WO2021097927A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2021097927A1
WO2021097927A1 PCT/CN2019/123021 CN2019123021W WO2021097927A1 WO 2021097927 A1 WO2021097927 A1 WO 2021097927A1 CN 2019123021 W CN2019123021 W CN 2019123021W WO 2021097927 A1 WO2021097927 A1 WO 2021097927A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
curvature
optical lens
ttl
Prior art date
Application number
PCT/CN2019/123021
Other languages
English (en)
French (fr)
Inventor
王康
马力
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Publication of WO2021097927A1 publication Critical patent/WO2021097927A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Definitions

  • the present invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
  • Camera optical lenses on traditional electronic products mostly adopt four-element, five-element, six-element or even seven-element lens structure.
  • the shape setting is not sufficient, resulting in the wide-angle and ultra-thinning of the imaging optical lens is still insufficient.
  • the purpose of the present invention is to provide an imaging optical lens, which aims to solve the problems of insufficient wide-angle and ultra-thinning of the traditional imaging optical lens.
  • an imaging optical lens from the object side to the image side, including: a first lens with negative refractive power, a second lens with positive refractive power, a third lens with negative refractive power, A fourth lens with positive refractive power and a fifth lens with negative refractive power; wherein the overall focal length of the imaging optical lens is f, the focal length of the first lens is f1, and the focal length of the second lens is f2, The focal length of the fourth lens is f4, the radius of curvature of the object side of the third lens is R5, the radius of curvature of the image side of the third lens is R6, and the axial thickness of the first lens is d1, The on-axis distance from the image side surface of the first lens to the object side surface of the second lens is d2, and satisfies the following relationship: -6.00 ⁇ f1/f ⁇ -3.00; 1.80 ⁇ (f2+f4)/f ⁇ 2.50; 1.00 ⁇ d2/d1 ⁇ 2.00; 5.00 ⁇
  • the radius of curvature of the object side surface of the fifth lens is R9
  • the radius of curvature of the image side surface of the fifth lens is R10, and the following relationship is satisfied: 1.50 ⁇ (R9+R10)/(R9-R10) ⁇ 4.00.
  • the on-axis thickness of the second lens is d3, and the on-axis distance from the image side surface of the second lens to the object side surface of the third lens is d4, and the following relationship is satisfied: 2.00 ⁇ d3/d4 ⁇ 5.00.
  • the radius of curvature of the object side surface of the first lens is R1
  • the radius of curvature of the image side surface of the first lens is R2
  • the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: -7.00 ⁇ (R1 +R2)/(R1-R2) ⁇ 2.81; 0.03 ⁇ d1/TTL ⁇ 0.19.
  • the radius of curvature of the object side surface of the second lens is R3, the radius of curvature of the image side surface of the second lens is R4, the axial thickness of the second lens is d3, and the total optical length of the imaging optical lens is TTL, and satisfies the following relationship: 0.55 ⁇ f2/f ⁇ 2.08; 0.05 ⁇ (R3+R4)/(R3-R4) ⁇ 0.99; 0.06 ⁇ d3/TTL ⁇ 0.24.
  • the focal length of the third lens is f3, the axial thickness of the third lens is d5, the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: -37.17 ⁇ f3/f ⁇ - 3.15; 0.02 ⁇ d5/TTL ⁇ 0.08.
  • the radius of curvature of the object side surface of the fourth lens is R7
  • the radius of curvature of the image side surface of the fourth lens is R8,
  • the axial thickness of the fourth lens is d7
  • the optical The total length is TTL and satisfies the following relationship: 0.35 ⁇ f4/f ⁇ 1.73; 0.68 ⁇ (R7+R8)/(R7-R8) ⁇ 3.59; 0.05 ⁇ d7/TTL ⁇ 0.32.
  • the focal length of the fifth lens is f5
  • the axial thickness of the fifth lens is d9
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: -2.83 ⁇ f5/f ⁇ - 0.47; 0.03 ⁇ d9/TTL ⁇ 0.15.
  • the total optical length of the imaging optical lens is TTL
  • the image height of the imaging optical lens is IH
  • the field of view of the imaging optical lens is FOV
  • the focal number of the imaging optical lens is Fno, and the following relationship is satisfied: FOV ⁇ 100°; Fno ⁇ 2.40.
  • the camera optical lens provided by the present invention has good optical performance and meets the design requirements of large aperture, wide-angle and ultra-thinness.
  • FIG. 1 is a schematic diagram of the structure of the imaging optical lens of the first embodiment
  • FIG. 2 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 3 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic diagram of the structure of the imaging optical lens of the second embodiment
  • FIG. 6 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 7 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic diagram of the structure of an imaging optical lens of the third embodiment.
  • FIG. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 11 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9;
  • FIG. 13 is a schematic diagram of the structure of an imaging optical lens of the fourth embodiment.
  • FIG. 14 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 13;
  • FIG. 15 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 13;
  • FIG. 16 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 13;
  • FIG. 17 is a schematic diagram of the structure of an imaging optical lens of a fifth embodiment.
  • FIG. 18 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 17;
  • FIG. 19 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 17;
  • FIG. 20 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 17.
  • the present invention provides an imaging optical lens 10 according to a first embodiment.
  • the left side is the object side
  • the right side is the image side.
  • the imaging optical lens 10 mainly includes five lenses. From the object side to the image side, there are a first lens L1, an aperture S1, a second lens L2, and a third lens. Lens L3, fourth lens L4, and fifth lens L5.
  • a glass plate GF is provided between the fifth lens L5 and the image plane Si.
  • the glass plate GF may be a glass cover plate or an optical filter.
  • the first lens L1 has negative refractive power; the second lens L2 has positive refractive power; the third lens L3 has negative refractive power; the fourth lens L4 has positive refractive power; the fifth lens L5 has negative refractive power .
  • the focal length of the entire imaging optical lens 10 is defined as f
  • the focal length of the first lens L1 is f1
  • the focal length of the second lens L2 is f2
  • the focal length of the fourth lens L4 is f4
  • the curvature of the object side of the third lens L3 The radius is R5, the curvature radius of the image side surface of the third lens L3 is R6, the axial thickness of the first lens L1 is d1, and the axial distance from the image side surface of the first lens L1 to the object side surface of the second lens L2 is d2, Satisfy the following relations:
  • conditional formula (1) specifies the ratio of the focal length f2 of the first lens L1 to the total focal length f of the system, which helps to improve the performance of the optical system within the range of the conditional formula.
  • -6.00 ⁇ f1/f ⁇ -3.46 is satisfied.
  • the focal lengths of the third lens L3 and the fifth lens L5 can be appropriately matched to correct the aberration of the optical system, thereby improving the imaging quality.
  • 1.83 ⁇ (f2+f4)/f ⁇ 2.50 is satisfied.
  • the conditional formula (3) specifies the ratio of the on-axis distance d2 from the image side of the first lens L1 to the object side of the second lens L2 to the on-axis thickness d1 of the first lens L1, which helps the lens within the scope of the conditional formula Processing and assembly of the lens.
  • 1.28 ⁇ d2/d1 ⁇ 1.90 is satisfied.
  • Conditional formula (4) specifies the shape of the third lens L3, which can ease the degree of deflection of light passing through the lens and effectively reduce aberrations.
  • the radius of curvature of the object side surface of the fifth lens L5 is R9
  • the radius of curvature of the image side surface of the fifth lens L5 is R10, which satisfies the following relationship: 1.50 ⁇ (R9+R10)/(R9-R10) ⁇ 4.00, which stipulates the first
  • the shape of the five lens L5 is conducive to lens processing within the range of conditions. Preferably, 1.50 ⁇ (R9+R10)/(R9-R10) ⁇ 3.54 is satisfied.
  • the on-axis thickness of the second lens L2 is d3, and the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3 is d4, which satisfies the following relationship: 2.00 ⁇ d3/d4 ⁇ 5.00, which specifies the second
  • the ratio of the on-axis distance d4 from the image side surface of the lens L2 to the object side surface of the third lens L3 to the on-axis thickness d3 of the second lens L2 is beneficial to the overall length of the compression system. Preferably, 2.36 ⁇ d3/d4 ⁇ 4.82 is satisfied.
  • the curvature radius of the object side surface of the first lens L1 is R1
  • the curvature radius of the image side surface of the first lens L1 is R2, which satisfies the following relationship: -7.00 ⁇ (R1+R2)/(R1-R2) ⁇ 2.81.
  • it satisfies -4.37 ⁇ (R1+R2)/(R1-R2) ⁇ 2.24.
  • the axial thickness of the first lens L1 is d1
  • the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.03 ⁇ d1/TTL ⁇ 0.19, which is conducive to achieving ultra-thinness.
  • 0.05 ⁇ d1/TTL ⁇ 0.15 is satisfied.
  • the focal length of the second lens L2 is f2, which satisfies the following relationship: 0.55 ⁇ f2/f ⁇ 2.08.
  • f2 The focal length of the second lens L2
  • 0.88 ⁇ f2/f ⁇ 1.66 is satisfied.
  • the curvature radius of the object side surface of the second lens L2 is R3, and the curvature radius of the image side surface of the second lens L2 is R4, which satisfies the following relationship: 0.05 ⁇ (R3+R4)/(R3-R4) ⁇ 0.99, which specifies the second lens
  • 0.05 ⁇ (R3+R4)/(R3-R4) ⁇ 0.99 which specifies the second lens
  • 0.08 ⁇ (R3+R4)/(R3-R4) ⁇ 0.80 is satisfied.
  • the on-axis thickness of the second lens L2 is d3, which satisfies the following relationship: 0.06 ⁇ d3/TTL ⁇ 0.24, which is conducive to achieving ultra-thinness.
  • 0.10 ⁇ d3/TTL ⁇ 0.19 is satisfied.
  • the focal length of the third lens L3 is f3, which satisfies the following relationship: -37.17 ⁇ f3/f ⁇ -3.15.
  • the reasonable distribution of the optical power enables the system to have better imaging quality and lower sensitivity.
  • it satisfies -23.23 ⁇ f3/f ⁇ -3.93.
  • the on-axis thickness of the third lens L3 is d5, which satisfies the following relationship: 0.02 ⁇ d5/TTL ⁇ 0.08, which is beneficial to realize ultra-thinness.
  • 0.03 ⁇ d3/TTL ⁇ 0.07 is satisfied.
  • the focal length of the fourth lens L4 is f4, which satisfies the following relationship: 0.35 ⁇ f4/f ⁇ 1.73.
  • the reasonable distribution of the optical power enables the system to have better imaging quality and lower sensitivity.
  • 0.56 ⁇ f4/f ⁇ 1.39 is satisfied.
  • the curvature radius of the object side surface of the fourth lens L4 is R7
  • the curvature radius of the image side surface of the fourth lens L4 is R8, which satisfies the following relationship: 0.68 ⁇ (R7+R8)/(R7-R8) ⁇ 3.59, which specifies the fourth lens
  • 0.68 ⁇ (R7+R8)/(R7-R8) ⁇ 3.59 which specifies the fourth lens
  • the shape of L4 is within the range, with the development of ultra-thin and wide-angle, it is helpful to correct the aberration of the off-axis angle of view.
  • 1.09 ⁇ (R7+R8)/(R7-R8) ⁇ 2.88 is satisfied.
  • the on-axis thickness of the fourth lens L4 is d7, which satisfies the following relationship: 0.05 ⁇ d7/TTL ⁇ 0.32, which is beneficial to realize ultra-thinness.
  • 0.09 ⁇ d7/TTL ⁇ 0.26 is satisfied.
  • the focal length f5 of the fifth lens L5 satisfies the following relationship: -2.83 ⁇ f5/f ⁇ -0.47.
  • the limitation of the fifth lens L5 can effectively make the light angle of the imaging lens smooth and reduce the tolerance sensitivity. Preferably, it satisfies -1.77 ⁇ f5/f ⁇ -0.59.
  • the on-axis thickness of the fifth lens L5 is d9, which satisfies the following relationship: 0.03 ⁇ d9/TTL ⁇ 0.15, which is beneficial to realize ultra-thinness.
  • 0.05 ⁇ d9/TTL ⁇ 0.12 is satisfied.
  • the total optical length TTL of the imaging optical lens 10 is less than or equal to 6.11 mm, which is beneficial to achieve ultra-thinness.
  • the total optical length TTL is less than or equal to 5.84 mm.
  • the focal number Fno of the imaging optical lens 10 is less than or equal to 2.40. Large aperture, good imaging performance. Preferably, the aperture F number is less than or equal to 2.38.
  • the surface of each lens can be set as an aspherical surface. The aspherical surface can be easily made into a shape other than a spherical surface, and more control variables can be obtained to reduce aberrations, thereby reducing the use of lenses. Therefore, the total length of the imaging optical lens 10 can be effectively reduced.
  • both the object side surface and the image side surface of each lens are aspherical.
  • the imaging optical lens 10 can be reasonable The power, spacing, and shape of each lens are allocated, and various aberrations are corrected accordingly.
  • the ratio of the total optical length TTL of the imaging optical lens to the image height IH is less than or equal to 1.90, thereby achieving ultra-thinness.
  • the field of view FOV of the imaging optical lens is greater than or equal to 100°, so as to achieve a wide angle.
  • the imaging optical lens 10 can not only have good optical imaging performance, but also meet the design requirements of large aperture and ultra-thinness.
  • At least one of the object side surface and the image side surface of each lens may also be provided with an inflection point and/or a stagnation point to meet high-quality imaging requirements.
  • an inflection point and/or a stagnation point may also be provided with an inflection point and/or a stagnation point to meet high-quality imaging requirements.
  • the design data of the imaging optical lens 10 shown in FIG. 1 is shown below.
  • Table 1 lists the object side curvature radius and the image side curvature radius R of the first lens L1 to the fifth lens L5 constituting the imaging optical lens 10 in the first embodiment of the present invention, the on-axis thickness of each lens, and two adjacent lenses Between the distance d, refractive index nd and Abbe number ⁇ d. It should be noted that in this embodiment, the units of R and d are both millimeters (mm).
  • R The radius of curvature of the optical surface, and the radius of curvature of the center of the lens
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the radius of curvature of the object side surface of the fifth lens L5;
  • R10 the radius of curvature of the image side surface of the fifth lens L5;
  • R11 the radius of curvature of the object side surface of the optical filter GF
  • R12 the radius of curvature of the image side surface of the optical filter GF
  • d0 the on-axis distance from the aperture S1 to the object side of the first lens L1;
  • d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
  • d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the optical filter GF;
  • d11 the axial thickness of the optical filter GF
  • d12 the on-axis distance from the image side surface of the optical filter GF to the image surface
  • nd refractive index of d line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • ndg the refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF.
  • Table 2 shows the aspheric surface data of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, and A20 are the aspheric coefficients.
  • the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (1).
  • the present invention is not limited to the aspheric polynomial form represented by the formula (1).
  • Table 3 and Table 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of this embodiment.
  • P1R1 and P1R2 represent the object side and image side of the first lens L1 respectively
  • P2R1 and P2R2 represent the object side and image side of the second lens L2 respectively
  • P3R1 and P3R2 represent the object side and image side of the third lens L3 respectively
  • P4R1 and P4R2 represent the object side and image side of the fourth lens L4, respectively
  • P5R1 and P5R2 represent the object side and the image side of the fifth lens L5, respectively.
  • the corresponding data in the “reflection point position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • the data corresponding to the “stationary point position” column is the vertical distance from the stationary point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • FIG. 4 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 10.
  • the curvature of field S in FIG. 4 is the curvature of field in the sagittal direction
  • T is the curvature of field in the meridional direction.
  • the imaging optical lens 10 has an entrance pupil diameter of 0.820mm, a full field of view image height of 2.950mm, a diagonal field of view angle of 116.20°, a large aperture, wide angle, ultra-thin, and Has excellent optical characteristics.
  • FIG. 5 is a schematic diagram of the structure of the imaging optical lens 20 in the second embodiment.
  • the second embodiment is basically the same as the first embodiment.
  • the meanings of the symbols in the following list are also the same as those in the first embodiment, so the same parts will not be omitted here. To repeat, only the differences are listed below.
  • Table 5 and Table 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows the aspheric surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 7 and Table 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20.
  • FIG. 6 and 7 respectively show schematic diagrams of axial aberrations and chromatic aberrations of magnification after light with wavelengths of 650 nm, 640 nm, 555 nm, 510 nm, 470 nm, and 430 nm pass through the imaging optical lens 20.
  • FIG. 8 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 20.
  • the curvature of field S in FIG. 8 is the curvature of field in the sagittal direction
  • T is the curvature of field in the meridional direction.
  • the imaging optical lens 20 has an entrance pupil diameter of 0.849mm, a full field of view image height of 2.950mm, a diagonal field of view angle of 114.00°, a large aperture, wide angle, ultra-thin, and Has excellent optical characteristics.
  • FIG. 9 is a schematic diagram of the structure of the imaging optical lens 30 in the third embodiment.
  • the third embodiment is basically the same as the first embodiment.
  • the meanings of the symbols in the following list are also the same as those in the first embodiment, so the same parts will not be omitted here. To repeat, only the differences are listed below.
  • Table 9 and Table 10 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 10 shows the aspheric surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 11 and Table 12 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 30.
  • FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 650 nm, 640 nm, 555 nm, 510 nm, 470 nm, and 430 nm pass through the imaging optical lens 30.
  • FIG. 12 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 30.
  • the curvature of field S in FIG. 12 is the curvature of field in the sagittal direction
  • T is the curvature of field in the meridional direction.
  • the imaging optical lens 10 has an entrance pupil diameter of 1.020mm, a full-field image height of 2.950mm, a diagonal viewing angle of 116.20°, a large aperture, wide angle, ultra-thin, and Has excellent optical characteristics.
  • FIG. 13 is a schematic diagram of the structure of the imaging optical lens 40 in the fourth embodiment.
  • the fourth embodiment is basically the same as the first embodiment.
  • the meanings of the symbols in the following list are also the same as those in the first embodiment, so the same parts will not be omitted here. To repeat, only the differences are listed below.
  • Table 13 and Table 14 show design data of the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • Table 14 shows aspheric surface data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • Table 15 and Table 16 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 40.
  • FIG. 14 and 15 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, 470 nm, and 435 nm pass through the imaging optical lens 40.
  • FIG. 16 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 40.
  • the curvature of field S in FIG. 16 is the curvature of field in the sagittal direction, and T is the curvature of field in the meridional direction.
  • the imaging optical lens 10 has an entrance pupil diameter of 0.787mm, a full field of view image height of 2.285mm, a diagonal field of view angle of 101.80°, wide-angle, ultra-thin, and excellent Optical characteristics.
  • FIG. 17 is a schematic diagram of the structure of the imaging optical lens 50 in the fifth embodiment.
  • the fifth embodiment is basically the same as the first embodiment.
  • the meanings of the symbols in the following list are also the same as those in the first embodiment, so the same parts will not be omitted here. To repeat, only the differences are listed below.
  • Table 17 and Table 18 show design data of the imaging optical lens 50 according to the fifth embodiment of the present invention.
  • Table 18 shows the aspheric surface data of each lens in the imaging optical lens 50 according to the fifth embodiment of the present invention.
  • Table 19 and Table 20 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 50.
  • FIG. 20 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 50.
  • the curvature of field S in FIG. 20 is the curvature of field in the sagittal direction, and T is the curvature of field in the meridional direction.
  • the entrance pupil diameter of the imaging optical lens is 0.737mm
  • the full field of view image height is 2.285mm
  • the diagonal viewing angle is 105.00°
  • Table 21 lists the values of the corresponding conditional expressions in the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, and the fifth embodiment according to the above conditional expressions, as well as the values of other related parameters.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 f1/f -6.000 -5.954 -4.655 -3.925 -3.919 (f2+f4)/f 2.500 1.800 2.166 2.044 2.207 d2/d1 1.639 1.552 1.807 1.784 1.700 (R5+R6)/(R5-R6) 14.976 5.000 10.008 8.220 5.062 f 1.960 2.029 2.084 1.889 1.770 f1 -11.760 -12.081 -9.700 -7.414 -6.937 f2 2.633 2.223 2.886 2.399 2.008 f3 -36.431 -11.418 -23.054 -15.217 -8.357 f4 2.267 1.430 1.627 1.462 1.898

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明提供了一种摄像光学镜头,由物侧至像侧依次包括具有负屈折力的第一透镜、具有正屈折力的第二透镜、具有负屈折力的第三透镜、具有正屈折力的第四透镜及具有负屈折力的第五透镜,且满足以下关系式:-6.00≤f1/f≤-3.00;1.80≤(f2+f4)/f≤2.50;1.00≤d2/d1≤2.00;5.00≤(R5+R6)/(R5-R6)≤15.00;该摄像光学镜头在具有良好的光学性能的同时,还满足大光圈、广角化、超薄化的设计要求。

Description

摄像光学镜头 【技术领域】
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
【背景技术】
随着摄像技术的发展,摄像光学镜头被广泛地应用在各式各样的电子产品中,例如智能手机、数码相机等。为方便携带,人们越来越追求电子产品的轻薄化,因此,具备良好成像品质的小型化摄像光学镜头俨然成为目前市场的主流。
传统电子产品上的摄像光学镜头多采用四片式、五片式、六片式甚至七片式透镜结构,然而随着用户多样化需求的增加,由于现有透镜结构的光焦度分配、透镜形状设置不充分,从而导致摄像光学镜头的广角化、超薄化仍不够充分。
因此,有必要提供一种具有良好的光学性能且满足广角化、超薄化设计要求的摄像光学镜头。
【发明内容】
本发明的目的在于提供一种摄像光学镜头,旨在解决传统的摄像光学镜头广角化、超薄化不充分的问题。
本发明的技术方案如下:一种摄像光学镜头,由物侧至像侧依次包括:具有负屈折力的第一透镜、具有正屈折力的第二透镜、具有负屈折力的第三透镜、具有正屈折力的第四透镜及具有负屈折力的第五透镜;其中,所述摄像光学镜头整体的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第四透镜的焦距为f4,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第一透镜的轴上厚度为d1,所述第一透镜的像侧面到所述第二透镜的物侧面的轴上距离为d2,且满足下列关系式:-6.00≤f1/f≤-3.00;1.80≤(f2+f4)/f≤2.50;1.00≤d2/d1≤2.00;5.00≤(R5+R6)/(R5-R6)≤15.00。
优选地,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,且满足下列关系式:1.50≤(R9+R10)/(R9-R10)≤4.00。
优选地,所述第二透镜的轴上厚度为d3,所述第二透镜的像侧面到所 述第三透镜的物侧面的轴上距离为d4,且满足下列关系式:2.00≤d3/d4≤5.00。
优选地,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述摄像光学镜头的光学总长为TTL,满足下列关系式:-7.00≤(R1+R2)/(R1-R2)≤2.81;0.03≤d1/TTL≤0.19。
优选地,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.55≤f2/f≤2.08;0.05≤(R3+R4)/(R3-R4)≤0.99;0.06≤d3/TTL≤0.24。
优选地,所述第三透镜的焦距为f3,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-37.17≤f3/f≤-3.15;0.02≤d5/TTL≤0.08。
优选地,所述第四透镜的物侧面的曲率半径为R7,所述第四透镜的像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.35≤f4/f≤1.73;0.68≤(R7+R8)/(R7-R8)≤3.59;0.05≤d7/TTL≤0.32。
优选地,所述第五透镜的焦距为f5,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-2.83≤f5/f≤-0.47;0.03≤d9/TTL≤0.15。
优选地,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,且满足下列关系式:TTL/IH≤1.9。
优选地,所述摄像光学镜头的视场角为FOV,所述摄像光学镜头的焦数为Fno,且满足下列关系式:FOV≥100°;Fno≤2.40。
本发明的有益效果在于:
本发明提供的摄像光学镜头在具有良好光学性能的同时,满足大光圈、广角化和超薄化的设计要求。
【附图说明】
图1是第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示的摄像光学镜头的轴向像差示意图;
图3是图1所示的摄像光学镜头的倍率色差示意图;
图4是图1所示的摄像光学镜头的场曲及畸变示意图;
图5是第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示的摄像光学镜头的轴向像差示意图;
图7是图5所示的摄像光学镜头的倍率色差示意图;
图8是图5所示的摄像光学镜头的场曲及畸变示意图;
图9是第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示的摄像光学镜头的轴向像差示意图;
图11是图9所示的摄像光学镜头的倍率色差示意图;
图12是图9所示的摄像光学镜头的场曲及畸变示意图;
图13是第四实施方式的摄像光学镜头的结构示意图;
图14是图13所示的摄像光学镜头的轴向像差示意图;
图15是图13所示的摄像光学镜头的倍率色差示意图;
图16是图13所示的摄像光学镜头的场曲及畸变示意图;
图17是第五实施方式的摄像光学镜头的结构示意图;
图18是图17所示的摄像光学镜头的轴向像差示意图;
图19是图17所示的摄像光学镜头的倍率色差示意图;
图20是图17所示的摄像光学镜头的场曲及畸变示意图。
【具体实施方式】
下面结合附图和实施方式对本发明作进一步说明。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
请一并参阅图1至图4,本发明提供了第一实施方式的摄像光学镜头10。在图1中,左侧为物侧,右侧为像侧,摄像光学镜头10主要包括五个透镜,从物侧至像侧依次为第一透镜L1、光圈S1、第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5。在第五透镜L5与像面Si之间设有玻璃平板GF,玻璃平板GF可以是玻璃盖板,也可以是光学过滤片。
在本实施方式中,第一透镜L1具有负屈折力;第二透镜L2具有正屈折力;第三透镜L3具有负屈折力;第四透镜L4具有正屈折力;第五透镜L5具有负屈折力。
在此,定义摄像光学镜头10整体的焦距为f,第一透镜L1的焦距为f1,第二透镜L2的焦距为f2,第四透镜L4的焦距为f4,第三透镜L3的物侧面的曲率半径为R5,第三透镜L3的像侧面的曲率半径为R6,第一透 镜L1的轴上厚度为d1,第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离为d2,满足下列关系式:
-6.00≤f1/f≤-3.00              (1)
1.80≤(f2+f4)/f≤2.50                  (2)
1.00≤d2/d1≤2.00               (3)
5.00≤(R5+R6)/(R5-R6)≤15.00                 (4)
其中,条件式(1)规定了第一透镜L1焦距f2与系统总焦距f的比值,在条件式范围内有助于提高光学系统性能。优选地,满足-6.00≤f1/f≤-3.46。
条件式(2)满足条件时,可适当配第三透镜L3和第五透镜L5焦距,对光学系统的像差进行校正,进而提升成像品质。优选地,满足1.83≤(f2+f4)/f≤2.50。
条件式(3)规定了第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离d2与第一透镜L1的轴上厚度d1的比值,在条件式范围内有助于镜片的加工和镜头的组装。优选地,满足1.28≤d2/d1≤1.90。
条件式(4)规定了第三透镜L3的形状,可以缓和光线经过镜片的偏折程度,有效减小像差。第五透镜L5的物侧面的曲率半径为R9,第五透镜L5的像侧面的曲率半径为R10,满足下列关系式:1.50≤(R9+R10)/(R9-R10)≤4.00,规定了第五透镜L5的形状,在条件范围内有利于镜片加工。优选地,满足1.50≤(R9+R10)/(R9-R10)≤3.54。
第二透镜L2的轴上厚度为d3,第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离为d4,满足下列关系式:2.00≤d3/d4≤5.00,规定了第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离d4与第二透镜L2的轴上厚度d3的比值,有利于在压缩系统总长。优选地,满足2.36≤d3/d4≤4.82。
在本实施方式中,第一透镜L1物侧面的曲率半径为R1,第一透镜L1像侧面的曲率半径为R2,满足下列关系式:-7.00≤(R1+R2)/(R1-R2)≤2.81,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。优选地,满足-4.37≤(R1+R2)/(R1-R2)≤2.24。
第一透镜L1的轴上厚度为d1,摄像光学镜头的光学总长为TTL,满足下列关系式:0.03≤d1/TTL≤0.19,有利于实现超薄化。优选地,满足0.05≤d1/TTL≤0.15。
第二透镜L2的焦距为f2,满足下列关系式:0.55≤f2/f≤2.08,通过将第二透镜L2的正光焦度控制在合理范围,有利于矫正光学系统的像差。 优选地,满足0.88≤f2/f≤1.66。
第二透镜L2物侧面的曲率半径为R3,第二透镜L2像侧面的曲率半径为R4,满足下列关系式:0.05≤(R3+R4)/(R3-R4)≤0.99,规定了第二透镜L2的形状,在范围内时,随着镜头向超薄广角化发展,有利于补正轴上色像差问题。优选地,满足0.08≤(R3+R4)/(R3-R4)≤0.80。
第二透镜L2的轴上厚度为d3,满足下列关系式:0.06≤d3/TTL≤0.24,有利于实现超薄化。优选地,满足0.10≤d3/TTL≤0.19。
第三透镜L3的焦距为f3,满足下列关系式:-37.17≤f3/f≤-3.15,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-23.23≤f3/f≤-3.93。
第三透镜L3的轴上厚度为d5,满足下列关系式:0.02≤d5/TTL≤0.08,有利于实现超薄化。优选地,满足0.03≤d3/TTL≤0.07。
第四透镜L4的焦距为f4,满足下列关系式:0.35≤f4/f≤1.73,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足0.56≤f4/f≤1.39。
第四透镜L4物侧面的曲率半径为R7,第四透镜L4像侧面的曲率半径为R8,满足下列关系式:0.68≤(R7+R8)/(R7-R8)≤3.59,规定了第四透镜L4的形状,在范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足1.09≤(R7+R8)/(R7-R8)≤2.88。
第四透镜L4的轴上厚度为d7,满足下列关系式:0.05≤d7/TTL≤0.32,有利于实现超薄化。优选地,满足0.09≤d7/TTL≤0.26。
第五透镜L5焦距f5,满足下列关系式:-2.83≤f5/f≤-0.47,对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。优选地,满足-1.77≤f5/f≤-0.59。
第五透镜L5的轴上厚度为d9,满足下列关系式:0.03≤d9/TTL≤0.15,有利于实现超薄化。优选地,满足0.05≤d9/TTL≤0.12。
本实施方式中,摄像光学镜头10的光学总长TTL小于或等于6.11毫米,有利于实现超薄化。优选地,光学总长TTL小于或等于5.84毫米。
本实施方式中,摄像光学镜头10的焦数Fno数小于或等于2.40。大光圈,成像性能好。优选地,光圈F数小于或等于2.38。此外,本实施方式提供的摄像光学镜头10中,各透镜的表面可以设置为非球面,非球面容易制作成球面以外的形状,获得较多的控制变数,用以消减像差,进而缩减透镜使用的数目,因此可以有效降低摄像光学镜头10的总长度。在本实施 方式中,各个透镜的物侧面和像侧面均为非球面。
值得一提的是,由于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5具有如前所述的结构和参数关系,因此,摄像光学镜头10能够合理分配各透镜的光焦度、间隔和形状,并因此校正了各类像差。
本实施方式中:摄像光学镜头的光学总长TTL与像高IH之间的比值小于或等于1.90,从而可实现超薄化。
本实施方式中:摄像光学镜头的视场角FOV≥100°,从而实现广角化。
如此,摄像光学镜头10实现了在具有良好光学成像性能的同时,还能满足大光圈、超薄化的设计要求。
另外,各透镜的物侧面和像侧面中的至少一个上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
以下示出了图1所示的摄像光学镜头10的设计数据。
表1列出了本发明第一实施方式中构成摄像光学镜头10的第一透镜L1~第五透镜L5的物侧面曲率半径和像侧面曲率半径R、各透镜的轴上厚度、相邻两透镜间的距离d、折射率nd及阿贝数νd。需要说明的是,本实施方式中,R与d的单位均为毫米(mm)。
【表1】
Figure PCTCN2019123021-appb-000001
上表中各符号的含义如下。
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:光学过滤片GF的物侧面的曲率半径;
R12:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度与透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到光学过滤片GF的物侧面的轴上距离;
d11:光学过滤片GF的轴上厚度;
d12:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure PCTCN2019123021-appb-000002
在表2中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
IH:像高
y=(x 2/R)/[1+{1-(k+1)(x 2/R 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20          (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本实施例的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面, P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 1 0.585  
P1R2 1 0.335  
P2R1 1 0.475  
P2R2 0    
P3R1 1 0.315  
P3R2 1 0.475  
P4R1 2 0.535 1.245
P4R2 1 0.875  
P5R1 2 0.405 1.625
P5R2 1 0.505  
【表4】
  驻点个数 驻点位置1
P1R1 1 1.185
P1R2 1 0.605
P2R1 0  
P2R2 0  
P3R1 1 0.535
P3R2 1 1.085
P4R1 1 1.175
P4R2 1 1.365
P5R1 1 0.775
P5R2 1 1.385
另外,在后续的表21中,还列出了第一实施方式中各种参数与条件式中已规定的参数所对应的值。
图2、图3分别示出了波长为650nm、640nm、555nm、510nm、470nm 和430nm的光经过摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了波长为555nm的光经过摄像光学镜头10后的场曲及畸变示意图。图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,所述摄像光学镜头10的入瞳直径为0.820mm,全视场像高为2.950mm,对角线方向的视场角为116.20°,大光圈、广角、超薄,且具有优秀的光学特征。
(第二实施方式)
图5是第二实施方式中摄像光学镜头20的结构示意图,第二实施方式与第一实施方式基本相同,以下列表中符号含义与第一实施方式也相同,故对于相同的部分此处不再赘述,以下仅列出不同点。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure PCTCN2019123021-appb-000003
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure PCTCN2019123021-appb-000004
Figure PCTCN2019123021-appb-000005
表7、表8示出摄像光学镜头20中各透镜的反曲点及驻点设计数据。
【表7】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 1 0.605  
P1R2 1 0.355  
P2R1 1 0.455  
P2R2 0    
P3R1 1 0.255  
P3R2 1 0.455  
P4R1 2 0.755 1.195
P4R2 1 0.855  
P5R1 1 0.445  
P5R2 1 0.505  
【表8】
  驻点个数 驻点位置1
P1R1 1 1.225
P1R2 1 0.625
P2R1 0  
P2R2 0  
P3R1 1 0.445
P3R2 1 1.015
P4R1 0  
P4R2 1 1.295
P5R1 1 0.755
P5R2 1 1.365
另外,在后续的表21中,还列出了第二实施方式中各种参数与条件式 中已规定的参数所对应的值。
图6、图7分别示出了波长为650nm、640nm、555nm、510nm、470nm和430nm的光经过摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为555nm的光经过摄像光学镜头20后的场曲及畸变示意图。图8的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,所述摄像光学镜头20的入瞳直径为0.849mm,全视场像高为2.950mm,对角线方向的视场角为114.00°,大光圈、广角、超薄,且具有优秀的光学特征。
(第三实施方式)
图9是第三实施方式中摄像光学镜头30的结构示意图,第三实施方式与第一实施方式基本相同,以下列表中符号含义与第一实施方式也相同,故对于相同的部分此处不再赘述,以下仅列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure PCTCN2019123021-appb-000006
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
Figure PCTCN2019123021-appb-000007
Figure PCTCN2019123021-appb-000008
表11、表12示出摄像光学镜头30中各透镜的反曲点及驻点设计数据。
【表11】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 2 0.425 1.655 0
P1R2 1 0.205 0 0
P2R1 1 0.605 0 0
P2R2 0 0 0 0
P3R1 1 0.365 0 0
P3R2 1 0.545 0 0
P4R1 3 0.415 1.255 1.355
P4R2 1 1.015 0 0
P5R1 2 0.405 1.605 0
P5R2 2 0.495 2.375 0
【表12】
Figure PCTCN2019123021-appb-000009
Figure PCTCN2019123021-appb-000010
另外,在后续的表21中,还列出了第三实施方式中各种参数与条件式中已规定的参数所对应的值。
图10、图11分别示出了波长为650nm、640nm、555nm、510nm、470nm和430nm的光经过摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为555nm的光经过摄像光学镜头30后的场曲及畸变示意图。图12的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,所述摄像光学镜头10的入瞳直径为1.020mm,全视场像高为2.950mm,对角线方向的视场角为116.20°,大光圈、广角、超薄,且具有优秀的光学特征。
(第四实施方式)
图13是第四实施方式中摄像光学镜头40的结构示意图,第四实施方式与第一实施方式基本相同,以下列表中符号含义与第一实施方式也相同,故对于相同的部分此处不再赘述,以下仅列出不同点。
表13、表14示出本发明第四实施方式的摄像光学镜头40的设计数据。
【表13】
Figure PCTCN2019123021-appb-000011
表14示出本发明第四实施方式的摄像光学镜头40中各透镜的非球面数据。
【表14】
Figure PCTCN2019123021-appb-000012
表15、表16示出摄像光学镜头40中各透镜的反曲点及驻点设计数据。
【表15】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 1 0.845    
P1R2 1 0.635    
P2R1 1 0.325    
P2R2 0      
P3R1 1 0.225    
P3R2 3 0.395 0.735 0.835
P4R1 2 0.465 0.795  
P4R2 1 0.775    
P5R1 2 0.275 1.145  
P5R2 1 0.385    
【表16】
Figure PCTCN2019123021-appb-000013
Figure PCTCN2019123021-appb-000014
另外,在后续的表21中,还列出了第四实施方式中各种参数与条件式中已规定的参数所对应的值。
图14、图15分别示出了波长为650nm、610nm、555nm、510nm、470nm和435nm的光经过摄像光学镜头40后的轴向像差以及倍率色差示意图。图16则示出了,波长为555nm的光经过摄像光学镜头40后的场曲及畸变示意图。图16的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,所述摄像光学镜头10的入瞳直径为0.787mm,全视场像高为2.285mm,对角线方向的视场角为101.80°,广角、超薄,且具有优秀的光学特征。
(第五实施方式)
图17是第五实施方式中摄像光学镜头50的结构示意图,第五实施方式与第一实施方式基本相同,以下列表中符号含义与第一实施方式也相同,故对于相同的部分此处不再赘述,以下仅列出不同点。
表17、表18示出本发明第五实施方式的摄像光学镜头50的设计数据。
【表17】
Figure PCTCN2019123021-appb-000015
Figure PCTCN2019123021-appb-000016
表18示出本发明第五实施方式的摄像光学镜头50中各透镜的非球面数据。
【表18】
Figure PCTCN2019123021-appb-000017
表19、表20示出摄像光学镜头50中各透镜的反曲点及驻点设计数据。
【表19】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 1 0.835  
P1R2 0    
P2R1 1 0.275  
P2R2 0    
P3R1 1 0.205  
P3R2 1 0.425  
P4R1 2 0.595 0.855
P4R2 1 0.795  
P5R1 2 0.275 1.255
P5R2 2 0.405 1.815
【表20】
Figure PCTCN2019123021-appb-000018
Figure PCTCN2019123021-appb-000019
另外,在后续的表21中,还列出了第五实施方式中各种参数与条件式中已规定的参数所对应的值。
图18、图19分别示出了波长为650nm、610nm、555nm、510nm、470nm和435nm的光经过摄像光学镜头50后的轴向像差以及倍率色差示意图。图20则示出了,波长为555nm的光经过摄像光学镜头50后的场曲及畸变示意图。图20的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,所述摄像光学镜头的入瞳直径为0.737mm,全视场像高为2.285mm,对角线方向的视场角为105.00°,大光圈、广角、超薄,且具有优秀的光学特征。
以下表21根据上述条件式列出了第一实施方式、第二实施方式、第三实施方式、第四实施方式、第五实施方式中对应条件式的数值,以及其他相关参数的取值。
【表21】
参数及条件式 实施例1 实施例2 实施例3 实施例4 实施例5
f1/f -6.000 -5.954 -4.655 -3.925 -3.919
(f2+f4)/f 2.500 1.800 2.166 2.044 2.207
d2/d1 1.639 1.552 1.807 1.784 1.700
(R5+R6)/(R5-R6) 14.976 5.000 10.008 8.220 5.062
f 1.960 2.029 2.084 1.889 1.770
f1 -11.760 -12.081 -9.700 -7.414 -6.937
f2 2.633 2.223 2.886 2.399 2.008
f3 -36.431 -11.418 -23.054 -15.217 -8.357
f4 2.267 1.430 1.627 1.462 1.898
f5 -2.770 -1.439 -1.933 -1.699 -2.167
f12 2.681 2.157 3.308 3.176 2.480
Fno 2.390 2.390 2.043 2.400 2.402
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种摄像光学镜头,其特征在于,由物侧至像侧依次包括:具有负屈折力的第一透镜、具有正屈折力的第二透镜、具有负屈折力的第三透镜、具有正屈折力的第四透镜及具有负屈折力的第五透镜;
    其中,所述摄像光学镜头整体的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第四透镜的焦距为f4,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第一透镜的轴上厚度为d1,所述第一透镜的像侧面到所述第二透镜的物侧面的轴上距离为d2,且满足下列关系式:
    -6.00≤f1/f≤-3.00;
    1.80≤(f2+f4)/f≤2.50;
    1.00≤d2/d1≤2.00;
    5.00≤(R5+R6)/(R5-R6)≤15.00。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,且满足下列关系式:
    1.50≤(R9+R10)/(R9-R10)≤4.00。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的轴上厚度为d3,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,且满足下列关系式:
    2.00≤d3/d4≤5.00。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -7.00≤(R1+R2)/(R1-R2)≤2.81;
    0.03≤d1/TTL≤0.19。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.55≤f2/f≤2.08;
    0.05≤(R3+R4)/(R3-R4)≤0.99;
    0.06≤d3/TTL≤0.24。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -37.17≤f3/f≤-3.15;
    0.02≤d5/TTL≤0.08。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的物侧面的曲率半径为R7,所述第四透镜的像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.35≤f4/f≤1.73;
    0.68≤(R7+R8)/(R7-R8)≤3.59;
    0.05≤d7/TTL≤0.32。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的焦距为f5,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -2.83≤f5/f≤-0.47;
    0.03≤d9/TTL≤0.15。
  9. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,且满足下列关系式:
    TTL/IH≤1.9。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的视场角为FOV,所述摄像光学镜头的焦数为Fno,且满足下列关系式:
    FOV≥100°;
    Fno≤2.40。
PCT/CN2019/123021 2019-11-22 2019-12-04 摄像光学镜头 WO2021097927A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911154146.0A CN110865448B (zh) 2019-11-22 2019-11-22 摄像光学镜头
CN201911154146.0 2019-11-22

Publications (1)

Publication Number Publication Date
WO2021097927A1 true WO2021097927A1 (zh) 2021-05-27

Family

ID=69656223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123021 WO2021097927A1 (zh) 2019-11-22 2019-12-04 摄像光学镜头

Country Status (2)

Country Link
CN (1) CN110865448B (zh)
WO (1) WO2021097927A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114355582A (zh) * 2022-03-18 2022-04-15 江西联益光学有限公司 广角镜头
CN116300008A (zh) * 2023-05-23 2023-06-23 江西联益光学有限公司 光学镜头

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111929824B (zh) * 2020-09-03 2021-03-09 诚瑞光学(苏州)有限公司 摄像光学镜头
CN113866944B (zh) * 2021-09-16 2023-09-05 江西晶超光学有限公司 一种成像系统、摄像头模组及电子设备
CN114755809B (zh) * 2022-06-14 2022-11-01 江西联益光学有限公司 光学镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140085735A1 (en) * 2012-09-26 2014-03-27 Asia Optical International Ltd. Slim Lens Assembly
CN104516090A (zh) * 2013-10-03 2015-04-15 光燿科技股份有限公司 广角成像镜头组
CN105807398A (zh) * 2016-01-20 2016-07-27 玉晶光电(厦门)有限公司 便携式电子装置与其光学成像镜头
CN106886081A (zh) * 2015-12-15 2017-06-23 大立光电股份有限公司 取像用光学镜头组、取像装置及电子装置
KR101872857B1 (ko) * 2017-03-14 2018-06-29 주식회사 엔투에이 초소형 광각 촬상 렌즈 시스템
CN108931845A (zh) * 2017-05-26 2018-12-04 大立光电股份有限公司 光学影像撷取镜片组、取像装置及电子装置
CN110361853A (zh) * 2019-08-16 2019-10-22 瑞声通讯科技(常州)有限公司 摄像光学镜头

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105807399A (zh) * 2016-01-20 2016-07-27 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140085735A1 (en) * 2012-09-26 2014-03-27 Asia Optical International Ltd. Slim Lens Assembly
CN104516090A (zh) * 2013-10-03 2015-04-15 光燿科技股份有限公司 广角成像镜头组
CN106886081A (zh) * 2015-12-15 2017-06-23 大立光电股份有限公司 取像用光学镜头组、取像装置及电子装置
CN105807398A (zh) * 2016-01-20 2016-07-27 玉晶光电(厦门)有限公司 便携式电子装置与其光学成像镜头
KR101872857B1 (ko) * 2017-03-14 2018-06-29 주식회사 엔투에이 초소형 광각 촬상 렌즈 시스템
CN108931845A (zh) * 2017-05-26 2018-12-04 大立光电股份有限公司 光学影像撷取镜片组、取像装置及电子装置
CN110361853A (zh) * 2019-08-16 2019-10-22 瑞声通讯科技(常州)有限公司 摄像光学镜头

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114355582A (zh) * 2022-03-18 2022-04-15 江西联益光学有限公司 广角镜头
CN116300008A (zh) * 2023-05-23 2023-06-23 江西联益光学有限公司 光学镜头
CN116300008B (zh) * 2023-05-23 2023-09-01 江西联益光学有限公司 光学镜头

Also Published As

Publication number Publication date
CN110865448A (zh) 2020-03-06
CN110865448B (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
WO2021031234A1 (zh) 摄像光学镜头
WO2021031236A1 (zh) 摄像光学镜头
WO2021097927A1 (zh) 摄像光学镜头
WO2021031233A1 (zh) 摄像光学镜头
WO2021097930A1 (zh) 摄像光学镜头
WO2021097914A1 (zh) 摄像光学镜头
WO2021258441A1 (zh) 摄像光学镜头
WO2022016624A1 (zh) 摄像光学镜头
WO2021196312A1 (zh) 摄像光学镜头
WO2021031239A1 (zh) 摄像光学镜头
WO2021248578A1 (zh) 摄像光学镜头
WO2022011738A1 (zh) 摄像光学镜头
WO2021097925A1 (zh) 摄像光学镜头
WO2021097920A1 (zh) 摄像光学镜头
WO2021097928A1 (zh) 摄像光学镜头
WO2021031237A1 (zh) 摄像光学镜头
WO2022047986A1 (zh) 摄像光学镜头
WO2022000657A1 (zh) 摄像光学镜头
WO2022016605A1 (zh) 摄像光学镜头
WO2021168878A1 (zh) 摄像光学镜头
WO2021168886A1 (zh) 摄像光学镜头
WO2021168887A1 (zh) 摄像光学镜头
WO2021237780A1 (zh) 摄像光学镜头
WO2022047992A1 (zh) 摄像光学镜头
WO2022047988A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953192

Country of ref document: EP

Kind code of ref document: A1