WO2021169447A1 - 摄像镜头 - Google Patents

摄像镜头 Download PDF

Info

Publication number
WO2021169447A1
WO2021169447A1 PCT/CN2020/131805 CN2020131805W WO2021169447A1 WO 2021169447 A1 WO2021169447 A1 WO 2021169447A1 CN 2020131805 W CN2020131805 W CN 2020131805W WO 2021169447 A1 WO2021169447 A1 WO 2021169447A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
curvature
refractive power
object side
radius
Prior art date
Application number
PCT/CN2020/131805
Other languages
English (en)
French (fr)
Inventor
山崎郁
寺冈弘之
Original Assignee
诚瑞光学(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(深圳)有限公司 filed Critical 诚瑞光学(深圳)有限公司
Publication of WO2021169447A1 publication Critical patent/WO2021169447A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Definitions

  • the present invention relates to an imaging lens, and particularly relates to a portable module camera, WEB camera, etc., which adopts high-resolution CCD, CMOS, and other imaging elements, which are reduced to TTL (optical length)/IH (image height) ⁇ 1.30
  • the field of view (hereinafter referred to as 2 ⁇ ) is a wide angle of 80° or more and has good optical characteristics and is an imaging lens composed of 6 lenses.
  • imaging elements such as CCD and CMOS have become widespread. With the miniaturization and high performance of these imaging elements, an imaging lens with a low height, a wide angle, and good optical characteristics is sought.
  • Patent Document 1 proposes the following imaging lens: a first lens having a positive refractive power, a second lens having a negative refractive power, and a positive refractive power are arranged in order from the object side The third lens, the fourth lens with negative refractive power, the fifth lens with positive refractive power, and the sixth lens with negative refractive power.
  • the distortion of the maximum image height, the power distribution of the second lens, the axial distance from the image side surface of the fifth lens to the object side surface of the sixth lens, and the overall lens system is not sufficient, so the low height and wide angle are not sufficient.
  • Patent Document 1 JP Publication No. 2017-49329
  • the object of the present invention is to provide an imaging lens composed of 6 lenses that has a low height, a wide angle, and good optical characteristics.
  • the inventors calculated the ratio of the distortion of the maximum image height, the power distribution of the second lens, the axial distance from the image side surface of the fifth lens to the object side surface of the sixth lens and the focal length of the entire lens system, The ratio of the center thickness of the sixth lens to the focal length of the entire lens system was intensively studied. As a result, it was found that an imaging lens that improved the problems of the prior art can be obtained, and the present invention has been achieved.
  • the imaging lens described in claim 1 is provided with a first lens having a positive refractive power, a second lens having a negative refractive power, a third lens having a positive refractive power, a fourth lens having a negative refractive power, and
  • the fifth lens with positive refractive power and the sixth lens with negative refractive power satisfy the following relational expressions (1) to (4).
  • DMI represents the distortion of the maximum image height
  • f the overall focal length of the camera lens
  • f2 represents the focal length of the second lens
  • d10 represents the on-axis distance from the image side surface of the fifth lens to the object side surface of the sixth lens
  • d11 represents the center thickness of the sixth lens.
  • R3 represents the radius of curvature of the object side surface of the second lens
  • R4 represents the radius of curvature of the image side surface of the second lens.
  • v1 represents the Abbe number of the first lens
  • v3 represents the Abbe number of the third lens.
  • an imaging lens suitable for portable module cameras, WEB cameras, etc. that use high-resolution CCD, CMOS and other imaging elements, and the height is reduced to TTL (optical length)/IH (image height) ⁇ 1.30, to ensure a wide angle of 2 ⁇ >80° or more, and has good optical characteristics, it is composed of 6 lenses.
  • FIG. 1 is a diagram showing a schematic configuration of an imaging lens LA according to Example 1 of the present invention.
  • FIG. 2 is a diagram showing spherical aberration, curvature of field, and distortion of the imaging lens LA according to Example 1 of the present invention.
  • Fig. 3 is a diagram showing a schematic configuration of an imaging lens LA according to Example 2 of the present invention.
  • FIG. 4 is a diagram showing spherical aberration, curvature of field, and distortion of imaging lens LA according to Example 2 of the present invention.
  • FIG. 5 is a diagram showing a schematic configuration of an imaging lens LA according to Example 3 of the present invention.
  • FIG. 6 is a diagram showing spherical aberration, curvature of field, and distortion of imaging lens LA according to Example 3 of the present invention.
  • Fig. 7 is a diagram showing a schematic configuration of an imaging lens LA according to Example 4 of the present invention.
  • FIG. 8 is a diagram showing spherical aberration, curvature of field, and distortion of the imaging lens LA according to Example 4 of the present invention.
  • FIG. 9 is a diagram showing a schematic configuration of an imaging lens LA according to Example 5 of the present invention.
  • FIG. 10 is a diagram showing spherical aberration, curvature of field, and distortion of imaging lens LA according to Example 5 of the present invention.
  • the imaging lens LA includes a lens system in which a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 are arranged from the object side to the image side 6 lens structure.
  • a glass plate GF is arranged between the sixth lens L6 and the image surface.
  • this glass plate GF cover glass, various filters, etc. are conceived.
  • the glass plate GF can be arranged in different positions, and can also be omitted.
  • the first lens L1 is a lens with positive refractive power
  • the second lens L2 is a lens with negative refractive power
  • the third lens L3 is a lens with positive refractive power
  • the fourth lens L4 is a lens with negative refractive power
  • the lens L5 is a lens having positive refractive power
  • the sixth lens L6 is a lens having negative refractive power.
  • the imaging lens LA satisfies the following relational expressions (1) to (4).
  • d10 the on-axis distance from the image side surface of the fifth lens to the object side surface of the sixth lens
  • d11 The center thickness of the sixth lens.
  • the relationship (1) specifies the distortion of the maximum image height. When it is outside the range of the relational expression (1), it is not preferable to correct the on-axis and off-axis chromatic aberrations as the wide-angle and low-profile are increased.
  • the relationship (2) specifies the negative refractive power of the second lens L2.
  • the correction of on-axis and off-axis chromatic aberration becomes difficult as the wide angle and low height increase, which is not preferable.
  • the relationship (3) specifies the ratio of the on-axis distance from the image side surface of the fifth lens to the object side surface of the sixth lens to the focal length of the entire lens system.
  • the relationship (4) specifies the ratio of the center thickness of the sixth lens to the focal length of the entire lens system.
  • the thickness of the lens can be restricted to an appropriate range, and the lens can be easily molded.
  • the second lens L2 has a negative refractive power and satisfies the following relationship (5).
  • R3 the radius of curvature of the object side of the second lens
  • R4 The radius of curvature of the image side surface of the second lens.
  • the relational expression (5) specifies the ratio of the radius of curvature R3 of the object side surface of the second lens to the radius of curvature R4 of the image side surface of the second lens.
  • v3 Abbe number of the third lens.
  • the relational expression (6) specifies the difference between the Abbe number of the first lens L1 and the Abbe number of the third lens L3.
  • the 6 lenses that make up the imaging lens LA satisfy the above-mentioned structure and relational expressions, so that the height can be reduced to TTL (optical length)/IH (image height) ⁇ 1.30, 2 ⁇ > 80° or more wide angle and good optics can be obtained.
  • TTL optical length
  • IH image height
  • R The radius of curvature of the optical surface, in the case of a lens, the radius of curvature of the center
  • R1 the radius of curvature of the object side of the first lens L1
  • R2 the radius of curvature of the image side surface of the first lens L1
  • R3 the radius of curvature of the object side of the second lens L2
  • R4 the radius of curvature of the image side surface of the second lens L2
  • R5 the radius of curvature of the object side surface of the third lens L3
  • R6 The radius of curvature of the image side surface of the third lens L3
  • R7 The curvature radius of the object side of the fourth lens L4
  • R8 the radius of curvature of the image side surface of the fourth lens L4
  • R9 the radius of curvature of the object side surface of the fifth lens L5
  • R10 the radius of curvature of the image side surface of the fifth lens L5
  • R11 the radius of curvature of the object side surface of the sixth lens L6
  • R12 the radius of curvature of the image side surface of the sixth lens L6
  • d the center thickness of the lens or the distance between the lenses
  • d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2
  • nd1 the refractive index of the d-line of the first lens L1
  • nd2 the refractive index of the d-line of the second lens L2
  • ndg the refractive index of the d-line of the glass plate GF
  • TTL Optical length (the on-axis distance from the object side of the first lens L1 to the image surface)
  • the aspheric surface of each lens surface uses the aspheric surface shown in equation (7).
  • the present invention is not limited to the aspheric polynomial of equation (7).
  • FIG. 1 is a configuration diagram showing the arrangement of an imaging lens LA of Example 1.
  • the first lens L1 to the sixth lens L6 constituting the imaging lens LA of Example 1 have the respective object side and image side curvature radii R, lens center thickness or inter-lens distance d, refractive index nd, and Abbe number v as shown in the table
  • the conic coefficient k and aspheric coefficients are shown in Table 2
  • 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, f6, TTL, and IH are shown in Table 3.
  • Table 16 described later shows values corresponding to the parameters defined by the relational expressions (1) to (6) of each of Examples 1 to 5.
  • Example 1 As shown in Table 16, the relational expressions (1) to (6) are satisfied.
  • the spherical aberration, curvature of field, and distortion of the imaging lens LA of Embodiment 1 are shown in FIG. 2.
  • S of the field curvature in the figure is the field curvature for the sagittal image surface
  • T is the field curvature for the meridional image surface, and the same applies to Embodiments 2 to 5.
  • FIG. 3 is a configuration diagram showing the arrangement of the imaging lens LA of the second embodiment.
  • the first lens L1 to the sixth lens L6 constituting the imaging lens LA of Example 2 have the respective object side and image side curvature radii R, lens center thickness or inter-lens distance d, refractive index nd, and Abbe number v as shown in the table
  • the conic coefficient k and aspheric coefficients are shown in Table 5, and 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, f6, TTL, and IH are shown in Table 6.
  • Embodiment 2 As shown in Table 16, the relational expressions (1) to (6) are satisfied.
  • the spherical aberration, curvature of field, and distortion of the imaging lens LA of the second embodiment are shown in FIG. 4.
  • FIG. 5 is a configuration diagram showing the arrangement of the imaging lens LA of the third embodiment.
  • the first lens L1 to the sixth lens L6 constituting the imaging lens LA of Example 3 have the respective object side and image side curvature radii R, lens center thickness or inter-lens distance d, refractive index nd, and Abbe number v as shown in the table
  • the conic coefficient k and aspheric coefficients are shown in Table 8, and 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, f6, TTL, and IH are shown in Table 9.
  • Embodiment 3 As shown in Table 16, the relational expressions (1) to (6) are satisfied.
  • the spherical aberration, curvature of field, and distortion of the imaging lens LA of the third embodiment are shown in FIG. 6.
  • FIG. 7 is a configuration diagram showing the arrangement of imaging lens LA of Example 4.
  • the first lens L1 to the sixth lens L6 constituting the imaging lens LA of Example 4 have the respective object side and image side curvature radii R, lens center thickness or inter-lens distance d, refractive index nd, and Abbe number v as shown in the table
  • the conic coefficient k and aspheric coefficients are shown in Table 11, and 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, f6, TTL, and IH are shown in Table 12.
  • Embodiment 4 as shown in Table 16, satisfies relational expressions (1) to (6).
  • the spherical aberration, curvature of field, and distortion of the imaging lens LA of the embodiment 4 are shown in FIG. 8.
  • FIG. 9 is a configuration diagram showing the arrangement of imaging lens LA of Example 4.
  • the first lens L1 to the sixth lens L6 constituting the imaging lens LA of Example 5 have the respective object side and image side curvature radii R, lens center thickness or inter-lens distance d, refractive index nd, and Abbe number v as shown in the table
  • the conic coefficient k and aspheric coefficients are shown in Table 14, and 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, f6, TTL, IH are shown in Table 15.
  • Embodiment 5 as shown in Table 16, satisfies relational expressions (1) to (6).
  • the spherical aberration, curvature of field, and distortion of the imaging lens LA of the embodiment 5 are shown in FIG. 10.
  • Table 16 shows values corresponding to the parameters specified in the relational expressions (1) to (6) of Examples 1 to 5.
  • Example 2 Example 3
  • Example 4 Example 5 Remark DMI 5.002% 14.977% 9.880% 8.100% 11.126% (1) formula f2/f -5.034 -4.045 -4.537 -5.494 -3.524 (2) formula d10/f 0.199 0.261 0.240 0.180 0.300 (3) formula d11/f 0.103 0.140 0.120 0.090 0.150 (4) formula R3/R4 7.999 18.000 14.500 4.004 24.975 (5) formula v1-v3 38.896 38.896 30.000 15.020 44.956 (6) formula
  • R The radius of curvature of the optical surface, in the case of a lens, it is the radius of curvature of the center
  • R1 the radius of curvature of the object side of the first lens L1
  • R2 the radius of curvature of the image side surface of the first lens L1
  • R3 the radius of curvature of the object side of the second lens L2
  • R4 the radius of curvature of the image side surface of the second lens L2
  • R5 the radius of curvature of the object side surface of the third lens L3
  • R6 The radius of curvature of the image side surface of the third lens L3
  • R7 The curvature radius of the object side of the fourth lens L4
  • R8 the radius of curvature of the image side surface of the fourth lens L4
  • R9 the radius of curvature of the object side surface of the fifth lens L5
  • R10 the radius of curvature of the image side surface of the fifth lens L5
  • R11 the radius of curvature of the object side surface of the sixth lens L6
  • R12 the radius of curvature of the image side surface of the sixth lens L6
  • d the center thickness of the lens or the distance between the lenses
  • d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2
  • d14 The on-axis distance from the image side surface of the glass plate GF to the image surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种低高度、广角且具有良好的光学特性的利用6片透镜而构成的摄像镜头(LA)。摄像镜头(LA)从物侧起依次配置有具有正屈折力的第一透镜(L1)、具有负屈折力的第二透镜(L2)、具有正屈折力的第三透镜(L3)、具有负屈折力的第四透镜(L4)、具有正屈折力的第五透镜(L5)以及具有负屈折力的第六透镜(L6),且满足给定的关系式。

Description

摄像镜头 技术领域
本发明涉及摄像镜头,尤其涉及适合于采用高像素用CCD、CMOS等摄像元件的便携式用模块相机、WEB相机等的、低高度化为TTL(光学长度)/IH(像高)<1.30、全视场角(以下,设为2ω)为80°以上的广角且具有良好的光学特性的利用6片透镜而构成的摄像镜头。
背景技术
近年,采用CCD、CMOS等摄像元件的各种摄像装置广泛普及。伴随这些摄像元件的小型化、高性能化,寻求低高度、广角且具有良好的光学特性的摄像镜头。
与低高度、广角且具有良好的光学特性的利用6片透镜而构成的摄像镜头相关的技术开发正在推进。作为该6片透镜结构的摄像镜头,在专利文献1中提出了如下摄像镜头:从物侧起依次配置有具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有正屈折力的第三透镜、具有负屈折力的第四透镜、具有正屈折力的第五透镜以及具有负屈折力的第六透镜。
关于专利文献1的实施例中公开的摄像镜头,最大像高的畸变、第二透镜的光焦度分配、从第五透镜的像侧面到第六透镜的物侧面的轴上距离与透镜系统整体的焦距之比不充分,因此低高度化以及广角化不充分。
(在先技术文献)
(专利文献)
专利文献1:JP特开2017-49329号公报
发明内容
(发明要解决的课题)
本发明的目的在于,提供一种低高度、广角且具有良好的光学特性的利用6片透镜而构成的摄像镜头。
(用于解决课题的技术方案)
为了达成上述目标,发明人对最大像高的畸变、第二透镜的光焦度分配、从第五透镜的像侧面到第六透镜的物侧面的轴上距离与透镜系统整体的焦距之比、第六透镜的中心厚度与透镜系统整体的焦距之比进行锐意探讨,结果发现可得到改善了现有技术的课题的摄像镜头,实现了本发明。
技术方案1记载的摄像镜头从物侧起依次配置有具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有正屈折力的第三透镜、具有负屈折力的第四透镜、具有正屈折力的第五透镜以及具有负屈折力的第六透镜,且满足下列关系式(1)~(4)。
5.00≤DMI≤15.00  (1)
-5.50≤f2/f≤-3.50  (2)
0.18≤d10/f≤0.30  (3)
0.09≤d11/f≤0.15  (4)
其中,
DMI表示最大像高的畸变,
f表示摄像镜头整体的焦距,
f2表示第二透镜的焦距,
d10表示从第五透镜的像侧面到第六透镜的物侧面的轴上距离,
d11表示第六透镜的中心厚度。
技术方案2记载的摄像镜头满足下列关系式(5):
4.00≤R3/R4≤25.00  (5)
其中,
R3表示第二透镜的物侧面的曲率半径,
R4表示第二透镜的像侧面的曲率半径。
技术方案3记载的摄像镜头满足下列关系式(6):
15.00≤v1-v3≤45.00  (6)
其中,
v1表示第一透镜的阿贝数,
v3表示第三透镜的阿贝数。
(发明效果)
根据本发明,尤其能提供一种摄像镜头,适合于采用高像素用CCD、CMOS等摄像元件的便携式用模块相机、WEB相机等,低高度化为TTL(光学长度)/IH(像高)<1.30,保证2ω>80°以上的广角,且具有良好的光学特性,利用6片透镜而构成。
附图说明
图1是表示本发明的实施例1的摄像镜头LA的概略构成的图。
图2是表示本发明的实施例1的摄像镜头LA的球差、场曲、畸变的图。
图3是表示本发明的实施例2的摄像镜头LA的概略构成的图。
图4是表示本发明的实施例2的摄像镜头LA的球差、场曲、畸变的图。
图5是表示本发明的实施例3的摄像镜头LA的概略构成的图。
图6是表示本发明的实施例3的摄像镜头LA的球差、场曲、畸变的图。
图7是表示本发明的实施例4的摄像镜头LA的概略构成的图。
图8是表示本发明的实施例4的摄像镜头LA的球差、场曲、畸变的图。
图9是表示本发明的实施例5的摄像镜头LA的概略构成的图。
图10是表示本发明的实施例5的摄像镜头LA的球差、场曲、畸变的图。
具体实施方式
针对本发明所涉及的摄像镜头的实施方式进行说明。该摄像镜头LA具备透镜系统,该透镜系统是从物侧向像侧配置有第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的6片透镜结构。在第六透镜L6与像面之间配置玻璃平板GF。作为该玻璃平板GF,设想了盖板玻璃以及各种滤光片等。在本发明中,玻璃平板GF可以配置于不同位置,还可以省略。
第一透镜L1是具有正屈折力的透镜,第二透镜L2是具有负屈折力的 透镜,第三透镜L3是具有正屈折力的透镜,第四透镜L4是具有负屈折力的透镜,第五透镜L5是具有正屈折力的透镜,第六透镜L6是具有负屈折力的透镜。关于这6片透镜表面,为了良好地校正诸像差,期望将所有面设为非球面形状。
该摄像镜头LA满足下列关系式(1)~(4)。
5.00≤DMI≤15.00  (1)
-5.50≤f2/f≤-3.50  (2)
0.18≤d10/f≤0.30  (3)
0.09≤d11/f≤0.15  (4)
其中,
DMI:最大像高的畸变
f:摄像镜头整体的焦距
f2:第二透镜的焦距
d10:从第五透镜的像侧面到第六透镜的物侧面的轴上距离
d11:第六透镜的中心厚度。
关系式(1)规定最大像高的畸变。在处于关系式(1)的范围外时,伴随广角、低高度化,轴上、轴外的色差的校正变难,因此不优选。
关系式(2)规定第二透镜L2的负屈折力。在处于关系式(2)的范围外时,伴随广角、低高度化,轴上、轴外的色差的校正变难,因此不优选。
关系式(3)规定从第五透镜的像侧面到第六透镜的物侧面的轴上距离与透镜系统整体的焦距之比。在处于关系式(3)的范围外时,伴随广角、低高度化,轴上、轴外的色差的校正变难,因此不优选。
关系式(4)规定第六透镜的中心厚度与透镜系统整体的焦距之比。通过满足关系式(4),能将透镜厚度限制在适当的范围,透镜成形容易。或者,在处于关系式(4)的范围外时,伴随广角、低高度化,轴上、轴外的色差的校正变难,因此不优选。
第二透镜L2具有负屈折力,并满足下列关系式(5)。
4.00≤R3/R4≤25.00  (5)
其中,
R3:第二透镜的物侧面的曲率半径
R4:第二透镜的像侧面的曲率半径。
关系式(5)规定第二透镜的物侧面的曲率半径R3与第二透镜的像侧面的曲率半径R4之比。通过满足关系式(5),能在良好地校正色差的同时,抑制因制造误差所致的彗差的发生。或者,在处于关系式(5)的范围内时,伴随广角、低高度化,轴上、轴外的色差的校正容易,因此优选。
第一透镜L1的阿贝数与第三透镜L3的阿贝数之差满足下列关系式(6)。
15.00≤v1-v3≤45.00  (6)
其中,
v1:第一透镜的阿贝数
v3:第三透镜的阿贝数。
关系式(6)规定第一透镜L1的阿贝数与第三透镜L3的阿贝数之差。
在处于关系式(6)的范围内时,伴随广角、低高度化,轴上、轴外的色差的校正容易,因此优选。
构成摄像镜头LA的6片透镜分别满足上述构成以及关系式,从而能得到低高度化为TTL(光学长度)/IH(像高)<1.30、保证2ω>80°以上的广角且具有良好的光学特性的利用6片透镜而构成的摄像镜头。
(实施例)
以下,使用实施例来说明本发明的摄像镜头LA。各实施例中记载的记号如下所示。此外,距离、半径以及中心厚度的单位为mm。
f:摄像镜头LA整体的焦距
f1:第一透镜L1的焦距
f2:第二透镜L2的焦距
f3:第三透镜L3的焦距
f4:第四透镜L4的焦距
f5:第五透镜L5的焦距
f6:第六透镜L6的焦距
Fno:F值
2ω:全视场角
DMI:最大像高的畸变
S1:开口光圈
R:光学面的曲率半径,透镜的情况下为中心曲率半径
R1:第一透镜L1的物侧面的曲率半径
R2:第一透镜L1的像侧面的曲率半径
R3:第二透镜L2的物侧面的曲率半径
R4:第二透镜L2的像侧面的曲率半径
R5:第三透镜L3的物侧面的曲率半径
R6:第三透镜L3的像侧面的曲率半径
R7:第四透镜L4的物侧面的曲率半径
R8:第四透镜L4的像侧面的曲率半径
R9:第五透镜L5的物侧面的曲率半径
R10:第五透镜L5的像侧面的曲率半径
R11:第六透镜L6的物侧面的曲率半径
R12:第六透镜L6的像侧面的曲率半径
R13:玻璃平板GF的物侧面的曲率半径
R14:玻璃平板GF的像侧面的曲率半径
d:透镜的中心厚度或透镜间距离
d0:从开口光圈S1到第一透镜L1物侧面的轴上距离
d1:第一透镜L1的中心厚度
d2:从第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离
d3:第二透镜L2的中心厚度
d4:从第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离
d5:第三透镜L3的中心厚度
d6:从第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离
d7:第四透镜L4的中心厚度
d8:从第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离
d9:第五透镜L5的中心厚度
d10:从第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离
d11:第六透镜L6的中心厚度
d12:从第六透镜L6的像侧面到玻璃平板GF的物侧面的轴上距离
d13:玻璃平板GF的中心厚度
d14:从玻璃平板GF的像侧面到像面的轴上距离
nd:d线的折射率
nd1:第一透镜L1的d线的折射率
nd2:第二透镜L2的d线的折射率
nd3:第三透镜L3的d线的折射率
nd4:第四透镜L4的d线的折射率
nd5:第五透镜L5的d线的折射率
nd6:第六透镜L6的d线的折射率
ndg:玻璃平板GF的d线的折射率
v:阿贝数
v1:第一透镜L1的阿贝数
v2:第二透镜L2的阿贝数
v3:第三透镜L3的阿贝数
v4:第四透镜L4的阿贝数
v5:第五透镜L5的阿贝数
v6:第六透镜L6的阿贝数
vg:玻璃平板GF的阿贝数
TTL:光学长度(从第一透镜L1的物侧面到像面的轴上距离)
LB:从第六透镜L6的像侧面到像面的轴上距离(包含玻璃平板GF的厚度)
y=(x 2/R)/[1+{1-(k+1)(x 2/R 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20   (7)
为方便起见,各透镜面的非球面使用式(7)中所示的非球面。然而,本发明不限于该式(7)的非球面多项式。
(实施例1)
图1是表示实施例1的摄像镜头LA的配置的构成图。构成实施例1的摄像镜头LA的第一透镜L1~第六透镜L6的各自的物侧以及像侧的曲 率半径R、透镜中心厚度或透镜间距离d、折射率nd、阿贝数v如表1所示,圆锥系数k、非球面系数如表2所示,2ω、Fno、f、f1、f2、f3、f4、f5、f6、TTL、IH如表3所示。
(表1)
Figure PCTCN2020131805-appb-000001
                                    参照波长=588nm
(表2)
Figure PCTCN2020131805-appb-000002
(表3)
2ω(°) 84.15
Fno 2.00
f(mm) 6.369
f1(mm) 6.600
f2(mm) -32.064
f3(mm) 8.966
f4(mm) -9.004
f5(mm) 11.343
f6(mm) -6.774
TTL(mm) 7.715
LB(mm) 1.004
IH(mm) 6.050
后述的表16示出与各实施例1~5的关系式(1)~(6)规定的参数对应的值。
实施例1 如表16所示,满足关系式(1)~(6)。
实施例1的摄像镜头LA的球差、场曲、畸变如图2所示。此外,图的场曲的S是针对弧矢像面的场曲,T是针对子午像面的场曲,在实施例2~5中也同样。实施例1的摄像镜头LA如图2所示可知,2ω=84°,广角低高度化为TTL/IH=1.28,具有良好的光学特性。
(实施例2)
图3是表示实施例2的摄像镜头LA的配置的构成图。构成实施例2的摄像镜头LA的第一透镜L1~第六透镜L6的各自的物侧以及像侧的曲率半径R、透镜中心厚度或透镜间距离d、折射率nd、阿贝数v如表4所示,圆锥系数k、非球面系数如表5所示,2ω、Fno、f、f1、f2、f3、f4、f5、f6、TTL、IH如表6所示。
(表4)
Figure PCTCN2020131805-appb-000003
                               参照波长=588nm
(表5)
Figure PCTCN2020131805-appb-000004
(表6)
2ω(°) 82.56
Fno 2.00
f(mm) 5.975
f1(mm) 5.512
f2(mm) -24.166
f3(mm) 16.008
f4(mm) -6.382
f5(mm) 6.576
f6(mm) -9.168
TTL(mm) 7.053
LB(mm) 1.003
IH(mm) 6.050
实施例2 如表16所示,满足关系式(1)~(6)。
实施例2的摄像镜头LA的球差、场曲、畸变如图4所示。实施例2的摄像镜头LA如图4所示可知,2ω=83°、广角低高度化为TTL/IH=1.17,具有良好的光学特性。
(实施例3)
图5是表示实施例3的摄像镜头LA的配置的构成图。构成实施例3的摄像镜头LA的第一透镜L1~第六透镜L6的各自的物侧以及像侧的曲率半径R、透镜中心厚度或透镜间距离d、折射率nd、阿贝数v如表7所示,圆锥系数k、非球面系数如表8所示,2ω、Fno、f、f1、f2、f3、f4、f5、f6、TTL、IH如表9所示。
(表7)
Figure PCTCN2020131805-appb-000005
                             参照波长=588nm
(表8)
Figure PCTCN2020131805-appb-000006
(表9)
2ω(°) 85.18
Fno 2.00
f(mm) 5.975
f1(mm) 5.944
f2(mm) -27.109
f3(mm) 14.327
f4(mm) -7.022
f5(mm) 6.725
f6(mm) -7.540
TTL(mm) 7.095
LB(mm) 1.004
IH(mm) 6.050
实施例3 如表16所示,满足关系式(1)~(6)。
实施例3的摄像镜头LA的球差、场曲、畸变如图6所示。实施例3的摄像镜头LA如图6所示可知,2ω=85°,广角低高度化为TTL/IH=1.17,具有良好的光学特性。
(实施例4)
图7是表示实施例4的摄像镜头LA的配置的构成图。构成实施例4的摄像镜头LA的第一透镜L1~第六透镜L6的各自的物侧以及像侧的曲率半径R、透镜中心厚度或透镜间距离d、折射率nd、阿贝数v如表10所示,圆锥系数k、非球面系数如表11所示,2ω、Fno、f、f1、f2、f3、f4、f5、f6、TTL、IH如表12所示。
(表10)
Figure PCTCN2020131805-appb-000007
                              参照波长=588nm
(表11)
Figure PCTCN2020131805-appb-000008
(表12)
2ω(°) 86.12
Fno 2.00
f(mm) 5.978
f1(mm) 6.412
f2(mm) -32.844
f3(mm) 13.345
f4(mm) -6.437
f5(mm) 5.696
f6(mm) -6.586
TTL(mm) 7.230
LB(mm) 1.019
IH(mm) 6.050
实施例4 如表16所示,满足关系式(1)~(6)。
实施例4的摄像镜头LA的球差、场曲、畸变如图8所示。实施例4的摄像镜头LA如图8所示可知,2ω=86°,广角低高度化为TTL/IH=1.20,具有良好的光学特性。
(实施例5)
图9是表示实施例4的摄像镜头LA的配置的构成图。构成实施例5的摄像镜头LA的第一透镜L1~第六透镜L6的各自的物侧以及像侧的曲率半径R、透镜中心厚度或透镜间距离d、折射率nd、阿贝数v如表13所示,圆锥系数k、非球面系数如表14所示,2ω、Fno、f、f1、f2、f3、f4、f5、f6、TTL、IH如表15所示。
(表13)
Figure PCTCN2020131805-appb-000009
                            参照波长=588nm
(表14)
Figure PCTCN2020131805-appb-000010
(表15)
2ω(°) 83.16
Fno 2.00
f(mm) 6.127
f1(mm) 5.627
f2(mm) -21.590
f3(mm) 11.007
f4(mm) -3.827
f5(mm) 4.165
f6(mm) -7.441
TTL(mm) 7.261
LB(mm) 1.001
IH(mm) 6.050
实施例5 如表16所示,满足关系式(1)~(6)。
实施例5的摄像镜头LA的球差、场曲、畸变如图10所示。实施例5的摄像镜头LA如图8所示可知,2ω=83°,广角低高度化为TTL/IH=1.20,具有良好的光学特性。
表16示出与实施例1~5的关系式(1)~(6)所规定的参数对应的值。
(表16)
  实施例1 实施例2 实施例3 实施例4 实施例5 备注
DMI 5.002% 14.977% 9.880% 8.100% 11.126% (1)式
f2/f -5.034 -4.045 -4.537 -5.494 -3.524 (2)式
d10/f 0.199 0.261 0.240 0.180 0.300 (3)式
d11/f 0.103 0.140 0.120 0.090 0.150 (4)式
R3/R4 7.999 18.000 14.500 4.004 24.975 (5)式
v1-v3 38.896 38.896 30.000 15.020 44.956 (6)式
(标号说明)
LA:摄像镜头
S1:开口光圈
R:光学面的曲率半径,在透镜的情况下为中心曲率半径
R1:第一透镜L1的物侧面的曲率半径
R2:第一透镜L1的像侧面的曲率半径
R3:第二透镜L2的物侧面的曲率半径
R4:第二透镜L2的像侧面的曲率半径
R5:第三透镜L3的物侧面的曲率半径
R6:第三透镜L3的像侧面的曲率半径
R7:第四透镜L4的物侧面的曲率半径
R8:第四透镜L4的像侧面的曲率半径
R9:第五透镜L5的物侧面的曲率半径
R10:第五透镜L5的像侧面的曲率半径
R11:第六透镜L6的物侧面的曲率半径
R12:第六透镜L6的像侧面的曲率半径
R13:玻璃平板GF的物侧面的曲率半径
R14:玻璃平板GF的像侧面的曲率半径
d:透镜的中心厚度或透镜间距离
d0:从开口光圈S1到第一透镜L1的物侧面的轴上距离
d1:第一透镜L1的中心厚度
d2:从第一透镜L1像侧面到第二透镜L2的物侧面的轴上距离
d3:第二透镜L2的中心厚度
d4:从第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离
d5:第三透镜L3的中心厚度
d6:从第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离
d7:第四透镜L4的中心厚度
d8:从第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离
d9:第五透镜L5的中心厚度
d10:从第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离
d11:第六透镜L6的中心厚度
d12:从第六透镜L6的像侧面到玻璃平板GF的物侧面的轴上距离
d13:玻璃平板GF的中心厚度
d14:从玻璃平板GF的像侧面到像面的轴上距离。

Claims (3)

  1. 一种摄像镜头,其特征在于,
    从物侧起依次配置有具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有正屈折力的第三透镜、具有负屈折力的第四透镜、具有正屈折力的第五透镜以及具有负屈折力的第六透镜,且满足下列关系式(1)~(4):
    5.00≤DMI≤15.00   (1)
    -5.50≤f2/f≤-3.50  (2)
    0.18≤d10/f≤0.30   (3)
    0.09≤d11/f≤0.15   (4)
    其中,
    DMI表示最大像高的畸变,
    f表示摄像镜头整体的焦距,
    f2表示第二透镜的焦距,
    d10表示从第五透镜的像侧面到第六透镜的物侧面的轴上距离,
    d11表示第六透镜的中心厚度。
  2. 根据权利要求1所述的摄像镜头,其特征在于,
    所述摄像镜头满足下列关系式(5):
    4.00≤R3/R4≤25.00   (5)
    其中,
    R3表示第二透镜的物侧面的曲率半径,
    R4表示第二透镜的像侧面的曲率半径。
  3. 根据权利要求1所述的摄像镜头,其中,
    所述摄像镜头满足下列关系式(6):
    15.00≤v1-v3≤45.00   (6)
    其中,
    v1表示第一透镜的阿贝数,
    v3表示第三透镜的阿贝数。
PCT/CN2020/131805 2020-02-24 2020-11-26 摄像镜头 WO2021169447A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-028914 2020-02-24
JP2020028914A JP6687819B1 (ja) 2020-02-24 2020-02-24 撮像レンズ

Publications (1)

Publication Number Publication Date
WO2021169447A1 true WO2021169447A1 (zh) 2021-09-02

Family

ID=70413772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131805 WO2021169447A1 (zh) 2020-02-24 2020-11-26 摄像镜头

Country Status (4)

Country Link
US (1) US11480766B2 (zh)
JP (1) JP6687819B1 (zh)
CN (1) CN111830675B (zh)
WO (1) WO2021169447A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6687819B1 (ja) * 2020-02-24 2020-04-28 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 撮像レンズ
CN111239981A (zh) * 2020-03-19 2020-06-05 浙江舜宇光学有限公司 光学成像镜头
CN111399189A (zh) * 2020-05-26 2020-07-10 浙江舜宇光学有限公司 光学成像镜头
CN111929827B (zh) * 2020-09-03 2021-04-30 诚瑞光学(苏州)有限公司 摄像光学镜头
CN112230384B (zh) * 2020-10-31 2022-03-01 诚瑞光学(苏州)有限公司 摄像光学镜头
CN114326046B (zh) * 2022-01-26 2024-04-26 浙江舜宇光学有限公司 摄像镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160124192A1 (en) * 2014-11-04 2016-05-05 Hoya Corporation Imaging optical system
CN107797253A (zh) * 2017-11-18 2018-03-13 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110471167A (zh) * 2019-08-16 2019-11-19 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN110515176A (zh) * 2018-05-22 2019-11-29 先进光电科技股份有限公司 光学成像系统
US20200026035A1 (en) * 2018-07-20 2020-01-23 Aac Acoustic Technologies (Shenzhen) Co., Ltd. Camera Lens
CN110824677A (zh) * 2018-08-13 2020-02-21 佳能企业股份有限公司 光学镜头
CN111830675A (zh) * 2020-02-24 2020-10-27 瑞声光学解决方案私人有限公司 摄像镜头

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130039758A (ko) * 2010-07-16 2013-04-22 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 촬상 렌즈
JP2012155223A (ja) * 2011-01-27 2012-08-16 Tamron Co Ltd 広角単焦点レンズ
TWI431312B (zh) * 2011-06-28 2014-03-21 Largan Precision Co Ltd 光學影像拾取鏡片組
TWI438480B (zh) * 2012-03-09 2014-05-21 Largan Precision Co Ltd 光學影像系統組
JP6047700B2 (ja) * 2012-06-21 2016-12-21 株式会社オプトロジック 撮像レンズ
TWI559028B (zh) * 2014-07-21 2016-11-21 先進光電科技股份有限公司 光學成像系統
JP6573315B2 (ja) * 2015-08-31 2019-09-11 カンタツ株式会社 撮像レンズ
CN106802469B (zh) * 2016-12-14 2019-05-31 瑞声科技(新加坡)有限公司 摄像光学镜头
CN106802468B (zh) * 2016-12-14 2019-05-31 瑞声科技(新加坡)有限公司 摄像光学镜头
JP6738470B1 (ja) * 2019-08-07 2020-08-12 エーエーシー コミュニケーション テクノロジーズ(ジョウシュウ)カンパニーリミテッド 撮像レンズ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160124192A1 (en) * 2014-11-04 2016-05-05 Hoya Corporation Imaging optical system
CN107797253A (zh) * 2017-11-18 2018-03-13 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110515176A (zh) * 2018-05-22 2019-11-29 先进光电科技股份有限公司 光学成像系统
US20200026035A1 (en) * 2018-07-20 2020-01-23 Aac Acoustic Technologies (Shenzhen) Co., Ltd. Camera Lens
CN110824677A (zh) * 2018-08-13 2020-02-21 佳能企业股份有限公司 光学镜头
CN110471167A (zh) * 2019-08-16 2019-11-19 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111830675A (zh) * 2020-02-24 2020-10-27 瑞声光学解决方案私人有限公司 摄像镜头

Also Published As

Publication number Publication date
US20210263272A1 (en) 2021-08-26
US11480766B2 (en) 2022-10-25
CN111830675A (zh) 2020-10-27
JP2021135316A (ja) 2021-09-13
CN111830675B (zh) 2022-06-10
JP6687819B1 (ja) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2021189915A1 (zh) 摄像镜头
WO2021169447A1 (zh) 摄像镜头
WO2021189917A1 (zh) 摄像镜头
WO2021189916A1 (zh) 摄像镜头
WO2021258612A1 (zh) 摄像镜头
WO2022047989A1 (zh) 摄像光学镜头
WO2021232702A1 (zh) 折反射光学系统的摄像镜头
CN111538132B (zh) 摄像镜头
WO2022057031A1 (zh) 摄像镜头
WO2020140521A1 (zh) 摄像光学镜头
CN111505810A (zh) 摄像光学镜头
WO2021168881A1 (zh) 摄像光学镜头
WO2020125159A1 (zh) 摄像镜头
WO2022011738A1 (zh) 摄像光学镜头
WO2021258611A1 (zh) 折反射光学系统的摄像镜头
WO2022057046A1 (zh) 摄像光学镜头
CN111427136A (zh) 摄像光学镜头
CN111399196A (zh) 摄像光学镜头
WO2022021455A1 (zh) 摄像光学镜头
WO2021168882A1 (zh) 摄像光学镜头
WO2021168891A1 (zh) 摄像光学镜头
WO2022088225A1 (zh) 摄像镜头
WO2021134324A1 (zh) 摄像光学镜头
WO2021134321A1 (zh) 摄像光学镜头
CN111929827B (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20920920

Country of ref document: EP

Kind code of ref document: A1