line of the fifth lens L5;
  • nd6 refractive index of the d-line of the sixth lens L6;
  • ndg refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF.
  • Table 2 shows aspherical data of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, A20 are aspherical coefficients.
  • the aspherical surface of each lens surface uses the aspherical surface shown in the above formula (1).
  • the present invention is not limited to the aspherical polynomial form represented by the formula (1).
  • Tables 3 and 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
  • P1R1, P1R2 represent the object side and the image side of the first lens
  • P1R1, P2R2 represent the object side and the image side of the second lens L2
  • P3R1, P3R2 represent the object side and the image side of the third lens L3
  • P4R1 and P4R2 respectively represent the object side and image side of the fourth lens L4
  • P5R1 and P5R2 respectively represent the object side and image side of the fifth lens L5
  • P6R1 and P6R2 respectively represent the object side and image side of the sixth lens L6.
  • the corresponding data in the "Recurve Point Position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • the corresponding data in the "stay point position” column is the vertical distance between the stagnation point set on the surface of each lens and the optical axis of the imaging optical lens 10.
  • FIG. 2 and 3 show schematic diagrams of axial aberration and magnification chromatic aberration of light having wavelengths of 486.1 nm, 587.6 nm, and 656.3 nm after passing through the imaging optical lens 10 of the first embodiment.
  • FIG. 4 shows the field curvature and distortion of the light with a wavelength of 587.6 nm after passing through the imaging optical lens 10 of the first embodiment.
  • the field curvature S in FIG. 4 is the field curvature in the sagittal direction, and T is the meridional direction. Field music.
  • the following table 13 shows the values corresponding to the parameters specified in the conditional expressions in the various examples 1, 2, and 3.
  • the first embodiment satisfies each conditional expression.
  • the entrance pupil diameter of the imaging optical lens is 1.228mm
  • the full-field image height is 3.2376mm
  • the diagonal field angle is 85.68°
  • the wide angle and ultra-thin the axis
  • the axis the axis
  • the external chromatic aberration is fully corrected and has excellent optical characteristics.
  • the second embodiment is basically the same as the first embodiment, and the symbol meaning is the same as the first embodiment, and only the differences are listed below.
  • Tables 5 and 6 show the design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows aspherical data of each lens in the imaging optical lens 20 of the second embodiment of the present invention.
  • Tables 7 and 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20 of the second embodiment of the present invention.
  • FIG. 6 and 7 respectively show schematic diagrams of axial aberration and magnification chromatic aberration of light having wavelengths of 486.1 nm, 587.6 nm, and 656.3 nm after passing through the imaging optical lens 20 of the second embodiment.
  • FIG. 8 shows a schematic diagram of field curvature and distortion after the light with a wavelength of 587.6 nm passes through the imaging optical lens 20 of the second embodiment.
  • the second embodiment satisfies each conditional expression.
  • the entrance pupil diameter of the imaging optical lens is 1.223mm
  • the full-field image height is 3.2376mm
  • the diagonal field angle is 85.94°
  • the wide angle and ultra-thin its axis
  • axis axis
  • the external chromatic aberration is fully corrected and has excellent optical characteristics.
  • the third embodiment is basically the same as the first embodiment, and the symbol meaning is the same as the first embodiment, and only the differences are listed below.
  • Table 9 and Table 10 show the design data of the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 10 shows aspherical data of each lens in the imaging optical lens 30 of the third embodiment of the present invention.
  • Table 11 and Table 12 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 30 of the third embodiment of the present invention.
  • FIG. 10 and 11 show schematic diagrams of axial aberration and magnification chromatic aberration of light having wavelengths of 486.1 nm, 587.6 nm, and 656.3 nm after passing through the imaging optical lens 30 of the third embodiment.
  • FIG. 12 shows a schematic diagram of field curvature and distortion after the light with a wavelength of 587.6 nm passes through the imaging optical lens 30 of the third embodiment.
  • Table 13 lists the numerical values corresponding to each conditional expression in this embodiment according to the above conditional expression. Obviously, the imaging optical system of this embodiment satisfies the aforementioned conditional expression.
  • the entrance pupil diameter of the imaging optical lens is 1.234 mm
  • the full-field image height is 3.2376 mm
  • the diagonal field angle is 85.41°
  • the wide angle and ultra-thin its axis
  • axis axis
  • the external chromatic aberration is fully corrected and has excellent optical characteristics.
  • Example 1 Example 2
  • Example 3 f 3.439 3.424 3.456 f1 3.746 7.139 10.471 f2 9.915 5.087 4.400 f3 2.584 2.380 2.137 f4 -1.678 -1.567 -1.446 f5 3.112 2.689 2.560 f6 -2.688 -2.566 -2.554 f12 2.834 3.144 3.300 FNO 2.80 2.80 2.80 f1/f3 1.45 3.00 4.90 R5/R6 2.55 4.40 5.89

Abstract

一种摄像光学镜头(10),该摄像光学镜头(10)自物侧至像侧依序包含:第一透镜(L1),第二透镜(L2),第三透镜(L3),第四透镜(L4),第五透镜(L5),以及第六透镜(L6);第二透镜(L2)具有正屈折力,第三透镜(L3)具有正屈折力;且满足下列关系式:1.40≤f1/f3≤5.00;2.50≤R5/R6≤6.00,该摄像光学镜头(10)能获得高成像性能的同时,获得低TTL。

Description

摄像光学镜头 技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-OxideSemicondctor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式或四片式透镜结构。并且,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,五片式、六片式、七片式透镜结构逐渐出现在镜头设计当中。迫切需求具有优秀的光学特征、超薄且色像差充分补正的广角摄像镜头。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,能在获得高成像性能的同时,满足超薄化和广角化的要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,以及第六透镜;所述第二透镜具有正屈折力,所述第三透镜具有正屈折力;
所述第一透镜的焦距为f1,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,满足下列关系式:1.40≤f1/f3≤5.00;2.50≤R5/R6≤6.00。
优选的,所述摄像光学镜头满足下列关系式:1.43≤f1/f3≤4.95;2.53≤R5/R6≤5.94。
优选的,所述第一透镜具有正屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;
所述摄像光学镜头的焦距为f,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述摄像光学镜头的光学总长为TTL,以及所述第一透镜的轴上厚度为d1,且满足下列关系式:0.54≤f1/f≤4.55;-17.96≤(R1+R2)/(R1-R2)≤-1.29;0.05≤d1/TTL≤0.16。
优选的,所述摄像光学镜头满足下列关系式:0.87≤f1/f≤3.64;-11.23≤(R1+R2)/(R1-R2)≤-1.62;0.07≤d1/TTL≤0.13。
优选的,所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第二透镜物侧面于近轴为凸面;所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.64≤f2/f≤4.32;-3.75≤(R3+R4)/(R3-R4)≤-0.41;0.04≤d3/TTL≤0.13。
优选的,所述摄像光学镜头满足下列关系式:1.02≤f2/f≤3.46;-2.35≤(R3+R4)/(R3-R4)≤-0.52;0.06≤d3/TTL≤0.10。
优选的,所述摄像光学镜头的焦距为f,所述第三透镜物侧面于近轴为凹面,其像侧面 于近轴为凸面;所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.31≤f3/f≤1.13;0.70≤(R5+R6)/(R5-R6)≤3.44;0.05≤d5/TTL≤0.16。
优选的,所述摄像光学镜头满足下列关系式:0.49≤f3/f≤0.901.13≤(R5+R6)/(R5-R6)≤2.75;0.07≤d5/TTL≤0.13。
优选的,所述第四透镜具有负屈折力,其物侧面于近轴为凹面;所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-0.98≤f4/f≤-0.28;-2.04≤(R7+R8)/(R7-R8)≤-0.54;0.03≤d7/TTL≤0.10。
优选的,所述摄像光学镜头满足下列关系式:-0.61≤f4/f≤-0.35;-1.28≤(R7+R8)/(R7-R8)≤-0.68;0.05≤d7/TTL≤0.08。
优选的,所述第五透镜具有正屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凸面;所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.37≤f5/f≤1.36;0.16≤(R9+R10)/(R9-R10)≤0.58;0.06≤d9/TTL≤0.24。
优选的,所述摄像光学镜头满足下列关系式:0.59≤f5/f≤1.09;0.25≤(R9+R10)/(R9-R10)≤0.46;0.10≤d9/TTL≤0.19。
优选的,所述第六透镜具有负屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;所述摄像光学镜头的焦距为f,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-1.56≤f6/f≤-0.49;0.61≤(R11+R12)/(R11-R12)≤1.93;0.07≤d11/TTL≤0.23。
优选的,所述摄像光学镜头满足下列关系式:-0.98≤f6/f≤-0.62;0.97≤(R11+R12)/(R11-R12)≤1.55;0.11≤d11/TTL≤0.19。
优选的,所述摄像光学镜头的焦距为f,所述第一透镜与所述第二透镜的组合焦距为f12,且满足下列关系式:0.41≤f12/f≤1.43。
优选的,所述摄像光学镜头满足下列关系式:0.66≤f12/f≤1.15。
优选的,所述摄像光学镜头的光学总长TTL小于或等于4.84毫米。
优选的,所述摄像光学镜头的光学总长TTL小于或等于4.62毫米。
优选的,所述摄像光学镜头的光圈F数小于或等于2.88。
优选的,所述摄像光学镜头的光圈F数小于或等于2.83。
本发明的有益效果在于:根据本发明的摄像光学镜头具有优秀的光学特性,超薄,广角且色像差充分补正,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括六个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6。第六透镜L6和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质,第六透镜L6为塑料材质。
所述第二透镜L2具有正屈折力,所述第三透镜L3具有正屈折力;
在此,定义所述第一透镜L1的焦距为f1,所述第三透镜的焦距为f3,1.40≤f1/f3≤5.00。有利于系统获得良好的平衡场曲的能力,以有效地提升像质。优选的,满足1.43≤f1/f3≤4.95。
定义所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,2.50≤R5/R6≤6.00,可有效控制第三透镜L3的形状,在范围外时,随着镜头向超薄广角化发展,难以补正像差问题。优选的,满足2.53≤R5/R6≤5.94。
当本发明所述摄像光学镜头10的焦距、各透镜的焦距、相关透镜的折射率、摄像光学镜头的光学总长、轴上厚度和曲率半径满足上述关系式时,可以使摄像光学镜头10具有高性能,且满足低TTL的设计需求。
本实施方式中,第一透镜L1的物侧面于近轴处为凸面,像侧面于近轴处为凹面,具有正屈折力。
定义整体摄像光学镜头10的焦距为f,0.54≤f1/f≤4.55,规定了第一透镜L1的正屈折力。超过下限规定值时,虽然有利于镜头向超薄化发展,但是第一透镜L1的正屈折力会过强,难以补正像差等问题,同时不利于镜头向广角化发展。相反,超过上限规定值时,第一透镜的正屈折力会变过弱,镜头难以向超薄化发展。优选的,满足0.87≤f1/f≤3.64。
第一透镜L1物侧面的曲率半径为R1,第一透镜L1像侧面的曲率半径为R2,满足下列关系式:-17.96≤(R1+R2)/(R1-R2)≤-1.29,合理控制第一透镜的形状,使得第一透镜能够有效地校正系统球差;优选的,-11.23≤(R1+R2)/(R1-R2)≤-1.62。
第一透镜L1的轴上厚度为d1,摄像光学镜头的光学总长为TTL,满足下列关系式:0.05≤d1/TTL≤0.16,有利于实现超薄化。优选的,0.07≤d1/TTL≤0.13。
本实施方式中,第二透镜L2的物侧面于近轴处为凸面。
整体摄像光学镜头10的焦距为f,第二透镜L2焦距为f2,满足下列关系式:0.64≤f2/f≤4.32,通过将第二透镜L2的正光焦度控制在合理范围,有利于矫正光学系统的像差。优选的,1.02≤f2/f≤3.46。
第二透镜L2物侧面的曲率半径为R3,第二透镜L2像侧面的曲率半径为R4,满足下列关系式:-3.75≤(R3+R4)/(R3-R4)≤-0.41,规定了第二透镜L2的形状,在范围外时,随着镜头向超薄广角化发展,难以补正像差问题。优选的,-2.35≤(R3+R4)/(R3-R4)≤-0.52。
第二透镜L2的轴上厚度为d3,满足下列关系式:0.04≤d3/TTL≤0.13,有利于实现超薄化。优选的,0.06≤d3/TTL≤0.10。
本实施方式中,第三透镜L3的物侧面于近轴为凹面,其像侧面于近轴为凸面;
整体摄像光学镜头10的焦距为f,第三透镜L3焦距为f3,满足下列关系式:0.31≤f3/f≤1.13,有利于系统获得良好的平衡场曲的能力,以有效地提升像质。优选的,0.49≤f3/f≤0.90。
第三透镜L3物侧面的曲率半径为R5,第三透镜L3像侧面的曲率半径为R6,满足下列关系式:0.70≤(R5+R6)/(R5-R6)≤3.44,可有效控制第三透镜L3的形状,有利于第三透镜L3成型,并避免因第三透镜L3的表面曲率过大而导致成型不良与应力产生。优选的,1.13≤(R5+R6)/(R5-R6)≤2.75。
第三透镜L3的轴上厚度为d5,满足下列关系式:0.05≤d5/TTL≤0.16,有利于实现超薄化。优选的,0.07≤d5/TTL≤0.13。
本实施方式中,第四透镜L4的物侧面于近轴处为凹面,具有负屈折力。
整体摄像光学镜头10的焦距为f,第四透镜L4焦距f4,满足下列关系式:-0.98≤f4/f≤-0.28,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的,-0.61≤f4/f≤-0.35。
第四透镜L4物侧面的曲率半径R7,第四透镜L4像侧面的曲率半径R8,满足下列关系式:-2.04≤(R7+R8)/(R7-R8)≤-0.54,规定的是第四透镜L4的形状,在范围外时,随着超薄广角化的发展,很难补正轴外画角的像差等问题。优选的,-1.28≤(R7+R8)/(R7-R8)≤-0.68。
第四透镜L4的轴上厚度为d7,满足下列关系式:0.03≤d7/TTL≤0.10,有利于实现超薄化。优选的,0.05≤d7/TTL≤0.08。
本实施方式中,第五透镜L5的物侧面于近轴处为凸面,像侧面于近轴处为凸面,其具有正屈折力。
整体摄像光学镜头10的焦距为f,第五透镜L5焦距为f5,满足下列关系式:0.37≤f5/f≤1.36,对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。优选的,0.59≤f5/f≤1.09。
第五透镜L5物侧面的曲率半径为R9,第五透镜L5像侧面的曲率半径为R10,满足下列关系式:0.16≤(R9+R10)/(R9-R10)≤0.58,规定的是第五透镜L5的形状,在条件范围外时,随着超薄广角化发展,很难补正轴外画角的像差等问题。优选的,0.25≤(R9+R10)/(R9-R10)≤0.46。
第五透镜L5的轴上厚度为d9,满足下列关系式:0.06≤d9/TTL≤0.24,有利于实现超薄化。优选的,0.10≤d9/TTL≤0.19。
本实施方式中,第六透镜L6的物侧面于近轴处为凸面,像侧面于近轴处为凹面,其具有负屈折力。
整体摄像光学镜头10的焦距为f,第六透镜L6焦距f6,满足下列关系式:-1.56≤f6/f≤-0.49,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的,-0.98≤f6/f≤-0.62。
第六透镜L6物侧面的曲率半径为R11,第六透镜L6像侧面的曲率半径为R12,满足下列关系式:0.61≤(R11+R12)/(R11-R12)≤1.93,规定的是第六透镜L6的形状,在条件范围外 时,随着超薄广角化发展,很难补正轴外画角的像差等问题。优选的,0.97≤(R11+R12)/(R11-R12)≤1.55。
第六透镜L6的轴上厚度为d11,满足下列关系式:0.07≤d11/TTL≤0.23,有利于实现超薄化。优选的,0.11≤d11/TTL≤0.19。
本实施例中,所述摄像光学镜头的焦距为f,所述第一透镜与所述第二透镜的组合焦距为f12,且满足下列关系式:0.41≤f12/f≤1.43。借此,可消除摄像光学镜头的像差与歪曲,且可压制摄像光学镜头后焦距,维持影像镜片系统组小型化。优选的,0.66≤f12/f≤1.15。
本实施方式中,摄像光学镜头10的光学总长TTL小于或等于4.84毫米,有利于实现超薄化。优选的,摄像光学镜头10的光学总长TTL小于或等于4.62毫米。
本实施方式中,摄像光学镜头10为大光圈,其光圈F数小于或等于2.88,成像性能好。优选的,摄像光学镜头10的光圈F数小于或等于2.83。
如此设计,能够使得整体摄像光学镜头10的光学总长TTL尽量变短,维持小型化的特性。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学长度(第1透镜L1的物侧面到成像面的轴上距离),单位为mm;
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出了本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
Figure PCTCN2019108707-appb-000001
其中,各符号的含义如下。
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:第六透镜L6的物侧面的曲率半径;
R12:第六透镜L6的像侧面的曲率半径;
R13:光学过滤片GF的物侧面的曲率半径;
R14:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度与透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到光学过滤片GF的物侧面的轴上距离;
d13:光学过滤片GF的轴上厚度;
d14:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出了本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure PCTCN2019108707-appb-000002
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
IH:像高
y=(x 2/R)/[1+{1-(k+1)(x 2/R 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20     (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜P1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面。“反曲点位置”栏 位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 0      
P1R2 2 0.325 0.595  
P2R1 2 0.295 0.575  
P2R2 0      
P3R1 0      
P3R2 0      
P4R1 0      
P4R2 2 0.195 0.995  
P5R1 2 0.475 1.195  
P5R2 2 1.615 1.645  
P6R1 3 0.235 1.145 2.035
P6R2 2 0.545 2.395  
【表4】
  驻点个数 驻点位置1 驻点位置2
P1R1 0    
P1R2 2 0.515 0.635
P2R1 2 0.455 0.575
P2R2 0    
P3R1 0    
P3R2 0    
P4R1 0    
P4R2 1 0.345  
P5R1 1 0.705  
P5R2 0    
P6R1 1 0.385  
P6R2 1 1.245  
图2、图3分别示出了波长为486.1nm、587.6nm和656.3nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为587.6nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表13示出了各实例1、2、3中各种数值与条件式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为1.228mm,全视场像高为3.2376mm, 对角线方向的视场角为85.68°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure PCTCN2019108707-appb-000003
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure PCTCN2019108707-appb-000004
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 0    
P1R2 2 0.345 0.615
P2R1 2 0.385 0.585
P2R2 2 0.355 0.685
P3R1 0    
P3R2 0    
P4R1 1 0.845  
P4R2 2 0.045 0.985
P5R1 2 0.455 1.185
P5R2 2 1.345 1.565
P6R1 2 0.235 1.175
P6R2 2 0.555 2.365
【表8】
  驻点个数 驻点位置1 驻点位置2
P1R1 0    
P1R2 2 0.585 0.635
P2R1 0    
P2R2 1 0.515  
P3R1 0    
P3R2 0    
P4R1 0    
P4R2 1 0.065  
P5R1 1 0.695  
P5R2 0    
P6R1 1 0.385  
P6R2 1 1.265  
图6、图7分别示出了波长为486.1nm、587.6nm和656.3nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为587.6nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。
如表13所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为1.223mm,全视场像高为3.2376mm, 对角线方向的视场角为85.94°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure PCTCN2019108707-appb-000005
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
Figure PCTCN2019108707-appb-000006
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 0    
P1R2 2 0.395 0.595
P2R1 2 0.455 0.555
P2R2 2 0.395 0.685
P3R1 0    
P3R2 0    
P4R1 1 0.835  
P4R2 1 0.985  
P5R1 2 0.455 1.175
P5R2 2 1.255 1.545
P6R1 2 0.235 1.165
P6R2 2 0.545 2.355
【表12】
  驻点个数 驻点位置1
P1R1 0  
P1R2 0  
P2R1 0  
P2R2 1 0.575
P3R1 0  
P3R2 0  
P4R1 0  
P4R2 0  
P5R1 1 0.685
P5R2 0  
P6R1 1 0.375
P6R2 1 1.225
图10、图11分别示出了波长为486.1nm、587.6nm和656.3nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为587.6nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。
以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为1.234mm,全视场像高为3.2376mm,对角线方向的视场角为85.41°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
【表13】
参数及条件式 实施例1 实施例2 实施例3
f 3.439 3.424 3.456
f1 3.746 7.139 10.471
f2 9.915 5.087 4.400
f3 2.584 2.380 2.137
f4 -1.678 -1.567 -1.446
f5 3.112 2.689 2.560
f6 -2.688 -2.566 -2.554
f12 2.834 3.144 3.300
FNO 2.80 2.80 2.80
f1/f3 1.45 3.00 4.90
R5/R6 2.55 4.40 5.89
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (20)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,以及第六透镜;所述第二透镜具有正屈折力,所述第三透镜具有正屈折力;
    所述第一透镜的焦距为f1,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,满足下列关系式:
    1.40≤f1/f3≤5.00;
    2.50≤R5/R6≤6.00。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    1.43≤f1/f3≤4.95;
    2.53≤R5/R6≤5.94。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜具有正屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;
    所述摄像光学镜头的焦距为f,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述摄像光学镜头的光学总长为TTL,以及所述第一透镜的轴上厚度为d1,且满足下列关系式:
    0.54≤f1/f≤4.55;
    -17.96≤(R1+R2)/(R1-R2)≤-1.29;
    0.05≤d1/TTL≤0.16。
  4. 根据权利要求3所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    0.87≤f1/f≤3.64;
    -11.23≤(R1+R2)/(R1-R2)≤-1.62;
    0.07≤d1/TTL≤0.13。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第二透镜物侧面于近轴为凸面;
    所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.64≤f2/f≤4.32;
    -3.75≤(R3+R4)/(R3-R4)≤-0.41;
    0.04≤d3/TTL≤0.13。
  6. 根据权利要求5所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    1.02≤f2/f≤3.46;
    -2.35≤(R3+R4)/(R3-R4)≤-0.52;
    0.06≤d3/TTL≤0.10。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第三透镜物侧面于近轴为凹面,其像侧面于近轴为凸面;
    所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.31≤f3/f≤1.13;
    0.70≤(R5+R6)/(R5-R6)≤3.44;
    0.05≤d5/TTL≤0.16。
  8. 根据权利要求7所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    0.49≤f3/f≤0.90;
    1.13≤(R5+R6)/(R5-R6)≤2.75;
    0.07≤d5/TTL≤0.13。
  9. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜具有负屈折力,其物侧面于近轴为凹面;
    所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -0.98≤f4/f≤-0.28;
    -2.04≤(R7+R8)/(R7-R8)≤-0.54;
    0.03≤d7/TTL≤0.10。
  10. 根据权利要求9所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    -0.61≤f4/f≤-0.35;
    -1.28≤(R7+R8)/(R7-R8)≤-0.68;
    0.05≤d7/TTL≤0.08。
  11. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜具有正屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凸面;
    所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.37≤f5/f≤1.36;
    0.16≤(R9+R10)/(R9-R10)≤0.58;
    0.06≤d9/TTL≤0.24。
  12. 根据权利要求11所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    0.59≤f5/f≤1.09;
    0.25≤(R9+R10)/(R9-R10)≤0.46;
    0.10≤d9/TTL≤0.19。
  13. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜具有负屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;
    所述摄像光学镜头的焦距为f,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -1.56≤f6/f≤-0.49;
    0.61≤(R11+R12)/(R11-R12)≤1.93;
    0.07≤d11/TTL≤0.23。
  14. 根据权利要求13所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    -0.98≤f6/f≤-0.62;
    0.97≤(R11+R12)/(R11-R12)≤1.55;
    0.11≤d11/TTL≤0.19。
  15. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第一透镜与所述第二透镜的组合焦距为f12,且满足下列关系式:
    0.41≤f12/f≤1.43。
  16. 根据权利要求15所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    0.66≤f12/f≤1.15。
  17. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长TTL小于或等于4.84毫米。
  18. 根据权利要求17所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长TTL小于或等于4.62毫米。
  19. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈F数小于或等于2.88。
  20. 根据权利要求19所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈F数小于或等于2.83。
PCT/CN2019/108707 2018-12-27 2019-09-27 摄像光学镜头 WO2020134265A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811615987.2A CN109856774B (zh) 2018-12-27 2018-12-27 摄像光学镜头
CN201811615987.2 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020134265A1 true WO2020134265A1 (zh) 2020-07-02

Family

ID=66892973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108707 WO2020134265A1 (zh) 2018-12-27 2019-09-27 摄像光学镜头

Country Status (4)

Country Link
US (1) US11333858B2 (zh)
JP (1) JP6802892B2 (zh)
CN (1) CN109856774B (zh)
WO (1) WO2020134265A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856774B (zh) * 2018-12-27 2021-05-04 瑞声光学解决方案私人有限公司 摄像光学镜头
CN111025561B (zh) * 2019-12-23 2021-09-28 诚瑞光学(常州)股份有限公司 摄像光学镜头
WO2021127861A1 (zh) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 摄像光学镜头
WO2021128238A1 (zh) * 2019-12-27 2021-07-01 诚瑞光学(常州)股份有限公司 摄像光学镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090097131A1 (en) * 2007-10-12 2009-04-16 Nittoh Kogaku K.K. Zoom lens system
JP2017223755A (ja) * 2016-06-14 2017-12-21 キヤノン株式会社 撮像光学系
CN107966794A (zh) * 2017-12-29 2018-04-27 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108227133A (zh) * 2017-12-18 2018-06-29 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108363186A (zh) * 2018-04-26 2018-08-03 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109031606A (zh) * 2018-08-14 2018-12-18 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109856774A (zh) * 2018-12-27 2019-06-07 瑞声科技(新加坡)有限公司 摄像光学镜头

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI460465B (zh) * 2012-04-20 2014-11-11 Largan Precision Co Ltd 光學影像鏡頭系統組
TWI474072B (zh) * 2012-06-14 2015-02-21 Largan Precision Co Ltd 光學影像鏡片系統組
US9046672B2 (en) * 2012-09-14 2015-06-02 Samsung Electro-Mechanics Co., Ltd. Imaging lens
TWI474038B (zh) * 2013-02-25 2015-02-21 Largan Precision Co Ltd 成像系統鏡片組
TWI484215B (zh) * 2013-09-30 2015-05-11 Largan Precision Co Ltd 光學結像鏡片系統、取像裝置及可攜裝置
TWI489132B (zh) * 2014-01-10 2015-06-21 Largan Precision Co Ltd 成像光學鏡頭、取像裝置及可攜式裝置
TWI546560B (zh) * 2014-11-06 2016-08-21 先進光電科技股份有限公司 光學成像系統
TW201617673A (zh) * 2014-11-06 2016-05-16 先進光電科技股份有限公司 光學成像系統
KR102424361B1 (ko) * 2015-02-04 2022-07-25 삼성전자주식회사 촬영 렌즈계 및 이를 포함한 촬영 장치
JP5809769B1 (ja) * 2015-07-21 2015-11-11 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
KR101813336B1 (ko) * 2015-11-26 2017-12-28 삼성전기주식회사 촬상 광학계
CN105607229B (zh) * 2015-12-31 2018-09-21 浙江舜宇光学有限公司 摄像镜头
TWI617831B (zh) * 2016-05-20 2018-03-11 大立光電股份有限公司 光學影像鏡頭、取像裝置及電子裝置
JP6482509B2 (ja) * 2016-08-29 2019-03-13 カンタツ株式会社 撮像レンズ
TWI594011B (zh) * 2016-11-22 2017-08-01 大立光電股份有限公司 取像光學鏡片系統、取像裝置及電子裝置
CN108132518B (zh) * 2017-12-18 2020-06-16 瑞声光学解决方案私人有限公司 摄像光学镜头
CN108089293B (zh) * 2017-12-18 2020-06-16 瑞声光学解决方案私人有限公司 摄像光学镜头
CN107966789B (zh) * 2017-12-18 2020-03-20 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108132516B (zh) * 2017-12-18 2020-03-20 瑞声科技(新加坡)有限公司 摄像光学镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090097131A1 (en) * 2007-10-12 2009-04-16 Nittoh Kogaku K.K. Zoom lens system
JP2017223755A (ja) * 2016-06-14 2017-12-21 キヤノン株式会社 撮像光学系
CN108227133A (zh) * 2017-12-18 2018-06-29 瑞声科技(新加坡)有限公司 摄像光学镜头
CN107966794A (zh) * 2017-12-29 2018-04-27 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108363186A (zh) * 2018-04-26 2018-08-03 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109031606A (zh) * 2018-08-14 2018-12-18 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109856774A (zh) * 2018-12-27 2019-06-07 瑞声科技(新加坡)有限公司 摄像光学镜头

Also Published As

Publication number Publication date
CN109856774A (zh) 2019-06-07
CN109856774B (zh) 2021-05-04
JP2020106819A (ja) 2020-07-09
US11333858B2 (en) 2022-05-17
US20200209574A1 (en) 2020-07-02
JP6802892B2 (ja) 2020-12-23

Similar Documents

Publication Publication Date Title
WO2020140519A1 (zh) 摄像光学镜头
WO2021253516A1 (zh) 摄像光学镜头
WO2020134286A1 (zh) 摄像光学镜头
WO2020134281A1 (zh) 摄像光学镜头
WO2020140515A1 (zh) 摄像光学镜头
WO2020140512A1 (zh) 摄像光学镜头
WO2020134265A1 (zh) 摄像光学镜头
WO2020134266A1 (zh) 摄像光学镜头
WO2020140522A1 (zh) 摄像光学镜头
WO2020134263A1 (zh) 摄像光学镜头
WO2020134279A1 (zh) 摄像光学镜头
WO2022126700A1 (zh) 摄像光学镜头
WO2020140496A1 (zh) 摄像光学镜头
WO2022011740A1 (zh) 摄像光学镜头
WO2020134277A1 (zh) 摄像光学镜头
WO2020134287A1 (zh) 摄像光学镜头
WO2020140511A1 (zh) 摄像光学镜头
WO2020134264A1 (zh) 摄像光学镜头
WO2021168889A1 (zh) 摄像光学镜头
WO2020134275A1 (zh) 摄像光学镜头
WO2020140518A1 (zh) 摄像光学镜头
WO2020134267A1 (zh) 摄像光学镜头
WO2020140507A1 (zh) 摄像光学镜头
WO2020140510A1 (zh) 摄像光学镜头
WO2020134278A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903164

Country of ref document: EP

Kind code of ref document: A1