WO2021134270A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2021134270A1
WO2021134270A1 PCT/CN2019/130052 CN2019130052W WO2021134270A1 WO 2021134270 A1 WO2021134270 A1 WO 2021134270A1 CN 2019130052 W CN2019130052 W CN 2019130052W WO 2021134270 A1 WO2021134270 A1 WO 2021134270A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
optical lens
ttl
focal length
Prior art date
Application number
PCT/CN2019/130052
Other languages
English (en)
French (fr)
Inventor
孙雯
陈佳
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Priority to PCT/CN2019/130052 priority Critical patent/WO2021134270A1/zh
Publication of WO2021134270A1 publication Critical patent/WO2021134270A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • This application relates to the field of optical lenses, and in particular to a camera optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as camera devices such as monitors and PC lenses.
  • the purpose of this application is to provide an imaging optical lens that has good optical performance while being ultra-thin and wide-angle. At the same time, since at least one lens contains a free-form surface, it can effectively correct aberrations and further improve the optical system. performance.
  • the embodiments of the present application provide an imaging optical lens.
  • the imaging optical lens sequentially includes from the object side to the image side: a first lens, a second lens, a third lens, and a fourth lens. ,
  • At least one of the first lens to the fifth lens includes a free-form surface, the focal length of the first lens is f1, the focal length of the second lens is f2, and the focal length of the third lens is f3, so
  • the curvature radius of the image side surface of the second lens is R4 and satisfies the following relationship: f1 ⁇ 0.00; f2 ⁇ 0.00; f3 ⁇ 0.00; R4 ⁇ 0.00.
  • the focal length of the imaging optical lens is f
  • the radius of curvature of the object side of the first lens is R1
  • the radius of curvature of the image side of the first lens is R2
  • the on-axis thickness of the first lens is d1
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the focal length of the imaging optical lens is f
  • the curvature radius of the object side of the second lens is R3
  • the axial thickness of the second lens is d3
  • the total optical length of the imaging optical lens is TTL
  • the focal length of the imaging optical lens is f
  • the radius of curvature of the object side of the third lens is R5
  • the radius of curvature of the image side of the third lens is R6, and the on-axis thickness of the third lens is d5
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the focal length of the imaging optical lens is f
  • the focal length of the fourth lens is f4
  • the radius of curvature of the object side of the fourth lens is R7
  • the radius of curvature of the image side of the fourth lens is R8, so
  • the axial thickness of the fourth lens is d7
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the focal length of the imaging optical lens is f
  • the focal length of the fifth lens is f5
  • the radius of curvature of the object side of the fifth lens is R9
  • the radius of curvature of the image side of the fifth lens is R10
  • the on-axis thickness of the fifth lens is d9
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the aperture F number of the imaging optical lens is Fno, and the following relational expression is satisfied:
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the total optical length of the imaging optical lens is TTL
  • the diagonal full-field image height of the imaging optical lens is IH, and the following relationship is satisfied:
  • the diagonal field of view of the imaging optical lens is FOV, and satisfies the following relationship:
  • the imaging optical lens according to the present application has good optical performance while being ultra-thin and wide-angle.
  • at least one lens contains a free-form surface, it can effectively correct aberrations and further improve the performance of the optical system, especially It is suitable for mobile phone camera lens assembly and WEB camera lens composed of high-resolution CCD, CMOS and other imaging elements.
  • FIG. 1 is a schematic diagram of the structure of an imaging optical lens according to a first embodiment of the present application
  • Fig. 2 is a case where the RMS spot diameter of the imaging optical lens shown in Fig. 1 is in the first quadrant;
  • FIG. 3 is a schematic diagram of the structure of an imaging optical lens according to a second embodiment of the present application.
  • Fig. 4 is a case where the RMS spot diameter of the imaging optical lens shown in Fig. 3 is in the first quadrant;
  • FIG. 5 is a schematic diagram of the structure of an imaging optical lens according to a third embodiment of the present application.
  • Fig. 6 is a case where the RMS spot diameter of the imaging optical lens shown in Fig. 5 is in the first quadrant;
  • FIG. 7 is a schematic structural diagram of an imaging optical lens according to a fourth embodiment of the present application.
  • FIG. 8 is a situation in which the RMS spot diameter of the imaging optical lens shown in FIG. 7 is in the first quadrant;
  • FIG. 9 is a schematic structural diagram of an imaging optical lens according to a fifth embodiment of the present application.
  • FIG. 10 is a case where the RMS spot diameter of the imaging optical lens shown in FIG. 9 is in the first quadrant;
  • FIG. 11 is a schematic diagram of the structure of an imaging optical lens according to a sixth embodiment of the present application.
  • FIG. 12 is a case where the RMS spot diameter of the imaging optical lens shown in FIG. 11 is in the first quadrant.
  • FIG. 1 shows an imaging optical lens 10 according to the first embodiment of the application.
  • the imaging optical lens 10 includes five lenses.
  • the imaging optical lens 10 includes a first lens L1, an aperture S1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5 in sequence from the object side to the image side.
  • An optical element such as an optical filter GF may be provided between the fifth lens L5 and the image plane Si.
  • the first lens L1 has positive refractive power; the second lens L2 has positive refractive power, the third lens L3 has negative refractive power, the fourth lens L4 has positive refractive power, and the fifth lens L5 has negative refractive power.
  • the first lens L1 to the fifth lens L5 are made of plastic material. By rationalizing the configuration of the lens material, the lens has good optical performance while being ultra-thin and wide-angle.
  • the focal length of the first lens L1 is defined as f1
  • the focal length of the second lens L2 is defined as f2
  • the focal length of the third lens L3 is f3
  • the radius of curvature of the image side surface of the second lens L2 is defined as R4, and the following relationship is satisfied: f1 ⁇ 0.00, f2 ⁇ 0.00, f3 ⁇ 0.00, R4 ⁇ 0.00.
  • the free-form surface helps correct aberrations such as astigmatism, curvature of field, and distortion of the wide-angle optical system, and improves the performance of the optical system.
  • the imaging optical lens 10 can have good optics while being ultra-thin and wide-angle performance.
  • the focal length of the first lens L1 is f1
  • the focal length of the imaging optical lens 10 is f, which satisfies the following relationship: 1.09 ⁇ f1/f ⁇ 8.58, which specifies the ratio of the positive refractive power of the first lens L1 to the overall focal length .
  • the first lens L1 has an appropriate positive refractive power, which is conducive to reducing system aberrations and at the same time conducive to the development of ultra-thin and wide-angle lenses.
  • 1.75 ⁇ f1/f ⁇ 6.86 is satisfied.
  • the on-axis thickness of the first lens L1 is defined as d1, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.03 ⁇ d1/TTL ⁇ 0.13, which is beneficial to realize ultra-thinness.
  • 0.05 ⁇ d1/TTL ⁇ 0.10 is satisfied.
  • the focal length of the second lens L2 is f2, and the focal length of the imaging optical lens 10 is f, which satisfies the following relationship: 0.65 ⁇ f2/f ⁇ 2.18.
  • the curvature radius of the object side surface of the second lens L2 is R3, and the curvature radius of the image side surface of the second lens L2 is R4, which satisfies the following relationship: 0.23 ⁇ (R3+R4)/(R3-R4) ⁇ 1.97, which is specified
  • R3+R4/(R3-R4) ⁇ 1.97 which is specified
  • 0.38 ⁇ (R3+R4)/(R3-R4) ⁇ 1.57 is satisfied.
  • the on-axis thickness of the second lens L2 is d3, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.04 ⁇ d3/TTL ⁇ 0.19, which is beneficial to realize ultra-thinness.
  • 0.06 ⁇ d3/TTL ⁇ 0.15 is satisfied.
  • the focal length of the third lens L3 is f3, and the focal length of the imaging optical lens 10 is f, which satisfies the following relational expression: -7.59 ⁇ f3/f ⁇ -1.21, through the reasonable distribution of optical power, the system has better High imaging quality and low sensitivity.
  • -4.75 ⁇ f3/f ⁇ -1.51 is satisfied.
  • the curvature radius of the object side surface of the third lens L3 is R5, and the curvature radius of the image side surface of the third lens L3 is R6, which satisfies the following relationship: -4.61 ⁇ (R5+R6)/(R5-R6) ⁇ 2.09, which stipulates When the shape of the third lens L3 is within the range specified by the conditional expression, the degree of deflection of the light passing through the lens can be reduced, and aberrations can be effectively reduced. Preferably, it satisfies -2.88 ⁇ (R5+R6)/(R5-R6) ⁇ 1.67.
  • the axial thickness of the third lens L3 is d5, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.02 ⁇ d5/TTL ⁇ 0.09, which is beneficial to realize ultra-thinness.
  • 0.04 ⁇ d5/TTL ⁇ 0.07 is satisfied.
  • the focal length of the fourth lens L4 is f4, and the focal length of the imaging optical lens 10 is f, which satisfies the following relationship: 0.25 ⁇ f4/f ⁇ 3.18, which specifies the ratio of the focal length of the fourth lens L4 to the focal length of the system.
  • 0.25 ⁇ f4/f ⁇ 3.18 which specifies the ratio of the focal length of the fourth lens L4 to the focal length of the system.
  • 0.41 ⁇ f4/f ⁇ 2.55 is satisfied.
  • the curvature radius of the object side surface of the fourth lens L4 is R7
  • the curvature radius of the image side surface of the fourth lens L4 is R8, which satisfies the following relationship: 0.66 ⁇ (R7+R8)/(R7-R8) ⁇ 8.68, which is specified
  • the shape of the fourth lens L4 is within the range of this conditional formula, and with the development of ultra-thin and wide-angle, it is beneficial to correct the aberration of the off-axis angle of view. Preferably, 1.06 ⁇ (R7+R8)/(R7-R8) ⁇ 6.94 is satisfied.
  • the axial thickness of the fourth lens L4 is d7, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.05 ⁇ d7/TTL ⁇ 0.31, which is beneficial to realize ultra-thinness.
  • 0.09 ⁇ d7/TTL ⁇ 0.25 is satisfied.
  • the focal length of the fifth lens L5 is f5
  • the focal length of the imaging optical lens 10 is f, which satisfies the following relationship: -98.44 ⁇ f5/f ⁇ -0.38, which specifies the ratio of the focal length of the fifth lens L5 to the total focal length , When it is within the range of this conditional formula, it helps to reduce aberrations and improve imaging quality.
  • -61.53 ⁇ f5/f ⁇ -0.48 is satisfied.
  • the radius of curvature of the object side surface of the fifth lens L5 as R9
  • the radius of curvature of the image side surface of the fifth lens L5 as R10
  • the shape of the fifth lens L5 is specified, and when it is within the range of the conditional expression, it helps to improve the image quality.
  • 1.12 ⁇ (R9+R10)/(R9-R10) ⁇ 9.98 is satisfied.
  • the on-axis thickness of the fifth lens L5 is defined as d9, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.05 ⁇ d9/TTL ⁇ 0.19, which is conducive to achieving ultra-thinness.
  • 0.07 ⁇ d9/TTL ⁇ 0.15 is satisfied.
  • the F number of the aperture of the imaging optical lens 10 is defined as Fno, and the following relationship is satisfied: Fno ⁇ 2.49, large aperture, good imaging performance. Preferably, Fno ⁇ 2.44 is satisfied.
  • the diagonal full-field image height of the imaging optical lens 10 is defined as IH, and the following relationship is satisfied: TTL/IH ⁇ 0.88. Preferably, TTL/IH ⁇ 0.84 is satisfied.
  • the diagonal field of view of the imaging optical lens 10 is defined as FOV, and the following relationship is satisfied: 79.48 ⁇ FOV ⁇ 112.19.
  • the diagonal field angle of the camera optical lens 10 is defined, and within the range, ultra-wide-angle camera can be realized and the user experience can be improved.
  • 83.27 ⁇ FOV ⁇ 107.09 is satisfied.
  • the total optical length TTL of the imaging optical lens 10 is less than or equal to 5.02 mm, which is beneficial to realize ultra-thinness.
  • the total optical length TTL is less than or equal to 4.79 mm.
  • the imaging optical lens 10 has good optical performance while adopting a free-form surface, which can match the design image area with the actual use area, and maximize the image quality of the effective area; according to the characteristics of the optical lens 10
  • the optical lens 10 is particularly suitable for mobile phone camera lens assemblies and WEB camera lenses composed of high-resolution CCD, CMOS, and other imaging elements.
  • the imaging optical lens 10 of the present application will be described below with an example.
  • the symbols described in each example are as follows.
  • the unit of focal length, on-axis distance, radius of curvature, and on-axis thickness is mm.
  • TTL total optical length (the on-axis distance from the object side of the first lens L1 to the imaging surface), the unit is mm;
  • Table 1 and Table 2 show design data of the imaging optical lens 10 of the first embodiment of the present application.
  • the object side surface and the image side surface of the first lens L1 are free-form surfaces.
  • R The radius of curvature of the optical surface, and the radius of curvature of the center of the lens
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the radius of curvature of the object side surface of the fifth lens L5;
  • R10 the radius of curvature of the image side surface of the fifth lens L5;
  • R11 the radius of curvature of the object side of the optical filter GF
  • R12 the radius of curvature of the image side surface of the optical filter GF
  • d0 the on-axis distance from the aperture S1 to the object side of the first lens L1;
  • d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
  • d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the sixth lens L6;
  • d11 the axial thickness of the optical filter GF
  • d12 the on-axis distance from the image side surface of the optical filter GF to the image surface
  • nd refractive index of d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • ndg the refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF.
  • Table 2 shows the aspheric surface data of each lens in the imaging optical lens 10 according to the first embodiment of the present application.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, A20 are the aspherical coefficients
  • r is the vertical distance between the point on the aspherical curve and the optical axis
  • z is the aspherical depth (aspherical surface The vertical distance between the point r from the optical axis and the tangent plane tangent to the vertex on the aspheric optical axis).
  • the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (1).
  • this application is not limited to the aspheric polynomial form represented by the formula (1).
  • Table 3 shows free-form surface data in the imaging optical lens 10 of the first embodiment of the present application.
  • k is the conic coefficient
  • Bi is the free-form surface coefficient
  • r is the vertical distance between the point on the free-form surface and the optical axis
  • x is the x-direction component of r
  • y is the y-direction component of r
  • z is the aspheric depth (aspherical surface The vertical distance between the point at the upper distance of r from the optical axis and the tangent plane tangent to the vertex on the aspheric optical axis).
  • each free-form surface uses the extended polynomial surface type (Extended Polynomial) shown in the above formula (2).
  • Extended Polynomial Extended Polynomial
  • this application is not limited to the free-form surface polynomial form expressed by the formula (2).
  • FIG. 2 shows a situation where the RMS spot diameter of the imaging optical lens 10 of the first embodiment is within the first quadrant. According to FIG. 2, it can be seen that the imaging optical lens 10 of the first embodiment can achieve good imaging quality.
  • Table 19 shows the values corresponding to various values in each of Examples 1, 2, 3, 4, 5, and 6 and the parameters specified in the conditional expressions.
  • the first embodiment satisfies each conditional expression.
  • the entrance pupil diameter ENPD of the imaging optical lens is 0.808mm
  • the full-field image height (diagonal direction) IH is 4.800mm
  • the x-direction image height is 3.840mm
  • the y-direction image height is 2.880 mm
  • the imaging effect is best in this rectangular range.
  • the diagonal FOV is 101.96°
  • the x-direction is 88.99°
  • the y-direction is 72.71°
  • wide-angle, ultra-thin The on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the second embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 4 and Table 5 show the design data of the imaging optical lens 20 according to the second embodiment of the present application.
  • the object side surface and the image side surface of the second lens L2 are free-form surfaces.
  • Table 5 shows the aspheric surface data of each lens in the imaging optical lens 20 of the second embodiment of the present application.
  • Table 6 shows free-form surface data in the imaging optical lens 20 of the second embodiment of the present application.
  • FIG. 4 shows a situation where the RMS spot diameter of the imaging optical lens 20 of the second embodiment is within the first quadrant. According to FIG. 4, it can be seen that the imaging optical lens 20 of the second embodiment can achieve good imaging quality.
  • the second embodiment satisfies various conditional expressions.
  • the entrance pupil diameter ENPD of the imaging optical lens is 0.808mm
  • the full-field image height (diagonal direction) IH is 4.800mm
  • the x-direction image height is 3.840mm
  • the y-direction image height is 2.880 mm
  • the imaging effect is best in this rectangular range
  • the diagonal FOV is 101.96°
  • the x-direction field-of-view angle is 89.11°
  • the y-direction field of view is 72.73°
  • wide-angle, ultra-thin and its axis
  • the on-axis and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
  • the third embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 7 and Table 8 show the design data of the imaging optical lens 30 of the third embodiment of the present application.
  • the object side surface and the image side surface of the first lens L1 are free-form surfaces.
  • Table 8 shows the aspheric surface data of each lens in the imaging optical lens 30 of the third embodiment of the present application.
  • Table 9 shows free-form surface data in the imaging optical lens 30 of the third embodiment of the present application.
  • FIG. 6 shows a situation in which the RMS spot diameter of the imaging optical lens 30 of the third embodiment is within the first quadrant. According to FIG. 6, it can be seen that the imaging optical lens 30 of the third embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens is 0.808mm
  • the full-field image height (diagonal direction) IH is 4.800mm
  • the x-direction image height is 3.840mm
  • the y-direction image height is 2.880 mm
  • the imaging effect is best in this rectangular range.
  • the diagonal FOV is 101.99°
  • the x-direction field-of-view angle is 89.14°
  • the y-direction field of view is 72.48°
  • wide-angle, ultra-thin and its axis
  • the on-axis and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
  • the fourth embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 10 and Table 11 show design data of the imaging optical lens 40 of the fourth embodiment of the present application.
  • the object side surface and the image side surface of the first lens L1 are free-form surfaces.
  • Table 11 shows the aspheric surface data of each lens in the imaging optical lens 40 of the fourth embodiment of the present application.
  • Table 12 shows free-form surface data in the imaging optical lens 40 of the fourth embodiment of the present application.
  • FIG. 8 shows a situation where the RMS spot diameter of the imaging optical lens 40 of the fourth embodiment is within the first quadrant. According to FIG. 8, it can be seen that the imaging optical lens 40 of the fourth embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens is 1.313mm
  • the full-field image height (diagonal direction) IH is 6.400mm
  • the image height in the x direction is 5.000mm
  • the image height in the y direction is 4.000. mm
  • the imaging effect is the best in this rectangular range
  • the diagonal FOV is 89.47°
  • the x-direction field of view is 77.80°
  • the y-direction field of view is 66.75°
  • wide-angle, ultra-thin and its axis
  • the on-axis and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
  • the fifth embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 13 and Table 14 show design data of the imaging optical lens 50 of the fifth embodiment of the present application.
  • the object side surface and the image side surface of the fifth lens L5 are free-form surfaces.
  • Table 14 shows the aspheric surface data of each lens in the imaging optical lens 50 of the fifth embodiment of the present application.
  • Table 15 shows free-form surface data in the imaging optical lens 50 of the fifth embodiment of the present application.
  • FIG. 10 shows a situation where the RMS spot diameter of the imaging optical lens 50 of the fifth embodiment is within the first quadrant. According to FIG. 10, it can be seen that the imaging optical lens 50 of the fifth embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens is 1.366 mm
  • the full-field image height (diagonal direction) IH is 6.400 mm
  • the image height in the x direction is 5.000 mm
  • the image height in the y direction is 4.000. mm
  • the imaging effect is the best in this rectangular range
  • the diagonal FOV is 87.43°
  • the x-direction field of view is 76.10°
  • the y-direction field of view is 65.04°
  • wide-angle, ultra-thin and its axis
  • the on-axis and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
  • the sixth embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 16 and Table 17 show design data of the imaging optical lens 60 of the sixth embodiment of the present application.
  • the object side surface and the image side surface of the second lens L2 are free-form surfaces.
  • Table 17 shows the aspheric surface data of each lens in the imaging optical lens 60 of the sixth embodiment of the present application.
  • Table 18 shows free-form surface data in the imaging optical lens 60 of the sixth embodiment of the present application.
  • FIG. 12 shows a situation where the RMS spot diameter of the imaging optical lens 60 of the sixth embodiment is within the first quadrant. According to FIG. 12, it can be seen that the imaging optical lens 60 of the sixth embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens is 1.300mm
  • the full-field image height (diagonal direction) IH is 6.400mm
  • the image height in the x direction is 5.000mm
  • the image height in the y direction is 4.000. mm
  • the imaging effect is best in this rectangular range
  • the diagonal FOV is 90.06°
  • the x-direction field-of-view angle is 78.42°
  • the y-direction field of view is 67.44°
  • wide-angle, ultra-thin and its axis
  • the upper and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6 f1 11.18 10.90 10.27 6.45 6.94 6.55 f2 2.85 2.76 2.71 4.06 4.02 4.09 f3 -4.18 -3.54 -4.34 -11.21 -9.41 -10.66
  • R4 -2.08 -1.89 -1.80
  • -2.53 -2.38 -1.96
  • 3.074 2.925 f4 1.033 0.993 4.149 2.483 2.500 1.988 f5 -1.127 -1.127 -96.229 -3.040 -3.025 -2.353

Abstract

一种摄像光学镜头(10),自物侧至像侧依序包含:第一透镜(L1)、第二透镜(L2)、第三透镜(L3)、第四透镜(L4)、第五透镜(L5);第一透镜(L1)至第五透镜(L5)中的至少一个含自由曲面,第一透镜(L1)的焦距为f1,第二透镜(L2)的焦距为f2,第三透镜(L3)的焦距为f3,第二透镜(L2)像侧面的曲率半径为R4,且满足下列关系式:f1≥0.00;f2≥0.00;f3≤0.00;R4≤0.00。这种摄像光学镜头在超薄和广角的同时具有良好光学性能,同时由于至少有一个透镜含有自由曲面,可以有效地矫正像差,进一步提升光学系统性能。

Description

摄像光学镜头 技术领域
本申请涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
随着成像镜头的发展,人们对镜头的成像要求越来越高,镜头的“夜景拍照”和“背景虚化”也成为衡量镜头成像标准的重要指标。目前多采用旋转对称的非球面,这类非球面只在子午平面内具有充分的自由度,并不能很好的对轴外像差进行校正。自由曲面是一种非旋转对称的表面类型,能够更好地平衡像差,提高成像质量,而且自由曲面的加工也逐渐成熟。随着对镜头成像要求的提升,在设计镜头时加入自由曲面显得十分重要,尤其是在广角和超广角镜头的设计中效果更为明显。
发明内容
针对上述问题,本申请的目的在于提供一种摄像光学镜头,其在超薄和广角的同时具有良好光学性能,同时由于至少有一个透镜含有自由曲面,可以有效地矫正像差,进一步提升光学系统性能。
为解决上述技术问题,本申请的实施方式提供了一种摄像光学镜头,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜;
所述第一透镜至所述第五透镜中的至少一个含自由曲面,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第三透镜的焦距为f3,所述第二透镜像侧面的曲率半径为R4,且满足下列关系式:f1≥0.00;f2≥0.00;f3≤0.00;R4≤0.00。
优选地,所述摄像光学镜头的焦距为f,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
1.09≤f1/f≤8.58;
-6.47≤(R1+R2)/(R1-R2)≤8.76;
0.03≤d1/TTL≤0.13。
优选地,所述摄像光学镜头的焦距为f,所述第二透镜物侧面的曲率半径为R3,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.65≤f2/f≤2.18;
0.23≤(R3+R4)/(R3-R4)≤1.97;
0.04≤d3/TTL≤0.19。
优选地,所述摄像光学镜头的焦距为f,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-7.59≤f3/f≤-1.21;
-4.61≤(R5+R6)/(R5-R6)≤2.09;
0.02≤d5/TTL≤0.09。
优选地,所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.25≤f4/f≤3.18;
0.66≤(R7+R8)/(R7-R8)≤8.68;
0.05≤d7/TTL≤0.31。
优选地,所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的 光学总长为TTL,且满足下列关系式:
-98.44≤f5/f≤-0.38;
0.70≤(R9+R10)/(R9-R10)≤12.48;
0.05≤d9/TTL≤0.19。
优选地,所述摄像光学镜头的光圈F数为Fno,且满足下列关系式:
Fno≤2.49。
优选地,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
TTL≤5.02。
优选地,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的对角线的全视场像高为IH,且满足下列关系式:
TTL/IH≤0.88。
优选地,所述摄像光学镜头的对角线的视场角为FOV,且满足下列关系式:
79.48≤FOV≤112.19。
本申请的有益效果在于:根据本申请的摄像光学镜头在超薄和广角的同时具有良好光学性能,同时由于至少有一个透镜含有自由曲面,可以有效地矫正像差,进一步提升光学系统性能,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
为了更清楚地说明本申请实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本申请第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的RMS光斑直径在第一象限内的情 况;
图3是本申请第二实施方式的摄像光学镜头的结构示意图;
图4是图3所示摄像光学镜头的RMS光斑直径在第一象限内的情况;
图5是本申请第三实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的RMS光斑直径在第一象限内的情况;
图7是本申请第四实施方式的摄像光学镜头的结构示意图;
图8是图7所示摄像光学镜头的RMS光斑直径在第一象限内的情况;
图9是本申请第五实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的RMS光斑直径在第一象限内的情况;
图11是本申请第六实施方式的摄像光学镜头的结构示意图;
图12是图11所示摄像光学镜头的RMS光斑直径在第一象限内的情况。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。
(第一实施方式)
参考附图,本申请提供了一种摄像光学镜头10。图1所示为本申请第一实施方式的摄像光学镜头10,该摄像光学镜头10包括五个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:第一透镜L1、光圈S1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5。第五透镜L5和像面Si之间可设置有光学过滤片(filter)GF等光 学元件。
第一透镜L1具有正屈折力;第二透镜L2具有正屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有负屈折力。
所述第一透镜L1至所述第五透镜L5均为塑料材质。通过合理化配置透镜的材料,使得镜头在超薄和广角的同时具有良好光学性能。
在本实施方式中,定义所述第一透镜L1至所述第五透镜L5中的至少一个含自由曲面,定义所述第一透镜L1的焦距为f1,所述第二透镜L2的焦距为f2,所述第三透镜L3的焦距为f3,定义所述第二透镜L2像侧面的曲率半径为R4,且满足下列关系式:f1≥0.00,f2≥0.00,f3≤0.00,R4≤0.00。自由曲面有助于广角光学系统像散、场曲和畸变等像差校正,提升光学系统性能,在满足上述条件式的时候,可以使摄像光学镜头10在超薄和广角的同时具有良好的光学性能。
所述第一透镜L1的焦距为f1,所述摄像光学镜头10的焦距为f,满足下列关系式:1.09≤f1/f≤8.58,规定了第一透镜L1的正屈折力与整体焦距的比值。在此条件范围内时,第一透镜L1具有适当的正屈折力,有利于减小系统像差,同时有利于镜头向超薄化、广角化发展。优选地,满足1.75≤f1/f≤6.86。
定义所述第一透镜L1物侧面的曲率半径为R1,所述第一透镜L1像侧面的曲率半径为R2,满足下列关系式:-6.47≤(R1+R2)/(R1-R2)≤8.76,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。优选地,满足-4.05≤(R1+R2)/(R1-R2)≤7.01。
定义所述第一透镜L1的轴上厚度为d1,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d1/TTL≤0.13,有利于实现超薄化。优选地,满足0.05≤d1/TTL≤0.10。
所述第二透镜L2的焦距为f2,所述摄像光学镜头10的焦距为f,满足下列关系式:0.65≤f2/f≤2.18,通过将第二透镜L2的光焦度控制在合理范围,有利于矫正光学系统的像差。优选地,满足1.04≤f2/f≤1.75。
所述第二透镜L2物侧面的曲率半径为R3,所述第二透镜L2像侧 面的曲率半径为R4,满足下列关系式:0.23≤(R3+R4)/(R3-R4)≤1.97,规定了第二透镜L2的形状,在此条件式范围内时,随着镜头向超薄广角化发展,有利于补正轴上色像差问题。优选地,满足0.38≤(R3+R4)/(R3-R4)≤1.57。
所述第二透镜L2的轴上厚度为d3,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.04≤d3/TTL≤0.19,有利于实现超薄化。优选地,满足0.06≤d3/TTL≤0.15。
所述第三透镜L3的焦距为f3,所述摄像光学镜头10的焦距为f,满足下列关系式:-7.59≤f3/f≤-1.21,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-4.75≤f3/f≤-1.51。
所述第三透镜L3物侧面的曲率半径为R5,第三透镜L3像侧面的曲率半径为R6,满足下列关系式:-4.61≤(R5+R6)/(R5-R6)≤2.09,规定了第三透镜L3的形状,在此条件式规定范围内时,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足-2.88≤(R5+R6)/(R5-R6)≤1.67。
所述第三透镜L3的轴上厚度为d5,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d5/TTL≤0.09,有利于实现超薄化。优选地,满足0.04≤d5/TTL≤0.07。
所述第四透镜L4的焦距为f4,所述摄像光学镜头10的焦距为f,满足下列关系式:0.25≤f4/f≤3.18,规定了第四透镜L4的焦距与系统焦距的比值,在条件式范围内时,有助于提高光学系统性能。优选地,满足0.41≤f4/f≤2.55。
所述第四透镜L4物侧面的曲率半径为R7,所述第四透镜L4像侧面的曲率半径为R8,满足下列关系式:0.66≤(R7+R8)/(R7-R8)≤8.68,规定了第四透镜L4的形状,在此条件式范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足1.06≤(R7+R8)/(R7-R8)≤6.94。
所述第四透镜L4的轴上厚度为d7,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.05≤d7/TTL≤0.31,有利于实现超薄 化。优选地,满足0.09≤d7/TTL≤0.25。
所述第五透镜L5的焦距为f5,所述摄像光学镜头10的焦距为f,满足下列关系式:-98.44≤f5/f≤-0.38,规定了第五透镜L5的焦距与总焦距的比值,在此条件式范围内时,有助于减小像差,提升成像品质。优选地,满足-61.53≤f5/f≤-0.48。
定义所述第五透镜L5物侧面的曲率半径为R9,所述第五透镜L5像侧面的曲率半径为R10,满足下列关系式:0.70≤(R9+R10)/(R9-R10)≤12.48,规定了第五透镜L5的形状,在此条件式范围内时,有助于提高成像质量。优选地,满足1.12≤(R9+R10)/(R9-R10)≤9.98。
定义所述第五透镜L5的轴上厚度为d9,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.05≤d9/TTL≤0.19,有利于实现超薄化。优选地,满足0.07≤d9/TTL≤0.15。
定义所述摄像光学镜头10的光圈F数为Fno,且满足下列关系式:Fno≤2.49,大光圈,成像性能好。优选地,满足Fno≤2.44。
定义所述摄像光学镜头10的对角线的全视场像高为IH,且满足下列关系式:TTL/IH≤0.88。优选地,满足TTL/IH≤0.84。
定义所述摄像光学镜头10的对角线的视场角为FOV,且满足下列关系式:79.48≤FOV≤112.19。定义摄像光学镜头10的对角线的视场角,在范围内,可以实现超广角摄像,提升用户体验。优选地,满足83.27≤FOV≤107.09。
本实施方式中,摄像光学镜头10的光学总长TTL小于或等于5.02毫米,有利于实现超薄化。优选地,光学总长TTL小于或等于4.79毫米。
当满足上述关系时,使得摄像光学镜头10具有良好光学性能的同时,采用自由曲面,可实现设计像面区域与实际使用区域匹配,最大程度提升有效区域的像质;根据该光学镜头10的特性,该光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本申请的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度的单位为 mm。
TTL:光学总长(第一透镜L1的物侧面到成像面的轴上距离),单位为mm;
表1、表2示出本申请第一实施方式的摄像光学镜头10的设计数据。其中,第一透镜L1的物侧面和像侧面为自由曲面。
【表1】
Figure PCTCN2019130052-appb-000001
其中,各符号的含义如下。
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:光学过滤片GF的物侧面的曲率半径;
R12:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度以及透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:光学过滤片GF的轴上厚度;
d12:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本申请第一实施方式的摄像光学镜头10中各透镜的非球 面数据。
【表2】
Figure PCTCN2019130052-appb-000002
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数,r是非球面曲线上的点与光轴的垂直距离,z是非球面深度(非球面上距离光轴为r的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
z=(cr 2)/[1+{1-(k+1)(c 2r 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+
A14x 14+A16x 16+A18x 18+A20x 20     (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本申请不限于该公式(1)表示的非球面多项式形式。
表3示出本申请第一实施方式的摄像光学镜头10中的自由曲面数据。
【表3】
Figure PCTCN2019130052-appb-000003
Figure PCTCN2019130052-appb-000004
其中,k是圆锥系数,Bi是自由曲面系数,r是自由曲面上的点与光轴的垂直距离,x是r的x方向分量,y是r的y方向分量,z是非球面深度(非球面上距离光轴为r的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
Figure PCTCN2019130052-appb-000005
为方便起见,各个自由曲面使用上述公式(2)中所示的扩展多项式面型(Extended Polynomial)。但是,本申请不限于该公式(2)表示的自由曲面多项式形式。
图2示出了第一实施例的摄像光学镜头10的RMS光斑直径在第一象限内的情况,根据图2可知,第一实施方式的摄像光学镜头10能够实现良好的成像品质。
后出现的表19示出各实例1、2、3、4、5、6中各种数值与条件式中已规定的参数所对应的值。
如表19所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为0.808mm,全视场像高(对角线方向)IH为4.800mm,x方向像高为3.840mm,y方向像高为2.880mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为101.96°,x方向的视场角为88.99°,y方向的视场角为72.71°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表4、表5示出本申请第二实施方式的摄像光学镜头20的设计数据。其中,第二透镜L2的物侧面和像侧面为自由曲面。
【表4】
Figure PCTCN2019130052-appb-000006
表5示出本申请第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表5】
Figure PCTCN2019130052-appb-000007
表6示出本申请第二实施方式的摄像光学镜头20中的自由曲面数据。
【表6】
Figure PCTCN2019130052-appb-000008
Figure PCTCN2019130052-appb-000009
图4示出了第二实施例的摄像光学镜头20的RMS光斑直径在第一象限内的情况,根据图4可知,第二实施方式的摄像光学镜头20能够实现良好的成像品质。
如表19所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为0.808mm,全视场像高(对角线方向)IH为4.800mm,x方向像高为3.840mm,y方向像高为2.880mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为101.96°,x方向视场角为89.11°,y方向视场角为72.73°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表7、表8示出本申请第三实施方式的摄像光学镜头30的设计数据。其中,第一透镜L1的物侧面和像侧面为自由曲面。
【表7】
Figure PCTCN2019130052-appb-000010
Figure PCTCN2019130052-appb-000011
表8示出本申请第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表8】
Figure PCTCN2019130052-appb-000012
表9示出本申请第三实施方式的摄像光学镜头30中的自由曲面数据。
【表9】
Figure PCTCN2019130052-appb-000013
Figure PCTCN2019130052-appb-000014
图6示出了第三实施例的摄像光学镜头30的RMS光斑直径在第一象限内的情况,根据图6可知,第三实施方式的摄像光学镜头30能够实现良好的成像品质。
以下表19按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为0.808mm,全视场像高(对角线方向)IH为4.800mm,x方向像高为3.840mm,y方向像高为2.880mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为101.99°,x方向视场角为89.14°,y方向视场角为72.48°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第四实施方式)
第四实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表10、表11示出本申请第四实施方式的摄像光学镜头40的设计数据。其中,第一透镜L1的物侧面和像侧面为自由曲面。
【表10】
Figure PCTCN2019130052-appb-000015
Figure PCTCN2019130052-appb-000016
表11示出本申请第四实施方式的摄像光学镜头40中各透镜的非球面数据。
【表11】
Figure PCTCN2019130052-appb-000017
表12示出本申请第四实施方式的摄像光学镜头40中的自由曲面数据。
【表12】
Figure PCTCN2019130052-appb-000018
Figure PCTCN2019130052-appb-000019
图8示出了第四实施例的摄像光学镜头40的RMS光斑直径在第一象限内的情况,根据图8可知,第四实施方式的摄像光学镜头40能够实现良好的成像品质。
以下表19按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为1.313mm,全视场像高(对角线方向)IH为6.400mm,x方向像高为5.000mm,y方向像高为4.000mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为89.47°,x方向视场角为77.80°,y方向视场角为66.75°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第五实施方式)
第五实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表13、表14示出本申请第五实施方式的摄像光学镜头50的设计数据。其中,第五透镜L5的物侧面和像侧面为自由曲面。
【表13】
Figure PCTCN2019130052-appb-000020
表14示出本申请第五实施方式的摄像光学镜头50中各透镜的非球面数据。
【表14】
Figure PCTCN2019130052-appb-000021
表15示出本申请第五实施方式的摄像光学镜头50中的自由曲面数据。
【表15】
Figure PCTCN2019130052-appb-000022
图10示出了第五实施例的摄像光学镜头50的RMS光斑直径在第一象限内的情况,根据图10可知,第五实施方式的摄像光学镜头50 能够实现良好的成像品质。
以下表19按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为1.366mm,全视场像高(对角线方向)IH为6.400mm,x方向像高为5.000mm,y方向像高为4.000mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为87.43°,x方向视场角为76.10°,y方向视场角为65.04°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第六实施方式)
第六实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表16、表17示出本申请第六实施方式的摄像光学镜头60的设计数据。其中,第二透镜L2的物侧面和像侧面为自由曲面。
【表16】
Figure PCTCN2019130052-appb-000023
表17示出本申请第六实施方式的摄像光学镜头60中各透镜的非球面数据。
【表17】
Figure PCTCN2019130052-appb-000024
Figure PCTCN2019130052-appb-000025
表18示出本申请第六实施方式的摄像光学镜头60中的自由曲面数据。
【表18】
Figure PCTCN2019130052-appb-000026
图12示出了第六实施例的摄像光学镜头60的RMS光斑直径在第一象限内的情况,根据图12可知,第六实施方式的摄像光学镜头60能够实现良好的成像品质。
以下表19按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为 1.300mm,全视场像高(对角线方向)IH为6.400mm,x方向像高为5.000mm,y方向像高为4.000mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为90.06°,x方向视场角为78.42°,y方向视场角为67.44°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
【表19】
参数及条件式 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
f1 11.18 10.90 10.27 6.45 6.94 6.55
f2 2.85 2.76 2.71 4.06 4.02 4.09
f3 -4.18 -3.54 -4.34 -11.21 -9.41 -10.66
R4 -2.08 -1.89 -1.80 -2.53 -2.38 -1.96
f 1.955 1.955 1.955 2.953 3.074 2.925
f4 1.033 0.993 4.149 2.483 2.500 1.988
f5 -1.127 -1.127 -96.229 -3.040 -3.025 -2.353
Fno 2.42 2.42 2.42 2.25 2.25 2.25
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (10)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜;
    所述第一透镜至所述第五透镜中的至少一个含自由曲面,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第三透镜的焦距为f3,所述第二透镜像侧面的曲率半径为R4,且满足下列关系式:
    f1≥0.00;
    f2≥0.00;
    f3≤0.00;
    R4≤0.00。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    1.09≤f1/f≤8.58;
    -6.47≤(R1+R2)/(R1-R2)≤8.76;
    0.03≤d1/TTL≤0.13。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第二透镜物侧面的曲率半径为R3,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.65≤f2/f≤2.18;
    0.23≤(R3+R4)/(R3-R4)≤1.97;
    0.04≤d3/TTL≤0.19。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -7.59≤f3/f≤-1.21;
    -4.61≤(R5+R6)/(R5-R6)≤2.09;
    0.02≤d5/TTL≤0.09。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.25≤f4/f≤3.18;
    0.66≤(R7+R8)/(R7-R8)≤8.68;
    0.05≤d7/TTL≤0.31。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -98.44≤f5/f≤-0.38;
    0.70≤(R9+R10)/(R9-R10)≤12.48;
    0.05≤d9/TTL≤0.19。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈F数为Fno,且满足下列关系式:
    Fno≤2.49。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    TTL≤5.02。
  9. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的对角线的全视场像高为IH,且满足下列关系式:
    TTL/IH≤0.88。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的对角线的视场角为FOV,且满足下列关系式:
    79.48≤FOV≤112.19。
PCT/CN2019/130052 2019-12-30 2019-12-30 摄像光学镜头 WO2021134270A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130052 WO2021134270A1 (zh) 2019-12-30 2019-12-30 摄像光学镜头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130052 WO2021134270A1 (zh) 2019-12-30 2019-12-30 摄像光学镜头

Publications (1)

Publication Number Publication Date
WO2021134270A1 true WO2021134270A1 (zh) 2021-07-08

Family

ID=76686089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130052 WO2021134270A1 (zh) 2019-12-30 2019-12-30 摄像光学镜头

Country Status (1)

Country Link
WO (1) WO2021134270A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9188766B1 (en) * 2014-06-17 2015-11-17 Newmax Technology Co., Ltd. Five-piece optical lens system
CN105807397A (zh) * 2015-01-20 2016-07-27 三星电子株式会社 成像透镜和包括该成像透镜的成像装置
CN106154510A (zh) * 2014-09-30 2016-11-23 三星电机株式会社 光学系统
US9557535B1 (en) * 2015-09-11 2017-01-31 Largan Precision Co., Ltd. Photographing optical system, image capturing device and electronic device
CN108072968A (zh) * 2016-11-09 2018-05-25 大立光电股份有限公司 摄像光学镜片系统、取像装置及电子装置
CN108363169A (zh) * 2018-02-05 2018-08-03 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109375345A (zh) * 2018-09-30 2019-02-22 瑞声声学科技(深圳)有限公司 摄像镜头
CN111123477A (zh) * 2019-12-30 2020-05-08 瑞声通讯科技(常州)有限公司 摄像光学镜头

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9188766B1 (en) * 2014-06-17 2015-11-17 Newmax Technology Co., Ltd. Five-piece optical lens system
CN106154510A (zh) * 2014-09-30 2016-11-23 三星电机株式会社 光学系统
CN105807397A (zh) * 2015-01-20 2016-07-27 三星电子株式会社 成像透镜和包括该成像透镜的成像装置
US9557535B1 (en) * 2015-09-11 2017-01-31 Largan Precision Co., Ltd. Photographing optical system, image capturing device and electronic device
CN108072968A (zh) * 2016-11-09 2018-05-25 大立光电股份有限公司 摄像光学镜片系统、取像装置及电子装置
CN108363169A (zh) * 2018-02-05 2018-08-03 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109375345A (zh) * 2018-09-30 2019-02-22 瑞声声学科技(深圳)有限公司 摄像镜头
CN111123477A (zh) * 2019-12-30 2020-05-08 瑞声通讯科技(常州)有限公司 摄像光学镜头

Similar Documents

Publication Publication Date Title
WO2022021453A1 (zh) 摄像光学镜头
WO2022000658A1 (zh) 摄像光学镜头
WO2021168881A1 (zh) 摄像光学镜头
WO2022000647A1 (zh) 摄像光学镜头
WO2022041391A1 (zh) 摄像光学镜头
WO2022021456A1 (zh) 摄像光学镜头
WO2022021457A1 (zh) 摄像光学镜头
WO2021097927A1 (zh) 摄像光学镜头
WO2022126700A1 (zh) 摄像光学镜头
WO2022032827A1 (zh) 摄像光学镜头
WO2021168882A1 (zh) 摄像光学镜头
WO2022021455A1 (zh) 摄像光学镜头
WO2021168891A1 (zh) 摄像光学镜头
WO2022007022A1 (zh) 摄像光学镜头
WO2022007027A1 (zh) 摄像光学镜头
WO2021097920A1 (zh) 摄像光学镜头
WO2022021458A1 (zh) 摄像光学镜头
WO2021134321A1 (zh) 摄像光学镜头
WO2021134324A1 (zh) 摄像光学镜头
WO2021168889A1 (zh) 摄像光学镜头
WO2022032828A1 (zh) 摄像光学镜头
WO2021134331A1 (zh) 摄像光学镜头
WO2022032826A1 (zh) 摄像光学镜头
WO2022021454A1 (zh) 摄像光学镜头
WO2021134330A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958233

Country of ref document: EP

Kind code of ref document: A1