CN111443461A - 光学系统、镜头模组和电子设备 - Google Patents

光学系统、镜头模组和电子设备 Download PDF

Info

Publication number
CN111443461A
CN111443461A CN202010370023.7A CN202010370023A CN111443461A CN 111443461 A CN111443461 A CN 111443461A CN 202010370023 A CN202010370023 A CN 202010370023A CN 111443461 A CN111443461 A CN 111443461A
Authority
CN
China
Prior art keywords
lens
optical system
image
paraxial region
concave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010370023.7A
Other languages
English (en)
Inventor
杨健
李明
邹海荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang OFilm Precision Optical Products Co Ltd
OFilm Group Co Ltd
Original Assignee
OFilm Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OFilm Tech Co Ltd filed Critical OFilm Tech Co Ltd
Priority to CN202010370023.7A priority Critical patent/CN111443461A/zh
Publication of CN111443461A publication Critical patent/CN111443461A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)

Abstract

本发明提供一种光学系统、镜头模组和电子设备。光学系统包含:第一透镜,具有正曲折力,第一透镜物侧面近光轴处为凸面,第一透镜像侧面近光轴处为凹面;第二透镜,具有负曲折力,第二透镜物侧面近光轴处为凸面,第二透镜像侧面为凹面;第三透镜,具有曲折力;第四透镜,具有正曲折力;第五透镜,具有曲折力;第六透镜,具有曲折力,第六透镜物侧面近光轴处为凹面;第七透镜,具有负曲折力,第七透镜物侧面近光轴处为凸面,第七透镜像侧面近光轴处为凹面;光学系统满足条件式:TTL/Imgh<1.32;TTL为第一透镜物侧面至光学系统成像面于光轴上的距离,Imgh为成像面有效像素区域对角线长的一半。本发明满足高像素、大光圈及良好像质的要求的同时,保持结构小型化。

Description

光学系统、镜头模组和电子设备
技术领域
本发明属于光学成像技术领域,尤其涉及一种光学系统、镜头模组和电子设备。
背景技术
近年来,随着智能手机、平板等电子设备制造技术的发展和用户需求多样化发展趋势的出现,市场对小型化摄像镜头的需求逐渐升高。目前一台电子设备同时搭载多个不同特点和应用环境的摄像头,在电子产品的大小和厚度保持甚至有所减小的趋势下,电子设备对镜头的小型化提出了更加严格的需求。另外随着半导体工艺技术的精进,感光元件的像素尺寸也得以缩小,具有良好成像品质的小型化镜头成为市场主流。
为了给用户带来更好的成像体验,如今的取像装置搭配大感光元件,同时为达到高成像品质和大光圈效果,取像装置中的镜片数也需要增加,镜片数增加的同时也引起了镜头小型化的实现困难。从而,现有的镜头无法同时满足大光圈,高像素以及小型化。
发明内容
本申请的目的在于提供一种光学系统、镜头模组和电子设备,用于解决上述技术问题。
本发明提供一种光学系统,沿光轴方向的物侧至像侧依次包含:
第一透镜,具有正曲折力,所述第一透镜物侧面近光轴处为凸面,所述第一透镜像侧面近光轴处为凹面;第二透镜,具有负曲折力,所述第二透镜物侧面近光轴处为凸面,所述第二透镜像侧面近光轴处为凹面;第三透镜,具有曲折力;第四透镜,具有正曲折力;第五透镜,具有曲折力;第六透镜,具有曲折力,所述第六透镜物侧面近光轴处为凹面;第七透镜,具有负曲折力,所述第七透镜物侧面近光轴处为凸面,所述第七透镜像侧面近光轴处为凹面;所述第一透镜至第七透镜中的任一透镜的物侧面与像侧面均为非球面;所述光学系统满足条件式:TTL/Imgh<1.32;其中,TTL为所述第一透镜物侧面至光学系统成像面于光轴上的距离,Imgh为成像面有效像素区域对角线长的一半。本申请通过合理配置第一透镜至第七透镜的各透镜的面型和屈折力,使得光学系统能够在满足高像素、大光圈及良好像质的要求的同时,保持结构紧凑,小型化。当光学系统满足上述条件式,且在像面固定的情况下能保证光学系统总长小,实现小型化要求。
其中,所述光学系统满足条件式:2<f/R14<3.5;其中,f为所述光学系统的有效焦距,R14为第所述七透镜像侧面于光轴处的曲率半径。当光学系统满足上述条件式时,通过合理分布R14的取值,可以较好的匹配芯片的内视场主光线角度。
其中,所述光学系统满足条件式:FNO≤2;其中,FNO为所述光学系统的光圈数。当光学系统满足上述条件式,在光学系统的有效焦距一定的情况下,FNO≤2能保证大口径,让光学系统有足够的进光量,使拍摄图像更加清晰,并实现拍摄高质量夜景、星空等光亮度不大的物空间场景。
其中,所述光学系统满足条件式:TTL/f<1.35;其中,TTL为所述第一透镜物侧面至所述光学系统成像面于光轴上的距离,f为所述光学系统的有效焦距。当光学系统满足上述条件式,光学系统有效焦距固定的情况下可以满足光学系统的小型化要求。
其中,所述光学系统满足条件式:f1/f2>-0.15;其中,f1为所述第一透镜的有效焦距,f2为所述第二透镜的有效焦距。当光学系统满足上述条件式,第一透镜与第二透镜正负搭配,可以有效平衡系统色差,且合理选择上述焦距的比值,能一定程度降低光学系统的敏感性。
其中,所述光学系统满足条件式:sag1/sag2<15;其中,sag1为所述第一透镜物侧面有效口径处矢高,sag2为所述第一透镜像侧面有效口径处矢高。当光学系统满足上述条件式,通过合理选择sag1/sag2的比值,能保证第一透镜的工艺性,利于制造,同时也能降低整个光学系统的敏感性。其中,所述光学系统满足条件式:(R2+R1)/(R2-R1)<5;其中,R1为所述第一透镜物侧面的曲率半径,R2为所述第一透镜像侧面的曲率半径。当光学系统满足上述条件式,通过合理选择(R2+R1)/(R2-R1)的比值,可以增强第一透镜的光焦度,在大孔径下也能很好的矫正色球差,提升整体性能。
其中,所述光学系统满足条件式:f1234/f567>-0.5;其中,f1234为所述第一透镜至所述第四透镜的组合焦距,f567为所述第五透镜至所述第七透镜的组合焦距。本申请的光学系统可看做两组,第一透镜至第四透镜为前组,焦距为正,第五透镜至第七透镜为后组,焦距为负,正负搭配可以矫正整个光学系统的色球差,提升性能;当光学系统满足上述条件式,前组焦距绝对值小于后组,可降低后组的敏感性,提升实际生产过程中的良率。
本发明提供一种镜头模组,包括镜筒、电子感光元件和上述的光学系统,所述光学系统的所述第一透镜至所述第七透镜安装在所述镜筒内,所述电子感光元件设置在所述光学系统的像侧,用于将穿过所述第一透镜至所述第七透镜入射到所述电子感光元件上的物的光线转换成图像的电信号。本申请通过在镜头模组内安装该光学系统的第一透镜至第七透镜,合理配置第一透镜至第七透镜的各透镜的面型和屈折力,使得镜头模组能够在满足高像素、大光圈及良好像质的要求的同时,保持结构紧凑,镜头模组小型化。
本发明提供一种电子设备,包括壳体和上述的镜头模组,所述镜头模组设于所述壳体内。本申请通过在电子设备中设置上述镜头模组,使得电子设备能够在满足高像素、大光圈及良好像质的要求的同时,保持结构紧凑,电子设备小型化。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a是第一实施例的光学系统的结构示意图;
图1b是第一实施例的纵向球差曲线、像散曲线和畸变曲线;
图2a是第二实施例的光学系统的结构示意图;
图2b是第二实施例的纵向球差曲线、像散曲线和畸变曲线;
图3a是第三实施例的光学系统的结构示意图;
图3b是第三实施例的纵向球差曲线、像散曲线和畸变曲线;
图4a是第四实施例的光学系统的结构示意图;
图4b是第四实施例的纵向球差曲线、像散曲线和畸变曲线;
图5a是第五实施例的光学系统的结构示意图;
图5b是第五实施例的纵向球差曲线、像散曲线和畸变曲线;
图6a是第六实施例的光学系统的结构示意图;
图6b是第六实施例的纵向球差曲线、像散曲线和畸变曲线。
图7a是第七实施例的光学系统的结构示意图;
图7b是第七实施例的纵向球差曲线、像散曲线和畸变曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请实施例提供了一种镜头模组,该镜头模组包括镜筒、电子感光元件和本发明实施例提供的光学系统,光学系统的第一透镜至第七透镜安装在镜筒内,所述电子感光元件设置在所述光学系统的像侧,用于将穿过所述第一透镜至所述第七透镜入射到所述电子感光元件上的物的光线转换成图像的电信号。电子感光元件可以为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)或电荷耦合器件(Charge-coupledDevice,CCD)。该镜头模组可以是数码相机的独立的镜头,也可以是集成在如智能手机等电子设备上的成像模块。本申请通过在镜头模组内安装该光学系统的第一透镜至第七透镜,合理配置第一透镜至第七透镜的各透镜的面型和屈折力,使得镜头模组能够在满足高像素、大光圈及良好像质的要求的同时,保持结构紧凑,镜头模组小型化。
本申请实施例提供了一种电子设备,该电子设备包括壳体和本申请实施例提供的镜头模组。镜头模组和电子感光元件设置在壳体内。该电子设备可以为智能手机、个人数字助理(PDA)、平板电脑、智能手表、无人机、电子书籍阅读器、行车记录仪、可穿戴装置等。本申请通过在电子设备中设置镜头模组,使得电子设备能够在满足高像素、大光圈及良好像质的要求的同时,保持结构紧凑,电子设备小型化。
本申请实施例提供了一种光学系统,该光学系统沿光轴方向的物侧至像侧依次包含第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第七透镜。在第一透镜至第七透镜中,任意相邻两片透镜之间均可具有空气间隔。
具体的,七片透镜的具体形状和结构如下:
第一透镜,具有正曲折力,所述第一透镜物侧面近光轴处为凸面,所述第一透镜像侧面近光轴处为凹面;第二透镜,具有负曲折力,所述第二透镜物侧面近光轴处为凸面,所述第二透镜像侧面近光轴处为凹面;第三透镜,具有曲折力;第四透镜,具有正曲折力;第五透镜,具有曲折力;第六透镜,具有曲折力,所述第六透镜物侧面近光轴处为凹面;第七透镜,具有负曲折力,所述第七透镜物侧面近光轴处为面,所述第七透镜像侧面近光轴处为凹面;所述第一透镜至第七透镜中的任一透镜的物侧面与像侧面均为非球面;所述光学系统满足条件式:TTL/Imgh<1.32;其中,TTL为所述第一透镜物侧面至光学系统成像面于光轴上的距离,Imgh为成像面有效像素区域对角线长的一半。本申请通过合理配置第一透镜至第七透镜的各透镜的面型和屈折力,使得光学系统能够在满足高像素、大光圈及良好像质的要求的同时,保持结构紧凑,小型化。当光学系统满足上述条件式,且在像面固定的情况下能保证光学系统总长小,实现小型化要求。
在一个具体的实施例中,所述光学系统满足条件式:2<f/R14<3.5;其中,f为所述光学系统的有效焦距,R14为第所述七透镜像侧面于光轴处的曲率半径。当光学系统满足上述条件式时,通过合理分布R14的取值,可以较好的匹配芯片的内视场主光线角度。
在一个具体的实施例中,所述光学系统满足条件式:FNO≤2;其中,FNO为所述光学系统的光圈数。当光学系统满足上述条件式,在光学系统的有效焦距一定的情况下,FNO≤2能保证大口径,让光学系统有足够的进光量,使拍摄图像更加清晰,并实现拍摄高质量夜景、星空等光亮度不大的物空间场景。
在一个具体的实施例中,所述光学系统满足条件式:TTL/f<1.35;其中,TTL为所述第一透镜物侧面至所述光学系统成像面于光轴上的距离,f为所述光学系统的有效焦距。当光学系统满足上述条件式,光学系统有效焦距固定的情况下可以满足光学系统的小型化要求。本实施例中,TTL可以设置一个上限值,如上限值可以设为7mm。
在一个具体的实施例中,所述光学系统满足条件式:f1/f2>-0.15;其中,f1为所述第一透镜的有效焦距,f2为所述第二透镜的有效焦距。当光学系统满足上述条件式,第一透镜与第二透镜正负搭配,可以有效平衡系统色差,且合理选择上述焦距的比值,能一定程度降低光学系统的敏感性。
在一个具体的实施例中,所述光学系统满足条件式:sag1/sag2<15;其中,sag1为所述第一透镜物侧面有效口径处矢高,sag2为所述第一透镜像侧面有效口径处矢高。当光学系统满足上述条件式,通过合理选择sag1/sag2的比值,能保证第一透镜的工艺性,利于制造,同时也能降低整个光学系统的敏感性。
在一个具体的实施例中,所述光学系统满足条件式:(R2+R1)/(R2-R1)<5;其中,R1为所述第一透镜物侧面的曲率半径,R2为所述第一透镜像侧面的曲率半径。当光学系统满足上述条件式,通过合理选择(R2+R1)/(R2-R1)的比值,可以增强第一透镜的光焦度,在大孔径下也能很好的矫正色球差,提升整体性能。
在一个具体的实施例中,所述光学系统满足条件式:f1234/f567>-0.5;其中,f1234为所述第一透镜至所述第四透镜的组合焦距,f567为所述第五透镜至所述第七透镜的组合焦距。具体的,本申请的光学系统可看做两组,第一透镜至第四透镜为前组,焦距为正,第五透镜至第七透镜为后组,焦距为负,正负搭配矫正整个光学系统的色球差,可以提升性能;当光学系统满足上述条件式,前组焦距绝对值小于后组,可降低后组的敏感性,提升实际生产过程中的良率。
第一实施例,
请参考图1a和图1b,本实施例的光学系统,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;第一透镜的物侧面S1于圆周处为凹面,像侧面S2于圆周处为凹面。
第二透镜L2,具有负曲折力,第二透镜的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;第二透镜的物侧面S3于圆周处为凸面,像侧面S4于圆周处为凸面。
第三透镜L3,具有负曲折力,第三透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;第三透镜的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凹面。
第四透镜L4,具有正曲折力,第四透镜的物侧面S7于近光轴处为凸面,像侧面S8于近光轴处为凹面;第四透镜的物侧面S7于圆周处为凸面,像侧面S8为于圆周处为凹面。
第五透镜L5,具有负曲折力,第五透镜的物侧面S9于近光轴处为凹面,像侧面S10于近光轴处为凸面;第五透镜的物侧面S9于圆周处为凸面,像侧面S10于圆周处为凸面。
第六透镜L6,具有正曲折力,第六透镜的物侧面S11于近光轴处为凸面,像侧面S12于近光轴处为凹面;第六透镜的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凹面。
第七透镜L7,具有负曲折力,第七透镜的物侧面S13于近光轴处为凸面,像侧面S14于近光轴处为凹面;第七透镜的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
上述第一透镜L1至第七透镜L7的材质均为塑料。
此外,光学系统还包括光阑STO、红外滤光片L8和像面S17。光阑STO设置在第一透镜L1远离第二透镜L2的一侧,用于控制进光量。其他实施例中,光阑STO还可以设置在相邻两透镜之间,或者是其他透镜上。红外滤光片L8设置在第七透镜L7的像方侧,其包括物侧面S15和像侧面S16,红外滤光片L8用于过滤掉红外光线,使得射入像面S17的光线为可见光,可见光的波长为380nm-780nm。红外滤光片L8的材质为玻璃,并可在玻璃上镀膜。像面S17为被摄物体的光通过所述光学系统后形成的像所在的面。
表1a示出了本实施例的光学系统的特性的表格,其中的数据采用波长为587nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表1a
Figure BDA0002477250960000081
Figure BDA0002477250960000091
其中,f为光学系统的有效焦距,FNO为光学系统的光圈数,FOV为光学系统的视场角,TTL为第一透镜的物侧面至光学系统的成像面于光轴上的距离。
在本实施例中,第一透镜L1至第七透镜L7的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure BDA0002477250960000092
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1a中Y半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。表1b给出了可用于第一实施例中各非球面镜面S1-S16的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表1b
Figure BDA0002477250960000093
Figure BDA0002477250960000101
图1b示出了第一实施例的光学系统的纵向球差曲线、像散曲线和畸变曲线。其中,纵向球差曲线表示不同波长的光线经由光学系统的各透镜后的会聚焦点偏离;像散曲线表示子午像面弯曲和弧矢像面弯曲;畸变曲线表示不同视场角对应的畸变大小值。根据图1b可知,第一实施例所给出的光学系统能够实现良好的成像品质。
第二实施例
请参考图2a和图2b,本实施例的光学系统,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;第一透镜的物侧面S1于圆周处为凹面,像侧面S2于圆周处为凸面。
第二透镜L2,具有负曲折力,第二透镜的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;第二透镜的物侧面S3于圆周处为凸面,像侧面S4于圆周处为凸面。
第三透镜L3,具有正曲折力,第三透镜的物侧面S1于近光轴处为凹面,像侧面S2于近光轴处为凸面;第三透镜的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凹面。
第四透镜L4,具有正曲折力,第四透镜的物侧面S7于近光轴处为凸面,像侧面S8于近光轴处为凸面;第四透镜的物侧面S7于圆周处为凸面,像侧面S8于圆周处为凹面。
第五透镜L5,具有负曲折力,第五透镜的物侧面S9于近光轴处为凹面,像侧面S10于近光轴处为凸面;第五透镜的物侧面S9于圆周处为凸面,像侧面S10于圆周处为凹面。
第六透镜L6,具有正曲折力,第六透镜的物侧面S11于近光轴处为凸面,像侧面S12于近光轴处为凹面;第六透镜的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凹面。
第七透镜L7,具有负曲折力,第七透镜的物侧面S13于近光轴处为凸面,像侧面S14于近光轴处为凹面;第七透镜的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
第二实施例的其他结构与第一实施例相同,参照即可。
表2a示出了本实施例的光学系统的特性的表格,其中的数据采用波长为587nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表2a
Figure BDA0002477250960000111
其中,表2a的各参数含义均与第一实施例各参数含义相同。
表2b给出了可用于第二实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表2b
面序号 K A4 A6 A8 A10
S1 -0.4790 0.0031 0.0120 -0.0224 0.0286
S2 -6.5209 -0.0158 0.0018 -0.0009 0.0086
S3 10.0000 -0.0359 0.0198 -0.0117 0.0308
S4 1.8169 -0.0190 0.0201 -0.0311 0.0893
S5 0.0000 -0.0127 -0.0115 -0.0136 0.0533
S6 -18.0000 -0.0071 -0.0618 0.1233 -0.1714
S7 3.8640 -0.0251 -0.0254 0.0203 0.0115
S8 -10.2850 -0.0215 -0.0020 0.0026 -0.0150
S9 2.0000 -0.0068 -0.0112 0.0029 0.0054
S10 -18.0000 -0.0018 -0.0539 0.0562 -0.0354
S11 -2.1235 0.0070 -0.0524 0.0448 -0.0268
S12 -7.8596 -0.0083 0.0059 -0.0059 0.0022
S13 -2.4290 -0.1016 0.0333 -0.0083 0.0015
S14 -1.4674 -0.0856 0.0271 -0.0067 0.0011
面序号 A12 A14 A16 A18 A20
S1 -0.0226 0.0112 -0.0034 0.0006 0.0000
S2 -0.0134 0.0106 -0.0048 0.0012 -0.0001
S3 -0.0428 0.0318 -0.0136 0.0031 -0.0003
S4 -0.1406 0.1266 -0.0670 0.0194 -0.0024
S5 -0.0890 0.0864 -0.0497 0.0156 -0.0020
S6 0.1636 -0.0999 0.0370 -0.0075 0.0006
S7 -0.0364 0.0341 -0.0167 0.0042 -0.0004
S8 0.0220 -0.0165 0.0069 -0.0015 0.0001
S9 -0.0089 0.0055 -0.0017 0.0003 0.0000
S10 0.0137 -0.0032 0.0004 0.0000 0.0000
S11 0.0102 -0.0024 0.0003 0.0000 0.0000
S12 -0.0004 0.0001 0.0000 0.0000 0.0000
S13 -0.0002 0.0000 0.0000 0.0000 0.0000
S14 -0.0001 0.0000 0.0000 0.0000 0.0000
图2b示出了第二实施例的光学系统的纵向球差曲线、像散曲线和畸变曲线。根据图2b可知,第二实施例所给出的光学系统能够实现良好的成像品质。
第三实施例
请参考图3a和图3b,本实施例的光学系统,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;第一透镜的物侧面S1于圆周处为凹面,像侧面S2于圆周处为凸面。
第二透镜L2,具有负曲折力,第二透镜的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;第二透镜的物侧面S3于圆周处为凸面,像侧面S4于圆周处为凸面。
第三透镜L3,具有负曲折力,第三透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;第三透镜的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凹面。
第四透镜L4,具有正曲折力,第四透镜的物侧面S7于近光轴处为凸面,像侧面S8于近光轴处为凹面;第四透镜的物侧面S7于圆周处为凸面,像侧面S8于圆周处为凹面。
第五透镜L5,具有正曲折力,第五透镜的物侧面S9于近光轴处为凸面,像侧面S10于近光轴处为凹面;第五透镜的物侧面S9于圆周处为凸面,像侧面S10于圆周处为凸面。
第六透镜L6,具有正曲折力,第六透镜的物侧面S11于近光轴处为凸面,像侧面S12于近光轴处为凹面;第六透镜的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凹面。
第七透镜L7,具有负曲折力,第七透镜的物侧面S13于近光轴处为凸面,像侧面S14于近光轴处为凹面;第七透镜的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
第三实施例的其他结构与第一实施例相同,参照即可。
表3a示出了本实施例的光学系统的特性的表格,其中的数据采用波长为587nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表3a
Figure BDA0002477250960000131
Figure BDA0002477250960000141
其中,表3a的各参数含义均与第一实施例各参数含义相同。
表3b给出了可用于第三实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表3b
Figure BDA0002477250960000142
Figure BDA0002477250960000151
图3b示出了第三实施例的光学系统的纵向球差曲线、像散曲线和畸变曲线。根据图3b可知,第三实施例所给出的光学系统能够实现良好的成像品质。
第四实施例
请参考图4a和图4b,本实施例的光学系统,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;,第一透镜的物侧面S1于圆周处为凹面,像侧面S2于圆周处为凸面。
第二透镜L2,具有负曲折力,第二透镜的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;第二透镜的物侧面S3于圆周处为凸面,像侧面S4于圆周处为凸面。
第三透镜L3,具有负曲折力,第三透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;第三透镜的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凹面。
第四透镜L4,具有正曲折力,第四透镜的物侧面S7于近光轴处为凸面,像侧面S8于近光轴处为凹面;第四透镜的物侧面S7于圆周处为凸面,像侧面S8于圆周处为凹面。
第五透镜L5,具有正曲折力,第五透镜的物侧面S9于近光轴处为凸面,像侧面S10于近光轴处为凹面;第五透镜的物侧面S9于圆周处为凹面,像侧面S10于圆周处为凸面。
第六透镜L6,具有负曲折力,第六透镜的物侧面S11于近光轴处为凹面,像侧面S12于近光轴处为凹面;第六透镜的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凹面。
第七透镜L7,具有负曲折力,第七透镜的物侧面S13于近光轴处为凸面,像侧面S14于近光轴处为凹面;第七透镜的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
第四实施例的其他结构与第一实施例相同,参照即可。
表4a示出了本实施例的光学系统的特性的表格,其中的数据采用波长为587nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表4a
Figure BDA0002477250960000161
其中,表4a的各参数含义均与第一实施例各参数含义相同。
表4b给出了可用于第四实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表4b
面序号 K A4 A6 A8 A10
S1 -0.4893 0.0019 0.0150 -0.0281 0.0346
S2 -8.0854 -0.0170 0.0046 -0.0089 0.0206
S3 5.8805 -0.0323 0.0194 -0.0209 0.0426
S4 3.7165 -0.0151 0.0186 -0.0305 0.0811
S5 0.0000 -0.0325 0.0380 -0.0801 0.0972
S6 -12.5796 -0.0533 0.0488 -0.0351 -0.0167
S7 -5.6570 -0.0631 0.0453 -0.0398 0.0257
S8 -10.2850 -0.0332 0.0137 -0.0236 0.0241
S9 2.0000 -0.0362 0.0495 -0.0793 0.0774
S10 -18.0000 -0.0222 0.0064 -0.0110 0.0070
S11 -12.8810 0.0317 -0.0470 0.0282 -0.0163
S12 1.6104 0.0154 -0.0090 -0.0004 0.0008
S13 -2.3616 -0.0953 0.0320 -0.0080 0.0014
S14 -1.4139 -0.0918 0.0298 -0.0075 0.0013
面序号 A12 A14 A16 A18 A20
S1 -0.0262 0.0124 -0.0036 0.0006 0.0000
S2 -0.0246 0.0169 -0.0069 0.0015 -0.0001
S3 -0.0508 0.0351 -0.0142 0.0031 -0.0003
S4 -0.1243 0.1105 -0.0577 0.0164 -0.0020
S5 -0.0838 0.0514 -0.0223 0.0062 -0.0008
S6 0.0563 -0.0509 0.0234 -0.0055 0.0005
S7 -0.0164 0.0108 -0.0055 0.0016 -0.0002
S8 -0.0164 0.0067 -0.0015 0.0001 0.0000
S9 -0.0494 0.0202 -0.0051 0.0007 0.0000
S10 -0.0022 0.0005 -0.0001 0.0000 0.0000
S11 0.0068 -0.0018 0.0003 0.0000 0.0000
S12 -0.0002 0.0000 0.0000 0.0000 0.0000
S13 -0.0002 0.0000 0.0000 0.0000 0.0000
S14 -0.0001 0.0000 0.0000 0.0000 0.0000
图4b示出了第四实施例的光学系统的纵向球差曲线、像散曲线和畸变曲线。根据图4b可知,第四实施例所给出的光学系统能够实现良好的成像品质。
第五实施例
请参考图5a和图5b,本实施例的光学系统,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,第一透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;,第一透镜的物侧面S1于圆周处为凹面,像侧面S2于圆周处为凸面。
第二透镜L2,具有负曲折力,第二透镜的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;第二透镜的物侧面S3于圆周处为凸面,像侧面S4于圆周处为凸面。
第三透镜L3,具有负曲折力,第三透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;第三透镜的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凹面。
第四透镜L4,具有正曲折力,第四透镜的物侧面S7于近光轴处为凸面,像侧面S8于近光轴处为凸面;第四透镜的物侧面S7于圆周处为凸面,像侧面S8于圆周处为凹面。
第五透镜L5,具有负曲折力,第五透镜的物侧面S9于近光轴处为凹面,像侧面S10于近光轴处为凸面;第五透镜的物侧面S9于圆周处为凸面,像侧面S10于圆周处为凹面。
第六透镜L6,具有正曲折力,第六透镜的物侧面S11于近光轴处为凸面,像侧面S12于近光轴处为凸面;第六透镜的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凹面。
第七透镜L7,具有负曲折力,第七透镜的物侧面S13于近光轴处为凸面,像侧面S14于近光轴处为凹面;第七透镜的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
第五实施例的其他结构与第一实施例相同,参照即可。
表5a示出了本实施例的光学系统的特性的表格,其中的数据采用波长为587nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表5a
Figure BDA0002477250960000181
Figure BDA0002477250960000191
其中,表5a的各参数含义均与第一实施例各参数含义相同。
表5b给出了可用于第五实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表5b
Figure BDA0002477250960000192
Figure BDA0002477250960000201
图5b示出了第五实施例的光学系统的纵向球差曲线、像散曲线和畸变曲线。根据图5b可知,第五实施例所给出的光学系统能够实现良好的成像品质。
第六实施例
请参考图6a和图6b,本实施例的光学系统,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,,第一透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;,第一透镜的物侧面S1于圆周处为凹面,像侧面S2于圆周处为凹面。
第二透镜L2,具有负曲折力,第二透镜的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;第二透镜的物侧面S3于圆周处为凸面,像侧面S4于圆周处为凸面。
第三透镜L3,具有正曲折力,第三透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;第三透镜的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凹面。
第四透镜L4,具有正曲折力,第四透镜的物侧面S7于近光轴处为凹面,像侧面S8于近光轴处为凸面;第四透镜的物侧面S7于圆周处为凸面,像侧面S8于圆周处为凹面。
第五透镜L5,具有负曲折力,第五透镜的物侧面S9于近光轴处为凹面,像侧面S10于近光轴处为凸面;第五透镜的物侧面S9于圆周处为凸面,像侧面S10于圆周处为凸面。
第六透镜L6,具有正曲折力,第六透镜的物侧面S11于近光轴处为凸面,像侧面S12于近光轴处为凹面;第六透镜的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凹面。
第七透镜L7,具有负曲折力,第七透镜的物侧面S13于近光轴处为凸面,像侧面S14于近光轴处为凹面;第七透镜的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
第六实施例的其他结构与第一实施例相同,参照即可。
表6a示出了本实施例的光学系统的特性的表格,其中的数据采用波长为587nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表6a
Figure BDA0002477250960000211
其中,表6a的各参数含义均与第一实施例各参数含义相同。
表6b给出了可用于第六实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表6b
面序号 K A4 A6 A8 A10
S1 -0.4930 0.0033 0.0084 -0.0130 0.0139
S2 -8.1952 -0.0241 0.0048 0.0073 -0.0063
S3 10.0000 -0.0365 0.0224 -0.0033 0.0062
S4 2.9573 -0.0164 0.0274 -0.0465 0.1119
S5 0.0000 -0.0354 0.0151 -0.0474 0.0842
S6 -2.8665 -0.0267 -0.0143 0.0453 -0.0889
S7 3.8640 -0.0210 -0.0067 0.0005 0.0079
S8 -7.0454 -0.0245 0.0101 -0.0209 0.0157
S9 -18.0000 -0.0111 0.0156 -0.0304 0.0300
S10 2.0000 -0.0115 -0.0138 0.0161 -0.0106
S11 -2.8207 -0.0054 -0.0265 0.0208 -0.0118
S12 -7.3236 -0.0066 0.0024 -0.0032 0.0011
S13 -2.4607 -0.0966 0.0291 -0.0068 0.0012
S14 -1.4448 -0.0842 0.0255 -0.0060 0.0009
面序号 A12 A14 A16 A18 A20
S1 -0.0090 0.0035 -0.0008 0.0001 0.0000
S2 0.0007 0.0019 -0.0014 0.0004 -0.0001
S3 -0.0142 0.0128 -0.0059 0.0014 -0.0001
S4 -0.1701 0.1520 -0.0798 0.0228 -0.0028
S5 -0.1054 0.0877 -0.0461 0.0138 -0.0018
S6 0.1021 -0.0692 0.0275 -0.0058 0.0005
S7 -0.0179 0.0190 -0.0105 0.0030 -0.0003
S8 -0.0052 -0.0007 0.0013 -0.0004 0.0001
S9 -0.0200 0.0083 -0.0021 0.0003 0.0000
S10 0.0037 -0.0007 0.0001 0.0000 0.0000
S11 0.0041 -0.0009 0.0001 0.0000 0.0000
S12 -0.0002 0.0000 0.0000 0.0000 0.0000
S13 -0.0001 0.0000 0.0000 0.0000 0.0000
S14 -0.0001 0.0000 0.0000 0.0000 0.0000
图6b示出了第六实施例的光学系统的纵向球差曲线、像散曲线和畸变曲线。根据图6b可知,第六实施例所给出的光学系统能够实现良好的成像品质。
第七实施例
请参考图7a和图7b,本实施例的光学系统,沿光轴方向的物侧至像侧依次包括:
第一透镜L1,具有正曲折力,,第一透镜的物侧面S1于近光轴处为凸面,像侧面S2于近光轴处为凹面;第一透镜的物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2,具有负曲折力,第二透镜的物侧面S3于近光轴处为凸面,像侧面S4于近光轴处为凹面;,第二透镜的物侧面S3于圆周处为凸面,像侧面S4于圆周处为凸面。
第三透镜L3,具有负曲折力,第三透镜的物侧面S1于近光轴处为凹面,像侧面S2于近光轴处为凹面;第三透镜的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凹面。
第四透镜L4,具有正曲折力,第四透镜的物侧面S7于近光轴处为凸面,像侧面S8于近光轴处为凹面;第四透镜的物侧面S7于圆周处为凸面,像侧面S8于圆周处为凹面。
第五透镜L5,具有负曲折力,第五透镜的物侧面S9于近光轴处为凹面,像侧面S10于近光轴处为凹面;第五透镜的物侧面S9于圆周处为凹面,像侧面S10于圆周处为凸面。
第六透镜L6,具有正曲折力,第六透镜的物侧面S11于近光轴处为凸面,像侧面S12于近光轴处为凹面;第六透镜的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凹面。
第七透镜L7,具有负曲折力,第七透镜的物侧面S13于近光轴处为凸面,像侧面S14于近光轴处为凹面;第七透镜的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
第七实施例的其他结构与第一实施例相同,参照即可。
表7a示出了本实施例的光学系统的特性的表格,其中的数据采用波长为587nm的光线获得,Y半径、厚度和焦距的单位均为毫米(mm)。
表7a
Figure BDA0002477250960000231
Figure BDA0002477250960000241
其中,表7a的各参数含义均与第一实施例各参数含义相同。
表7b给出了可用于第七实施例中各非球面镜面的高次项系数,其中,各非球面面型可由第一实施例中给出的公式限定。
表7b
Figure BDA0002477250960000242
Figure BDA0002477250960000251
图7b示出了第七实施例的光学系统的纵向球差曲线、像散曲线和畸变曲线。根据图7b可知,第七实施例所给出的光学系统能够实现良好的成像品质。
表8为第一实施例至第七实施例的光学系统的TTL/Imgh、f/R14、FNO、TTL/f、f1/f2、sag1/sag2、(R2+R1)/(R2-R1)、f1234/f567的值。
表8
TTL/Imgh f/R14 FNO TTL/f
第一实施例 1.27 2.63 1.75 1.18
第二实施例 1.27 2.57 1.78 1.19
第三实施例 1.27 2.61 1.75 1.19
第四实施例 1.27 2.67 1.75 1.19
第五实施例 1.27 2.76 1.75 1.19
第六实施例 1.27 2.56 1.75 1.19
第七实施例 1.28 2.67 1.69 1.20
f1/f2 sag1/sag2 (R2+R1)/(R2-R1) f1234/f567
第一实施例 -0.26 7.18 2.00 -0.26
第二实施例 -0.31 7.61 1.87 -0.31
第三实施例 -0.27 7.40 1.94 -0.27
第四实施例 -0.25 7.31 1.98 -0.25
第五实施例 -0.29 7.90 1.87 -0.29
第六实施例 -0.29 8.11 1.87 -0.29
第七实施例 -0.25 7.15 1.97 -0.25
由表8可见,各实施例均满足以下条件式:TTL/Imgh<1.32、2<f/R14<3.5、FNO≤2、TTL/f<1.35、f1/f2>-0.15、sag1/sag2<15、(R2+R1)/(R2-R1)<5、f1234/f567>-0.5。
以上实施例的各技术特征可以进行任意的组合,为使描述简介,未对上述实施例中的各个技术特征所以可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,可应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明的保护范围应以所附权利要求为准。

Claims (10)

1.一种光学系统,其特征在于,沿光轴方向的物侧至像侧依次包含:
第一透镜,具有正曲折力,所述第一透镜物侧面近光轴处为凸面,所述第一透镜像侧面近光轴处为凹面;
第二透镜,具有负曲折力,所述第二透镜物侧面近光轴处为凸面,所述第二透镜像侧面近光轴处为凹面;
第三透镜,具有曲折力;
第四透镜,具有正曲折力;
第五透镜,具有曲折力;
第六透镜,具有曲折力,所述第六透镜物侧面近光轴处为凹面;
第七透镜,具有负曲折力,所述第七透镜物侧面近光轴处为凸面,所述第七透镜像侧面近光轴处为凹面;
所述第一透镜至第七透镜中的任一透镜的物侧面与像侧面均为非球面;
所述光学系统满足条件式:TTL/Imgh<1.32;其中,TTL为所述第一透镜物侧面至光学系统成像面于光轴上的距离,Imgh为成像面有效像素区域对角线长的一半。
2.根据权利要求1所述的光学系统,其特征在于,所述光学系统满足条件式:2<f/R14<3.5;其中,f为所述光学系统的有效焦距,R14为第所述七透镜像侧面于光轴处的曲率半径。
3.根据权利要求1所述的光学系统,其特征在于,所述光学系统满足条件式:FNO≤2;其中,FNO为所述光学系统的光圈数。
4.根据权利要求1所述的光学系统,其特征在于,所述光学系统满足条件式:TTL/f<1.35;其中,TTL为所述第一透镜物侧面至所述光学系统成像面于光轴上的距离,f为所述光学系统的有效焦距。
5.根据权利要求1所述的光学系统,其特征在于,所述光学系统满足条件式:f1/f2>-0.15;其中,f1为所述第一透镜的有效焦距,f2为所述第二透镜的有效焦距。
6.根据权利要求1所述的光学系统,其特征在于,所述光学系统满足条件式:sag1/sag2<15;其中,sag1为所述第一透镜物侧面有效口径处矢高,sag2为所述第一透镜像侧面有效口径处矢高。
7.根据权利要求1所述的光学系统,其特征在于,所述光学系统满足条件式:(R2+R1)/(R2-R1)<5;其中,R1为所述第一透镜物侧面的曲率半径,R2为所述第一透镜像侧面的曲率半径。
8.根据权利要求1所述的光学系统,其特征在于,所述光学系统满足条件式:f1234/f567>-0.5;其中,f1234为所述第一透镜至所述第四透镜的组合焦距,f567为所述第五透镜至所述第七透镜的组合焦距。
9.一种镜头模组,其特征在于,包括镜筒、电子感光元件和如权利要求1至8任一项所述的光学系统,所述光学系统的所述第一透镜至所述第七透镜安装在所述镜筒内,所述电子感光元件设置在所述光学系统的像侧,用于将穿过所述第一透镜至所述第七透镜入射到所述电子感光元件上的物的光线转换成图像的电信号。
10.一种电子设备,其特征在于,包括壳体和如权利要求9所述的镜头模组,所述镜头模组设于所述壳体内。
CN202010370023.7A 2020-04-30 2020-04-30 光学系统、镜头模组和电子设备 Pending CN111443461A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010370023.7A CN111443461A (zh) 2020-04-30 2020-04-30 光学系统、镜头模组和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010370023.7A CN111443461A (zh) 2020-04-30 2020-04-30 光学系统、镜头模组和电子设备

Publications (1)

Publication Number Publication Date
CN111443461A true CN111443461A (zh) 2020-07-24

Family

ID=71657531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010370023.7A Pending CN111443461A (zh) 2020-04-30 2020-04-30 光学系统、镜头模组和电子设备

Country Status (1)

Country Link
CN (1) CN111443461A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111929819A (zh) * 2020-09-02 2020-11-13 瑞声光电科技(苏州)有限公司 摄像光学镜头
CN112269248A (zh) * 2020-12-24 2021-01-26 诚瑞光学(苏州)有限公司 摄像光学镜头
CN112285910A (zh) * 2020-12-31 2021-01-29 常州市瑞泰光电有限公司 摄像光学镜头
CN112698483A (zh) * 2020-12-30 2021-04-23 浙江舜宇光学有限公司 一种光学成像镜头
CN113281878A (zh) * 2021-04-28 2021-08-20 江西晶超光学有限公司 光学系统、摄像模组和电子设备
CN113625426A (zh) * 2021-07-29 2021-11-09 江西晶超光学有限公司 光学系统、镜头模组和电子设备
CN113933968A (zh) * 2021-10-18 2022-01-14 江西晶超光学有限公司 光学镜头、摄像模组及电子设备
CN114114654A (zh) * 2021-11-10 2022-03-01 江西晶超光学有限公司 光学系统、取像模组及电子设备
CN114371547A (zh) * 2022-03-22 2022-04-19 江西晶超光学有限公司 光学镜头、摄像模组及电子设备
WO2022116145A1 (zh) * 2020-12-04 2022-06-09 欧菲光集团股份有限公司 光学系统、取像装置及电子装置
WO2022134178A1 (zh) * 2020-12-24 2022-06-30 诚瑞光学(深圳)有限公司 摄像光学镜头

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111929819A (zh) * 2020-09-02 2020-11-13 瑞声光电科技(苏州)有限公司 摄像光学镜头
WO2022116145A1 (zh) * 2020-12-04 2022-06-09 欧菲光集团股份有限公司 光学系统、取像装置及电子装置
WO2022134178A1 (zh) * 2020-12-24 2022-06-30 诚瑞光学(深圳)有限公司 摄像光学镜头
CN112269248B (zh) * 2020-12-24 2021-03-09 诚瑞光学(苏州)有限公司 摄像光学镜头
CN112269248A (zh) * 2020-12-24 2021-01-26 诚瑞光学(苏州)有限公司 摄像光学镜头
CN112698483A (zh) * 2020-12-30 2021-04-23 浙江舜宇光学有限公司 一种光学成像镜头
CN112285910A (zh) * 2020-12-31 2021-01-29 常州市瑞泰光电有限公司 摄像光学镜头
CN112285910B (zh) * 2020-12-31 2021-03-02 常州市瑞泰光电有限公司 摄像光学镜头
CN113281878A (zh) * 2021-04-28 2021-08-20 江西晶超光学有限公司 光学系统、摄像模组和电子设备
CN113281878B (zh) * 2021-04-28 2023-09-05 江西晶超光学有限公司 光学系统、摄像模组和电子设备
CN113625426A (zh) * 2021-07-29 2021-11-09 江西晶超光学有限公司 光学系统、镜头模组和电子设备
CN113625426B (zh) * 2021-07-29 2023-07-04 江西晶超光学有限公司 光学系统、镜头模组和电子设备
CN113933968A (zh) * 2021-10-18 2022-01-14 江西晶超光学有限公司 光学镜头、摄像模组及电子设备
CN113933968B (zh) * 2021-10-18 2023-09-05 江西晶超光学有限公司 光学镜头、摄像模组及电子设备
CN114114654A (zh) * 2021-11-10 2022-03-01 江西晶超光学有限公司 光学系统、取像模组及电子设备
CN114114654B (zh) * 2021-11-10 2023-09-05 江西晶超光学有限公司 光学系统、取像模组及电子设备
CN114371547A (zh) * 2022-03-22 2022-04-19 江西晶超光学有限公司 光学镜头、摄像模组及电子设备
CN114371547B (zh) * 2022-03-22 2022-07-12 江西晶超光学有限公司 光学镜头、摄像模组及电子设备

Similar Documents

Publication Publication Date Title
CN111443461A (zh) 光学系统、镜头模组和电子设备
CN111624738A (zh) 光学系统、镜头模组及终端设备
CN111208629A (zh) 光学系统、镜头模组和电子设备
CN112034595A (zh) 光学系统、摄像模组和电子设备
CN111812806A (zh) 光学系统、摄像模组及电子设备
CN112433340A (zh) 光学系统、镜头模组和电子设备
CN111897093A (zh) 光学系统、摄像模组和电子设备
CN112346211A (zh) 光学系统、镜头模组和电子设备
CN212111955U (zh) 光学系统、镜头模组和电子设备
CN113281879B (zh) 光学系统、镜头模组和电子设备
CN213149353U (zh) 光学系统、镜头模组和电子设备
CN113866939A (zh) 光学系统、镜头模组以及电子设备
CN210775999U (zh) 光学系统、镜头模组和电子设备
CN111239986A (zh) 光学系统、镜头模组及电子设备
CN111142240A (zh) 光学系统、镜头模组和电子设备
CN114935812B (zh) 光学系统、取像模组及电子设备
CN113433652B (zh) 光学系统、镜头模组和电子设备
CN214474193U (zh) 光学系统、摄像模组及电子设备
CN214151207U (zh) 光学系统、摄像模组及电子设备
WO2021217663A1 (zh) 光学系统、镜头模组和电子设备
CN213482554U (zh) 光学系统、摄像模组和电子设备
CN213091989U (zh) 光学系统、摄像头模组和电子设备
CN211786323U (zh) 光学系统、镜头模组及电子设备
CN210514766U (zh) 光学系统、镜头模组和电子设备
CN114740596A (zh) 光学系统、取像模组及电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 330096 No.699 Tianxiang North Avenue, Nanchang hi tech Industrial Development Zone, Nanchang City, Jiangxi Province

Applicant after: Jiangxi Jingchao optics Co.,Ltd.

Address before: 330096 Jiangxi Nanchang Nanchang hi tech Industrial Development Zone, east of six road, south of Tianxiang Avenue.

Applicant before: OFILM TECH Co.,Ltd.

CB02 Change of applicant information