WO2020125159A1 - 摄像镜头 - Google Patents

摄像镜头 Download PDF

Info

Publication number
WO2020125159A1
WO2020125159A1 PCT/CN2019/110302 CN2019110302W WO2020125159A1 WO 2020125159 A1 WO2020125159 A1 WO 2020125159A1 CN 2019110302 W CN2019110302 W CN 2019110302W WO 2020125159 A1 WO2020125159 A1 WO 2020125159A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
curvature
radius
refractive power
imaging
Prior art date
Application number
PCT/CN2019/110302
Other languages
English (en)
French (fr)
Inventor
寺岡弘之
Original Assignee
瑞声通讯科技(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声通讯科技(常州)有限公司 filed Critical 瑞声通讯科技(常州)有限公司
Publication of WO2020125159A1 publication Critical patent/WO2020125159A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • the present invention relates to an imaging lens.
  • it relates to mobile phone camera components suitable for high-pixel CCD, CMOS and other imaging elements, WEB camera lenses, etc.
  • TTL optical length
  • IH image height
  • Fno F number
  • the imaging lens is composed of 5 lenses, starting from the object side are the first lens with positive refractive power, the second lens with positive refractive power, the third lens with negative refractive power, the third lens with positive refractive power 4 lenses, 5th lens with negative refractive power.
  • the imaging lens disclosed in the related art is the above-mentioned imaging lens composed of five lenses, but the difference between the Abbe number of the second lens and the fourth lens, the second lens and the fifth lens, the difference between the second lens and the fourth lens
  • the ratio of the focal length and the ratio of the center thickness of the second lens and the first lens are insufficient, so the ultra-thinness and Fno brightness are insufficient.
  • the imaging lens disclosed in the related art is the above-mentioned imaging lens composed of five lenses, but the difference between the Abbe number of the second lens and the fourth lens and the ratio of the center thickness of the second lens and the first lens are insufficient, so Ultra-thin and insufficient brightness of Fno.
  • An object of the present invention is to provide an imaging lens composed of five lenses with excellent optical characteristics, an ultra-thin field of view angle of 85° or more, and a bright F-number.
  • the imaging lens of the first aspect is arranged in order from the object side: a first lens with positive refractive power, a second lens with positive refractive power, a third lens with negative refractive power, and a fourth lens with positive refractive power ,
  • the fifth lens with negative refractive power and satisfy the following conditional formulas (1) ⁇ (5):
  • ⁇ 2 Abbe number of the second lens
  • ⁇ 3 Abbe number of the third lens
  • ⁇ 4 Abbe number of the fourth lens
  • ⁇ 5 Abbe number of the 5th lens
  • d1 center thickness of the first lens
  • the imaging lens of the second method satisfies the following conditional formula (6) in the imaging lens of the first method:
  • R3 radius of curvature of the object side of the second lens
  • R4 Radius of curvature of the image side of the second lens.
  • the imaging lens of the third method satisfies the following conditional formula (7) in the imaging lens of the first method:
  • R5 radius of curvature of the object side of the third lens
  • R6 Radius of curvature of the image side of the third lens.
  • the imaging lens provided by the present invention is an ultra-thin imaging lens with excellent optical characteristics, a field angle of 85° or more, and a bright F-number imaging lens composed of five lenses, especially suitable for using high pixels
  • Mobile phone camera components such as CCD, CMOS and other imaging elements, WEB camera lens, etc.
  • FIG. 1 is a diagram showing the configuration of an imaging lens LA related to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the configuration of the first embodiment of the imaging lens LA.
  • FIG. 3 is a graph showing the axial aberration of the imaging lens LA in Embodiment 1.
  • FIG. 4 is a graph showing the chromatic aberration of magnification of the imaging lens LA in Embodiment 1.
  • FIG. 5 is a diagram showing the curvature of field and distortion of the imaging lens LA in Embodiment 1.
  • FIG. 5 is a diagram showing the curvature of field and distortion of the imaging lens LA in Embodiment 1.
  • FIG. 6 is a diagram showing the structure of a specific example 2 of the imaging lens LA.
  • FIG. 7 is a diagram showing the axial aberration of the imaging lens LA in Embodiment 2.
  • FIG. 7 is a diagram showing the axial aberration of the imaging lens LA in Embodiment 2.
  • FIG. 8 is a graph showing the chromatic aberration of magnification of the imaging lens LA in Embodiment 2.
  • FIG. 9 is a diagram showing the curvature of field and distortion of the imaging lens LA in Embodiment 2.
  • FIG. 9 is a diagram showing the curvature of field and distortion of the imaging lens LA in Embodiment 2.
  • FIG. 10 is a diagram showing the structure of a specific example 3 of the imaging lens LA.
  • FIG. 11 is a diagram showing the axial aberration of the imaging lens LA in Example 3.
  • FIG. 11 is a diagram showing the axial aberration of the imaging lens LA in Example 3.
  • FIG. 12 is a graph showing the chromatic aberration of magnification of the imaging lens LA in Embodiment 3.
  • FIG. 13 is a diagram showing the curvature of field and distortion of the imaging lens LA in Embodiment 3.
  • FIG. 13 is a diagram showing the curvature of field and distortion of the imaging lens LA in Embodiment 3.
  • FIG. 1 shows a configuration diagram of an imaging lens according to an embodiment of the present invention.
  • the imaging lens LA is composed of five lens groups, and the first lens L1, the second lens L2, the third lens L3, the fourth lens L5, and the fifth lens L5 are arranged in this order from the object side to the image side.
  • a glass flat plate GF is arranged between the fifth lens L5 and the image plane.
  • a cover glass or a filter with IR cutoff function can be used.
  • the glass plate GF may not be provided between the fifth lens L5 and the image plane.
  • the first lens L1 has a positive refractive power
  • the second lens L2 has a positive refractive power
  • the third lens L3 has a negative refractive power
  • the fourth lens L4 has a positive refractive power
  • the fifth lens L5 has a negative refractive power. In order to better correct the aberration problem, it is best to design these five lens surfaces as aspherical surfaces.
  • the imaging lens LA is an imaging lens that satisfies the following conditional formulas (1) to (5):
  • ⁇ 2 Abbe number of the second lens
  • ⁇ 3 Abbe number of the third lens
  • ⁇ 4 Abbe number of the fourth lens
  • ⁇ 5 Abbe number of the 5th lens
  • d1 center thickness of the first lens
  • Conditional formula (1) specifies the difference between the Abbe number of the second lens L2 and the third lens L3
  • Conditional formula (2) specifies the difference between the Abbe number of the second lens L2 and the fourth lens L4
  • Conditional formula (3 ) Specifies the difference between the Abbe number of the second lens L2 and the fifth lens L5.
  • Conditional formula (4) specifies the ratio of the focal length f2 of the second lens L2 to the focal length of the fourth lens L4. Outside the range of conditional formula (4), in the wide-angle and Fno bright state, it is difficult to progress toward ultrathinness.
  • Conditional formula (5) specifies the ratio of the center thickness d3 of the second lens L2 to the center thickness d1 of the first lens L1. Outside the range of conditional formula (5), in the wide-angle and Fno bright state, it is difficult to progress toward ultrathinness.
  • the second lens L2 has a positive refractive power and satisfies the following conditional formula (6):
  • R3 radius of curvature of the object side of the second lens
  • R4 Radius of curvature of the image side of the second lens.
  • Conditional formula (6) specifies the ratio of the curvature radius R3 of the object side surface of the second lens L2 and the curvature radius R4 of the image side surface of the second lens L2. Outside the range of conditional formula (6), in the wide-angle and Fno bright state, it is difficult to progress toward ultrathinness.
  • the third lens L3 has negative refractive power and satisfies the following conditional formula (7):
  • R5 radius of curvature of the object side of the third lens
  • R6 Radius of curvature of the image side of the third lens.
  • Conditional formula (7) specifies the ratio of the curvature radius R5 of the object side surface of the third lens L3 and the curvature radius R6 of the image side surface of the third lens L3. Outside the range of conditional formula (7), in the wide-angle and Fno bright state, it is difficult to progress toward ultrathinness.
  • the five lenses constituting the imaging lens LA satisfy the aforementioned constitutions and conditional formulas, respectively, it is possible to provide an ultra-thin imaging lens with excellent optical characteristics, a viewing angle of 85° or more, and a bright F-number imaging lens.
  • the imaging lens LA of the present invention will be described below using examples.
  • the symbols described in the examples are as follows.
  • the unit of distance, radius and center thickness is mm.
  • R the radius of curvature of the optical surface and the center radius of curvature when the lens is used
  • R1 radius of curvature of the object side of the first lens L1;
  • R2 radius of curvature of the image side of the first lens L1;
  • R3 radius of curvature of the object side of the second lens L2;
  • R4 radius of curvature of the image side of the second lens L2;
  • R5 radius of curvature of the object side of the third lens L3;
  • R6 radius of curvature of the image side of the third lens L3;
  • R7 radius of curvature of the object side of the fourth lens L4;
  • R8 radius of curvature of the image side of the fourth lens L4;
  • R9 radius of curvature of the object side of the fifth lens L5;
  • R10 radius of curvature of the image side of the fifth lens L5;
  • R11 radius of curvature of the side surface of the glass plate GF
  • R12 radius of curvature of the image side of the glass plate GF
  • d the distance between the center thickness of the lens and the lens
  • d2 distance from the image side of the first lens L1 to the object side of the second lens L2;
  • d4 the axial distance between the image side of the second lens L2 and the object side of the third lens L3;
  • d6 the axial distance between the image side of the third lens L3 and the object side of the fourth lens L4;
  • d10 the axial distance between the image side of the fifth lens L5 and the object side of the glass plate GF;
  • nd refractive index of d line
  • nd1 refractive index of the d-line of the first lens L1;
  • nd2 refractive index of the d-line of the second lens L2;
  • nd3 refractive index of the d-line of the third lens L3;
  • nd4 refractive index of the d-line of the fourth lens L4;
  • nd5 refractive index of the d-line of the fifth lens L5;
  • nd6 refractive index of the d-line of the glass plate GF
  • ⁇ d Abbe number
  • ⁇ 1 Abbe number of the first lens L1;
  • ⁇ 2 Abbe number of the second lens L2
  • ⁇ 3 Abbe number of the third lens L3
  • ⁇ 4 Abbe number of the fourth lens L4
  • ⁇ 5 Abbe number of the fifth lens L5;
  • ⁇ 6 Abbe number of glass plate GF
  • TTL optical length (on-axis distance from the object side of the first lens L1 to the image plane);
  • LB the axial distance from the image side of the fifth lens L5 to the image plane (including the thickness of the glass plate GF).
  • R is the radius of curvature on the axis
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, and A20 are aspherical coefficients.
  • the aspherical surface of each lens surface uses the aspherical surface shown in formula (8).
  • the present invention is not limited to the aspherical polynomial form represented by the formula (8).
  • FIG. 2 is a configuration diagram of the imaging lens LA in Embodiment 1.
  • FIG. The data in Table 1 are: the curvature radius R of the object side surface and the image side surface of the first lens L1 to the fifth lens L5 constituting the imaging lens LA in Example 1, the center thickness of the lens, the axial distance d between the lenses, and the refractive index nd, Abbe number ⁇ d.
  • the data in Table 2 are: conic coefficient k, aspheric coefficient.
  • Table 7 shows the values corresponding to the various parameters in Examples 1 to 3 and the parameters specified in the conditional formulas (1) to (7).
  • Example 1 satisfies the conditional formulas (1) to (7).
  • the axial aberration of the imaging lens LA in Embodiment 1 is shown in FIG. 3, the chromatic aberration of magnification is shown in FIG. 4, and the field curvature and distortion are shown in FIG. 5.
  • the field curvature S in FIG. 5 is a field curvature opposed to the sagittal image plane
  • T is a field curvature opposed to the meridional image plane.
  • FIG. 6 is a configuration diagram of an imaging lens LA in Example 2.
  • the data in Table 3 are: the curvature radius R of the object side and the image side of the first lens L1 to the fifth lens L5 constituting the imaging lens LA in Example 2, the center thickness of the lens, the axial distance d between the lenses, and the refractive index nd, Abbe number ⁇ d.
  • the data in Table 4 are: conic coefficient k, aspheric coefficient.
  • Example 2 satisfies the conditional formulas (1) to (7).
  • the axial aberration of the imaging lens LA in Embodiment 2 is shown in FIG. 7, the chromatic aberration of magnification is shown in FIG. 8, and the field curvature and distortion are shown in FIG. 9.
  • FIG. 10 is a configuration diagram of an imaging lens LA in Example 3.
  • the data in Table 5 are: the curvature radius R of the object side and the image side of the first lens L1 to the fifth lens L5 constituting the imaging lens LA in Example 3, the center thickness of the lens, the axial distance d between the lenses, and the refractive index nd, Abbe number ⁇ d.
  • the data in Table 6 are: conic coefficient k, aspheric coefficient.
  • Example 3 satisfies the conditional formulas (1) to (7).
  • the axial aberration of the imaging lens LA in Embodiment 3 is shown in FIG. 11, the chromatic aberration of magnification is shown in FIG. 12, and the field curvature and distortion are shown in FIG. 13.
  • Example 1 Example 2
  • Example 3 Remarks ⁇ 2- ⁇ 3 36.709 36.709 (1) formula ⁇ 2- ⁇ 4 30.032 30.032 31.981 (2) formula ⁇ 2- ⁇ 5 31.981 31.981 33.475 (3) formula f2/f4 1.821 1.848 1.863 (4) Formula d3/d1 0.637 0.648 0.645 (5) Formula R3/R4 3.180 3.180 3.075 (6) R5/R6 -1.200 -2.550 -1.850 (7) Fno 2.02 2.02 2.00 A 2 ⁇ 91.8 91.6 88.0 A TTL/IH 1.299 1.298 1.312 A f 3.204 3.200 3.247 A f1 4.200 4.303 4.399 A f2 4.537 4.673 4.781 A f3 -4.747 -5.308 -5.579 A f4 2.492 2.529 2.566 A f5 -2.226 -2.265 -2.264 A TTL 4.204 4.201 4.247 A LB 1.036 1.049 1.0

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种具有优秀光学特性、视场角85°以上的超薄、而且F数明亮的由5个透镜构成的摄像镜头(LA)。其从物侧开始依次配置有:具有正屈折力的第1透镜(L1)、具有正屈折力的第2透镜(L2)、具有负屈折力的第3透镜(L3)、具有正屈折力的第4透镜(L4)、具有负屈折力的第5透镜(L5),并且满足规定的条件公式。

Description

摄像镜头 技术领域
本发明是涉及摄像镜头的发明。尤其涉及适用于高像素CCD、CMOS等摄像元件的手机相机组件、WEB摄像镜头等,同时具有优秀光学特性、TTL(光学长度)/IH(像高)≤1.35超薄,视场角(以下简称为2ω)为85°以上广角,而且F数(以下简称为Fno)2.05以下的由5个透镜构成的摄像镜头。
背景技术
近年,使用CCD和CMOS等摄像元件的各种摄像装置广泛普及起来。随着这些摄像元件小型化、高性能化发展,社会更需求具有优秀光学特性、超薄、广角而且具有明亮Fno的摄像镜头。
与具有优秀光学特性、超薄、广角、而且具有明亮Fno的由5个透镜构成的摄像镜头相关的技术开发正在逐步推进。提出方案为摄像镜头由5个透镜构成,从物侧开始依次是具有正屈折力的第1透镜、具有正屈折力的第2透镜、具有负屈折力的第3透镜、具有正屈折力的第4透镜、具有负屈折力的第5透镜。
相关技术中所公开的摄像镜头为上述由5个透镜构成的摄像镜头,但是第2透镜和第4透镜、第2透镜和第5透镜的阿贝数之差、第2透镜和第4透镜的焦点距离之比、第2透镜和第1透镜的中心厚度之比不充分,所以超薄化与Fno明亮度不充分。
相关技术中所公开的摄像镜头为上述由5个透镜构成的摄像镜头,但是第2透镜和第4透镜的阿贝数之差、第2透镜和第1透镜的中心厚度之比不充分,所以超薄化与Fno明亮度不充分。
技术问题
本发明的目的是提供具有优秀光学特性、视场角85°以上的超薄、而 且F数明亮的由5个透镜组成的摄像镜头。
技术解决方案
为达成上述目标,在对第2透镜和第3透镜、第2透镜和第4透镜、第2透镜和第5透镜的阿贝数之差、第2透镜和第4透镜的焦点距离之比、第2透镜和第1透镜的中心厚度之比进行认真研讨后,提出改善以往技术的摄像镜头方案,于是形成本发明。
第1种方式的摄像镜头从物侧开始依次配置有:具有正屈折力的第1透镜、具有正屈折力的第2透镜、具有负屈折力的第3透镜、具有正屈折力的第4透镜、具有负屈折力的第5透镜,并且满足以下条件公式(1)~(5):
28.00≤ν2-ν3≤40.00                 (1);
28.00≤ν2-ν4≤40.00                 (2);
28.00≤ν2-ν5≤40.00                 (3);
1.80≤f2/f4≤2.00                     (4);
0.63≤d3/d1≤0.66                     (5);
其中,
ν2:第2透镜的阿贝数;
ν3:第3透镜的阿贝数;
ν4:第4透镜的阿贝数;
ν5:第5透镜的阿贝数;
f2:第2透镜的焦距;
f4:第4透镜的焦距;
d1:第1透镜的中心厚度;
d3:第2透镜的中心厚度。
第2种方式的摄像镜头,在第1种方式的摄像镜头中满足下列条件公式(6):
2.95≤R3/R4≤3.20                   (6);
其中, R3:第2透镜的物侧面的曲率半径;
R4:第2透镜的像侧面的曲率半径。
第3种方式的摄像镜头,在第1种方式的摄像镜头中满足下列条件公式(7):
-2.70≤R5/R6≤-1.00                (7);
其中,
R5:第3透镜的物侧面的曲率半径;
R6:第3透镜的像侧面的曲率半径。
有益效果
本发明的有益效果在于:根据本发明提供的摄像镜头为具有优秀光学特性、视场角85°以上的超薄、而且F数明亮的由5个透镜构成的摄像镜头,尤其适用于使用高像素CCD、CMOS等摄像元件的手机相机组件、WEB摄像镜头等。
附图说明
图1为与本发明一种实施方式相关的摄像镜头LA的构成展示图。
图2为上述摄像镜头LA的具体实施例1的构成展示图。
图3为实施例1中摄像镜头LA的轴向像差展示图。
图4为实施例1中摄像镜头LA的倍率色差展示图。
图5为实施例1中摄像镜头LA的场曲和畸变展示图。
图6为上述摄像镜头LA的具体实施例2的构成展示图。
图7为实施例2中摄像镜头LA的轴向像差展示图。
图8为实施例2中摄像镜头LA的倍率色差展示图。
图9为实施例2中摄像镜头LA的场曲和畸变展示图。
图10为上述摄像镜头LA的具体实施例3的构成展示图。
图11为实施例3中摄像镜头LA的轴向像差展示图。
图12为实施例3中摄像镜头LA的倍率色差展示图。
图13为实施例3中摄像镜头LA的场曲和畸变展示图。
本发明的实施方式
参考附图来说明与本发明相关的摄像镜头的一种实施方式。图1示出本发明一实施方式的摄像镜头的构成图。该摄像镜头LA是由5个透镜群构成,从物侧到像侧依次配置第1透镜L1、第2透镜L2、第3透镜L3、第4透镜L5、第5透镜L5。在第5透镜L5和像面之间,配置有玻璃平板GF。该玻璃平板GF可以使用玻璃盖片或具有IR截止功能的滤光片。在第5镜头L5和像面之间不设置玻璃平板GF也可以。
第1透镜L1具有正屈折力,第2透镜L2具有正屈折力,第3透镜L3具有负屈折力,第4透镜L4具有正屈折力,第5透镜L5具有负屈折力。为能较好补正像差问题,最好将这5个透镜表面设计为非球面。
该摄像镜头LA是满足下列条件公式(1)~(5)的摄像镜头:
28.00≤ν2-ν3≤40.00                 (1);
28.00≤ν2-ν4≤40.00                 (2);
28.00≤ν2-ν5≤40.00                 (3);
1.80≤f2/f4≤2.00                     (4);
0.63≤d3/d1≤0.66                     (5);
其中,
ν2:第2透镜的阿贝数;
ν3:第3透镜的阿贝数;
ν4:第4透镜的阿贝数;
ν5:第5透镜的阿贝数;
f2:第2透镜的焦距;
f4:第4透镜的焦距;
d1:第1透镜的中心厚度;
d3:第2透镜的中心厚度。
条件公式(1)规定了第2透镜L2和第3透镜L3的阿贝数之差,条件公 式(2)规定了第2透镜L2和第4透镜L4的阿贝数之差,条件公式(3)规定了第2透镜L2和第5透镜L5的阿贝数之差。
在条件公式(1)~(3)的范围外,在广角而且超薄、Fno明亮的状态下,难以补正轴上、轴外色像差。
条件公式(4)规定了第2透镜L2的焦距f2和第4透镜L4的焦距之比。在条件公式(4)的范围外,在广角而且Fno明亮的状态下,难以向超薄化发展。
条件公式(5)规定了第2透镜L2的中心厚度d3和第1透镜L1的中心厚度d1之比。在条件公式(5)的范围外,在广角而且Fno明亮的状态下,难以向超薄化发展。
第2透镜L2具有正屈折力,并满足下列条件公式(6):
2.95≤R3/R4≤3.20                  (6);
其中,
R3:第2透镜的物侧面的曲率半径;
R4:第2透镜的像侧面的曲率半径。
条件公式(6)规定了第2透镜L2的物侧面曲率半径R3和第2透镜L2的像侧面曲率半径R4之比。在条件公式(6)的范围外,在广角而且Fno明亮的状态下,难以向超薄化发展。
第3透镜L3具有负屈折力,并满足下列条件公式(7):
-2.70≤R5/R6≤-1.00                 (7);
其中,
R5:第3透镜的物侧面的曲率半径;
R6:第3透镜的像侧面的曲率半径。
条件公式(7)规定了第3透镜L3的物侧面曲率半径R5和第3透镜L3的像侧面曲率半径R6之比。在条件公式(7)的范围外,在广角而且Fno明亮的状态下,难以向超薄化发展。
由于构成摄像镜头LA的5个透镜分别满足前面所述的构成和条件公式,所以可以提供出具有优秀的光学特性、视场角85°以上的超薄、而且 F数明亮的摄像镜头。
下面将用实施例进行说明本发明的摄像镜头LA。各实施例中所记载的符号如下所示。距离、半径与中心厚度的单位为mm。
f:整体摄像镜头LA的焦距;
f1:第1透镜L1的焦距;
f2:第2透镜L2的焦距;
f3:第3透镜L3的焦距;
f4:第4透镜L4的焦距;
f5:第5透镜L5的焦距;
Fno:F数;
2ω:视场角;
S1:开口光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第1透镜L1的物侧面的曲率半径;
R2:第1透镜L1的像侧面的曲率半径;
R3:第2透镜L2的物侧面的曲率半径;
R4:第2透镜L2的像侧面的曲率半径;
R5:第3透镜L3的物侧面的曲率半径;
R6:第3透镜L3的像侧面的曲率半径;
R7:第4透镜L4的物侧面的曲率半径;
R8:第4透镜L4的像侧面的曲率半径;
R9:第5透镜L5的物侧面的曲率半径;
R10:第5透镜L5的像侧面的曲率半径;
R11:玻璃平板GF的物侧面的曲率半径;
R12:玻璃平板GF的像侧面的曲率半径;
d:透镜的中心厚度与透镜之间的距离;
d0:开口光圈S1到第1透镜L1的物侧面的距离;
d1:第1透镜L1的中心厚度;
d2:第1透镜L1的像侧面到第2透镜L2的物侧面的距离;
d3:第2透镜L2的中心厚度;
d4:第2透镜L2的像侧面到第3透镜L3的物侧面的轴上距离;
d5:第3透镜L3的中心厚度;
d6:第3透镜L3的像侧面到第4透镜L4的物侧面的轴上距离;
d7:第4透镜L4的中心厚度;
d8:第4透镜L4的像侧面到第5透镜L5的物侧面的轴上距离;
d9:第5透镜L5的中心厚度;
d10:第5透镜L5的像侧面到玻璃平板GF的物侧面的轴上距离;
d11:玻璃平板GF的中心厚度;
d12:玻璃平板GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第1透镜L1的d线的折射率;
nd2:第2透镜L2的d线的折射率;
nd3:第3透镜L3的d线的折射率;
nd4:第4透镜L4的d线的折射率;
nd5:第5透镜L5的d线的折射率;
nd6:玻璃平板GF的d线的折射率;
νd:阿贝数;
ν1:第1透镜L1的阿贝数;
ν2:第2透镜L2的阿贝数;
ν3:第3透镜L3的阿贝数;
ν4:第4透镜L4的阿贝数;
ν5:第5透镜L5的阿贝数;
ν6:玻璃平板GF的阿贝数;
TTL:光学长度(第1透镜L1的物侧面到像面的轴上距离);
LB:第5透镜L5的像侧面到像面的轴上距离(包含玻璃平板GF的厚度)。
IH:像高
y=(x 2/R)/[1+{1-(k+1)(x 2/R 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20         (8)
其中,R是轴上的曲率半径,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20为非球面系数。
为方便起见,各个透镜面的非球面使用公式(8)中所示的非球面。但是,本发明不限于该公式(8)表示的非球面多项式形式。
(实施例1)
图2是实施例1中摄像镜头LA的配置构成图。表1的数据有:实施例1中构成摄像镜头LA的第1透镜L1~第5透镜L5的物侧面以及像侧面的曲率半径R、透镜的中心厚度以及透镜间的轴上距离d、折射率nd、阿贝数νd。表2中的数据有:圆锥系数k、非球面系数。
【表1】
Figure PCTCN2019110302-appb-000001
【表2】
Figure PCTCN2019110302-appb-000002
Figure PCTCN2019110302-appb-000003
后出现的表7示出实施例1~3中各种数值与条件公式(1)~(7)中已规定的参数所对应的值。
如表7所示,实施例1满足条件公式(1)~(7)。
实施例1中摄像镜头LA的轴向像差见图3,倍率色差见图4,场曲和畸变见图5所示。另外,图5的场曲S是与弧矢像面相对的场曲,T是与子午像面相对的场曲。在实施例2、3中也是如此。如图3~5所示,实施例1中摄像镜头LA为2ω=91.8°、TTL/IH=1.299、Fno=2.02、2ω≥85°而且超薄Fno明亮,这就不难理解具有优秀的光学特性。
(实施例2)
图6是实施例2中摄像镜头LA的配置构成图。表3的数据有:实施例2中构成摄像镜头LA的第1透镜L1~第5透镜L5的物侧以及像侧的曲率半径R、透镜的中心厚度以及透镜间的轴上距离d、折射率nd、阿贝数νd。表4中的数据有:圆锥系数k、非球面系数。
【表3】
Figure PCTCN2019110302-appb-000004
Figure PCTCN2019110302-appb-000005
【表4】
Figure PCTCN2019110302-appb-000006
如表7所示,实施例2满足条件公式(1)~(7)。
实施例2中摄像镜头LA的轴向像差见图7,倍率色差见图8,场曲和畸变见图9所示。如图7~9所示,实施例2中摄像镜头LA为2ω=91.6°、TTL/IH=1.298、Fno=2.02、2ω≥85°而且超薄Fno明亮,这就不难理解具有优秀的光学特性。
(实施例3)
图10是实施例3中摄像镜头LA的配置构成图。表5的数据有:实施 例3中构成摄像镜头LA的第1透镜L1~第5透镜L5的物侧以及像侧的曲率半径R、透镜的中心厚度以及透镜间的轴上距离d、折射率nd、阿贝数νd。表6中的数据有:圆锥系数k、非球面系数。
【表5】
Figure PCTCN2019110302-appb-000007
【表6】
Figure PCTCN2019110302-appb-000008
Figure PCTCN2019110302-appb-000009
如表7所示,实施例3满足条件公式(1)~(7)。
实施例3中摄像镜头LA的轴向像差见图11,倍率色差见图12,场曲和畸变见图13所示。如图11~13所示,实施例2中摄像镜头LA为2ω=88.0°、TTL/IH=1.312、Fno=2.00、2ω≥85°而且超薄Fno明亮,这就不难理解具有优秀的光学特性。
【表7】
  实施例1 实施例2 实施例3 备注
ν2-ν3 36.709 36.709 36.709 (1)式
ν2-ν4 30.032 30.032 31.981 (2)式
ν2-ν5 31.981 31.981 33.475 (3)式
f2/f4 1.821 1.848 1.863 (4)式
d3/d1 0.637 0.648 0.645 (5)式
R3/R4 3.180 3.180 3.075 (6)式
R5/R6 -1.200 -2.550 -1.850 (7)式
Fno 2.02 2.02 2.00  
91.8 91.6 88.0  
TTL/IH 1.299 1.298 1.312  
f 3.204 3.200 3.247  
f1 4.200 4.303 4.399  
f2 4.537 4.673 4.781  
f3 -4.747 -5.308 -5.579  
f4 2.492 2.529 2.566  
f5 -2.226 -2.265 -2.264  
TTL 4.204 4.201 4.247  
LB 1.036 1.049 1.071  
IH 3.238 3.238 3.238  
本发明的保护范围并不以上述实施方式为限,但凡本领域普通技术人员根据本发明所揭示内容所作的等效修饰或变化,皆应纳入权利要求书中记载的保护范围内。

Claims (3)

  1. 一种摄像镜头,其特征在于:从物侧开始依次配置有:具有正屈折力的第1透镜、具有正屈折力的第2透镜、具有负屈折力的第3透镜、具有正屈折力的第4透镜、具有负屈折力的第5透镜,并且满足以下条件公式(1)~(5):
    28.00≤ν2-ν3≤40.00                  (1);
    28.00≤ν2-ν4≤40.00                  (2);
    28.00≤ν2-ν5≤40.00                  (3);
    1.80≤f2/f4≤2.00                     (4);
    0.63≤d3/d1≤0.66                    (5);
    其中,
    ν2:第2透镜的阿贝数;
    ν3:第3透镜的阿贝数;
    ν4:第4透镜的阿贝数;
    ν5:第5透镜的阿贝数;
    f2:第2透镜的焦距;
    f4:第4透镜的焦距;
    d1:第1透镜的中心厚度;
    d3:第2透镜的中心厚度。
  2. 根据权利要求1所述的摄像镜头,其特征在于:满足下列条件公式(6):
    2.95≤R3/R4≤3.20                   (6);
    其中,
    R3:第2透镜的物侧面的曲率半径;
    R4:第2透镜的像侧面的曲率半径。
  3. 根据权利要求1所述的摄像镜头,其特征在于:满足下列条件公式(7):
    -2.70≤R5/R6≤-1.00                 (7);
    其中,
    R5:第3透镜的物侧面的曲率半径;
    R6:第3透镜的像侧面的曲率半径。
PCT/CN2019/110302 2018-09-30 2019-10-10 摄像镜头 WO2020125159A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018186239A JP6513274B1 (ja) 2018-09-30 2018-09-30 撮像レンズ
CN201811546840.2 2018-12-18
CN201811546840.2A CN109375345B (zh) 2018-09-30 2018-12-18 摄像镜头

Publications (1)

Publication Number Publication Date
WO2020125159A1 true WO2020125159A1 (zh) 2020-06-25

Family

ID=65374174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110302 WO2020125159A1 (zh) 2018-09-30 2019-10-10 摄像镜头

Country Status (4)

Country Link
US (1) US10775595B2 (zh)
JP (1) JP6513274B1 (zh)
CN (1) CN109375345B (zh)
WO (1) WO2020125159A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI644140B (zh) * 2018-05-11 2018-12-11 大立光電股份有限公司 成像光學鏡片組、取像裝置及電子裝置
JP6513274B1 (ja) * 2018-09-30 2019-05-15 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
WO2021134270A1 (zh) * 2019-12-30 2021-07-08 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111308650B (zh) * 2020-02-24 2021-10-29 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111596444B (zh) * 2020-07-21 2020-10-16 常州市瑞泰光电有限公司 摄像光学镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201378216Y (zh) * 2008-06-06 2010-01-06 富士能株式会社 5片结构的摄像透镜及摄像装置
US20130050848A1 (en) * 2011-08-31 2013-02-28 Lg Innotek Co., Ltd. Optical System
KR20140023552A (ko) * 2012-08-16 2014-02-27 엘지이노텍 주식회사 광학계
CN103777313A (zh) * 2013-10-11 2014-05-07 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头
JP2015036794A (ja) * 2013-08-15 2015-02-23 コニカミノルタ株式会社 複眼撮像光学系及び複眼撮像装置
CN109375345A (zh) * 2018-09-30 2019-02-22 瑞声声学科技(深圳)有限公司 摄像镜头

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7710665B2 (en) * 2007-11-08 2010-05-04 Samsung Electro-Mechanics Co., Ltd. Imaging optical system
JP2012008490A (ja) * 2010-06-28 2012-01-12 Sony Corp 撮像レンズ及び撮像装置
JP2012008489A (ja) * 2010-06-28 2012-01-12 Sony Corp 撮像レンズ及び撮像装置
TWI418877B (zh) * 2010-12-15 2013-12-11 Largan Precision Co 成像用光學系統
TWI435103B (zh) * 2012-04-06 2014-04-21 Largan Precision Co Ltd 光學攝像鏡片系統
JPWO2014080561A1 (ja) * 2012-11-21 2017-01-05 コニカミノルタ株式会社 撮像光学系、撮像装置およびデジタル機器
US9804358B2 (en) * 2013-04-01 2017-10-31 Sony Corporation Bright large aperture imaging lens and imaging unit
TWI463167B (zh) * 2013-04-12 2014-12-01 Largan Precision Co Ltd 結像系統鏡組
JP6265334B2 (ja) * 2014-03-20 2018-01-24 株式会社オプトロジック 撮像レンズ
JP6319765B2 (ja) * 2014-07-02 2018-05-09 株式会社オプトロジック 撮像レンズ
TWI594008B (zh) * 2015-09-11 2017-08-01 大立光電股份有限公司 取像用光學系統、取像裝置及電子裝置
TWI625546B (zh) * 2016-11-09 2018-06-01 大立光電股份有限公司 攝像光學鏡片系統、取像裝置及電子裝置
TWI594039B (zh) * 2016-12-09 2017-08-01 大立光電股份有限公司 影像擷取光學鏡片系統、取像裝置及電子裝置
CN108363169B (zh) * 2018-02-05 2020-05-29 瑞声光学解决方案私人有限公司 摄像光学镜头
JP6501201B1 (ja) * 2018-02-05 2019-04-17 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201378216Y (zh) * 2008-06-06 2010-01-06 富士能株式会社 5片结构的摄像透镜及摄像装置
US20130050848A1 (en) * 2011-08-31 2013-02-28 Lg Innotek Co., Ltd. Optical System
KR20140023552A (ko) * 2012-08-16 2014-02-27 엘지이노텍 주식회사 광학계
JP2015036794A (ja) * 2013-08-15 2015-02-23 コニカミノルタ株式会社 複眼撮像光学系及び複眼撮像装置
CN103777313A (zh) * 2013-10-11 2014-05-07 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头
CN109375345A (zh) * 2018-09-30 2019-02-22 瑞声声学科技(深圳)有限公司 摄像镜头

Also Published As

Publication number Publication date
JP2020056851A (ja) 2020-04-09
JP6513274B1 (ja) 2019-05-15
CN109375345B (zh) 2021-04-23
US10775595B2 (en) 2020-09-15
CN109375345A (zh) 2019-02-22
US20200103629A1 (en) 2020-04-02

Similar Documents

Publication Publication Date Title
WO2020125163A1 (zh) 摄像镜头
WO2020125161A1 (zh) 摄像镜头
WO2020125162A1 (zh) 摄像镜头
US9835832B2 (en) Camera lens
WO2020125158A1 (zh) 摄像镜头
US9897784B2 (en) Camera lens
US9971128B2 (en) Camera lens
US10054769B2 (en) Camera lens
WO2020125159A1 (zh) 摄像镜头
US9964738B2 (en) Camera lens
CN105487203B (zh) 摄像镜头
US10302910B2 (en) Camera lens
US9952414B2 (en) Camera lens
US10268021B2 (en) Camera lens
US9759895B1 (en) Camera lens
CN105892014B (zh) 摄像镜头
WO2022041391A1 (zh) 摄像光学镜头
WO2022057031A1 (zh) 摄像镜头
US20190227283A1 (en) Camera Lens
CN108873263B (zh) 摄像镜头
WO2022007022A1 (zh) 摄像光学镜头
WO2022021455A1 (zh) 摄像光学镜头
US9874726B1 (en) Camera lens
US10310235B2 (en) Camera lens
US9766435B1 (en) Camera lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897820

Country of ref document: EP

Kind code of ref document: A1