WO2020140496A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2020140496A1
WO2020140496A1 PCT/CN2019/108674 CN2019108674W WO2020140496A1 WO 2020140496 A1 WO2020140496 A1 WO 2020140496A1 CN 2019108674 W CN2019108674 W CN 2019108674W WO 2020140496 A1 WO2020140496 A1 WO 2020140496A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
optical lens
ttl
curvature
Prior art date
Application number
PCT/CN2019/108674
Other languages
English (en)
French (fr)
Inventor
郭占利
张磊
王燕妹
谢艳利
Original Assignee
瑞声通讯科技(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声通讯科技(常州)有限公司 filed Critical 瑞声通讯科技(常州)有限公司
Publication of WO2020140496A1 publication Critical patent/WO2020140496A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Definitions

  • the photosensitive device of general photographic lenses is nothing more than a photosensitive coupling device (Charge Coupled Device, CCD) or complementary metal oxide semiconductor device (Complementary Metal) -OxideSemicondctorSensor, CMOSSensor), and due to the advancement of semiconductor manufacturing process technology, the pixel size of the photosensitive device has been reduced.
  • CCD Charge Coupled Device
  • CMOSSensor complementary metal oxide semiconductor device
  • today's electronic products are developed with a good function and a thin and light appearance. Therefore, they have Miniaturized camera lenses with good imaging quality have become the mainstream on the market.
  • An imaging optical lens comprising: the imaging optical lens, in order from the object side to the image side: a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens;
  • the second lens has negative refractive power
  • the third lens has negative refractive power;
  • the focal length of the first lens is f1
  • the focal length of the second lens is f2
  • the radius of curvature of the object side of the second lens is R3
  • the radius of curvature of the image side of the second lens is R4, which satisfies the following relationship : -3.00 ⁇ f1/f2 ⁇ -1.00; 2.00 ⁇ R3/R4 ⁇ 50.01.
  • the first lens has a positive refractive power, and its object side is convex on the paraxial axis;
  • the radius of curvature of the object side of the first lens is R1
  • the radius of curvature of the image side of the first lens is R2
  • the axial thickness of the first lens is d1
  • the total optical length of the imaging optical lens is TTL
  • the object side surface of the second lens is convex on the paraxial axis, and the image side surface is concave on the paraxial axis;
  • the object side of the third lens is convex on the paraxial axis, and the image side is concave on the paraxial axis;
  • the focal length of the imaging optical lens is f
  • the focal length of the third lens is f3
  • the radius of curvature of the object side of the third lens is R5
  • the radius of curvature of the image side of the third lens is R6, and the third
  • the on-axis thickness of the lens is d5
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: -2.96E+06 ⁇ f3/f ⁇ -57.48; 24.69 ⁇ (R5+R6)/(R5-R6 ) ⁇ 211.03; 0.01 ⁇ d5/TTL ⁇ 0.06.
  • the imaging optical lens satisfies the following relationship: -1.85E+06 ⁇ f3/f ⁇ -71.85; 39.50 ⁇ (R5+R6)/(R5-R6) ⁇ 168.82; 0.02 ⁇ d5/TTL ⁇ 0.05 .
  • the fifth lens has a positive refractive power, its object side is convex on the paraxial axis, and its image side is convex on the paraxial axis;
  • the focal length of the imaging optical lens is f
  • the focal length of the fifth lens is f5
  • the radius of curvature of the object side of the fifth lens is R9
  • the radius of curvature of the image side of the fifth lens is R10
  • the fifth The axial thickness of the lens is d9
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: 0.56 ⁇ f5/f ⁇ 2.75; 0.20 ⁇ (R9+R10)/(R9-R10) ⁇ 1.06; 0.03 ⁇ d9/TTL ⁇ 0.13.
  • the focal length of the imaging optical lens is f
  • the focal length of the sixth lens is f6
  • the radius of curvature of the object side of the sixth lens is R11
  • the radius of curvature of the image side of the sixth lens is R12
  • the sixth The on-axis thickness of the lens is d11
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the imaging optical lens satisfies the following relationship: -1.13 ⁇ f6/f ⁇ -0.62; 0.16 ⁇ (R11+R12)/(R11-R12) ⁇ 1.91; 0.04 ⁇ d11/TTL ⁇ 0.14.
  • the aperture F number of the imaging optical lens is less than or equal to 2.06.
  • FIG. 1 is a schematic structural diagram of an imaging optical lens according to a first embodiment of this application.
  • FIG. 2 is a schematic diagram of the axial aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 3 is a schematic diagram of magnification chromatic aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic structural diagram of an imaging optical lens according to a second embodiment of this application.
  • FIG. 6 is a schematic diagram of the axial aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 7 is a schematic diagram of magnification chromatic aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5.
  • FIG. 1 shows an imaging optical lens 10 according to the first embodiment of the present application.
  • the imaging optical lens 10 includes six lenses.
  • the imaging optical lens 10 includes, in order from the object side to the image side, an aperture S1, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth Lens L6.
  • An optical element such as an optical filter GF may be provided between the sixth lens L6 and the image plane Si.
  • the first lens L1 is made of plastic
  • the second lens L2 is made of plastic
  • the third lens L3 is made of plastic
  • the fourth lens L4 is made of plastic
  • the fifth lens L5 is made of plastic
  • the sixth lens L6 is made of plastic.
  • the focal length of the overall imaging optical lens 10 is defined as f
  • the focal length of the first lens L1 is f1
  • the radius of curvature of the object side of the second lens is R3, which satisfies the following conditional expression: -3.00 ⁇ f1/f2 ⁇ -1.00, through reasonable distribution of optical power, the system has better imaging quality and lower sensitivity.
  • the radius of curvature of the object side of the second lens L2 is R3, and the radius of curvature of the image side of the second lens L2 is R4, satisfying the following relationship: 2.00 ⁇ R3/R4 ⁇ 50.01; the shape of the second lens L2 is specified when it is outside the range With the development of ultra-thin and wide-angle lenses, it is difficult to correct the aberration problem.
  • the imaging optical lens 10 When the focal length of the imaging optical lens 10, the focal length of each lens, the refractive index of the relevant lens, the total optical length of the imaging optical lens, the on-axis thickness and the radius of curvature satisfy the above relationship, the imaging optical lens 10 can have a high Performance, and meet the design requirements of low optical total length TTL.
  • the object side surface of the first lens L1 is convex on the paraxial axis and has a positive refractive power.
  • the focal length of the overall imaging optical lens 10 is defined as f
  • the focal length of the first lens L1 is f1, 0.36 ⁇ f1/f ⁇ 5.24, which defines the positive refractive power of the first lens L1.
  • the specified value exceeds the lower limit, although it is beneficial to the development of the lens to be ultra-thin, the positive refractive power of the first lens L1 will be too strong, making it difficult to correct problems such as aberration, and it is not conducive to the development of the lens to a wide angle.
  • the positive refractive power of the first lens becomes too weak, making it difficult for the lens to progress toward ultrathinness.
  • 0.58 ⁇ f1/f ⁇ 4.19 is satisfied.
  • the radius of curvature of the object side of the first lens L1 is R1
  • the radius of curvature of the image side of the first lens L1 is R2, satisfying the following relationship: -16.93 ⁇ (R1+R2)/(R1-R2) ⁇ -0.66, reasonable control
  • the shape of a lens enables the first lens to effectively correct the spherical aberration of the system; preferably, -10.58 ⁇ (R1+R2)/(R1-R2) ⁇ -0.82.
  • the on-axis thickness of the first lens L1 is d1
  • the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.04 ⁇ d1/TTL ⁇ 0.30, which is advantageous for achieving ultra-thinness.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the second lens L2 is f2
  • the focal length of the second lens L2 is f2
  • the focal length of the second lens L2 is f2
  • -2.37 ⁇ f2/f ⁇ -0.48 by controlling the negative power of the second lens L2 to a reasonable range, Reasonably and effectively balance the spherical aberration generated by the first lens L1 with positive power and the field curvature of the system.
  • the radius of curvature of the object side of the second lens L2 is R3, and the radius of curvature of the image side of the second lens L2 is R4, which satisfies the following relationship: 0.52 ⁇ (R3+R4)/(R3-R4) ⁇ 4.48, which specifies the second lens
  • the on-axis thickness of the second lens L2 is d3, which satisfies the following relationship: 0.01 ⁇ d3/TTL ⁇ 0.15, which is advantageous for achieving ultra-thinness.
  • the object side surface of the third lens L3 is convex on the paraxial axis, and the image side surface is concave on the paraxial axis;
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the third lens L3 is f3, which satisfies the following relationship: -2.96E+06 ⁇ f3/f ⁇ -57.48.
  • the system has better imaging Quality and lower sensitivity.
  • the on-axis thickness of the third lens L3 is d5, which satisfies the following relationship: 0.01 ⁇ d5/TTL ⁇ 0.06, which is conducive to achieving ultra-thinness.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the fourth lens L4 is f4, which satisfies the following relationship: 0.44 ⁇ f4/f ⁇ 2.19.
  • the system has better imaging quality and lower Sensitivity.
  • the radius of curvature R7 on the object side of the fourth lens L4 and the radius of curvature R8 on the image side of the fourth lens L4 satisfy the following relationship: -1.88 ⁇ (R7+R8)/(R7-R8) ⁇ -0.54, the fourth is specified
  • the shape of the lens L4 is outside the range, with the development of ultra-thin wide angle, it is difficult to correct the aberration of the off-axis picture angle.
  • the on-axis thickness of the fourth lens L4 is d7, which satisfies the following relationship: 0.03 ⁇ d7/TTL ⁇ 0.09, which is conducive to achieving ultra-thinness.
  • the object side surface of the fifth lens L5 is convex on the paraxial axis, and the image side surface is convex on the paraxial axis, which has a positive refractive power.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the fifth lens L5 is f5, which satisfies the following relationship: 0.56 ⁇ f5/f ⁇ 2.75.
  • the limitation of the fifth lens L5 can effectively make the light angle of the camera lens smooth and reduce Tolerance sensitivity.
  • the radius of curvature of the object side of the fifth lens L5 is R9
  • the radius of curvature of the image side of the fifth lens L5 is R10, which satisfies the following relationship: 0.20 ⁇ (R9+R10)/(R9-R10) ⁇ 1.06, which specifies the fifth
  • the radius of curvature of the object side of the sixth lens L6 is R11
  • the radius of curvature of the image side of the sixth lens L6 is R12, which satisfies the following relationship: 0.10 ⁇ (R11+R12)/(R11-R12) ⁇ 2.39, which specifies the sixth
  • the on-axis thickness of the sixth lens L6 is d11, which satisfies the following relationship: 0.03 ⁇ d11/TTL ⁇ 0.18, which is advantageous for achieving ultra-thinness.
  • the focal length of the imaging optical lens is f
  • the combined focal length of the first lens and the second lens is f12
  • the following relationship is satisfied: -4.31 ⁇ f12/f ⁇ 4.27.
  • the aberration and distortion of the imaging optical lens can be eliminated, and the back focal length of the imaging optical lens can be suppressed to maintain the miniaturization of the imaging lens system group.
  • the total optical length TTL of the imaging optical lens 10 is less than or equal to 5.13 mm, which is advantageous for achieving ultra-thinness.
  • the total optical length TTL of the imaging optical lens 10 is less than or equal to 4.90 mm.
  • the imaging optical lens 10 of the present application will be described below with examples.
  • the symbols described in each example are as follows.
  • the unit of focal length, on-axis distance, radius of curvature, on-axis thickness, position of inverse curvature point and stagnation point is mm.
  • Table 1 and Table 2 show the design data of the imaging optical lens 10 according to the first embodiment of the present application.
  • R the radius of curvature of the optical surface and the center radius of curvature when the lens is used
  • R1 radius of curvature of the object side of the first lens L1;
  • R2 radius of curvature of the image side of the first lens L1;
  • R3 radius of curvature of the object side of the second lens L2;
  • R4 radius of curvature of the image side of the second lens L2;
  • R5 radius of curvature of the object side of the third lens L3;
  • R6 radius of curvature of the image side of the third lens L3;
  • R7 radius of curvature of the object side of the fourth lens L4;
  • R8 radius of curvature of the image side of the fourth lens L4;
  • R9 radius of curvature of the object side of the fifth lens L5;
  • R10 radius of curvature of the image side of the fifth lens L5;
  • R11 radius of curvature of the object side of the sixth lens L6;
  • R12 radius of curvature of the image side of the sixth lens L6;
  • R13 radius of curvature of the object side of the optical filter GF
  • R14 Radius of curvature of the image side of the optical filter GF
  • d2 the axial distance between the image side of the first lens L1 and the object side of the second lens L2;
  • d10 the axial distance between the image side of the fifth lens L5 and the object side of the sixth lens L6;
  • d12 the axial distance between the image side of the sixth lens L6 and the object side of the optical filter GF;
  • d14 the axial distance from the image side of the optical filter GF to the image plane
  • nd3 refractive index of the d-line of the third lens L3;
  • nd4 refractive index of the d-line of the fourth lens L4;
  • nd5 refractive index of the d-line of the fifth lens L5;
  • nd6 refractive index of the d-line of the sixth lens L6;
  • ndg refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF.
  • Table 2 shows aspherical data of each lens in the imaging optical lens 10 of the first embodiment of the present application.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16 are aspheric coefficients.
  • Tables 3 and 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of the first embodiment of the present application.
  • P1R1, P1R2 respectively represent the object side and the image side of the first lens
  • P2R1, P2R2 respectively represent the object side and the image side of the second lens L2
  • P3R1, P3R2 respectively represent the object side and the image side of the third lens L3
  • P4R1 and P4R2 respectively represent the object side and image side of the fourth lens L4
  • P5R1 and P5R2 respectively represent the object side and image side of the fifth lens L5
  • P6R1 and P6R2 respectively represent the object side and image side of the sixth lens L6.
  • the corresponding data in the "Recurve Point Position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • the data corresponding to the "stationary point position” column is the vertical distance between the stationary point set on each lens surface and the optical axis of the imaging optical lens 10.
  • the first embodiment satisfies each conditional expression.
  • the aperture S1 is provided between the first lens L1 and the second lens L2.
  • Tables 5 and 6 show the design data of the imaging optical lens 20 of the second embodiment of the present application.
  • Tables 7 and 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20 of the second embodiment of the present application.
  • the entrance pupil diameter of the imaging optical lens is 2.203mm
  • the full-field image height is 3.22mm
  • the diagonal field angle is 74.36°
  • the wide angle and ultra-thin its axis
  • axis axis
  • the external chromatic aberration is fully corrected and has excellent optical characteristics.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜及第六透镜;第二透镜具有负屈折力,第三透镜具有负屈折力;且满足下列关系式:-3.00≤f1/f2≤-1.00;2.00≤R3/R4≤50.00,该摄像光学镜头能在获得高成像性能的同时,获得低TTL。

Description

摄像光学镜头 【技术领域】
本申请涉及光学镜头技术领域,尤其涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
【背景技术】
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-OxideSemi condctor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式或四片式透镜结构。并且,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,五片式、六片式、七片式透镜结构逐渐出现在镜头设计当中。迫切需求具有优秀的光学特征、超薄且色像差充分补正的广角摄像镜头。
【申请内容】
基于此,有必要提供一种能在获得高成像性能的同时,满足超薄化和广角化的要求的摄像光学镜头。
一种摄像光学镜头,包括:所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,以及第六透镜;所述第二透镜具有负屈折力,所述第三透镜具有负屈折力;
所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,满足下列 关系式:-3.00≤f1/f2≤-1.00;2.00≤R3/R4≤50.01。
优选的,所述第一透镜具有正屈折力,其物侧面于近轴为凸面;
所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,以及所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.36≤f1/f≤5.24;-16.93≤(R1+R2)/(R1-R2)≤-0.66;0.04≤d1/TTL≤0.30。
优选的,所述摄像光学镜头满足下列关系式:0.58≤f1/f≤4.19;-10.58≤(R1+R2)/(R1-R2)≤-0.82;0.06≤d1/TTL≤0.24。
优选的,所述第二透镜物侧面于近轴为凸面,其像侧面于近轴为凹面;
所述摄像光学镜头的焦距为f,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-2.37≤f2/f≤-0.48;0.52≤(R3+R4)/(R3-R4)≤4.48;0.01≤d3/TTL≤0.15。
优选的,所述摄像光学镜头满足下列关系式:-1.48≤f2/f≤-0.60;0.83≤(R3+R4)/(R3-R4)≤3.58;0.02≤d3/TTL≤0.12。
优选的,所述第三透镜物侧面于近轴为凸面,其像侧面于近轴为凹面;
所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-2.96E+06≤f3/f≤-57.48;24.69≤(R5+R6)/(R5-R6)≤211.03;0.01≤d5/TTL≤0.06。
优选的,,所述摄像光学镜头满足下列关系式:-1.85E+06≤f3/f≤-71.85;39.50≤(R5+R6)/(R5-R6)≤168.82;0.02≤d5/TTL≤0.05。
优选的,所述第四透镜具有正屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凸面;所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.44≤f4/f≤2.19;-1.88≤(R7+R8)/(R7-R8)≤-0.54;0.03≤d7/TTL≤0.09。
优选的,所述摄像光学镜头满足下列关系式:0.70≤f4/f≤1.75;-1.18≤(R7+R8)/(R7-R8)≤-0.68;0.05≤d7/TTL≤0.08。
优选的,所述第五透镜具有正屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凸面;
所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.56≤f5/f≤2.75;0.20≤(R9+R10)/(R9-R10)≤1.06;0.03≤d9/TTL≤0.13。
优选的,所述摄像光学镜头满足下列关系式:0.90≤f5/f≤2.20;0.33≤(R9+R10)/(R9-R10)≤0.85;0.05≤d9/TTL≤0.11。
优选的,所述第六透镜具有负屈折力,其像侧面于近轴为凹面;
所述摄像光学镜头的焦距为f,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-1.81≤f6/f≤-0.50;
0.10≤(R11+R12)/(R11-R12)≤2.39;
0.03≤d11/TTL≤0.18。
优选的,所述摄像光学镜头满足下列关系式:-1.13≤f6/f≤-0.62;0.16≤(R11+R12)/(R11-R12)≤1.91;0.04≤d11/TTL≤0.14。
优选的,所述摄像光学镜头的焦距为f,所述第一透镜与所述第二透镜的组合焦距为f12,且满足下列关系式:-4.31≤f12/f≤4.27。
优选的,所述摄像光学镜头满足下列关系式:-2.69≤f12/f≤3.42。
优选的,所述摄像光学镜头的光学总长TTL小于或等于5.13毫米。
优选的,所述摄像光学镜头的光学总长TTL小于或等于4.90毫米。
优选的,所述摄像光学镜头的光圈F数小于或等于2.06。
优选的,所述摄像光学镜头的光圈F数小于或等于2.02。
本申请的有益效果在于:根据本申请的摄像光学镜头具有优秀的光学特性,超薄,广角且色像差充分补正,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
【附图说明】
图1为本申请第一实施方式的摄像光学镜头的结构示意图;
图2为图1所示摄像光学镜头的轴向像差示意图;
图3为图1所示摄像光学镜头的倍率色差示意图;
图4为图1所示摄像光学镜头的场曲及畸变示意图;
图5为本申请第二实施方式的摄像光学镜头的结构示意图;
图6为图5所示摄像光学镜头的轴向像差示意图;
图7为图5所示摄像光学镜头的倍率色差示意图;
图8为图5所示摄像光学镜头的场曲及畸变示意图。
【具体实施方式】
下面结合附图和实施方式对本申请作进一步说明。
(第一实施方式)
参考附图,本申请提供了一种摄像光学镜头10。图1所示为本申请第一实施方式的摄像光学镜头10,该摄像光学镜头10包括六个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6。第六透镜L6和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质,第六透镜L6为塑料材质。
所述第二透镜L2具有负屈折力,所述第三透镜L3具有负屈折力;
在此,定义整体摄像光学镜头10的焦距为f,所述第一透镜L1的焦距为f1,所述第二透镜物侧面的曲率半径为R3,满足以下条件式:-3.00 ≤f1/f2≤-1.00,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。
第二透镜L2物侧面的曲率半径为R3,第二透镜L2像侧面的曲率半径为R4,满足下列关系式:2.00≤R3/R4≤50.01;规定了第二透镜L2的形状,在范围外时,随着镜头向超薄广角化发展,难以补正像差问题。
当本申请所述摄像光学镜头10的焦距、各透镜的焦距、相关透镜的折射率、摄像光学镜头的光学总长、轴上厚度和曲率半径满足上述关系式时,可以使摄像光学镜头10具有高性能,且满足低光学总长TTL的设计需求。
本实施方式中,第一透镜L1的物侧面于近轴处为凸面,具有正屈折力。
在此,定义整体摄像光学镜头10的焦距为f,所述第一透镜L1的焦距为f1,0.36≤f1/f≤5.24,规定了第一透镜L1的正屈折力。超过下限规定值时,虽然有利于镜头向超薄化发展,但是第一透镜L1的正屈折力会过强,难以补正像差等问题,同时不利于镜头向广角化发展。相反,超过上限规定值时,第一透镜的正屈折力会变过弱,镜头难以向超薄化发展。优选的,满足0.58≤f1/f≤4.19。
第一透镜L1物侧面的曲率半径为R1,第一透镜L1像侧面的曲率半径为R2,满足下列关系式:-16.93≤(R1+R2)/(R1-R2)≤-0.66,合理控制第一透镜的形状,使得第一透镜能够有效地校正系统球差;优选的,-10.58≤(R1+R2)/(R1-R2)≤-0.82。
第一透镜L1的轴上厚度为d1,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.04≤d1/TTL≤0.30,有利于实现超薄化。优选的,0.06≤d1/TTL≤0.24。
本实施方式中,第二透镜L2的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
整体摄像光学镜头10的焦距为f,第二透镜L2焦距为f2,满足下列关系式:-2.37≤f2/f≤-0.48,通过将第二透镜L2的负光焦度控制在合理范围,以合理而有效地平衡由具有正光焦度的第一透镜L1产生的球差以及系统的场曲量。优选的,-1.48≤f2/f≤-0.60。
第二透镜L2物侧面的曲率半径为R3,第二透镜L2像侧面的曲率半径为R4,满足下列关系式:0.52≤(R3+R4)/(R3-R4)≤4.48,规定了第二透镜L2的形状,在范围外时,随着镜头向超薄广角化发展,难以补正轴上色像差问题。优选的,0.83≤(R3+R4)/(R3-R4)≤3.58。
第二透镜L2的轴上厚度为d3,满足下列关系式:0.01≤d3/TTL≤0.15,有利于实现超薄化。优选的,0.02≤d3/TTL≤0.12。
本实施方式中,第三透镜L3的物侧面于近轴为凸面,其像侧面于近轴为凹面;
整体摄像光学镜头10的焦距为f,第三透镜L3焦距f3,满足下列关系式:-2.96E+06≤f3/f≤-57.48,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的,-1.85E+06≤f3/f≤-71.85。
第四透镜L4物侧面的曲率半径R7,第四透镜L4像侧面的曲率半径R8,满足下列关系式:24.69≤(R5+R6)/(R5-R6)≤211.03,规定的是第四透镜L4的形状,在范围外时,随着超薄广角化的发展,很难补正轴外画角的像差等问题。优选的,39.50≤(R5+R6)/(R5-R6)≤168.82。
第三透镜L3的轴上厚度为d5,满足下列关系式:0.01≤d5/TTL≤0.06,有利于实现超薄化。优选的,0.02≤d5/TTL≤0.05。
本实施方式中,第四透镜L4的物侧面于近轴处为凸面,像侧面于近轴处为凸面,具有正屈折力。
整体摄像光学镜头10的焦距为f,第四透镜L4焦距f4,满足下列关系式:0.44≤f4/f≤2.19,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的,0.70≤f4/f≤1.75。
第四透镜L4物侧面的曲率半径R7,第四透镜L4像侧面的曲率半径R8,满足下列关系式:-1.88≤(R7+R8)/(R7-R8)≤-0.54,规定的是第四透镜L4的形状,在范围外时,随着超薄广角化的发展,很难补正轴外画角的像差等问题。优选的,-1.18≤(R7+R8)/(R7-R8)≤-0.68。
第四透镜L4的轴上厚度为d7,满足下列关系式:0.03≤d7/TTL≤0.09,有利于实现超薄化。优选的,0.05≤d7/TTL≤0.08。
本实施方式中,第五透镜L5的物侧面于近轴处为凸面,像侧面于近轴处为凸面,其具有正屈折力。
整体摄像光学镜头10的焦距为f,第五透镜L5焦距为f5,满足下列关系式:0.56≤f5/f≤2.75,对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。优选的,0.90≤f5/f≤2.20。
第五透镜L5物侧面的曲率半径为R9,第五透镜L5像侧面的曲率半径为R10,满足下列关系式:0.20≤(R9+R10)/(R9-R10)≤1.06,规定的是第五透镜L5的形状,在条件范围外时,随着超薄广角化发展,很难补正轴外画角的像差等问题。优选的,0.33≤(R9+R10)/(R9-R10)≤0.85。
第五透镜L5的轴上厚度为d9,满足下列关系式:0.03≤d9/TTL≤0.13,有利于实现超薄化。优选的,0.05≤d9/TTL≤0.11。
本实施方式中,第六透镜L6的像侧面于近轴处为凹面,其具有负屈折力。
整体摄像光学镜头10的焦距为f,第六透镜L6焦距f6,满足下列关系式:-1.81≤f6/f≤-0.50,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的,-1.13≤f6/f≤-0.62。
第六透镜L6物侧面的曲率半径为R11,第六透镜L6像侧面的曲率半径为R12,满足下列关系式:0.10≤(R11+R12)/(R11-R12)≤2.39,规定的是第六透镜L6的形状,在条件范围外时,随着超薄广角化发展,很难补正轴外画角的像差等问题。优选的,0.16≤(R11+R12)/(R11-R12)≤1.91。
第六透镜L6的轴上厚度为d11,满足下列关系式:0.03≤d11/TTL≤0.18,有利于实现超薄化。优选的,0.04≤d11/TTL≤0.14。
本实施例中,所述摄像光学镜头的焦距为f,所述第一透镜与所述第二透镜的组合焦距为f12,且满足下列关系式:-4.31≤f12/f≤4.27。借此,可消除摄像光学镜头的像差与歪曲,且可压制摄像光学镜头后焦距,维持影像镜片系统组小型化。优选的,-2.69≤f12/f≤3.42。
本实施方式中,摄像光学镜头10的光学总长TTL小于或等于5.13毫米,有利于实现超薄化。优选的,摄像光学镜头10的光学总长TTL小于或 等于4.90毫米。
本实施方式中,摄像光学镜头10为大光圈,其光圈F数小于或等于2.06,成像性能好。优选的,摄像光学镜头10的光圈F数小于或等于2.02。
如此设计,能够使得整体摄像光学镜头10的光学总长TTL尽量变短,维持小型化的特性。
下面将用实例进行说明本申请的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学长度(第1透镜L1的物侧面到成像面的轴上距离),单位为mm;
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出了本申请第一实施方式的摄像光学镜头10的设计数据。
【表1】
Figure PCTCN2019108674-appb-000001
Figure PCTCN2019108674-appb-000002
其中,各符号的含义如下。
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:第六透镜L6的物侧面的曲率半径;
R12:第六透镜L6的像侧面的曲率半径;
R13:光学过滤片GF的物侧面的曲率半径;
R14:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度与透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到光学过滤片GF的物侧面的轴上距离;
d13:光学过滤片GF的轴上厚度;
d14:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出了本申请第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure PCTCN2019108674-appb-000003
Figure PCTCN2019108674-appb-000004
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16是非球面系数。
IH:像高
y=(x2/R)/[1+{1-(k+1)(x2/R2)}1/2]+A4x4+A6x6+A8x8+A10x10+A12x12+A14x14+A16x16       (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本申请不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本申请第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜P1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光 学镜头10光轴的垂直距离。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 0 0 0 0
P1R2 1 0.105 0 0
P2R1 3 0.285 0.405 0.665
P2R2 0 0 0 0
P3R1 0 0 0 0
P3R2 2 0.785 0.835 0
P4R1 1 0.795 0 0
P4R2 1 0.765 0 0
P5R1 1 0.385 0 0
P5R2 0 0 0 0
P6R1 1 0.455 0 0
P6R2 1 1.355 0 0
【表4】
  驻点个数 驻点位置1 驻点位置2 驻点位置3
P1R1 0 0 0 0
P1R2 1 0.065 0 0
P2R1 3 0.145 0.355 0.595
P2R2 0 0 0 0
P3R1 2 0.425 0.665 0
P3R2 2 0.355 0.815 0
P4R1 3 0.275 0.555 0.705
P4R2 1 0.565 0 0
P5R1 1 0.215 0 0
P5R2 0 0 0 0
P6R1 3 0.255 1.435 1.755
P6R2 1 0.625 0 1
图2、图3分别示出了波长为470nm、555nm和650nm的光经过第一实 施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为555nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表9示出了各实例1、2中各种数值与条件式中已规定的参数所对应的值。
如表9所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为1.974mm,全视场像高为3.22mm,对角线方向的视场角为77.87°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
本申请的第二实施方式中,光圈S1设置在第一透镜L1与第二透镜L2之间。表5、表6示出本申请第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure PCTCN2019108674-appb-000005
Figure PCTCN2019108674-appb-000006
表6示出本申请第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure PCTCN2019108674-appb-000007
表7、表8示出本申请第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
Figure PCTCN2019108674-appb-000008
Figure PCTCN2019108674-appb-000009
【表8】
  驻点个数 驻点位置1 驻点位置2 驻点位置3
P1R1 1 0.855 0 0
P1R2 1 0.815 0 0
P2R1 1 0.775 0 0
P2R2 1 0.555 0 0
P3R1 1 0.415 0 0
P3R2 1 0.335 0 0
P4R1 2 0.375 0.835 0
P4R2 3 0.055 0.485 0.795
P5R1 3 0.525 0.825 0.955
P5R2 0 0 0 0
P6R1 0 0 0 0
P6R2 1 0.315 0 0
图6、图7分别示出了波长为470nm、555nm和650nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为555的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。
如表9所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为2.203mm,全视场像高为3.22mm,对角线方向的视场角为74.36°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
【表9】
参数及条件式 实施例1 实施例2
f 3.948 4.057
f1 2.874 14.179
f2 -2.865 -4.817
f3 -340.445 -6.010E+06
f4 5.769 3.538
f5 7.241 4.564
f6 -3.572 -3.039
f12 11.249 -8.740
FNO 2.00 1.84
f1/f2 -1.00 -2.94
R3/R4 50.01 2.01
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。
以上的仅是本申请的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本申请创造构思的前提下,还可以做出改进,但这些均属于本申请的保护范围。

Claims (19)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,以及第六透镜;所述第二透镜具有负屈折力,所述第三透镜具有负屈折力;
    所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,满足下列关系式:
    -3.00≤f1/f2≤-1.00;
    2.00≤R3/R4≤50.01。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜具有正屈折力,其物侧面于近轴为凸面;
    所述摄像光学镜头的焦距为f,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,以及所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.36≤f1/f≤5.24;
    -16.93≤(R1+R2)/(R1-R2)≤-0.66;
    0.04≤d1/TTL≤0.30。
  3. 根据权利要求2所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    0.58≤f1/f≤4.19;
    -10.58≤(R1+R2)/(R1-R2)≤-0.82;
    0.06≤d1/TTL≤0.24。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜物侧面于近轴为凸面,其像侧面于近轴为凹面;
    所述摄像光学镜头的焦距为f,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -2.37≤f2/f≤-0.48;
    0.52≤(R3+R4)/(R3-R4)≤4.48;
    0.01≤d3/TTL≤0.15。
  5. 根据权利要求4所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    -1.48≤f2/f≤-0.60;
    0.83≤(R3+R4)/(R3-R4)≤3.58;
    0.02≤d3/TTL≤0.12。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜物侧面于近轴为凸面,其像侧面于近轴为凹面;
    所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -2.96E+06≤f3/f≤-57.48;
    24.69≤(R5+R6)/(R5-R6)≤211.03;
    0.01≤d5/TTL≤0.06。
  7. 根据权利要求6所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    -1.85E+06≤f3/f≤-71.85;
    39.50≤(R5+R6)/(R5-R6)≤168.82;
    0.02≤d5/TTL≤0.05。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜具有正屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凸面;
    所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.44≤f4/f≤2.19;
    -1.88≤(R7+R8)/(R7-R8)≤-0.54;
    0.03≤d7/TTL≤0.09。
  9. 根据权利要求8所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    0.70≤f4/f≤1.75;
    -1.18≤(R7+R8)/(R7-R8)≤-0.68;
    0.05≤d7/TTL≤0.08。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜具有正屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凸面;
    所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.56≤f5/f≤2.75;
    0.20≤(R9+R10)/(R9-R10)≤1.06;
    0.03≤d9/TTL≤0.13。
  11. 根据权利要求10所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    0.90≤f5/f≤2.20;
    0.33≤(R9+R10)/(R9-R10)≤0.85;
    0.05≤d9/TTL≤0.11。
  12. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜具有负屈折力,其像侧面于近轴为凹面;
    所述摄像光学镜头的焦距为f,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -1.81≤f6/f≤-0.50;
    0.10≤(R11+R12)/(R11-R12)≤2.39;
    0.03≤d11/TTL≤0.18。
  13. 根据权利要求12所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    -1.13≤f6/f≤-0.62;
    0.16≤(R11+R12)/(R11-R12)≤1.91;
    0.04≤d11/TTL≤0.14。
  14. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第一透镜与所述第二透镜的组合焦距为f12,且满足下列关系式:
    -4.31≤f12/f≤4.27。
  15. 根据权利要求14所述的摄像光学镜头,其特征在于,所述摄像光学镜头满足下列关系式:
    -2.69≤f12/f≤3.42。
  16. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长TTL小于或等于5.13毫米。
  17. 根据权利要求16所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长TTL小于或等于4.90毫米。
  18. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈F数小于或等于2.06。
  19. 根据权利要求18所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈F数小于或等于2.02。
PCT/CN2019/108674 2018-12-31 2019-09-27 摄像光学镜头 WO2020140496A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811650486.8A CN109856780B (zh) 2018-12-31 2018-12-31 摄像光学镜头
CN201811650486.8 2018-12-31

Publications (1)

Publication Number Publication Date
WO2020140496A1 true WO2020140496A1 (zh) 2020-07-09

Family

ID=66893655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108674 WO2020140496A1 (zh) 2018-12-31 2019-09-27 摄像光学镜头

Country Status (4)

Country Link
US (1) US11428903B2 (zh)
JP (1) JP6799362B2 (zh)
CN (1) CN109856780B (zh)
WO (1) WO2020140496A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856780B (zh) * 2018-12-31 2021-07-30 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110262004B (zh) * 2019-06-29 2021-09-17 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110346912B (zh) * 2019-06-30 2021-11-02 瑞声光学解决方案私人有限公司 摄像光学镜头
TWI696860B (zh) 2019-09-06 2020-06-21 大立光電股份有限公司 攝影用光學鏡頭、取像裝置及電子裝置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676108A (zh) * 2012-09-05 2014-03-26 三星电机株式会社 光学系统
KR101690481B1 (ko) * 2016-03-07 2016-12-28 주식회사 세코닉스 고해상도 광각 렌즈 시스템
CN106959504A (zh) * 2016-04-27 2017-07-18 瑞声科技(新加坡)有限公司 摄像镜头
CN107219613A (zh) * 2017-07-31 2017-09-29 浙江舜宇光学有限公司 光学成像镜头
CN108363183A (zh) * 2018-04-26 2018-08-03 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109856780A (zh) * 2018-12-31 2019-06-07 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109975950A (zh) * 2017-12-27 2019-07-05 宁波舜宇车载光学技术有限公司 光学镜头

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3739529B2 (ja) * 1996-12-06 2006-01-25 オリンパス株式会社 ズームレンズ
JP3323839B2 (ja) * 1999-09-13 2002-09-09 キヤノン株式会社 小型のズームレンズを備えたカメラ
KR20130039758A (ko) * 2010-07-16 2013-04-22 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 촬상 렌즈
JP2012123340A (ja) * 2010-12-10 2012-06-28 Olympus Imaging Corp 撮影レンズ及びそれを備えた撮像装置
TWI429979B (zh) * 2011-04-13 2014-03-11 Largan Precision Co Ltd 光學影像透鏡組
TWI432772B (zh) * 2011-06-10 2014-04-01 Largan Precision Co Ltd 光學影像擷取透鏡組
TWI435138B (zh) * 2011-06-20 2014-04-21 Largan Precision Co 影像拾取光學系統
JP5966748B2 (ja) * 2012-08-08 2016-08-10 株式会社リコー 読取レンズ、画像読取装置及び画像形成装置
US9429736B2 (en) * 2012-09-10 2016-08-30 Samsung Electro-Mechanics Co., Ltd. Optical system
KR101989157B1 (ko) * 2012-12-31 2019-09-30 삼성전자주식회사 촬상 렌즈 및 이를 포함한 촬상 장치
TWI479191B (zh) * 2013-01-04 2015-04-01 Largan Precision Co Ltd 光學結像系統
TWI457592B (zh) * 2013-07-01 2014-10-21 Largan Precision Co Ltd 光學影像拾取系統鏡頭組
KR102270077B1 (ko) * 2014-07-03 2021-06-28 엘지이노텍 주식회사 촬상 렌즈, 이를 포함하는 카메라 모듈 및 디지털 기기
JP5651881B1 (ja) * 2014-08-13 2015-01-14 株式会社AAC Technologies Japan R&D Center 撮像レンズ
WO2016109956A1 (zh) * 2015-01-07 2016-07-14 浙江舜宇光学有限公司 摄像镜头
JP6541180B2 (ja) * 2015-04-22 2019-07-10 カンタツ株式会社 撮像レンズ
KR101748260B1 (ko) * 2015-04-23 2017-06-16 엘지전자 주식회사 카메라 모듈
JP5894696B1 (ja) * 2015-05-28 2016-03-30 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
JP2016224236A (ja) * 2015-05-29 2016-12-28 株式会社沖データ 画像形成装置
CN105278081B (zh) * 2015-07-07 2017-12-19 瑞声声学科技(深圳)有限公司 摄像镜头
TWI597518B (zh) * 2015-12-28 2017-09-01 鴻海精密工業股份有限公司 變焦鏡頭及應用該變焦鏡頭的取像裝置
CN205787321U (zh) * 2016-04-20 2016-12-07 广东思锐光学股份有限公司 人像镜头
JP6570076B2 (ja) * 2016-08-29 2019-09-04 カンタツ株式会社 撮像レンズ
CN106526797A (zh) * 2016-09-07 2017-03-22 玉晶光电(厦门)有限公司 光学成像镜头
TWI589922B (zh) * 2016-09-12 2017-07-01 大立光電股份有限公司 成像光學鏡片系統、取像裝置及電子裝置
CN106772932B (zh) * 2016-11-02 2019-05-03 玉晶光电(厦门)有限公司 光学镜片组
CN106814441B (zh) * 2016-12-14 2019-05-31 瑞声科技(新加坡)有限公司 摄像光学镜头
TWI616699B (zh) * 2016-12-29 2018-03-01 大立光電股份有限公司 影像擷取系統組、取像裝置及電子裝置
JP6843633B2 (ja) * 2017-01-31 2021-03-17 日本電産サンキョー株式会社 撮像レンズ系
TWI613483B (zh) * 2017-07-26 2018-02-01 大立光電股份有限公司 影像透鏡系統組、取像裝置及電子裝置
JP6640163B2 (ja) * 2017-09-29 2020-02-05 カンタツ株式会社 撮像レンズ
JP6709564B2 (ja) * 2017-11-01 2020-06-17 カンタツ株式会社 撮像レンズ
CN108152933B (zh) * 2018-02-05 2020-07-17 瑞声光学解决方案私人有限公司 摄像光学镜头
CN108254899B (zh) * 2018-02-05 2020-07-17 瑞声光学解决方案私人有限公司 摄像光学镜头
CN108375823A (zh) * 2018-04-03 2018-08-07 浙江舜宇光学有限公司 光学成像镜头
CN208172352U (zh) * 2018-04-03 2018-11-30 浙江舜宇光学有限公司 光学成像镜头
CN208297807U (zh) * 2018-05-04 2018-12-28 浙江舜宇光学有限公司 光学成像镜头
CN208421380U (zh) * 2018-06-01 2019-01-22 浙江舜宇光学有限公司 光学成像镜头
CN109164560B (zh) * 2018-10-22 2024-01-12 浙江舜宇光学有限公司 成像镜头
CN113296244B (zh) * 2018-11-07 2022-11-04 浙江舜宇光学有限公司 适用于便携式电子产品的摄像光学系统
CN113376807B (zh) * 2018-12-05 2022-06-17 浙江舜宇光学有限公司 光学成像镜片组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676108A (zh) * 2012-09-05 2014-03-26 三星电机株式会社 光学系统
KR101690481B1 (ko) * 2016-03-07 2016-12-28 주식회사 세코닉스 고해상도 광각 렌즈 시스템
CN106959504A (zh) * 2016-04-27 2017-07-18 瑞声科技(新加坡)有限公司 摄像镜头
CN107219613A (zh) * 2017-07-31 2017-09-29 浙江舜宇光学有限公司 光学成像镜头
CN109975950A (zh) * 2017-12-27 2019-07-05 宁波舜宇车载光学技术有限公司 光学镜头
CN108363183A (zh) * 2018-04-26 2018-08-03 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109856780A (zh) * 2018-12-31 2019-06-07 瑞声科技(新加坡)有限公司 摄像光学镜头

Also Published As

Publication number Publication date
JP6799362B2 (ja) 2020-12-16
JP2020109470A (ja) 2020-07-16
US11428903B2 (en) 2022-08-30
CN109856780A (zh) 2019-06-07
CN109856780B (zh) 2021-07-30
US20200209586A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
WO2020140519A1 (zh) 摄像光学镜头
WO2020134286A1 (zh) 摄像光学镜头
WO2020140515A1 (zh) 摄像光学镜头
WO2020134281A1 (zh) 摄像光学镜头
WO2020140512A1 (zh) 摄像光学镜头
WO2020140496A1 (zh) 摄像光学镜头
WO2020134266A1 (zh) 摄像光学镜头
WO2020140522A1 (zh) 摄像光学镜头
WO2020134279A1 (zh) 摄像光学镜头
WO2020134265A1 (zh) 摄像光学镜头
WO2020134263A1 (zh) 摄像光学镜头
WO2020134287A1 (zh) 摄像光学镜头
WO2020134264A1 (zh) 摄像光学镜头
WO2020134277A1 (zh) 摄像光学镜头
WO2020140511A1 (zh) 摄像光学镜头
WO2020134267A1 (zh) 摄像光学镜头
WO2020140510A1 (zh) 摄像光学镜头
WO2020140518A1 (zh) 摄像光学镜头
WO2020134278A1 (zh) 摄像光学镜头
WO2020134269A1 (zh) 摄像光学镜头
WO2020134275A1 (zh) 摄像光学镜头
WO2020140507A1 (zh) 摄像光学镜头
WO2020140495A1 (zh) 摄像光学镜头
WO2020134268A1 (zh) 摄像光学镜头
WO2020134280A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906897

Country of ref document: EP

Kind code of ref document: A1