WO2022205217A1 - 成像系统、摄像模组以及电子设备 - Google Patents

成像系统、摄像模组以及电子设备 Download PDF

Info

Publication number
WO2022205217A1
WO2022205217A1 PCT/CN2021/084738 CN2021084738W WO2022205217A1 WO 2022205217 A1 WO2022205217 A1 WO 2022205217A1 CN 2021084738 W CN2021084738 W CN 2021084738W WO 2022205217 A1 WO2022205217 A1 WO 2022205217A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical axis
object side
imaging
Prior art date
Application number
PCT/CN2021/084738
Other languages
English (en)
French (fr)
Inventor
徐标
李明
Original Assignee
欧菲光集团股份有限公司
江西晶超光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 江西晶超光学有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2021/084738 priority Critical patent/WO2022205217A1/zh
Publication of WO2022205217A1 publication Critical patent/WO2022205217A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present application relates to the field of camera technology, and in particular, to an imaging system, a camera module and an electronic device.
  • the present application provides an imaging system, a camera module and an electronic device, which can improve the imaging quality of the imaging system.
  • an embodiment of the present application provides an imaging system, which includes sequentially from the object side to the image side along the optical axis:
  • the first lens has a positive refractive power, the object side of the first lens is convex at the near optical axis, and the image side of the first lens is concave at the near optical axis;
  • the second lens has a negative refractive power
  • the object side of the second lens is convex at the near optical axis
  • the image side of the second lens is concave at the near optical axis
  • the third lens has refractive power, and the object side of the third lens is convex at the near optical axis;
  • the fourth lens has refractive power, and the object side of the fourth lens is concave at the near optical axis;
  • the fifth lens has a positive refractive power, and the object side of the fifth lens is convex at the near optical axis;
  • the sixth lens has a negative refractive power
  • the object side of the sixth lens is convex at the near optical axis
  • the image side of the sixth lens is concave at the near optical axis
  • the imaging system satisfies the following conditional formula: 1.5mm ⁇ Imgh 2 /TTL/Fno ⁇ 1.9mm; wherein, Imgh is the half of the image height corresponding to the maximum field of view of the imaging system, and TTL is the first image height of the imaging system.
  • TTL is the first image height of the imaging system.
  • the distance from the object side of a lens to the imaging plane of the imaging system on the optical axis, and Fno is the aperture number of the imaging system.
  • the imaging system provided by the embodiments of the present application adopts a six-lens imaging structure, and the combination of the first lens with positive refractive power and the second lens with negative refractive power can facilitate the correction of all the axial spherical aberration of the imaging system; the third lens and the fourth lens with refractive power can help correct the astigmatism and coma of the imaging system; the fifth lens with positive refractive power lens, which can help to achieve the miniaturization requirement of the imaging system; the sixth lens with negative refractive power helps to correct the field curvature of the imaging system; the first lens, the second lens
  • the surface design of the fourth lens is conducive to the convergence of the light of the imaging system, thereby improving the optical performance of the imaging system; through the surface design of the fourth lens, the sensitivity of the imaging system can be reduced, and the imaging The system is conducive to engineering manufacturing; through the surface design of the fifth lens and the sixth lens, the field curvature of the imaging system can be better corrected, thereby improving the performance
  • the imaging system further satisfies the following conditional formula: 1.0 ⁇ TTL/f ⁇ 1.5; where f is the effective focal length of the imaging system.
  • the length of the imaging system can be compressed, which is beneficial to miniaturized design, and at the same time, it can also better avoid the increase of the sensitivity of the imaging system caused by the length of the imaging system being too short.
  • Aberration correction is difficult, so as to obtain better optical imaging performance; within the range of the above relationship, the light of the edge field of view can also be imaged on the effective imaging area of the imaging surface, so that more scene content can be obtained and the imaging can be enriched.
  • it can better prevent the field of view of the imaging system from being too large, so that the imaging system can be miniaturized in design and reduce the aberration caused by the large field of view. strike a balance between.
  • the imaging system further satisfies the following conditional formula: 1.0 ⁇
  • f2 is the effective focal length of the second lens
  • f5 is the effective focal length of the fifth lens.
  • the imaging system further satisfies the following conditional formula: 0.5 ⁇ D5/CT6 ⁇ 1.2; wherein, D5 is the air gap between the fourth lens and the fifth lens on the optical axis, and CT6 is the The central thickness of the sixth lens on the optical axis.
  • the imaging system further satisfies the following conditional formula: 0.1 ⁇ R4/R5 ⁇ 0.45; wherein, R4 is the radius of curvature of the image side of the second lens at the optical axis, and R5 is the third The radius of curvature of the object side of the lens at the optical axis.
  • the imaging system further satisfies the following conditional formula: 0.3 ⁇ SAG51/CT5 ⁇ 1.0; wherein, SAG51 is the intersection of the object side of the fifth lens and the optical axis to the object side of the fifth lens
  • the maximum effective radius is the distance in the direction of the optical axis
  • CT5 is the central thickness of the fifth lens on the optical axis.
  • the imaging system further satisfies the following conditional formula: 0.9 ⁇ Imgh/f ⁇ 1.2; wherein, f is the effective focal length of the imaging system.
  • the imaging system further satisfies the following conditional formula: 2 ⁇ (R3+R4)/(R3-R4) ⁇ 2.5; wherein, R3 is the curvature of the object side of the second lens at the optical axis Radius, R4 is the curvature radius of the image side surface of the second lens at the optical axis.
  • R3 is the curvature of the object side of the second lens at the optical axis Radius
  • R4 is the curvature radius of the image side surface of the second lens at the optical axis.
  • an embodiment of the present application further provides a camera module, the camera module includes a photosensitive element and the imaging system described in any of the above embodiments, and the photosensitive element is arranged in the imaging plane of the imaging system to receive Light rays of the image formed by the imaging system.
  • the imaging system also has the characteristics of miniaturization, large aperture, large image area and high imaging quality, which will not be repeated here.
  • an embodiment of the present application further provides an electronic device, the electronic device includes a fixing member and the above-mentioned camera module, and the camera module is installed on the fixing member to acquire an image.
  • the electronic device can also obtain good imaging characteristics of the imaging system.
  • FIG. 1 is a schematic structural diagram of an imaging system provided in Embodiment 1 of the present application.
  • FIG. 2 provides a spherical aberration curve diagram, an astigmatism curve diagram, and a distortion curve diagram of the imaging system according to the first embodiment of the application;
  • FIG. 3 is a schematic structural diagram of an imaging system provided in Embodiment 2 of the present application.
  • FIG. 5 is a schematic structural diagram of an imaging system provided in Embodiment 3 of the present application.
  • FIG. 6 provides a spherical aberration curve diagram, an astigmatism curve diagram, and a distortion curve diagram of the imaging system according to Embodiment 3 of the present application;
  • FIG. 7 is a schematic structural diagram of an imaging system provided in Embodiment 4 of the present application.
  • FIG. 8 provides a spherical aberration curve graph, an astigmatism curve graph, and a distortion graph of an imaging system according to Embodiment 4 of the present application;
  • FIG. 9 is a schematic structural diagram of an imaging system provided in Embodiment 5 of the present application.
  • FIG. 10 provides a spherical aberration curve diagram, an astigmatism curve diagram, and a distortion curve diagram of the imaging system according to the fifth embodiment of the application;
  • FIG. 11 is a schematic structural diagram of an imaging system provided in Embodiment 6 of the present application.
  • FIG. 13 is a cross-sectional view of a camera module provided in an embodiment of the application.
  • FIG. 14 is a front view of an electronic device provided in an embodiment of the application.
  • the imaging system 100 is configured to receive the light on the object side and transmit the light to the imaging surface F.
  • the imaging system 100 includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 and a sixth lens L6 arranged in sequence from the object side to the image side along the optical axis H; wherein
  • the first lens L1 has a positive refractive power, the object side S1 of the first lens L1 is convex at the near optical axis H, and the image side S2 of the first lens L1 is concave at the near optical axis H;
  • the second lens L2 has a negative refractive power, the object side S3 of the second lens L2 is convex at the near optical axis H, and the image side S4 of the second lens L2 is concave at the near optical axis H;
  • the third lens L3 may have positive refractive power or negative refractive power, the object side S5 of the third lens L3 is convex at the near optical axis H, and the image side S6 of the third lens L3 is on the near optical axis H can be concave or convex;
  • the fourth lens L4 may have a positive refractive power or a negative refractive power, the object side S7 of the fourth lens L4 is concave at the near optical axis H, and the image side S8 of the fourth lens L4 is at the near optical axis.
  • H can be concave or convex;
  • the fifth lens L5 has a positive refractive power
  • the object side S9 of the fifth lens L5 is a convex surface at the near optical axis H
  • the image side S10 of the fifth lens L5 can be a concave surface at the near optical axis H. convex;
  • the sixth lens L6 has a negative refractive power, the object side S11 of the sixth lens L6 is convex at the near optical axis H, and the image side S12 of the sixth lens L6 is concave at the near optical axis H;
  • the imaging system 100 satisfies the following conditional formula: 1.5mm ⁇ Imgh 2 /TTL/Fno ⁇ 1.9mm; wherein, Imgh is half of the image height corresponding to the maximum field of view of the imaging system 100 , and TTL is the image height of the imaging system 100 .
  • the distance from the object side S1 of the first lens L1 to the imaging surface F of the imaging system 100 on the optical axis H, and Fno is the aperture number of the imaging system 100 .
  • the imaging system 100 provided in the embodiment of the present application adopts a six-lens imaging structure, and through the combination of the first lens L1 with positive refractive power and the second lens L2 with negative refractive power, the It is beneficial to correct the on-axis spherical aberration of the imaging system 100; the third lens L3 and the fourth lens L4 with refractive power can help to correct the astigmatism and coma of the imaging system 100;
  • the fifth lens L5 with refractive power can help to achieve the miniaturization requirement of the imaging system 100;
  • the sixth lens L6 with negative refractive power is helpful for correcting the field curvature of the imaging system 100;
  • the surface design of the first lens L1 and the second lens L2 is conducive to the convergence of light of the imaging system 100, thereby improving the optical performance of the imaging system 100; through the surface shape of the fourth lens L4
  • the design can reduce the sensitivity of the imaging system 100 and make the imaging system 100 beneficial to engineering manufacturing; through the surface design of the fifth lens
  • the imaging system 100 further includes a stop ST, and the center of the stop ST is located on the optical axis H of the imaging system 100 .
  • the aperture ST is located on the object side of the imaging system 100 .
  • the imaging system 100 may further include a filter for correcting color deviation and/or a protective glass for protecting the photosensitive element located on the imaging surface F.
  • the imaging system 100 includes an optical filter L7 , the optical filter L7 is an infrared cut-off filter, and the optical filter L7 is located on the image side of the sixth lens L6 .
  • the imaging system 100 can filter out the infrared light to prevent the interference of the infrared light, thereby improving the imaging quality.
  • the object side and/or the image side of each lens of the imaging system 100 may be spherical or aspherical.
  • the aspherical design can make the object side and/or image side of the lens have a more flexible design, so that the lens can solve the problems such as unclear imaging, distorted field of view, and narrow field of view in the case of small and thin lenses. Setting too many lenses can make the lens group have good imaging quality and help shorten the length of the imaging system 100 .
  • the spherical lens has a simple manufacturing process and low production cost.
  • the specific spherical and aspherical configurations between the lenses are determined according to actual design requirements, which will not be repeated here.
  • the aberration of the system can also be effectively eliminated through the cooperation of the spherical surface and the aspherical surface, so that the imaging system 100 has good imaging quality, and at the same time, the flexibility of lens design and assembly is improved, so that the system can achieve a balance between high image quality and low cost .
  • the specific shapes of the spherical surface and the aspherical surface in the embodiments are not limited to the shapes of the spherical surface and the aspherical surface shown in the accompanying drawings, which are mainly for example reference and are not drawn strictly to scale.
  • the aspheric parameter formula is:
  • X is the point on the aspheric surface whose distance from the optical axis is Y, and its relative distance from the tangent plane tangent to the intersection point on the optical axis of the aspheric surface;
  • Y is the vertical distance between the point on the aspheric curve and the optical axis, and
  • R is the curvature Radius,
  • k is the cone coefficient,
  • Ai is the i-th order aspheric coefficient.
  • the material of each lens in the imaging system 100 may be plastic, glass, or a combination of glass and plastic.
  • the lens made of plastic can reduce the weight of the imaging system 100 and the manufacturing cost, while the lens made of glass can withstand higher temperatures and have excellent optical effects.
  • the material of the first lens L1 to the sixth lens L6 can be all glass, so that the glass lens located on the object side has a good resistance to extreme environments, and is not easily affected by the object side environment. Therefore, when the imaging system 100 is in an extreme environment such as exposure to high temperature, this structure can better balance the optical performance and cost of the system.
  • the material configuration relationship of the lenses in the imaging system 100 is not limited to the above-mentioned embodiment.
  • the material of any lens may be plastic or glass, and the specific configuration relationship is determined according to actual design requirements, and will not be repeated here.
  • the imaging system 100 further satisfies the following conditional formula: 1.0 ⁇ TTL/f ⁇ 1.5; where f is the effective focal length of the imaging system 100 .
  • the length of the imaging system 100 can be compressed, which is beneficial to miniaturized design, and at the same time, the sensitivity of the imaging system 100 caused by the short length of the imaging system 100 can be better avoided.
  • the imaging system 100 can be miniaturized and designed to reduce the large field of view. A balance is struck between the aberrations caused by the location.
  • the imaging system 100 further satisfies the following conditional formula: 1.0 ⁇
  • f2 is the effective focal length of the second lens L2
  • f5 is the focal length of the fifth lens L5 Effective focal length.
  • the imaging system 100 further satisfies the following conditional formula: 0.5 ⁇ D5/CT6 ⁇ 1.2; wherein, D5 is the air gap between the fourth lens L4 and the fifth lens L5 on the optical axis H , CT6 is the central thickness of the sixth lens L6 on the optical axis H.
  • conditional formula 0.5 ⁇ D5/CT6 ⁇ 1.2; wherein, D5 is the air gap between the fourth lens L4 and the fifth lens L5 on the optical axis H , CT6 is the central thickness of the sixth lens L6 on the optical axis H.
  • the imaging system 100 further satisfies the following conditional formula: 0.1 ⁇ R4/R5 ⁇ 0.45; wherein, R4 is the radius of curvature of the image side surface S4 of the second lens L2 at the optical axis H, and R5 is The curvature radius of the object side surface S5 of the third lens L3 at the optical axis H.
  • R4 is the radius of curvature of the image side surface S4 of the second lens L2 at the optical axis H
  • R5 is The curvature radius of the object side surface S5 of the third lens L3 at the optical axis H.
  • the imaging system 100 also satisfies the following conditional formula: 0.3 ⁇ SAG51/CT5 ⁇ 1.0; wherein, SAG51 is the intersection of the object side S9 of the fifth lens L5 and the optical axis H to the fifth lens L5
  • the maximum effective radius of the object side surface S9 of the lens L5 is the distance in the direction of the optical axis H
  • CT5 is the central thickness of the fifth lens L5 on the optical axis H.
  • the imaging system 100 further satisfies the following conditional formula: 0.9 ⁇ Imgh/f ⁇ 1.2; where f is the effective focal length of the imaging system 100 .
  • the imaging system 100 can obtain more imaging information, so as to better realize the characteristics of the imaging system 100 with a large field of view, and at the same time, the imaging performance of the imaging system 100 can be improved.
  • the imaging system 100 further satisfies the following conditional formula: 2 ⁇ (R3+R4)/(R3-R4) ⁇ 2.5; wherein, R3 is the object side S3 of the second lens L2 on the optical axis
  • the radius of curvature at H, R4 is the radius of curvature of the image side S4 of the second lens L2 at the optical axis H.
  • the imaging system 100 further satisfies the following conditional formula: 20 ⁇
  • V3 is the Abbe number of the third lens L3
  • V2 is the Abbe number of the second lens L2 .
  • the imaging system 100 further satisfies the following conditional formula: TTL/Imgh ⁇ 1.4; where Imgh is half of the image height corresponding to the maximum field of view of the imaging system 100 , and TTL is the image height of the imaging system 100 The distance on the optical axis H from the object side surface S1 of the first lens L1 to the imaging surface F of the imaging system 100 .
  • TTL is the image height of the imaging system 100
  • the imaging system 100 further satisfies the following conditional formula: Fno ⁇ 1.9; wherein, Fno is the aperture number of the imaging system 100 .
  • Fno is the aperture number of the imaging system 100 .
  • the imaging system 100 includes a diaphragm ST, a first lens L1 , a second lens L2 , a third lens L1 , a third lens L2 , a diaphragm ST arranged in sequence from the object side to the image side along the optical axis H Lens L3, fourth lens L4, fifth lens L5, sixth lens L6, filter L7, the imaging surface F is located on the side of the filter L7 away from the sixth lens L6, and the effective pixel area of the photosensitive element is located at the imaging surface F superior.
  • the first lens L1 has a positive refractive power
  • the object side S1 of the first lens L1 is convex at the near optical axis H
  • the object side S1 is convex near the circumference
  • the image side S2 of the first lens L1 It is a concave surface at the near optical axis H
  • the image side S2 is a convex surface near the circumference
  • the second lens L2 has a negative refractive power.
  • the object side S3 of the second lens L2 is convex at the near optical axis H, the object side S3 is convex near the circumference, and the image side S4 of the second lens L2 is near the circumference.
  • the optical axis H is a concave surface, and the image side S4 is a concave surface near the circumference;
  • the third lens L3 has a positive refractive power
  • the object side S5 of the third lens L3 is convex at the near optical axis H
  • the object side S5 is concave near the circumference
  • the image side S6 of the third lens L3 is near the circumference.
  • the optical axis H is a convex surface
  • the side surface S6 is a convex surface near the circumference;
  • the fourth lens L4 has a negative refractive power, the object side S7 of the fourth lens L4 is concave at the near optical axis H, the object side S7 is concave near the circumference, and the image side S8 of the fourth lens L4 is near the circumference.
  • the optical axis H is a concave surface, and the image side S8 is a convex surface near the circumference;
  • the fifth lens L5 has a positive refractive power
  • the object side S9 of the fifth lens L5 is convex at the near optical axis H
  • the object side S9 is concave near the circumference
  • the image side S10 of the fifth lens L5 is near the circumference.
  • the optical axis H is a convex surface
  • the side surface S10 is a convex surface near the circumference;
  • the sixth lens L6 has negative refractive power, the object side S11 of the sixth lens L6 is convex at the near optical axis H, the object side S11 is concave near the circumference, and the image side S12 of the sixth lens L6 is near the circumference.
  • the optical axis H is concave, and the image side S12 is convex near the circumference.
  • the focal length of the imaging system 100 is based on light with a wavelength of 555.000 nm, and the refractive index and Abbe number are based on light with a wavelength of 587.560 nm.
  • Table 1 shows the relevant parameters of the imaging system 100 .
  • f is the effective focal length of the imaging system 100
  • FNO represents the aperture value
  • FOV represents the maximum field angle of the imaging system 100
  • the units of curvature radius, thickness, and focal length are all millimeters.
  • conditional Numerical value conditional Numerical value TTL/f 1.16 SAG51/CT5 0.72 Imgh 2 /TTL/Fno 1.72 Imgh/f 0.9
  • Table 3 shows the conic constant K and aspheric coefficient corresponding to the surface of each lens.
  • FIG. 2 is a graph of spherical aberration, a graph of astigmatism, and a graph of distortion in Embodiment 1 from left to right.
  • the left diagram of FIG. 2 is a graph of spherical aberration curves of light at wavelengths of 650.000 nm, 610.000 nm, 555.000 nm, 510.000 nm and 470.000 nm in this embodiment.
  • the abscissa along the X-axis direction represents the focus shift, and the ordinate along the Y-axis direction represents the normalized field of view.
  • the spherical aberration corresponding to the wavelengths of 650.000nm, 610.000nm, 555.000nm, 510.000nm and 470.000nm are all within ⁇ 0.025mm, which shows that the imaging system in this embodiment has a small spherical aberration, and the imaging Good quality.
  • 2 is a graph of astigmatism with a wavelength of 555.000 nm in this embodiment, wherein the abscissa along the X-axis direction represents the focus shift, and the ordinate along the Y-axis direction represents the image height.
  • the right diagram of FIG. 2 is a distortion curve diagram of the wavelength of 555.000 nm in this embodiment.
  • the abscissa along the X-axis direction represents the distortion rate, and the ordinate along the Y-axis direction represents the image height.
  • the imaging system given in the first embodiment can achieve a good imaging effect.
  • the imaging system 100 includes a diaphragm ST, a first lens L1 , a second lens L2 , a third lens L1 , a third lens L2 , a diaphragm ST arranged in sequence from the object side to the image side along the optical axis H Lens L3, fourth lens L4, fifth lens L5, sixth lens L6, filter L7, the imaging surface F is located on the side of the filter L7 away from the sixth lens L6, and the effective pixel area of the photosensitive element is located at the imaging surface F superior.
  • the first lens L1 has a positive refractive power
  • the object side S1 of the first lens L1 is convex at the near optical axis H
  • the object side S1 is convex near the circumference
  • the image side S2 of the first lens L1 It is a concave surface at the near optical axis H
  • the image side S2 is a convex surface near the circumference
  • the second lens L2 has a negative refractive power.
  • the object side S3 of the second lens L2 is convex at the near optical axis H, the object side S3 is convex near the circumference, and the image side S4 of the second lens L2 is near the circumference.
  • the optical axis H is a concave surface, and the image side S4 is a concave surface near the circumference;
  • the third lens L3 has a positive refractive power
  • the object side S5 of the third lens L3 is convex at the near optical axis H
  • the object side S5 is concave near the circumference
  • the image side S6 of the third lens L3 is near the circumference.
  • the optical axis H is a concave surface
  • the side surface S6 is a convex surface near the circumference;
  • the fourth lens L4 has a negative refractive power, the object side S7 of the fourth lens L4 is concave at the near optical axis H, the object side S7 is concave near the circumference, and the image side S8 of the fourth lens L4 is near the circumference.
  • the optical axis H is a convex surface, and the side surface S8 is a convex surface near the circumference;
  • the fifth lens L5 has a positive refractive power
  • the object side S9 of the fifth lens L5 is convex at the near optical axis H
  • the object side S9 is concave near the circumference
  • the image side S10 of the fifth lens L5 is near the circumference.
  • the optical axis H is a concave surface
  • the image side S10 is a convex surface near the circumference;
  • the sixth lens L6 has negative refractive power, the object side S11 of the sixth lens L6 is convex at the near optical axis H, the object side S11 is concave near the circumference, and the image side S12 of the sixth lens L6 is near the circumference.
  • the optical axis H is concave, and the image side S12 is convex near the circumference.
  • the focal length of the imaging system 100 is based on light with a wavelength of 555.000 nm, and the refractive index and Abbe number are based on light with a wavelength of 587.560 nm.
  • Table 4 shows the relevant parameters of the imaging system 100 .
  • f is the effective focal length of the imaging system 100
  • FNO represents the aperture value
  • FOV represents the maximum field angle of the imaging system 100
  • the units of curvature radius, thickness, and focal length are all millimeters.
  • conditional Numerical value conditional Numerical value TTL/f 1.26 SAG51/CT5 0.60 Imgh 2 /TTL/Fno 1.76 Imgh/f 0.98
  • Table 6 shows the conic constant K and aspheric coefficient corresponding to the surface of each lens.
  • FIG. 4 is a graph of spherical aberration, a graph of astigmatism, and a graph of distortion in the second embodiment from left to right.
  • the left side of FIG. 4 is a graph of spherical aberration curves of light at wavelengths of 650.000 nm, 610.000 nm, 555.000 nm, 510.000 nm and 470.000 nm in this embodiment.
  • the abscissa along the X-axis direction represents the focus shift, and the ordinate along the Y-axis direction represents the normalized field of view.
  • the right diagram of FIG. 4 is a distortion curve diagram of the wavelength of 555.000 nm in this embodiment.
  • the abscissa along the X-axis direction represents the distortion rate, and the ordinate along the Y-axis direction represents the image height.
  • the imaging system provided in the second embodiment can achieve a good imaging effect.
  • the imaging system 100 includes a diaphragm ST, a first lens L1 , a second lens L2 , a third lens L1 , a third lens L2 , a diaphragm ST arranged in sequence from the object side to the image side along the optical axis H Lens L3, fourth lens L4, fifth lens L5, sixth lens L6, filter L7, the imaging surface F is located on the side of the filter L7 away from the sixth lens L6, and the effective pixel area of the photosensitive element is located at the imaging surface F superior.
  • the first lens L1 has a positive refractive power
  • the object side S1 of the first lens L1 is convex at the near optical axis H
  • the object side S1 is convex near the circumference
  • the image side S2 of the first lens L1 It is a concave surface at the near optical axis H
  • the image side S2 is a convex surface near the circumference
  • the second lens L2 has a negative refractive power.
  • the object side S3 of the second lens L2 is convex at the near optical axis H, the object side S3 is convex near the circumference, and the image side S4 of the second lens L2 is near the circumference.
  • the optical axis H is a concave surface, and the image side S4 is a concave surface near the circumference;
  • the third lens L3 has a positive refractive power
  • the object side S5 of the third lens L3 is convex at the near optical axis H
  • the object side S5 is concave near the circumference
  • the image side S6 of the third lens L3 is near the circumference.
  • the optical axis H is a concave surface
  • the side surface S6 is a convex surface near the circumference;
  • the fourth lens L4 has a negative refractive power, the object side S7 of the fourth lens L4 is concave at the near optical axis H, the object side S7 is concave near the circumference, and the image side S8 of the fourth lens L4 is near the circumference.
  • the optical axis H is a convex surface, and the side surface S8 is a convex surface near the circumference;
  • the fifth lens L5 has a positive refractive power
  • the object side S9 of the fifth lens L5 is convex at the near optical axis H
  • the object side S9 is concave near the circumference
  • the image side S10 of the fifth lens L5 is near the circumference.
  • the optical axis H is a convex surface
  • the side surface S10 is a convex surface near the circumference;
  • the sixth lens L6 has negative refractive power, the object side S11 of the sixth lens L6 is convex at the near optical axis H, the object side S11 is concave near the circumference, and the image side S12 of the sixth lens L6 is near the circumference.
  • the optical axis H is concave, and the image side S12 is convex near the circumference.
  • the focal length of the imaging system 100 is based on light with a wavelength of 555.000 nm, and the refractive index and Abbe number are based on light with a wavelength of 587.560 nm.
  • the relevant parameters of the imaging system 100 are shown in Table 7. Wherein, f is the effective focal length of the imaging system 100 , FNO represents the aperture value, FOV represents the maximum field angle of the imaging system 100 , and the units of curvature radius, thickness, and focal length are all millimeters.
  • conditional Numerical value conditional Numerical value TTL/f 1.30 SAG51/CT5 0.58 Imgh 2 /TTL/Fno 1.82 Imgh/f 1.02
  • Table 9 shows the conic constant K and aspheric coefficient corresponding to the surface of each lens.
  • FIG. 6 from left to right, the spherical aberration curve, the astigmatism curve and the distortion curve in the third embodiment are respectively shown.
  • the left diagram of FIG. 6 is a graph of spherical aberration curves of light at wavelengths of 650.000 nm, 610.000 nm, 555.000 nm, 510.000 nm and 470.000 nm in this embodiment.
  • the abscissa along the X-axis direction represents the focus shift, and the ordinate along the Y-axis direction represents the normalized field of view.
  • the spherical aberration corresponding to the wavelengths of 650.000nm, 610.000nm, 555.000nm, 510.000nm and 470.000nm are all within ⁇ 0.025mm, which shows that the imaging system in this embodiment has a small spherical aberration, and the imaging Good quality.
  • the astigmatism curve with the wavelength of 555.000 nm in this embodiment is shown, wherein the abscissa along the X-axis direction represents the focus shift, and the ordinate along the Y-axis direction represents the image height.
  • the right picture of FIG. 6 is a distortion curve diagram of the wavelength of 555.000 nm in this embodiment.
  • the abscissa along the X-axis direction represents the distortion rate, and the ordinate along the Y-axis direction represents the image height.
  • the imaging system given in the third embodiment can achieve a good imaging effect.
  • the imaging system 100 includes a diaphragm ST, a first lens L1 , a second lens L2 , a third lens L1 , a third lens L2 , a diaphragm ST arranged in sequence from the object side to the image side along the optical axis H Lens L3, fourth lens L4, fifth lens L5, sixth lens L6, filter L7, the imaging surface F is located on the side of the filter L7 away from the sixth lens L6, and the effective pixel area of the photosensitive element is located at the imaging surface F superior.
  • the first lens L1 has a positive refractive power
  • the object side S1 of the first lens L1 is convex at the near optical axis H
  • the object side S1 is convex near the circumference
  • the image side S2 of the first lens L1 It is a concave surface at the near optical axis H
  • the image side S2 is a convex surface near the circumference
  • the second lens L2 has a negative refractive power.
  • the object side S3 of the second lens L2 is convex at the near optical axis H, the object side S3 is convex near the circumference, and the image side S4 of the second lens L2 is near the circumference.
  • the optical axis H is a concave surface, and the image side S4 is a concave surface near the circumference;
  • the third lens L3 has a negative refractive power
  • the object side S5 of the third lens L3 is convex at the near optical axis H
  • the object side S5 is concave near the circumference
  • the image side S6 of the third lens L3 is near the circumference.
  • the optical axis H is a concave surface
  • the side surface S6 is a convex surface near the circumference;
  • the fourth lens L4 has a negative refractive power, the object side S7 of the fourth lens L4 is concave at the near optical axis H, the object side S7 is concave near the circumference, and the image side S8 of the fourth lens L4 is near the circumference.
  • the optical axis H is a convex surface, and the side surface S8 is a convex surface near the circumference;
  • the fifth lens L5 has a positive refractive power
  • the object side S9 of the fifth lens L5 is convex at the near optical axis H
  • the object side S9 is concave near the circumference
  • the image side S10 of the fifth lens L5 is near the circumference.
  • the optical axis H is a convex surface
  • the side surface S10 is a convex surface near the circumference;
  • the sixth lens L6 has negative refractive power, the object side S11 of the sixth lens L6 is convex at the near optical axis H, the object side S11 is concave near the circumference, and the image side S12 of the sixth lens L6 is near the circumference.
  • the optical axis H is concave, and the image side S12 is convex near the circumference.
  • the focal length of the imaging system 100 is based on light with a wavelength of 555.000 nm, and the refractive index and Abbe number are based on light with a wavelength of 587.560 nm.
  • Table 10 shows the relevant parameters of the imaging system 100 .
  • f is the effective focal length of the imaging system 100
  • FNO represents the aperture value
  • FOV represents the maximum field angle of the imaging system 100
  • the units of curvature radius, thickness, and focal length are all millimeters.
  • conditional Numerical value conditional Numerical value TTL/f 1.26 SAG51/CT5 0.59 Imgh 2 /TTL/Fno 1.76 Imgh/f 0.99
  • Table 12 shows the conic constant K and aspheric coefficient corresponding to the surface of each lens.
  • FIG. 8 is a graph of spherical aberration, a graph of astigmatism, and a graph of distortion in Embodiment 4 from left to right.
  • the left diagram of FIG. 8 is a graph of spherical aberration curves of light at wavelengths of 650.000 nm, 610.000 nm, 555.000 nm, 510.000 nm and 470.000 nm in this embodiment.
  • the abscissa along the X-axis direction represents the focus shift, and the ordinate along the Y-axis direction represents the normalized field of view.
  • the right figure of FIG. 8 is a distortion curve diagram of the wavelength of 555.000 nm in this embodiment.
  • the abscissa along the X-axis direction represents the distortion rate, and the ordinate along the Y-axis direction represents the image height.
  • the imaging system provided in the fourth embodiment can achieve a good imaging effect.
  • the imaging system 100 includes a diaphragm ST, a first lens L1 , a second lens L2 , a third lens L1 , a third lens L2 , a diaphragm ST arranged in sequence from the object side to the image side along the optical axis H Lens L3, fourth lens L4, fifth lens L5, sixth lens L6, filter L7, the imaging surface F is located on the side of the filter L7 away from the sixth lens L6, and the effective pixel area of the photosensitive element is located at the imaging surface F superior.
  • the first lens L1 has a positive refractive power
  • the object side S1 of the first lens L1 is convex at the near optical axis H
  • the object side S1 is convex near the circumference
  • the image side S2 of the first lens L1 It is a concave surface at the near optical axis H
  • the image side S2 is a convex surface near the circumference
  • the second lens L2 has a negative refractive power.
  • the object side S3 of the second lens L2 is convex at the near optical axis H, the object side S3 is convex near the circumference, and the image side S4 of the second lens L2 is near the circumference.
  • the optical axis H is a concave surface, and the image side S4 is a concave surface near the circumference;
  • the third lens L3 has a positive refractive power
  • the object side S5 of the third lens L3 is convex at the near optical axis H
  • the object side S5 is concave near the circumference
  • the image side S6 of the third lens L3 is near the circumference.
  • the optical axis H is a concave surface
  • the side surface S6 is a convex surface near the circumference;
  • the fourth lens L4 has a positive refractive power, the object side S7 of the fourth lens L4 is concave at the near optical axis H, the object side S7 is concave near the circumference, and the image side S8 of the fourth lens L4 is near the circumference.
  • the optical axis H is a convex surface, and the side surface S8 is a convex surface near the circumference;
  • the fifth lens L5 has a positive refractive power
  • the object side S9 of the fifth lens L5 is convex at the near optical axis H
  • the object side S9 is concave near the circumference
  • the image side S10 of the fifth lens L5 is near the circumference.
  • the optical axis H is a convex surface
  • the side surface S10 is a convex surface near the circumference;
  • the sixth lens L6 has negative refractive power, the object side S11 of the sixth lens L6 is convex at the near optical axis H, the object side S11 is concave near the circumference, and the image side S12 of the sixth lens L6 is near the circumference.
  • the optical axis H is concave, and the image side S12 is convex near the circumference.
  • the focal length of the imaging system 100 is based on light with a wavelength of 555.000 nm, and the refractive index and Abbe number are based on light with a wavelength of 587.560 nm.
  • the relevant parameters of the imaging system 100 are shown in Table 13. Wherein, f is the effective focal length of the imaging system 100 , FNO represents the aperture value, FOV represents the maximum field angle of the imaging system 100 , and the units of curvature radius, thickness, and focal length are all millimeters.
  • Table 15 shows the conic constant K and aspheric coefficient corresponding to the surface of each lens.
  • FIG. 10 from left to right, the spherical aberration curve, the astigmatism curve and the distortion curve in the fifth embodiment are respectively shown.
  • the left side of FIG. 10 is a graph of spherical aberration curves of light at wavelengths of 650.000 nm, 610.000 nm, 555.000 nm, 510.000 nm and 470.000 nm in this embodiment.
  • the abscissa along the X-axis direction represents the focus shift, and the ordinate along the Y-axis direction represents the normalized field of view.
  • the spherical aberration corresponding to the wavelengths of 650.000 nm, 610.000 nm, 555.000 nm, 510.000 nm and 470.000 nm are all within ⁇ 0.050 mm, which indicates that the imaging system in this embodiment has a small spherical aberration, and the imaging Good quality.
  • 10 is a graph of astigmatism with a wavelength of 555.000 nm in this embodiment, wherein the abscissa along the X-axis direction represents the focus shift, and the ordinate along the Y-axis direction represents the image height.
  • the right figure of FIG. 10 is a distortion curve diagram of the wavelength of 555.000 nm in this embodiment.
  • the abscissa along the X-axis direction represents the distortion rate, and the ordinate along the Y-axis direction represents the image height.
  • the imaging system provided in the fifth embodiment can achieve a good imaging effect.
  • the imaging system 100 includes a diaphragm ST, a first lens L1 , a second lens L2 , a third lens L1 , a third lens L2 , a diaphragm ST arranged in sequence from the object side to the image side along the optical axis H Lens L3, fourth lens L4, fifth lens L5, sixth lens L6, filter L7, the imaging surface F is located on the side of the filter L7 away from the sixth lens L6, and the effective pixel area of the photosensitive element is located at the imaging surface F superior.
  • the first lens L1 has a positive refractive power
  • the object side S1 of the first lens L1 is convex at the near optical axis H
  • the object side S1 is convex near the circumference
  • the image side S2 of the first lens L1 It is a concave surface at the near optical axis H
  • the image side S2 is a convex surface near the circumference
  • the second lens L2 has a negative refractive power.
  • the object side S3 of the second lens L2 is convex at the near optical axis H, the object side S3 is convex near the circumference, and the image side S4 of the second lens L2 is near the circumference.
  • the optical axis H is a concave surface, and the image side S4 is a concave surface near the circumference;
  • the third lens L3 has a positive refractive power
  • the object side S5 of the third lens L3 is convex at the near optical axis H
  • the object side S5 is concave near the circumference
  • the image side S6 of the third lens L3 is near the circumference.
  • the optical axis H is a convex surface
  • the side surface S6 is a convex surface near the circumference;
  • the fourth lens L4 has a negative refractive power, the object side S7 of the fourth lens L4 is concave at the near optical axis H, the object side S7 is concave near the circumference, and the image side S8 of the fourth lens L4 is near the circumference.
  • the optical axis H is a convex surface, and the side surface S8 is a convex surface near the circumference;
  • the fifth lens L5 has a positive refractive power
  • the object side S9 of the fifth lens L5 is convex at the near optical axis H
  • the object side S9 is concave near the circumference
  • the image side S10 of the fifth lens L5 is near the circumference.
  • the optical axis H is a convex surface
  • the side surface S10 is a convex surface near the circumference;
  • the sixth lens L6 has negative refractive power, the object side S11 of the sixth lens L6 is convex at the near optical axis H, the object side S11 is concave near the circumference, and the image side S12 of the sixth lens L6 is near the circumference.
  • the optical axis H is concave, and the image side S12 is convex near the circumference.
  • the focal length of the imaging system 100 is based on light with a wavelength of 555.000 nm, and the refractive index and Abbe number are based on light with a wavelength of 587.560 nm.
  • Table 16 shows the relevant parameters of the imaging system 100 .
  • f is the effective focal length of the imaging system 100
  • FNO represents the aperture value
  • FOV represents the maximum field angle of the imaging system 100
  • the units of curvature radius, thickness, and focal length are all millimeters.
  • conditional Numerical value conditional Numerical value TTL/f 1.26 SAG51/CT5 0.55 Imgh 2 /TTL/Fno 1.76 Imgh/f 0.98
  • Table 18 shows the conic constant K and aspheric coefficient corresponding to the surface of each lens.
  • FIG. 12 shows the spherical aberration curve, the astigmatism curve and the distortion curve respectively in the sixth embodiment from left to right.
  • the left side of FIG. 12 is a graph of spherical aberration curves of light at wavelengths of 650.000 nm, 610.000 nm, 555.000 nm, 510.000 nm and 470.000 nm in this embodiment.
  • the abscissa along the X-axis direction represents the focus shift, and the ordinate along the Y-axis direction represents the normalized field of view.
  • the spherical aberration corresponding to the wavelengths of 650.000nm, 610.000nm, 555.000nm, 510.000nm and 470.000nm are all within ⁇ 0.025mm, which shows that the imaging system in this embodiment has a small spherical aberration, and the imaging Good quality.
  • the right figure of FIG. 12 is a distortion curve diagram of the wavelength of 555.000 nm in this embodiment.
  • the abscissa along the X-axis direction represents the distortion rate, and the ordinate along the Y-axis direction represents the image height.
  • the imaging system provided in the sixth embodiment can achieve a good imaging effect.
  • the camera module 200 includes a photosensitive element 210 and the imaging system 100 in any of the above-mentioned embodiments, and the photosensitive element 210 is provided in the imaging system 100. in the imaging plane F to receive the light of the image formed by the imaging system 100 .
  • the imaging system 100 also has the characteristics of miniaturization, large aperture, large image area and high imaging quality, which will not be repeated here.
  • the embodiment of the present application further provides an electronic device 300.
  • the electronic device 300 includes a fixing member 310 and the above-mentioned camera module 200, and the camera module 200 is installed on the fixing member 310 to acquire images .
  • the fixing member 310 may be a circuit board, a middle frame, a protective casing and other components.
  • the electronic device 300 can be, but is not limited to, a smart phone, a smart watch, an e-book, a reader, a vehicle camera device, a monitoring device, a medical device, a tablet computer, a biometric device PDA (Personal Digital Assistant), a drone, etc. .
  • the camera module 200 can be installed in the casing of the mobile phone. As shown in FIG. 14 , it can be a front view of the camera module 200 being installed in the casing of the mobile phone.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请公开了一种成像系统、摄像模组、以及电子设备。成像系统沿光轴由物侧至像侧依次包括具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有屈折力的第三透镜、具有屈折力的第四透镜、具有正屈折力的第五透镜、具有负屈折力的第六透镜,将六片透镜面型合理搭配,使成像系统还满足条件式:1.5mm<Imgh2/TTL/Fno<1.9mm;其中,Imgh为所述成像系统最大视场角对应像高的一半,TTL为所述成像系统的所述第一透镜的物侧面至所述成像系统的成像面于光轴上的距离,Fno为所述成像系统的光圈数。满足上述设计可实现所述成像系统的小型化设计、大视场特性和提高成像清晰度。

Description

成像系统、摄像模组以及电子设备 技术领域
本申请涉及摄像技术领域,尤其涉及一种成像系统、摄像模组以及电子设备。
背景技术
随着科技的进步,具有摄像功能的电子产品快速发展,消费者们对电子产品的成像质量要求也越来越高。同时,随着感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)等图像传感器等技术的进步,使得芯片上像元数增加同时单像元的尺寸减小,这对配套使用的成像系统的高成像性能也提出了越来越高的要求。
为满足高质量的拍摄需求,成像系统设计的性能改进成为目前提升拍摄质量的关键因素。
发明内容
本申请提供一种成像系统、摄像模组以及电子设备,能够提高成像系统的成像品质。
第一方面,本申请实施例提供一种成像系统,沿光轴由物侧至像侧依次包括:
第一透镜,所述第一透镜具有正屈折力,所述第一透镜的物侧面于近光轴处为凸面,所述第一透镜的像侧面于近光轴处为凹面;
第二透镜,所述第二透镜具有负屈折力,所述第二透镜的物侧面于近光轴处为凸面,所述第二透镜的像侧面于近光轴处为凹面;
第三透镜,所述第三透镜具有屈折力,所述第三透镜的物侧面于近光轴处为凸面;
第四透镜,所述第四透镜具有屈折力,所述第四透镜的物侧面于近光轴处为凹面;
第五透镜,所述第五透镜具有正屈折力,所述第五透镜的物侧面于近光轴处为凸面;
第六透镜,所述第六透镜具有负屈折力,所述第六透镜的物侧面于近光轴处为凸面,所述第六透镜的像侧面于近光轴处为凹面;
所述成像系统满足以下条件式:1.5mm<Imgh 2/TTL/Fno<1.9mm;其中,Imgh为所述成像系统最大视场角对应像高的一半,TTL为所述成像系统的所述第一透镜的物侧面至所述成像系统的成像面于光轴上的距离,Fno为所述成像系统的光圈数。
相较于现有技术,本申请实施例提供的成像系统,采用六片透镜成像结构,通过具有正屈折力的所述第一透镜以及负屈折力的所述第二透镜组合,可利于矫正所述成像系统的轴上球差;通过具有屈折力的所述第三透镜和所述第四透镜,可利于矫正所述成像系统的象散和彗差;通过具有正屈折力的所述第五透镜,可利于实现所述成像系统的小型化需求;通过具有负屈折力的所述第六透镜,有助于矫正所述成像系统的场曲;通过所述第一透镜、所述第二透镜的面型设计,有利于所述成像系统光线的汇聚,从而提高所述成像系统的光学性能;通过所述第四透镜的面型设计,可以降低所述成像系统的敏感度,使所述成像系统利于工程制造;通过所述第五透镜及所述第六透镜的面型设计,可以较好地矫正所述成像系统的场曲,从而提高所述成像系统的性能。满足上述关系时,所述成像系统可在实现超薄化以及大孔径的同时,可以获取更多的场景内容,丰富成像信息,从而实现大视场的特性,还可以获得较好的光学成像性能。
在一些实施例中,所述成像系统还满足以下条件式:1.0<TTL/f<1.5;其中,f为所述成像系统的有效焦距。在满足上述关系时,可实现所述成像系统的长度的压缩,有利于小型化设计,同时也可较好地避免所述成像系统的长度过短而引起的所述成像系统敏感度加大导致像差修正困难的问题,从而获得较好的光学成像性能;在上述关系范围内,边缘视场的光线也可以成像在成像面的有效成像区域上,从而可以获取更多的场景内容,丰富成像信息,实现大视场的特性;另外还可较好地防止所述成像系统的视场角过大,从而较好地使所述成像系统在小型化设计与降低大视场所带来的像差之间取得平衡。
在一些实施例中,所述成像系统还满足以下条件式:1.0<|f2/f5|<3.0;其中,f2为所述第二透镜的有效焦距,f5为所述第五透镜的有效焦距。满足上述关系时,能够合理分配所述第二透镜和所述第五透镜的球差贡献,从而降低所述成像系统对像差的修正难度,还有利于所述成像系统对物空间光学信息的获取,从而使得所述成像系统达到较好地成像效果,具有良好的成像质量。
在一些实施例中,所述成像系统还满足以下条件式:0.5<D5/CT6<1.2;其中,D5为所述第四透镜和所述第五透镜于光轴上的空气间隙,CT6为所述第六透镜于光轴上的中心厚度。满足上述关系时,可以有效的平衡所述成像系统产生的高级像差,且有利于生产制作中的场曲调整,从而提高所述成像系统 的成像质量。
在一些实施例中,所述成像系统还满足以下条件式:0.1<R4/R5<0.45;其中,R4为所述第二透镜的像侧面于光轴处的曲率半径,R5为所述第三透镜的物侧面于光轴处的曲率半径。满足上述关系时,可以有效的平衡所述成像系统的像差,降低所述成像系统的敏感度,有利于生产制造,从而提高所述成像系统的性能。
在一些实施例中,所述成像系统还满足以下条件式:0.3<SAG51/CT5<1.0;其中,SAG51为所述第五透镜的物侧面与光轴的交点至所述第五透镜的物侧面最大有效半径处于光轴方向上的距离,CT5为所述第五透镜于光轴上的中心厚度。满足上述关系时,可降低透镜生产制造的敏感性,有利于透镜的加工成型,从而提高生产效率。
在一些实施例中,所述成像系统还满足以下条件式:0.9≤Imgh/f≤1.2;其中,f为所述成像系统的有效焦距。满足上述关系时,可使得所述成像系统获取更多的成像信息,从而较好地实现所述成像系统大视场角的特性,同时还可提升所述成像系统的成像性能。
在一些实施例中,所述成像系统还满足以下条件式:2<(R3+R4)/(R3-R4)<2.5;其中,R3为所述第二透镜的物侧面于光轴处的曲率半径,R4为所述第二透镜的像侧面于光轴处的曲率半径。满足上述关系时,可较好地改善所述成像系统像散,提升所述成像系统的光学性能,且可较好地平衡所述成像系统的像差和敏感度,还可提升透镜的可加工性,从而提升所述成像系统的生产效率。
第二方面,本申请实施例还提供了一种摄像模组,摄像模组包括感光元件和如上任一实施例所述的成像系统,感光元件设于所述成像系统的成像面内,以接收由所述成像系统形成的图像的光线。通过采用上述成像系统,同样具有所述成像系统的小型化、大孔径、大像面及高成像质量的特点,此处不再一一赘述。
第三方面,本申请实施例还提供了一种电子设备,电子设备包括固定件以及如上所述的摄像模组,摄像模组安装在固定件上用以获取图像。通过采用上述摄像模组,电子设备也能够获得所述成像系统的良好的成像特点。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例一提供的成像系统的结构示意图;
图2为本申请实施例一提供成像系统的球差曲线图、像散曲线图、畸变曲线图;
图3为本申请实施例二提供的成像系统的结构示意图;
图4为本申请实施例二提供成像系统的球差曲线图、像散曲线图、畸变曲线图;
图5为本申请实施例三提供的成像系统的结构示意图;
图6为本申请实施例三提供成像系统的球差曲线图、像散曲线图、畸变曲线图;
图7为本申请实施例四提供的成像系统的结构示意图;
图8为本申请实施例四提供成像系统的球差曲线图、像散曲线图、畸变曲线图;
图9为本申请实施例五提供的成像系统的结构示意图;
图10为本申请实施例五提供成像系统的球差曲线图、像散曲线图、畸变曲线图;
图11为本申请实施例六提供的成像系统的结构示意图;
图12为本申请实施例六提供成像系统的球差曲线图、像散曲线图、畸变曲线图;
图13为本申请一种实施例中提供的摄像模组的剖视图;
图14为本申请一种实施例中提供的电子设备的主视图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
如图1至图12所示,为本申请实施例提供的成像系统100,成像系统100用于接收物侧的光线并将光线传递至成像面F。成像系统100包括沿光轴H由物侧至像侧依次设置的第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6;其中
第一透镜L1具有正屈折力,所述第一透镜L1的物侧面S1于近光轴H处为凸面,所述第一透镜L1的像侧面S2于近光轴H处为凹面;
第二透镜L2具有负屈折力,所述第二透镜L2的物侧面S3于近光轴H处为凸面,所述第二透镜L2的像侧面S4于近光轴H处为凹面;
第三透镜L3可以具有正屈折力,也可以具有负屈折力,所述第三透镜L3的物侧面S5于近光轴H处为凸面,所述第三透镜L3的像侧面S6于近光轴H处可为凹面也可为凸面;
第四透镜L4可以具有正屈折力,也可以具有负屈折力,所述第四透镜L4的物侧面S7于近光轴H处为凹面,所述第四透镜L4的像侧面S8于近光轴H处可为凹面也可为凸面;
第五透镜L5具有正屈折力,所述第五透镜L5的物侧面S9于近光轴H处为凸面,所述第五透镜L5的像侧面S10于近光轴H处可为凹面也可为凸面;
第六透镜L6具有负屈折力,所述第六透镜L6的物侧面S11于近光轴H处为凸面,所述第六透镜L6的像侧面S12于近光轴H处为凹面;
所述成像系统100满足以下条件式:1.5mm<Imgh 2/TTL/Fno<1.9mm;其中,Imgh为所述成像系统100最大视场角对应像高的一半,TTL为所述成像系统100的所述第一透镜L1的物侧面S1至所述成像系统100的成像面F于光轴H上的距离,Fno为所述成像系统100的光圈数。
相较于现有技术,本申请实施例提供的成像系统100,采用六片透镜成像结构,通过具有正屈折力的所述第一透镜L1以及负屈折力的所述第二透镜L2组合,可利于矫正所述成像系统100的轴上球差;通过具有屈折力的所述第三透镜L3和所述第四透镜L4,可利于矫正所述成像系统100的象散和彗差;通过具有正屈折力的所述第五透镜L5,可利于实现所述成像系统100的小型化需求;通过具有负屈折力的所述第六透镜L6,有助于矫正所述成像系统100的场曲;通过所述第一透镜L1、所述第二透镜L2的面型设计,有利于所述成像系统100光线的汇聚,从而提高所述成像系统100的光学性能;通过所述第四透镜L4的面型设计,可以降低所述成像系统100的敏感度,使所述成像系统100利于工程制造;通过所述第五透镜L5及所述第六透镜L6的面型设计,可以较好地矫正所述成像系统100的场曲,从而提高所述成像系统100的性能。满足上述关系时,所述成像系统100可在实现超薄化以及大孔径的同时,可以获取更多的场景内容,丰富成像信息,从而实现大视场的特性,还可以获得较好的光学成像性能。
在一些实施例中,成像系统100还包括光阑ST,光阑ST中心位于成像系统100的光轴H上。具体地,本实施例中所述光阑ST位于所述成像系统100物侧。
在另外一些实施例中,所述成像系统100还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面F上的感光元件的保护玻璃。具体地,本实施例中,所述成像系统100包括滤光片L7,所述滤光片L7为红外截止滤光片,所述滤光片L7位于所述第六透镜L6的像侧。通过设置红外滤光片,成像系统100可过滤掉红外光,防止红外光的干扰,从而提高成像质量。
在一些实施例中,所述成像系统100的各透镜的物侧面和/或像侧面可为球面或非球面。非球面设计能够使透镜的物侧面及/或像侧面拥有更灵活的设计,使透镜在较小、较薄的情况下便能良好地解决成像不清,视界歪曲、视野狭小等不良现象,无需设置过多的透镜便能使透镜组拥有良好的成像品质,且有助于缩短成像系统100的长度。球面透镜则制作工艺简单,成产成本低。在一些实施例中,各透镜之间具体的球面及非球面的配置根据实际设计需求而定,此处不加以赘述。通过球面与非球面的配合也可有效消除系统的像差,使成像系统100具有良好的成像品质,且同时提高透镜设计及组装的灵活性,使系统在高像质与低成本之间取得平衡。需注意的是,实施例中的球面和非球面的具体形状并不限于附图中示出的球面和非球面的形状,附图主要为示例参考而非严格按比例绘制。
其中,非球面参数公式为:
Figure PCTCN2021084738-appb-000001
其中,X为非球面上距离光轴为Y的点,其与相切于非球面光轴上交点的切面的相对距离;Y为非球面曲线上的点与光轴的垂直距离,R为曲率半径,k为锥面系数,Ai为第i阶非球面系数。
在一些实施例中,成像系统100中各透镜的材质可均为塑料,也可均为玻璃,或者可为玻璃与塑料的组合搭配。塑料材质的透镜能够减少成像系统100的重量并降低制备成本,而玻璃材质的透镜能够耐受较高的温度且具有优良的光学效果。在另一些实施例中,第一透镜L1至第六透镜L6的材质可均为玻璃,使得位于物方的玻璃透镜对极端环境具有很好的耐受效果,不易受物方环境的影响而出现老化等情况,从而当成像系统100处于暴晒高温等极端环境下时,这种结构能够较好地平衡系统的光学性能与成本。当然,成像系统100中透镜材质配置关系并不限于上述实施例,任意一个透镜的材质可以为塑料,也可以为玻璃,具体配置关系根据实际设计需求而定,此处不加以赘述。
在一些实施例中,所述成像系统100还满足以下条件式:1.0<TTL/f<1.5;其中,f为所述成像系统100的有效焦距。在满足上述关系时,可实现所述成像系统100的长度的压缩,有利于小型化设计,同时也可较好地避免所述成像系统100的长度过短而引起的所述成像系统100敏感度加大导致像差修正困难的问题,从而获得较好的光学成像性能;在上述关系范围内,边缘视场的光线也可以成像在成像面F的有效成像区域上,从而可以获取更多的场景内容,丰富成像信息,实现大视场的特性;另外还可较好地防止所述成像系统100的视场角过大,从而较好地使所述成像系统100在小型化设计与降低大视场所带来的像差之间取得平衡。
在一些实施例中,所述成像系统100还满足以下条件式:1.0<|f2/f5|<3.0;其中,f2为所述第二透镜L2的有效焦距,f5为所述第五透镜L5的有效焦距。满足上述关系时,能够合理分配所述第二透镜L2和所述第五透镜L5的球差贡献,从而降低所述成像系统100对像差的修正难度,还有利于所述成像系统100对物空间光学信息的获取,从而使得所述成像系统100达到较好地成像效果,具有良好的成像质量。
在一些实施例中,所述成像系统100还满足以下条件式:0.5<D5/CT6<1.2;其中,D5为所述第四透镜L4和所述第五透镜L5于光轴H上的空气间隙,CT6为所述第六透镜L6于光轴H上的中心厚度。满足上述关系时,可以有效的平衡所述成像系统100产生的高级像差,且有利于生产制作中的场曲调整,从而提高所述成像系统100的成像质量。
在一些实施例中,所述成像系统100还满足以下条件式:0.1<R4/R5<0.45;其中,R4为所述第二透镜L2的像侧面S4于光轴H处的曲率半径,R5为所述第三透镜L3的物侧面S5于光轴H处的曲率半径。满足上述关系时,可以有效的平衡所述成像系统100的像差,降低所述成像系统100的敏感度,有利于生产制造,从而提高所述成像系统100的性能。
在一些实施例中,所述成像系统100还满足以下条件式:0.3<SAG51/CT5<1.0;其中,SAG51为所述第五透镜L5的物侧面S9与光轴H的交点至所述第五透镜L5的物侧面S9最大有效半径处于光轴H方向上的距离,CT5为所述第五透镜L5于光轴H上的中心厚度。满足上述关系时,可降低透镜生产制造的敏感性,有利于透镜的加工成型,从而提高生产效率。
在一些实施例中,所述成像系统100还满足以下条件式:0.9≤Imgh/f≤1.2;其中,f为所述成像系统100的有效焦距。满足上述关系时,可使得所述成像系统100获取更多的成像信息,从而较好地实现所述成像系统100大视场角的特性,同时还可提升所述成像系统100的成像性能。
在一些实施例中,所述成像系统100还满足以下条件式:2<(R3+R4)/(R3-R4)<2.5;其中,R3为所述第二透镜L2的物侧面S3于光轴H处的曲率半径,R4为所述第二透镜L2的像侧面S4于光轴H处的曲率半径。满足上述关系时,可较好地改善所述成像系统100像散,提升所述成像系统100的光学性能,且可较好地平衡所述成像系统100的像差和敏感度,还可提升透镜的可加工性,从而提升所述成像系统100的生产效率。
在一些实施例中,所述成像系统100还满足以下条件式:20<|V3-V2|<38;其中,V3为第三透镜L3的阿贝数,V2为第二透镜L2的阿贝数。满足上述关系式时,通过合理控制第二透镜L2和第三透镜L3的阿贝数在一定的范围,可以改善系统的像差,有利于消色差,减小所述成像系统100二级光谱,提高所述成像系统100成像性能。
在一些实施例中,所述成像系统100还满足以下条件式:TTL/Imgh<1.4;其中,Imgh为所述成像系统100最大视场角对应像高的一半,TTL为所述成像系统100的所述第一透镜L1的物侧面S1至所述成像系统100的成像面F于光轴H上的距离。满足上述关系式时,可实现所述成像系统100的超薄的特性,从而实现所述成像系统100小型化。
在一些实施例中,所述成像系统100还满足以下条件式:Fno<1.9;其中,Fno为所述成像系统100的光圈数。满足上述关系式时,可以保证所述成像系统100大孔径的特性,提升进光量,从而在拍摄高质量夜景、星空等光亮度不大的物空间场景的时候,使拍摄图像更加清晰,提高所述成像系统100的成像性能。
以下将结合附图进行详细描述。
实施例一
本实施例中的成像系统100的结构示意图参照图1所示,成像系统100包括沿光轴H由物侧至像侧依次设置的光阑ST、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、滤光片L7,成像面F位于滤光片L7远离第六透镜L6的一侧,感光元件的有效像素区域位于成像面F上。
其中,第一透镜L1具有正屈折力,所述第一透镜L1的物侧面S1于近光轴H处为凸面,物侧面S1于近圆周处为凸面,所述第一透镜L1的像侧面S2于近光轴H处为凹面,像侧面S2于近圆周处为凸面;
第二透镜L2具有负屈折力,所述第二透镜L2的物侧面S3于近光轴H处为凸面,物侧面S3于近圆周处为凸面,所述第二透镜L2的像侧面S4于近光轴H处为凹面,像侧面S4于近圆周处为凹面;
第三透镜L3具有正屈折力,所述第三透镜L3的物侧面S5于近光轴H处为凸面,物侧面S5于近圆周处为凹面,所述第三透镜L3的像侧面S6于近光轴H处为凸面,像侧面S6于近圆周处为凸面;
第四透镜L4具有负屈折力,所述第四透镜L4的物侧面S7于近光轴H处为凹面,物侧面S7于近圆周处为凹面,所述第四透镜L4的像侧面S8于近光轴H处为凹面,像侧面S8于近圆周处为凸面;
第五透镜L5具有正屈折力,所述第五透镜L5的物侧面S9于近光轴H处为凸面,物侧面S9于近圆周处为凹面,所述第五透镜L5的像侧面S10于近光轴H处为凸面,像侧面S10于近圆周处为凸面;
第六透镜L6具有负屈折力,所述第六透镜L6的物侧面S11于近光轴H处为凸面,物侧面S11于近圆周处为凹面,所述第六透镜L6的像侧面S12于近光轴H处为凹面,像侧面S12于近圆周处为凸面。
实施例一中成像系统100的焦距以波长为555.000nm的光线为参考,折射率和阿贝数以波长为587.560nm的光线为参考,成像系统100的相关参数如表1所示。其中,f为成像系统100的有效焦距,FNO表示光圈值,FOV表示成像系统100的最大视场角,曲率半径、厚度、焦距的单位均为毫米。
表1
Figure PCTCN2021084738-appb-000002
由上表1可推出,本实施例中成像系统的各相关参数之间的数值关系计算结果均在合理范围内,参见表2所示。
表2
条件式 数值 条件式 数值
TTL/f 1.16 SAG51/CT5 0.72
Imgh 2/TTL/Fno 1.72 Imgh/f 0.9
|f2/f5| 2.53 (R3+R4)/(R3-R4) 2.12
D5/CT6 1.04 |V3-V2| 36.68
R4/R5 0.13 TTL/Imgh 1.29
各透镜的表面对应的圆锥常数K和非球面系数如表3所示。
表3
Figure PCTCN2021084738-appb-000003
Figure PCTCN2021084738-appb-000004
图2中从左至右分别为实施例一中球差曲线图、像散曲线图以及畸变曲线图。
图2左图为本实施例中在波长为650.000nm、610.000nm、555.000nm、510.000nm以及470.000nm的光线球差曲线图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。
由图2左图可以看出650.000nm、610.000nm、555.000nm、510.000nm以及470.000nm的波长对应的球差均在±0.025mm以内,说明本实施例中的成像系统的球差较小、成像质量较好。
图2中图为本实施例中波长为555.000nm的像散曲线图,其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高。
由图2中图可以看出像散位于±0.05mm以内,得到了较好的补偿。
图2右图为本实施例中波长为555.000nm的畸变曲线图。其中,沿X轴方向的横坐标表示畸变率,沿Y轴方向的纵坐标表示像高。
由图2右图可以看出畸变在±2%以内,畸变得到了很好的校正。
根据图2可知,实施例一中给出的成像系统能够实现良好的成像效果。
实施例二
本实施例中的成像系统100的结构示意图参照图1所示,成像系统100包括沿光轴H由物侧至像侧依次设置的光阑ST、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、滤光片L7,成像面F位于滤光片L7远离第六透镜L6的一侧,感光元件的有效像素区域位于成像面F上。
其中,第一透镜L1具有正屈折力,所述第一透镜L1的物侧面S1于近光轴H处为凸面,物侧面S1于近圆周处为凸面,所述第一透镜L1的像侧面S2于近光轴H处为凹面,像侧面S2于近圆周处为凸面;
第二透镜L2具有负屈折力,所述第二透镜L2的物侧面S3于近光轴H处为凸面,物侧面S3于近圆周处为凸面,所述第二透镜L2的像侧面S4于近光轴H处为凹面,像侧面S4于近圆周处为凹面;
第三透镜L3具有正屈折力,所述第三透镜L3的物侧面S5于近光轴H处为凸面,物侧面S5于近圆周处为凹面,所述第三透镜L3的像侧面S6于近光轴H处为凹面,像侧面S6于近圆周处为凸面;
第四透镜L4具有负屈折力,所述第四透镜L4的物侧面S7于近光轴H处为凹面,物侧面S7于近圆周处为凹面,所述第四透镜L4的像侧面S8于近光轴H处为凸面,像侧面S8于近圆周处为凸面;
第五透镜L5具有正屈折力,所述第五透镜L5的物侧面S9于近光轴H处为凸面,物侧面S9于近圆周处为凹面,所述第五透镜L5的像侧面S10于近光轴H处为凹面,像侧面S10于近圆周处为凸面;
第六透镜L6具有负屈折力,所述第六透镜L6的物侧面S11于近光轴H处为凸面,物侧面S11于近圆周处为凹面,所述第六透镜L6的像侧面S12于近光轴H处为凹面,像侧面S12于近圆周处为凸面。
实施例二中成像系统100的焦距以波长为555.000nm的光线为参考,折射率和阿贝数以波长为587.560nm的光线为参考,成像系统100的相关参数如表4所示。其中,f为成像系统100的有效焦距, FNO表示光圈值,FOV表示成像系统100的最大视场角,曲率半径、厚度、焦距的单位均为毫米。
表4
Figure PCTCN2021084738-appb-000005
由上表4可推出,本实施例中成像系统的各相关参数之间的数值关系计算结果均在合理范围内,参见表5所示。
表5
条件式 数值 条件式 数值
TTL/f 1.26 SAG51/CT5 0.60
Imgh 2/TTL/Fno 1.76 Imgh/f 0.98
|f2/f5| 1.54 (R3+R4)/(R3-R4) 2.04
D5/CT6 0.92 |V3-V2| 36.68
R4/R5 0.43 TTL/Imgh 1.28
各透镜的表面对应的圆锥常数K和非球面系数如表6所示。
表6
Figure PCTCN2021084738-appb-000006
Figure PCTCN2021084738-appb-000007
图4中从左至右分别为实施例二中球差曲线图、像散曲线图以及畸变曲线图。
图4左图为本实施例中在波长为650.000nm、610.000nm、555.000nm、510.000nm以及470.000nm的光线球差曲线图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。
由图4左图可以看出650.000nm、610.000nm、555.000nm、510.000nm以及470.000nm的波长对应的球差均在±0.050mm以内,说明本实施例中的成像系统的球差较小、成像质量较好。
图4中图为本实施例中波长为555.000nm的像散曲线图,其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高。
由图4中图可以看出像散位于±0.08mm以内,得到了较好的补偿。
图4右图为本实施例中波长为555.000nm的畸变曲线图。其中,沿X轴方向的横坐标表示畸变率,沿Y轴方向的纵坐标表示像高。
由图4右图可以看出畸变在±2%以内,畸变得到了很好的校正。
根据图4可知,实施例二中给出的成像系统能够实现良好的成像效果。
实施例三
本实施例中的成像系统100的结构示意图参照图1所示,成像系统100包括沿光轴H由物侧至像侧依次设置的光阑ST、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、滤光片L7,成像面F位于滤光片L7远离第六透镜L6的一侧,感光元件的有效像素区域位于成像面F上。
其中,第一透镜L1具有正屈折力,所述第一透镜L1的物侧面S1于近光轴H处为凸面,物侧面S1于近圆周处为凸面,所述第一透镜L1的像侧面S2于近光轴H处为凹面,像侧面S2于近圆周处为凸面;
第二透镜L2具有负屈折力,所述第二透镜L2的物侧面S3于近光轴H处为凸面,物侧面S3于近圆周处为凸面,所述第二透镜L2的像侧面S4于近光轴H处为凹面,像侧面S4于近圆周处为凹面;
第三透镜L3具有正屈折力,所述第三透镜L3的物侧面S5于近光轴H处为凸面,物侧面S5于近圆周处为凹面,所述第三透镜L3的像侧面S6于近光轴H处为凹面,像侧面S6于近圆周处为凸面;
第四透镜L4具有负屈折力,所述第四透镜L4的物侧面S7于近光轴H处为凹面,物侧面S7于近圆周处为凹面,所述第四透镜L4的像侧面S8于近光轴H处为凸面,像侧面S8于近圆周处为凸面;
第五透镜L5具有正屈折力,所述第五透镜L5的物侧面S9于近光轴H处为凸面,物侧面S9于近圆周处为凹面,所述第五透镜L5的像侧面S10于近光轴H处为凸面,像侧面S10于近圆周处为凸面;
第六透镜L6具有负屈折力,所述第六透镜L6的物侧面S11于近光轴H处为凸面,物侧面S11于近圆周处为凹面,所述第六透镜L6的像侧面S12于近光轴H处为凹面,像侧面S12于近圆周处为凸面。
实施例三中成像系统100的焦距以波长为555.000nm的光线为参考,折射率和阿贝数以波长为587.560nm的光线为参考,成像系统100的相关参数如表7所示。其中,f为成像系统100的有效焦距,FNO表示光圈值,FOV表示成像系统100的最大视场角,曲率半径、厚度、焦距的单位均为毫米。
表7
Figure PCTCN2021084738-appb-000008
Figure PCTCN2021084738-appb-000009
由上表7可推出,本实施例中成像系统的各相关参数之间的数值关系计算结果均在合理范围内,参见表8所示。
表8
条件式 数值 条件式 数值
TTL/f 1.30 SAG51/CT5 0.58
Imgh 2/TTL/Fno 1.82 Imgh/f 1.02
|f2/f5| 1.57 (R3+R4)/(R3-R4) 2.18
D5/CT6 0.91 |V3-V2| 36.68
R4/R5 0.36 TTL/Imgh 1.28
各透镜的表面对应的圆锥常数K和非球面系数如表9所示。
表9
Figure PCTCN2021084738-appb-000010
Figure PCTCN2021084738-appb-000011
图6中从左至右分别为实施例三中球差曲线图、像散曲线图以及畸变曲线图。
图6左图为本实施例中在波长为650.000nm、610.000nm、555.000nm、510.000nm以及470.000nm的光线球差曲线图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。
由图6左图可以看出650.000nm、610.000nm、555.000nm、510.000nm以及470.000nm的波长对应的球差均在±0.025mm以内,说明本实施例中的成像系统的球差较小、成像质量较好。
图6中图为本实施例中波长为555.000nm的像散曲线图,其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高。
由图6中图可以看出像散位于±0.05mm以内,得到了较好的补偿。
图6右图为本实施例中波长为555.000nm的畸变曲线图。其中,沿X轴方向的横坐标表示畸变率,沿Y轴方向的纵坐标表示像高。
由图6右图可以看出畸变在±2%以内,畸变得到了很好的校正。
根据图6可知,实施例三中给出的成像系统能够实现良好的成像效果。
实施例四
本实施例中的成像系统100的结构示意图参照图1所示,成像系统100包括沿光轴H由物侧至像侧依次设置的光阑ST、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、滤光片L7,成像面F位于滤光片L7远离第六透镜L6的一侧,感光元件的有效像素区域位于成像面F上。
其中,第一透镜L1具有正屈折力,所述第一透镜L1的物侧面S1于近光轴H处为凸面,物侧面S1于近圆周处为凸面,所述第一透镜L1的像侧面S2于近光轴H处为凹面,像侧面S2于近圆周处为凸面;
第二透镜L2具有负屈折力,所述第二透镜L2的物侧面S3于近光轴H处为凸面,物侧面S3于近圆周处为凸面,所述第二透镜L2的像侧面S4于近光轴H处为凹面,像侧面S4于近圆周处为凹面;
第三透镜L3具有负屈折力,所述第三透镜L3的物侧面S5于近光轴H处为凸面,物侧面S5于近圆周处为凹面,所述第三透镜L3的像侧面S6于近光轴H处为凹面,像侧面S6于近圆周处为凸面;
第四透镜L4具有负屈折力,所述第四透镜L4的物侧面S7于近光轴H处为凹面,物侧面S7于近圆周处为凹面,所述第四透镜L4的像侧面S8于近光轴H处为凸面,像侧面S8于近圆周处为凸面;
第五透镜L5具有正屈折力,所述第五透镜L5的物侧面S9于近光轴H处为凸面,物侧面S9于近圆周处为凹面,所述第五透镜L5的像侧面S10于近光轴H处为凸面,像侧面S10于近圆周处为凸面;
第六透镜L6具有负屈折力,所述第六透镜L6的物侧面S11于近光轴H处为凸面,物侧面S11于近圆周处为凹面,所述第六透镜L6的像侧面S12于近光轴H处为凹面,像侧面S12于近圆周处为凸面。
实施例四中成像系统100的焦距以波长为555.000nm的光线为参考,折射率和阿贝数以波长为587.560nm的光线为参考,成像系统100的相关参数如表10所示。其中,f为成像系统100的有效焦距,FNO表示光圈值,FOV表示成像系统100的最大视场角,曲率半径、厚度、焦距的单位均为毫米。
表10
Figure PCTCN2021084738-appb-000012
Figure PCTCN2021084738-appb-000013
由上表10可推出,本实施例中成像系统的各相关参数之间的数值关系计算结果均在合理范围内,参见表11所示。
表11
条件式 数值 条件式 数值
TTL/f 1.26 SAG51/CT5 0.59
Imgh 2/TTL/Fno 1.76 Imgh/f 0.99
|f2/f5| 1.79 (R3+R4)/(R3-R4) 2.39
D5/CT6 1.12 |V3-V2| 36.68
R4/R5 0.22 TTL/Imgh 1.28
各透镜的表面对应的圆锥常数K和非球面系数如表12所示。
表12
Figure PCTCN2021084738-appb-000014
图8中从左至右分别为实施例四中球差曲线图、像散曲线图以及畸变曲线图。
图8左图为本实施例中在波长为650.000nm、610.000nm、555.000nm、510.000nm以及470.000nm的光线球差曲线图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。
由图8左图可以看出650.000nm、610.000nm、555.000nm、510.000nm以及470.000nm的波长对应的球差均在±0.050mm以内,说明本实施例中的成像系统的球差较小、成像质量较好。
图8中图为本实施例中波长为555.000nm的像散曲线图,其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高。
由图8中图可以看出像散位于±0.025mm以内,得到了较好的补偿。
图8右图为本实施例中波长为555.000nm的畸变曲线图。其中,沿X轴方向的横坐标表示畸变率,沿Y轴方向的纵坐标表示像高。
由图8右图可以看出畸变在±2%以内,畸变得到了很好的校正。
根据图8可知,实施例四中给出的成像系统能够实现良好的成像效果。
实施例五
本实施例中的成像系统100的结构示意图参照图1所示,成像系统100包括沿光轴H由物侧至像侧依次设置的光阑ST、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、滤光片L7,成像面F位于滤光片L7远离第六透镜L6的一侧,感光元件的有效像素区域位于成像面F上。
其中,第一透镜L1具有正屈折力,所述第一透镜L1的物侧面S1于近光轴H处为凸面,物侧面S1于近圆周处为凸面,所述第一透镜L1的像侧面S2于近光轴H处为凹面,像侧面S2于近圆周处为凸面;
第二透镜L2具有负屈折力,所述第二透镜L2的物侧面S3于近光轴H处为凸面,物侧面S3于近圆周处为凸面,所述第二透镜L2的像侧面S4于近光轴H处为凹面,像侧面S4于近圆周处为凹面;
第三透镜L3具有正屈折力,所述第三透镜L3的物侧面S5于近光轴H处为凸面,物侧面S5于近圆周处为凹面,所述第三透镜L3的像侧面S6于近光轴H处为凹面,像侧面S6于近圆周处为凸面;
第四透镜L4具有正屈折力,所述第四透镜L4的物侧面S7于近光轴H处为凹面,物侧面S7于近圆周处为凹面,所述第四透镜L4的像侧面S8于近光轴H处为凸面,像侧面S8于近圆周处为凸面;
第五透镜L5具有正屈折力,所述第五透镜L5的物侧面S9于近光轴H处为凸面,物侧面S9于近圆周处为凹面,所述第五透镜L5的像侧面S10于近光轴H处为凸面,像侧面S10于近圆周处为凸面;
第六透镜L6具有负屈折力,所述第六透镜L6的物侧面S11于近光轴H处为凸面,物侧面S11于近圆周处为凹面,所述第六透镜L6的像侧面S12于近光轴H处为凹面,像侧面S12于近圆周处为凸面。
实施例五中成像系统100的焦距以波长为555.000nm的光线为参考,折射率和阿贝数以波长为587.560nm的光线为参考,成像系统100的相关参数如表13所示。其中,f为成像系统100的有效焦距,FNO表示光圈值,FOV表示成像系统100的最大视场角,曲率半径、厚度、焦距的单位均为毫米。
表13
Figure PCTCN2021084738-appb-000015
由上表13可推出,本实施例中成像系统的各相关参数之间的数值关系计算结果均在合理范围内,参见表14所示。
表14
条件式 数值 条件式 数值
TTL/f 1.27 SAG51/CT5 0.69
Imgh 2/TTL/Fno 1.76 Imgh/f 0.99
|f2/f5| 1.36 (R3+R4)/(R3-R4) 2.21
D5/CT6 0.92 |V3-V2| 36.68
R4/R5 0.36 TTL/Imgh 1.28
各透镜的表面对应的圆锥常数K和非球面系数如表15所示。
表15
Figure PCTCN2021084738-appb-000016
图10中从左至右分别为实施例五中球差曲线图、像散曲线图以及畸变曲线图。
图10左图为本实施例中在波长为650.000nm、610.000nm、555.000nm、510.000nm以及470.000nm的光线球差曲线图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。
由图10左图可以看出650.000nm、610.000nm、555.000nm、510.000nm以及470.000nm的波长对应的球差均在±0.050mm以内,说明本实施例中的成像系统的球差较小、成像质量较好。
图10中图为本实施例中波长为555.000nm的像散曲线图,其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高。
由图10中图可以看出像散位于±0.025mm以内,得到了较好的补偿。
图10右图为本实施例中波长为555.000nm的畸变曲线图。其中,沿X轴方向的横坐标表示畸变率,沿Y轴方向的纵坐标表示像高。
由图10右图可以看出畸变在±2%以内,畸变得到了很好的校正。
根据图10可知,实施例五中给出的成像系统能够实现良好的成像效果。
实施例六
本实施例中的成像系统100的结构示意图参照图1所示,成像系统100包括沿光轴H由物侧至像侧依次设置的光阑ST、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、滤光片L7,成像面F位于滤光片L7远离第六透镜L6的一侧,感光元件的有效像素区域位于成像面F上。
其中,第一透镜L1具有正屈折力,所述第一透镜L1的物侧面S1于近光轴H处为凸面,物侧面S1于近圆周处为凸面,所述第一透镜L1的像侧面S2于近光轴H处为凹面,像侧面S2于近圆周处为凸面;
第二透镜L2具有负屈折力,所述第二透镜L2的物侧面S3于近光轴H处为凸面,物侧面S3于近圆 周处为凸面,所述第二透镜L2的像侧面S4于近光轴H处为凹面,像侧面S4于近圆周处为凹面;
第三透镜L3具有正屈折力,所述第三透镜L3的物侧面S5于近光轴H处为凸面,物侧面S5于近圆周处为凹面,所述第三透镜L3的像侧面S6于近光轴H处为凸面,像侧面S6于近圆周处为凸面;
第四透镜L4具有负屈折力,所述第四透镜L4的物侧面S7于近光轴H处为凹面,物侧面S7于近圆周处为凹面,所述第四透镜L4的像侧面S8于近光轴H处为凸面,像侧面S8于近圆周处为凸面;
第五透镜L5具有正屈折力,所述第五透镜L5的物侧面S9于近光轴H处为凸面,物侧面S9于近圆周处为凹面,所述第五透镜L5的像侧面S10于近光轴H处为凸面,像侧面S10于近圆周处为凸面;
第六透镜L6具有负屈折力,所述第六透镜L6的物侧面S11于近光轴H处为凸面,物侧面S11于近圆周处为凹面,所述第六透镜L6的像侧面S12于近光轴H处为凹面,像侧面S12于近圆周处为凸面。
实施例六中成像系统100的焦距以波长为555.000nm的光线为参考,折射率和阿贝数以波长为587.560nm的光线为参考,成像系统100的相关参数如表16所示。其中,f为成像系统100的有效焦距,FNO表示光圈值,FOV表示成像系统100的最大视场角,曲率半径、厚度、焦距的单位均为毫米。
表16
Figure PCTCN2021084738-appb-000017
由上表16可推出,本实施例中成像系统的各相关参数之间的数值关系计算结果均在合理范围内,参见表17所示。
表17
条件式 数值 条件式 数值
TTL/f 1.26 SAG51/CT5 0.55
Imgh 2/TTL/Fno 1.76 Imgh/f 0.98
|f2/f5| 1.84 (R3+R4)/(R3-R4) 2.43
D5/CT6 0.98 |V3-V2| 36.68
R4/R5 0.23 TTL/Imgh 1.28
各透镜的表面对应的圆锥常数K和非球面系数如表18所示。
表18
Figure PCTCN2021084738-appb-000018
Figure PCTCN2021084738-appb-000019
图12中从左至右分别为实施例六中球差曲线图、像散曲线图以及畸变曲线图。
图12左图为本实施例中在波长为650.000nm、610.000nm、555.000nm、510.000nm以及470.000nm的光线球差曲线图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。
由图12左图可以看出650.000nm、610.000nm、555.000nm、510.000nm以及470.000nm的波长对应的球差均在±0.025mm以内,说明本实施例中的成像系统的球差较小、成像质量较好。
图12中图为本实施例中波长为555.000nm的像散曲线图,其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高。
由图12中图可以看出像散位于±0.02mm以内,得到了较好的补偿。
图12右图为本实施例中波长为555.000nm的畸变曲线图。其中,沿X轴方向的横坐标表示畸变率,沿Y轴方向的纵坐标表示像高。
由图12右图可以看出畸变在±2%以内,畸变得到了很好的校正。
根据图12可知,实施例六中给出的成像系统能够实现良好的成像效果。
本申请实施例还提供了一种摄像模组200,如图13所示,摄像模组200包括感光元件210和如上所述任一实施例中的成像系统100,感光元件210设于成像系统100的成像面F内,以接收由成像系统100形成的图像的光线。通过采用上述成像系统100,同样具有所述成像系统100的小型化、大孔径、大像面及高成像质量的特点,此处不再一一赘述。
本申请实施例还提供了一种电子设备300,如图14所示,电子设备300包括固定件310以及如上所述的摄像模组200,摄像模组200安装在固定件310上用以获取图像。固定件310可以为电路板、中框、保护壳体等部件。电子设备300可以为但不限于智能手机、智能手表、电子书、阅读器、车载摄像设备、监控设备、医疗设备、平板电脑、生物识别设备PDA(Personal DigitalAssistant,个人数字助理)、无人机等。以电子设备300为手机为例,摄像模组200可安装手机的壳体内,如图14所示,可以为摄像模组200安装于手机壳体的主视图。
本实施例的附图中相同或相似的标号对应相同或相似的部件;在本申请的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种成像系统,其特征在于,沿光轴由物侧至像侧依次包括:
    第一透镜,所述第一透镜具有正屈折力,所述第一透镜的物侧面于近光轴处为凸面,所述第一透镜的像侧面于近光轴处为凹面;
    第二透镜,所述第二透镜具有负屈折力,所述第二透镜的物侧面于近光轴处为凸面,所述第二透镜的像侧面于近光轴处为凹面;
    第三透镜,所述第三透镜具有屈折力,所述第三透镜的物侧面于近光轴处为凸面;
    第四透镜,所述第四透镜具有屈折力,所述第四透镜的物侧面于近光轴处为凹面;
    第五透镜,所述第五透镜具有正屈折力,所述第五透镜的物侧面于近光轴处为凸面;
    第六透镜,所述第六透镜具有负屈折力,所述第六透镜的物侧面于近光轴处为凸面,所述第六透镜的像侧面于近光轴处为凹面;
    所述成像系统满足以下条件式:1.5mm<Imgh 2/TTL/Fno<1.9mm;其中,Imgh为所述成像系统最大视场角对应像高的一半,TTL为所述成像系统的所述第一透镜的物侧面至所述成像系统的成像面于光轴上的距离,Fno为所述成像系统的光圈数。
  2. 根据权利要求1所述的成像系统,其特征在于,所述成像系统还满足以下条件式:1.0<TTL/f<1.5;其中,f为所述成像系统的有效焦距。
  3. 根据权利要求1所述的成像系统,其特征在于,所述成像系统还满足以下条件式:
    1.0<|f2/f5|<3.0;其中,f2为所述第二透镜的有效焦距,f5为所述第五透镜的有效焦距。
  4. 根据权利要求1所述的成像系统,其特征在于,所述成像系统还满足以下条件式:
    0.5<D5/CT6<1.2;其中,D5为所述第四透镜和所述第五透镜于光轴上的空气间隙,CT6为所述第六透镜于光轴上的中心厚度。
  5. 根据权利要求1所述的成像系统,其特征在于,所述成像系统还满足以下条件式:
    0.1<R4/R5<0.45;其中,R4为所述第二透镜的像侧面于光轴处的曲率半径,R5为所述第三透镜的物侧面于光轴处的曲率半径。
  6. 根据权利要求1所述的成像系统,其特征在于,所述成像系统还满足以下条件式:
    0.3<SAG51/CT5<1.0;其中,SAG51为所述第五透镜的物侧面与光轴的交点至所述第五透镜的物侧面最大有效半径处于光轴方向上的距离,CT5为所述第五透镜于光轴上的中心厚度。
  7. 根据权利要求1所述的成像系统,其特征在于,所述成像系统还满足以下条件式:
    0.9≤Imgh/f≤1.2;其中,f为所述成像系统的有效焦距。
  8. 根据权利要求1所述的成像系统,其特征在于,所述成像系统还满足以下条件式:
    2<(R3+R4)/(R3-R4)<2.5;其中,R3为所述第二透镜的物侧面于光轴处的曲率半径,R4为所述第二透镜的像侧面于光轴处的曲率半径。
  9. 一种摄像模组,其特征在于,包括:
    如权利要求1-8中任一项所述的成像系统;以及,
    感光元件,所述感光元件设于所述成像系统的成像面内,以接收由所述成像系统形成的图像的光线。
  10. 一种电子设备,其特征在于,包括:
    固定件;以及,
    如权利要求9所述的摄像模组,所述摄像模组安装在所述固定件上用以获取图像。
PCT/CN2021/084738 2021-03-31 2021-03-31 成像系统、摄像模组以及电子设备 WO2022205217A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084738 WO2022205217A1 (zh) 2021-03-31 2021-03-31 成像系统、摄像模组以及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084738 WO2022205217A1 (zh) 2021-03-31 2021-03-31 成像系统、摄像模组以及电子设备

Publications (1)

Publication Number Publication Date
WO2022205217A1 true WO2022205217A1 (zh) 2022-10-06

Family

ID=83457706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084738 WO2022205217A1 (zh) 2021-03-31 2021-03-31 成像系统、摄像模组以及电子设备

Country Status (1)

Country Link
WO (1) WO2022205217A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102773A1 (ja) * 2007-02-19 2008-08-28 Konica Minolta Opto, Inc. 撮像レンズ、撮像装置、携帯端末、および撮像レンズの製造方法
CN211786329U (zh) * 2020-04-03 2020-10-27 南昌欧菲精密光学制品有限公司 光学系统、镜头模组和电子设备
CN111880284A (zh) * 2019-05-02 2020-11-03 三星电机株式会社 光学成像系统
CN112147760A (zh) * 2017-07-26 2020-12-29 大立光电股份有限公司 影像透镜系统组、取像装置及电子装置
CN112230401A (zh) * 2020-12-14 2021-01-15 常州市瑞泰光电有限公司 摄像光学镜头
CN112269240A (zh) * 2020-11-16 2021-01-26 辽宁中蓝光电科技有限公司 一种摄像镜头
CN112558269A (zh) * 2019-09-25 2021-03-26 比亚迪股份有限公司 用于光学镜头的透镜组和光学镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102773A1 (ja) * 2007-02-19 2008-08-28 Konica Minolta Opto, Inc. 撮像レンズ、撮像装置、携帯端末、および撮像レンズの製造方法
CN112147760A (zh) * 2017-07-26 2020-12-29 大立光电股份有限公司 影像透镜系统组、取像装置及电子装置
CN111880284A (zh) * 2019-05-02 2020-11-03 三星电机株式会社 光学成像系统
CN112558269A (zh) * 2019-09-25 2021-03-26 比亚迪股份有限公司 用于光学镜头的透镜组和光学镜头
CN211786329U (zh) * 2020-04-03 2020-10-27 南昌欧菲精密光学制品有限公司 光学系统、镜头模组和电子设备
CN112269240A (zh) * 2020-11-16 2021-01-26 辽宁中蓝光电科技有限公司 一种摄像镜头
CN112230401A (zh) * 2020-12-14 2021-01-15 常州市瑞泰光电有限公司 摄像光学镜头

Similar Documents

Publication Publication Date Title
CN111443461A (zh) 光学系统、镜头模组和电子设备
CN110471167B (zh) 摄像光学镜头
CN111999859A (zh) 光学成像系统、取像模组和电子装置
CN113391430A (zh) 光学系统、镜头模组和电子设备
CN210775999U (zh) 光学系统、镜头模组和电子设备
CN112987256A (zh) 光学系统、摄像模组及电子设备
CN110221412B (zh) 摄像光学镜头
CN112327458A (zh) 光学系统、摄像模组及电子设备
CN114578512B (zh) 光学系统、摄像模组及电子设备
CN115480364A (zh) 光学镜头、摄像模组及电子设备
CN113433656B (zh) 一种成像系统、镜头模组及电子设备
CN212111955U (zh) 光学系统、镜头模组和电子设备
CN111158112B (zh) 摄像光学镜头
CN112034596A (zh) 光学镜头、取像模组及电子装置
CN114594577B (zh) 光学系统、摄像模组及电子设备
CN218272885U (zh) 光学系统、摄像模组及电子设备
CN114637094B (zh) 光学镜头、摄像模组及电子设备
CN114740599B (zh) 光学系统、摄像模组和电子设备
CN114326052B (zh) 光学系统、取像模组及电子设备
CN114326019B (zh) 光学系统、取像模组及电子设备
CN113433652B (zh) 光学系统、镜头模组和电子设备
CN214474193U (zh) 光学系统、摄像模组及电子设备
CN110927939A (zh) 光学成像系统、取像模组和电子装置
CN115480365A (zh) 光学系统、取像模组及电子设备
CN111308652B (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933879

Country of ref document: EP

Kind code of ref document: A1