WO2022016605A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2022016605A1
WO2022016605A1 PCT/CN2020/106662 CN2020106662W WO2022016605A1 WO 2022016605 A1 WO2022016605 A1 WO 2022016605A1 CN 2020106662 W CN2020106662 W CN 2020106662W WO 2022016605 A1 WO2022016605 A1 WO 2022016605A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
curvature
optical lens
radius
Prior art date
Application number
PCT/CN2020/106662
Other languages
English (en)
French (fr)
Inventor
于东
李晚侠
王雅楠
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Publication of WO2022016605A1 publication Critical patent/WO2022016605A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145109Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +--+-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines

Definitions

  • the invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
  • imaging optical lenses are widely used in various electronic products, such as smart phones, digital cameras and so on.
  • electronic products such as smart phones, digital cameras and so on.
  • people are increasingly pursuing thinner and lighter electronic products. Therefore, miniaturized imaging optical lenses with good imaging quality have become the mainstream of the current market.
  • the lenses traditionally mounted on mobile phone cameras mostly adopt a three-piece or four-piece lens structure.
  • the pixel area of the photosensitive device is continuously reduced, and the requirements of the system for imaging quality are continuously improved.
  • the five-piece lens structure gradually appears in the lens design.
  • the five-piece lens has good optical performance, its optical power, lens spacing and lens shape setting are still unreasonable, resulting in the lens structure having good optical performance, it cannot meet the requirements of large aperture, Wide-angle, ultra-thin design requirements.
  • the purpose of the present invention is to provide an imaging optical lens, which aims to solve the problems of insufficient large aperture, wide-angle and ultra-thinning of the traditional imaging optical lens.
  • an imaging optical lens comprising five lenses in total, and the five lenses sequentially include from the object side to the image side: a first lens with positive refractive power, and a second lens with negative refractive power , a third lens with negative refractive power, a fourth lens with positive refractive power, and a fifth lens with negative refractive power;
  • the overall focal length of the imaging optical lens is f
  • the focal length of the first lens is f1
  • the focal length of the third lens is f3
  • the curvature radius of the object side of the fourth lens is R7
  • the The curvature radius of the image side of the four-lens is R8,
  • the on-axis thickness of the first lens is d1
  • the on-axis distance from the image side of the first lens to the object side of the second lens is d2
  • the radius of curvature of the object side of the fifth lens is R9
  • the radius of curvature of the image side of the fifth lens is R10, which satisfy the following relationship: 2.00 ⁇ R9/R10 ⁇ 12.00.
  • the radius of curvature of the object side surface of the first lens is R1
  • the radius of curvature of the image side surface of the first lens is R2
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the focal length of the second lens is f2
  • the radius of curvature of the object side of the second lens is R3
  • the radius of curvature of the image side of the second lens is R4
  • the on-axis thickness of the second lens is is d3
  • the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
  • the radius of curvature of the object side of the third lens is R5
  • the radius of curvature of the image side of the third lens is R6
  • the on-axis thickness of the third lens is d5
  • the optical The total length is TTL and satisfies the following relation:
  • the focal length of the fourth lens is f4
  • the on-axis thickness of the fourth lens is d7
  • the total optical length of the imaging optical lens is TTL
  • the focal length of the fifth lens is f5
  • the radius of curvature of the object side of the fifth lens is R9
  • the radius of curvature of the image side of the fifth lens is R10
  • the on-axis thickness of the fifth lens is is d9
  • the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
  • the image height of the imaging optical lens is IH
  • the optical total length of the imaging optical lens is TTL
  • the following relational formula is satisfied: TTL/IH ⁇ 1.51.
  • the field of view of the imaging optical lens is FOV, and satisfies the following relationship: FOV ⁇ 81.00°.
  • the combined focal length of the first lens and the second lens is f12, which satisfies the following relational formula: 0.59 ⁇ f12/f ⁇ 2.04.
  • the imaging optical lens provided by the invention meets the design requirements of wide-angle and ultra-thinning while having a large aperture with good optical performance, and is especially suitable for mobile phone camera lens assemblies composed of high-pixel CCD, CMOS and other imaging elements. WEB camera lens.
  • FIG. 1 is a schematic structural diagram of an imaging optical lens according to a first embodiment
  • Fig. 2 is the axial aberration schematic diagram of the imaging optical lens shown in Fig. 1;
  • FIG. 3 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic structural diagram of an imaging optical lens according to a second embodiment
  • Fig. 6 is the axial aberration schematic diagram of the imaging optical lens shown in Fig. 5;
  • FIG. 7 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic structural diagram of an imaging optical lens according to a third embodiment.
  • FIG. 10 is a schematic diagram of the axial aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 11 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9;
  • FIG. 13 is a schematic structural diagram of an imaging optical lens according to a fourth embodiment
  • Fig. 14 is a schematic diagram of axial aberration of the imaging optical lens shown in Fig. 13;
  • FIG. 15 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 13;
  • FIG. 16 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 13;
  • FIG. 17 is a schematic structural diagram of an imaging optical lens according to a fifth embodiment
  • Fig. 18 is a schematic diagram of axial aberration of the imaging optical lens shown in Fig. 17;
  • FIG. 19 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 17;
  • FIG. 20 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 17 .
  • the present invention provides the imaging optical lens 10 of the first embodiment.
  • the left side is the object side
  • the right side is the image side.
  • the imaging optical lens 10 mainly includes five lenses, from the object side to the image side, the aperture S1, the first lens L1, the second lens L2, the third lens Lens L3, fourth lens L4 and fifth lens L5.
  • a glass flat plate GF is provided between the fifth lens L5 and the image plane Si, and the glass flat plate GF may be a glass cover plate or an optical filter.
  • the first lens L1 has a positive refractive power
  • the second lens L2 has a negative refractive power
  • the third lens L3 has a negative refractive power
  • the fourth lens L4 has a positive refractive power
  • the fifth lens L5 has a negative refractive power .
  • the first lens L1 is made of plastic material
  • the second lens L2 is made of plastic material
  • the third lens L3 is made of plastic material
  • the fourth lens L4 is made of plastic material
  • the fifth lens L5 is made of plastic material.
  • the overall focal length of the imaging optical lens 10 is defined as f
  • the focal length of the first lens L1 is f1
  • the focal length of the third lens L3 is f3
  • the radius of curvature of the object side surface of the fourth lens L4 is R7
  • the focal length of the fourth lens L4 is The radius of curvature of the image side is R8, the on-axis thickness of the first lens L1 is d1, the on-axis distance from the image side of the first lens L1 to the object side of the second lens L2 is d2, and the following relationship is satisfied:
  • the relational expression (1) specifies the ratio of the focal length f1 of the first lens L1 to the overall focal length f of the imaging optical lens 10, and within the range of the relational expression (1), the spherical aberration and field curvature of the system can be effectively balanced.
  • the relational formula (2) specifies the ratio of the focal length f3 of the third lens L3 to the focal length f of the imaging optical lens 10 as a whole. Through reasonable distribution of the focal power, the system has better imaging quality and lower sensitivity.
  • the relational expression (3) specifies the ratio of the thickness of the first lens to the air space between the first and second lenses, and within the range of the conditional expression, it is helpful to compress the total optical length and achieve the effect of ultra-thinning.
  • the relational formula (4) specifies the shape of the fourth lens L4, and within the range specified by the relational formula, the degree of deflection of the light passing through the lens can be eased, and aberrations can be effectively reduced.
  • the curvature radius of the object side surface of the fifth lens L5 is defined as R9
  • the curvature radius of the image side surface of the fifth lens L5 is defined as R10, which satisfy the following relationship: 2.00 ⁇ R9/R10 ⁇ 12.00.
  • This relational expression specifies the shape of the fifth lens L5, and when it is within the range of the relational expression, it is beneficial to correct the aberration of the off-axis picture angle with the progress of ultra-thin and wide-angle.
  • the object side surface of the first lens L1 is convex at the paraxial position, and the image side surface is convex at the paraxial position.
  • the radius of curvature of the object side of the first lens L1 as R1 and the radius of curvature of the image side of the first lens L1 as R2, which satisfies the following relationship: -2.49 ⁇ (R1+R2)/(R1-R2) ⁇ -0.40
  • the shape of the first lens L1 is reasonably controlled, so that the first lens L1 can effectively correct the spherical aberration of the system.
  • -1.55 ⁇ (R1+R2)/(R1-R2) ⁇ -0.50 is satisfied.
  • the on-axis thickness of the first lens L1 is defined as d1, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.14 ⁇ d1/TTL ⁇ 0.50.
  • TTL total optical length of the imaging optical lens 10
  • 0.14 ⁇ d1/TTL ⁇ 0.50 Within the range of the relational expression, it is advantageous to achieve ultra-thinning.
  • 0.22 ⁇ d1/TTL ⁇ 0.40 is satisfied.
  • the object side surface of the second lens L2 is concave at the paraxial position, and the image side surface is concave at the paraxial position.
  • the overall focal length of the imaging optical lens 10 is f
  • the focal length of the second lens L2 is defined as f2, which satisfies the following relationship: -183.18 ⁇ f2/f ⁇ -1.88.
  • the curvature radius of the object side surface of the second lens L2 is defined as R3, and the curvature radius of the image side surface of the second lens L2 is R4, which satisfy the following relationship: -0.18 ⁇ (R3+R4)/(R3-R4) ⁇ 58.22.
  • This relational expression specifies the shape of the second lens L2, and when the shape is within the range, as the lens becomes ultra-thin and wide-angle, it is beneficial to correct the problem of axial chromatic aberration.
  • -0.11 ⁇ (R3+R4)/(R3-R4) ⁇ 46.58 is satisfied.
  • the total optical length of the imaging optical lens 10 is TTL, and the on-axis thickness of the second lens L2 is defined as d3, which satisfies the following relationship: 0.02 ⁇ d3/TTL ⁇ 0.08. Within the range of this relational expression, it is advantageous to realize ultrathinization. Preferably, 0.04 ⁇ d3/TTL ⁇ 0.06 is satisfied.
  • the object side surface of the third lens L3 is concave at the paraxial position, and the image side surface of the third lens L3 is concave at the paraxial position.
  • the curvature radius of the object side surface of the third lens L3 is defined as R5, and the curvature radius of the image side surface of the third lens L3 is R6, which satisfies the following relationship: -11.33 ⁇ (R5+R6)/(R5-R6) ⁇ 2.23.
  • the relational expression specifies the shape of the third lens L3, which is beneficial to the molding of the third lens L3, and avoids molding defects and stress caused by the excessively large surface curvature of the third lens L3.
  • -7.08 ⁇ (R5+R6)/(R5-R6) ⁇ 1.78 is satisfied.
  • the total optical length of the imaging optical lens 10 is TTL, and the on-axis thickness of the third lens L3 is defined as d5, which satisfies the following relationship: 0.02 ⁇ d5/TTL ⁇ 0.09. Within the range of this relational expression, it is advantageous to achieve ultra-thinning. Preferably, 0.04 ⁇ d5/TTL ⁇ 0.07 is satisfied.
  • the object side surface of the fourth lens L4 is convex at the paraxial position, and the image side surface is convex at the paraxial position.
  • the overall focal length of the imaging optical lens 10 is f
  • the focal length of the fourth lens L4 is defined as f4
  • the following relational expression is satisfied: 0.33 ⁇ f4/f ⁇ 1.23.
  • the system has better imaging quality and lower sensitivity.
  • 0.53 ⁇ f4/f ⁇ 0.99 is satisfied.
  • the total optical length of the imaging optical lens 10 is TTL, and the axial thickness of the fourth lens L4 is defined as d7, which satisfies the following relational formula: 0.05 ⁇ d7/TTL ⁇ 0.22, within the range of the relational formula, it is beneficial to realize ultra-thinning.
  • 0.05 ⁇ d7/TTL ⁇ 0.22 within the range of the relational formula, it is beneficial to realize ultra-thinning.
  • 0.07 ⁇ d7/TTL ⁇ 0.17 is satisfied.
  • the object side surface of the fifth lens L5 is a convex surface at the paraxial position
  • the image side surface is a concave surface at the paraxial position
  • the overall focal length of the imaging optical lens 10 is f
  • the focal length of the fifth lens L5 is defined as f5
  • the following relational expression is satisfied: -1.59 ⁇ f5/f ⁇ -0.37.
  • the light angle of the camera lens can be effectively made gentle, and the tolerance sensitivity can be reduced.
  • -0.99 ⁇ f5/f ⁇ -0.46 is satisfied.
  • the curvature radius of the object side surface of the fifth lens L5 is R9
  • the curvature radius of the image side surface of the fifth lens L5 is R10
  • the following relationship is satisfied: 0.59 ⁇ (R9+R10)/(R9-R10) ⁇ 4.49.
  • This relational expression specifies the shape of the fifth lens L5, and when it is within the range of the relational expression, it is beneficial to correct problems such as aberrations in off-axis picture angles along with the development of ultra-thin and wide-angle lenses.
  • 0.95 ⁇ (R9+R10)/(R9-R10) ⁇ 3.60 is satisfied.
  • the total optical length of the imaging optical lens 10 is TTL, and the axial thickness of the fifth lens L5 is defined as d9, which satisfies the following relational formula: 0.04 ⁇ d9/TTL ⁇ 0.14, within the range of the relational formula, it is beneficial to realize ultra-thinning.
  • 0.06 ⁇ d9/TTL ⁇ 0.11 is satisfied.
  • the image height of the overall imaging optical lens 10 is IH, which satisfies the following relational expression: TTL/IH ⁇ 1.51, which is beneficial to realize ultra-thinning.
  • the field of view FOV of the imaging optical lens 10 is greater than or equal to 81.00°, thereby realizing a wide angle.
  • the overall focal length of the imaging optical lens 10 is f
  • the combined focal length of the first lens L1 and the second lens L2 is f12, which satisfies the following relationship: 0.59 ⁇ f12/f ⁇ 2.04.
  • the aberration and distortion of the imaging optical lens 10 can be eliminated, the back focal length of the imaging optical lens 10 can be suppressed, and the miniaturization of the imaging lens system group can be maintained.
  • 0.94 ⁇ f12/f ⁇ 1.64 is satisfied.
  • the surface of each lens can be set as an aspherical surface, and the aspherical surface can be easily made into a shape other than a spherical surface, so as to obtain more control variables to reduce aberrations, thereby reducing the use of lenses Therefore, the total length of the imaging optical lens 10 can be effectively reduced.
  • the object side surface and the image side surface of each lens are both aspherical surfaces.
  • the imaging optical lens 10 can be reasonably The power, spacing, and shape of each lens are assigned, and various types of aberrations are corrected accordingly.
  • the imaging optical lens 10 can meet the design requirements of large aperture, wide angle, and ultra-thinness while having good optical imaging performance.
  • the imaging optical lens 10 of the present invention will be described below by way of examples.
  • the symbols described in each example are as follows.
  • the unit of focal length, on-axis distance, curvature radius, on-axis thickness, position of inflection point and position of stagnation point is mm.
  • TTL total optical length (the on-axis distance from the object side of the first lens L1 to the image plane Si), in mm.
  • At least one of the object side surface and the image side surface of each lens may also be provided with an inflection point and/or a stagnation point to meet high-quality imaging requirements. For specific implementations, see below.
  • the design data of the imaging optical lens 10 shown in FIG. 1 is shown below.
  • Table 1 lists the curvature radius of the object side surface and the curvature radius R of the image side surface of the first lens L1 to the fifth lens L5 constituting the imaging optical lens 10 in the first embodiment of the present invention, the on-axis thickness of each lens, and the two adjacent lenses.
  • distance d distance between the units of R and d are both millimeters (mm).
  • R the radius of curvature of the optical surface, the central radius of curvature in the case of a lens
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the curvature radius of the image side surface of the third lens L3;
  • R7 the curvature radius of the object side surface of the fourth lens L4;
  • R8 the curvature radius of the image side surface of the fourth lens L4;
  • R9 the curvature radius of the object side surface of the fifth lens L5;
  • R10 the curvature radius of the image side surface of the fifth lens L5;
  • R11 the radius of curvature of the object side of the optical filter GF
  • R12 The curvature radius of the image side of the optical filter GF
  • d the on-axis thickness of the lens, the on-axis distance between the lenses
  • d0 the on-axis distance from the aperture S1 to the object side surface of the first lens L1;
  • d2 the on-axis distance from the image side of the first lens L1 to the object side of the second lens L2;
  • d4 the on-axis distance from the image side of the second lens L2 to the object side of the third lens L3;
  • d6 the on-axis distance from the image side of the third lens L3 to the object side of the fourth lens L4;
  • d10 the on-axis distance from the image side of the fifth lens L5 to the object side of the optical filter GF;
  • d11 On-axis thickness of optical filter GF
  • d12 the axial distance from the image side of the optical filter GF to the image plane
  • nd the refractive index of the d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • ndg the refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF.
  • Table 2 shows aspherical surface data of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
  • k is a conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, and A20 are aspheric coefficients.
  • x is the vertical distance between the point on the aspheric curve and the optical axis
  • y is the aspheric depth (the point on the aspheric surface whose distance is R from the optical axis, and the vertical distance between the tangent plane tangent to the vertex on the optical axis of the aspheric surface. ).
  • the aspheric surfaces of the respective lens surfaces use the aspheric surfaces shown in the above formula (5).
  • the present invention is not limited to the aspheric polynomial form represented by this formula (5).
  • Table 3 and Table 4 show the design data of the inflection point and the stagnation point of each lens in the imaging optical lens 10 of the present embodiment.
  • P1R1 and P1R2 respectively represent the object side and image side of the first lens L1
  • P2R1 and P2R2 respectively represent the object side and image side of the second lens L2
  • P3R1 and P3R2 respectively represent the object side and the image side of the third lens L3
  • P4R1 and P4R2 respectively represent the object side and the image side of the fourth lens L4
  • P5R1 and P5R2 respectively represent the object side and the image side of the fifth lens L5.
  • the corresponding data in the column of "invagination point position” is the vertical distance from the inflexion point set on the surface of each lens to the optical axis of the imaging optical lens 10 .
  • the corresponding data in the column of "stagnation point position” is the vertical distance from the stagnation point set on the surface of each lens to the optical axis of the imaging optical lens 10 .
  • the first embodiment satisfies each relational expression.
  • FIG. 4 shows a schematic diagram of field curvature and distortion after light with a wavelength of 546 nm passes through the imaging optical lens 10 .
  • the field curvature S in FIG. 4 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction.
  • the entrance pupil diameter ENPD of the imaging optical lens 10 is 1.317 mm
  • the full field of view image height IH is 2.930 mm
  • the field of view angle FOV in the diagonal direction is 82.38°, so that the imaging optical lens 10 satisfies the Large aperture, wide-angle, and ultra-thin design requirements, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • FIG. 5 is a schematic structural diagram of the imaging optical lens 20 in the second embodiment, and the second embodiment is basically the same as the first embodiment.
  • Tables 5 and 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows aspherical surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Tables 7 and 8 show the design data of the inflection point and the stagnation point of each lens in the imaging optical lens 20 .
  • FIG. 6 and 7 respectively show schematic diagrams of axial aberration and magnification chromatic aberration of light with wavelengths of 656 nm, 588 nm, 546 nm, 486 nm and 436 nm after passing through the imaging optical lens 20 .
  • FIG. 8 shows a schematic diagram of field curvature and distortion after light with a wavelength of 546 nm passes through the imaging optical lens 20 .
  • the field curvature S in FIG. 8 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction.
  • the entrance pupil diameter ENPD of the imaging optical lens 20 is 1.332 mm
  • the full field of view image height IH is 2.930 mm
  • the field of view angle FOV in the diagonal direction is 82.00°
  • FIG. 9 is a schematic diagram of the structure of the imaging optical lens 30 in the third embodiment.
  • the third embodiment is basically the same as the first embodiment, and the symbols in the following list have the same meanings as the first embodiment, so the same parts are omitted here. To repeat, only the differences are listed below.
  • the object side surface of the second lens L2 is convex at the paraxial position.
  • the object side surface of the third lens L3 is convex at the paraxial position.
  • Table 9 and Table 10 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 10 shows aspherical surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 11 and Table 12 show the design data of the inflection point and the stagnation point of each lens in the imaging optical lens 30 .
  • FIG. 10 and 11 respectively show schematic diagrams of axial aberration and magnification chromatic aberration of light with wavelengths of 656 nm, 588 nm, 546 nm, 486 nm and 436 nm after passing through the imaging optical lens 30 .
  • FIG. 12 shows a schematic diagram of field curvature and distortion after light with a wavelength of 546 nm passes through the imaging optical lens 30 .
  • the field curvature S in FIG. 12 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction.
  • the entrance pupil diameter ENPD of the imaging optical lens 30 is 1.326 mm, the full field of view image height IH is 2.930 mm, and the field of view angle FOV in the diagonal direction is 81.75°, so that the imaging optical lens
  • the 30 meets the design requirements of large aperture, wide-angle, and ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • FIG. 13 is a schematic structural diagram of the imaging optical lens 40 in the fourth embodiment.
  • the fourth embodiment is basically the same as the first embodiment, and the meanings of the symbols in the following list are also the same as those of the first embodiment, so the same parts will not be repeated here. To repeat, only the differences are listed below.
  • the image side surface of the first lens L1 is concave at the paraxial position.
  • the object side surface of the second lens L2 is convex at the paraxial position.
  • the image side surface of the third lens L3 is convex at the paraxial position.
  • Table 13 shows design data of the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • Table 14 shows aspherical surface data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • Table 15 and Table 16 show the design data of the inflection point and the stagnation point of each lens in the imaging optical lens 40 .
  • P4R1 2 0.885 1.375 / / / P4R2 2 0.545 1.085 / / / P5R1 3 0.185 0.965 2.025 / / P5R2 3 0.445 2.155 2.295 / /
  • FIG. 14 and 15 respectively show schematic diagrams of axial aberration and magnification chromatic aberration of light with wavelengths of 656 nm, 588 nm, 546 nm, 486 nm and 436 nm after passing through the imaging optical lens 40 .
  • FIG. 16 shows a schematic diagram of field curvature and distortion after light with a wavelength of 546 nm passes through the imaging optical lens 40 .
  • the field curvature S in FIG. 16 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction.
  • the entrance pupil diameter ENPD of the imaging optical lens 40 is 1.359 mm, the full field of view image height IH is 2.930 mm, and the FOV in the diagonal direction is 81.57°, so that the imaging optical lens 40 satisfies the Large aperture, wide-angle, and ultra-thin design requirements, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • FIG. 17 is a schematic structural diagram of the imaging optical lens 50 in the fifth embodiment.
  • the fifth embodiment is basically the same as the first embodiment, and the meanings of the symbols in the following list are also the same as those in the first embodiment, so the same parts will not be repeated here. To repeat, only the differences are listed below.
  • the object side surface of the second lens L2 is convex at the paraxial position.
  • the object side surface of the third lens L3 is convex at the paraxial position.
  • Table 17 shows design data of the imaging optical lens 50 according to the fifth embodiment of the present invention.
  • Table 18 shows aspherical surface data of each lens in the imaging optical lens 50 according to the fifth embodiment of the present invention.
  • Table 19 and Table 20 show the design data of the inflection point and the stagnation point of each lens in the imaging optical lens 50 .
  • P1R1 0 / / / P1R2 0 / / / P2R1 3 0.205 0.705 0.855 P2R2 3 0.475 0.665 0.835 P3R1 1 0.295 / / P3R2 2 0.315 1.045 / P4R1 2 0.875 1.365 / P4R2 3 0.445 1.065 1.635 P5R1 2 0.165 1.165 / P5R2 2 0.475 2.315 /
  • FIG. 18 and 19 respectively show schematic diagrams of axial aberration and magnification chromatic aberration of light with wavelengths of 656 nm, 588 nm, 546 nm, 486 nm and 436 nm after passing through the imaging optical lens 50 .
  • FIG. 20 shows a schematic diagram of field curvature and distortion after light with a wavelength of 546 nm passes through the imaging optical lens 50 .
  • the field curvature S in FIG. 20 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction.
  • the entrance pupil diameter ENPD of the imaging optical lens 50 is 1.359 mm
  • the full field of view image height IH is 2.930 mm
  • the FOV in the diagonal direction is 81.51°, so that the imaging optical lens 50 satisfies the Large aperture, wide-angle, and ultra-thin design requirements, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • Table 21 lists the numerical values of the corresponding relational expressions in the first embodiment, the second embodiment, the third embodiment, the fourth embodiment and the fifth embodiment, and the values of other related parameters according to the above-mentioned relational expressions.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 f1/f 1.01 0.90 1.20 1.30 1.20
  • Aperture value FNO refers to the ratio of the effective focal length of the imaging optical lens to the diameter of the entrance pupil.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像光学镜头(10、 20、 30、 40、 50),摄像光学镜头(10、 20、 30、 40、 50)共包含五片透镜,五片透镜由物侧至像侧依次包括:具有正屈折力的第一透镜(L1)、具有负屈折力的第二透镜(L2)、具有负屈折力的第三透镜(L3)、具有正屈折力的第四透镜(L4)及具有负屈折力的第五透镜(L5);其中,摄像光学镜头(10、 20、 30、 40、 50)整体的焦距为f,第一透镜(L1)的焦距为f1,第三透镜(L3)的焦距为f3,第四透镜(L4)的物侧面的曲率半径为R7,第四透镜(L4)的像侧面的曲率半径为R8,第一透镜(L1)的轴上厚度为d1,第一透镜(L1)的像侧面到第二透镜(L2)的物侧面的轴上距离为d2,且满足下列关系式:0.90≤f1/f≤1.30;-5.00≤f3/f≤-2.50;10.00≤d1/d2≤25.00;0≤(R7+R8)/(R7-R8)≤0.90。摄像光学镜头(10、 20、 30、 40、 50)在具有良好的光学性能的同时,还满足大光圈、广角化、超薄化的设计要求。

Description

摄像光学镜头 技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
随着摄像技术的发展,摄像光学镜头被广泛地应用在各式各样的电子产品中,例如智能手机、数码相机等。为方便携带,人们越来越追求电子产品的轻薄化,因此,具备良好成像品质的小型化摄像光学镜头俨然成为目前市场的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、或四片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,五片式透镜结构逐渐出现在镜头设计当中,常见的五片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足大光圈、广角化、超薄化的设计要求。
因此,有必要提供一种具有良好的光学性能且满足大光圈、广角化、超薄化设计要求的摄像光学镜头。
发明内容
本发明的目的在于提供一种摄像光学镜头,旨在解决传统的摄像光学镜头大光圈、广角化、超薄化不充分的问题。
本发明的技术方案如下:一种摄像光学镜头,共包含五片透镜,五片所述透镜由物侧至像侧依次包括:具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有负屈折力的第三透镜、具有正屈折力的第四透镜及具有负屈折力的第五透镜;
其中,所述摄像光学镜头整体的焦距为f,所述第一透镜的焦距为f1,所述第三透镜的焦距为f3,所述第四透镜的物侧面的曲率半径为R7,所述第四透镜的像侧面的曲率半径为R8,所述第一透镜的轴上厚度为d1,所述第一透镜的像侧面到所述第二透镜的物侧面的轴上距离为d2,且满足下列关系式:
0.90≤f1/f≤1.30;
-5.00≤f3/f≤-2.50;
10.00≤d1/d2≤25.00;
0≤(R7+R8)/(R7-R8)≤0.90。
优选地,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,满足下列关系式:2.00≤R9/R10≤12.00。
优选地,所述第一透镜的物侧面的曲率半径为R1,所述第一透镜的像侧面的曲率半径为R2,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-2.49≤(R1+R2)/(R1-R2)≤-0.40;
0.14≤d1/TTL≤0.50。
优选地,所述第二透镜的焦距为f2,所述第二透镜的物侧面的曲率半径为R3,所述第二透镜的像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-183.18≤f2/f≤-1.88;
-0.18≤(R3+R4)/(R3-R4)≤58.22;
0.02≤d3/TTL≤0.08。
优选地,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-11.33≤(R5+R6)/(R5-R6)≤2.23;
0.02≤d5/TTL≤0.09。
优选地,所述第四透镜的焦距为f4,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.33≤f4/f≤1.23;
0.05≤d7/TTL≤0.22。
优选地,所述第五透镜的焦距为f5,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-1.59≤f5/f≤-0.37;
0.59≤(R9+R10)/(R9-R10)≤4.49;
0.04≤d9/TTL≤0.14。
优选地,所述摄像光学镜头的像高为IH,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:TTL/IH≤1.51。
优选地,所述摄像光学镜头的视场角为FOV,且满足下列关系式:FOV≥81.00°。
优选地,所述第一透镜与所述第二透镜的组合焦距为f12,满足下列关系式:0.59≤f12/f≤2.04。
本发明的有益效果在于:
本发明提供的摄像光学镜头在具有良好光学性能的大光圈的同时,满足广角化和超薄化的设计要求,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
为了更清楚地说明本发明实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示的摄像光学镜头的轴向像差示意图;
图3是图1所示的摄像光学镜头的倍率色差示意图;
图4是图1所示的摄像光学镜头的场曲及畸变示意图;
图5是第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示的摄像光学镜头的轴向像差示意图;
图7是图5所示的摄像光学镜头的倍率色差示意图;
图8是图5所示的摄像光学镜头的场曲及畸变示意图;
图9是第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示的摄像光学镜头的轴向像差示意图;
图11是图9所示的摄像光学镜头的倍率色差示意图;
图12是图9所示的摄像光学镜头的场曲及畸变示意图;
图13是第四实施方式的摄像光学镜头的结构示意图;
图14是图13所示的摄像光学镜头的轴向像差示意图;
图15是图13所示的摄像光学镜头的倍率色差示意图;
图16是图13所示的摄像光学镜头的场曲及畸变示意图;
图17是第五实施方式的摄像光学镜头的结构示意图;
图18是图17所示的摄像光学镜头的轴向像差示意图;
图19是图17所示的摄像光学镜头的倍率色差示意图;
图20是图17所示的摄像光学镜头的场曲及畸变示意图。
具体实施方式
下面结合附图和实施方式对本发明作进一步说明。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
请一并参阅图1至图4,本发明提供了第一实施方式的摄像光学镜头10。在图1中,左侧为物侧,右侧为像侧,摄像光学镜头10主要包括五个透镜,从物侧至像侧依次为光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5。在第五透镜L5与像面Si之间设有玻璃平板GF,玻璃平板GF可以是玻璃盖板,也可以是光学过滤片。
在本实施方式中,第一透镜L1具有正屈折力;第二透镜L2具有负屈折力;第三透镜L3具有负屈折力;第四透镜L4具有正屈折力;第五透镜L5具有负屈折力。
在本实施方式中,第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质。
在此,定义摄像光学镜头10整体的焦距为f,第一透镜L1的焦距为f1,第三透镜L3的焦距为f3,第四透镜L4的物侧面的曲率半径为R7,第四透镜L4的像侧面的曲率半径为R8,第一透镜L1的轴上厚度为d1,第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离为d2,且满足下列关系式:
0.90≤f1/f≤1.30       (1)
-5.00≤f3/f≤-2.50       (2)
10.00≤d1/d2≤25.00        (3)
0≤(R7+R8)/(R7-R8)≤0.90      (4)
其中,关系式(1)规定了第一透镜L1的焦距f1与摄像光学镜头10整体的焦距f的比值,在关系式(1)范围内可以有效地平衡系统的球差以及场曲量。
关系式(2)规定了第三透镜L3的焦距f3与摄像光学镜头10整体的焦距f的比值,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。
关系式(3)规定了第一透镜厚度与第一第二透镜空气间隔的比值,在条件式范围内 有助于压缩光学总长,实现超薄化效果。
关系式(4)规定了第四透镜L4的形状,在关系式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。
定义第五透镜L5的物侧面的曲率半径为R9,第五透镜L5的像侧面的曲率半径为R10,满足下列关系式:2.00≤R9/R10≤12.00。该关系式规定了第五透镜L5的形状,在关系式范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差。
本实施方式中,第一透镜L1的物侧面于近轴处为凸面,像侧面于近轴处为凸面。
定义第一透镜L1的物侧面的曲率半径为R1,第一透镜L1的像侧面的曲率半径为R2,满足下列关系式:-2.49≤(R1+R2)/(R1-R2)≤-0.40,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。优选地,满足-1.55≤(R1+R2)/(R1-R2)≤-0.50。
定义第一透镜L1的轴上厚度为d1,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.14≤d1/TTL≤0.50。在关系式范围内,有利于实现超薄化。优选地,满足0.22≤d1/TTL≤0.40。
本实施方式中,第二透镜L2的物侧面于近轴处为凹面,像侧面于近轴处为凹面。
摄像光学镜头10整体的焦距为f,定义第二透镜L2的焦距为f2,满足下列关系式:-183.18≤f2/f≤-1.88。通过将第二透镜L2的光焦度控制在合理范围,有利于矫正光学系统的像差。优选地,满足-114.49≤f2/f≤-2.35。
定义第二透镜L2的物侧面的曲率半径为R3,第二透镜L2的像侧面的曲率半径为R4,满足下列关系式:-0.18≤(R3+R4)/(R3-R4)≤58.22。该关系式规定了第二透镜L2的形状,在范围内时,随着镜头向超薄广角化发展,有利于补正轴上色像差问题。优选地,满足-0.11≤(R3+R4)/(R3-R4)≤46.58。
摄像光学镜头10的光学总长为TTL,定义第二透镜L2的轴上厚度为d3,满足下列关系式:0.02≤d3/TTL≤0.08。在该关系式范围内,有利于实现超薄化。优选地,满足0.04≤d3/TTL≤0.06。
本实施方式中,第三透镜L3的物侧面于近轴处为凹面,其像侧面于近轴处为凹面。
定义第三透镜L3的物侧面的曲率半径为R5,第三透镜L3的像侧面的曲率半径为R6,满足下列关系式:-11.33≤(R5+R6)/(R5-R6)≤2.23。该关系式规定了第三透镜L3的形状,有利于第三透镜L3成型,并避免因第三透镜L3的表面曲率过大而导致成型不良与应力产生。优选地,满足-7.08≤(R5+R6)/(R5-R6)≤1.78。
摄像光学镜头10的光学总长为TTL,定义第三透镜L3的轴上厚度为d5,满足下列 关系式:0.02≤d5/TTL≤0.09。在此关系式范围内,有利于实现超薄化。优选地,满足0.04≤d5/TTL≤0.07。
本实施方式中,第四透镜L4的物侧面于近轴处为凸面,像侧面于近轴处为凸面。
摄像光学镜头10整体的焦距为f,定义第四透镜L4的焦距为f4,且满足下列关系式:0.33≤f4/f≤1.23。通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足0.53≤f4/f≤0.99。
摄像光学镜头10的光学总长为TTL,定义第四透镜L4的轴上厚度为d7,满足下列关系式:0.05≤d7/TTL≤0.22,在关系式范围内,有利于实现超薄化。优选地,满足0.07≤d7/TTL≤0.17。
本实施方式中,第五透镜L5的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
摄像光学镜头10整体的焦距为f,定义第五透镜L5的焦距为f5,且满足下列关系式:-1.59≤f5/f≤-0.37。通过光焦度的合理分配,可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。优选地,满足-0.99≤f5/f≤-0.46。
第五透镜L5物侧面的曲率半径为R9,第五透镜L5像侧面的曲率半径为R10,且满足下列关系式:0.59≤(R9+R10)/(R9-R10)≤4.49。该关系式规定了第五透镜L5的形状,在关系式范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足0.95≤(R9+R10)/(R9-R10)≤3.60。
摄像光学镜头10的光学总长为TTL,定义第五透镜L5的轴上厚度为d9,满足下列关系式:0.04≤d9/TTL≤0.14,在关系式范围内,有利于实现超薄化。优选地,满足0.06≤d9/TTL≤0.11。
在本实施方式中,整体摄像光学镜头10的像高为IH,满足下列关系式:TTL/IH≤1.51,从而有利于实现超薄化。
本实施方式中,摄像光学镜头10的视场角FOV大于或等于81.00°,从而实现广角化。
本实施方式中,摄像光学镜头10整体的焦距为f,第一透镜L1与第二透镜L2的组合焦距为f12,满足下列关系式:0.59≤f12/f≤2.04。在此关系式范围内,可消除所述摄像光学镜头10的像差与歪曲,且可压制摄像光学镜头10的后焦距,维持影像镜片系统组小型化。优选的,满足0.94≤f12/f≤1.64。
此外,本实施方式提供的摄像光学镜头10中,各透镜的表面可以设置为非球面,非球面容易制作成球面以外的形状,获得较多的控制变数,用以消减像差,进而缩减透镜使用 的数目,因此可以有效降低摄像光学镜头10的总长度。在本实施方式中,各个透镜的物侧面和像侧面均为非球面。
值得一提的是,由于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5具有如前所述的结构和参数关系,因此,摄像光学镜头10能够合理分配各透镜的光焦度、间隔和形状,并因此校正了各类像差。
如此,摄像光学镜头10实现了在具有良好光学成像性能的同时,还能满足大光圈、广角化、超薄化的设计要求。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到像面Si的轴上距离),单位为mm。
另外,各透镜的物侧面和像侧面中的至少一个上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
以下示出了图1所示的摄像光学镜头10的设计数据。
表1列出了本发明第一实施方式中构成摄像光学镜头10的第一透镜L1~第五透镜L5的物侧面曲率半径和像侧面曲率半径R、各透镜的轴上厚度以及相邻两透镜间的距离d、折射率nd及阿贝数vd。需要说明的是,本实施方式中,R与d的单位均为毫米(mm)。
【表1】
Figure PCTCN2020106662-appb-000001
上表中各符号的含义如下。
S1:光圈;
R:光学面的曲率半径,透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:光学过滤片GF的物侧面的曲率半径;
R12:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度、透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到光学过滤片GF的物侧面的轴上距离;
d11:光学过滤片GF的轴上厚度;
d12:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure PCTCN2020106662-appb-000002
在表2中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
IH:像高
y=(x 2/R)/{1+[1-(k+1)(x 2/R 2)] 1/2}+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20     (5)
其中,x是非球面曲线上的点与光轴的垂直距离,y是非球面深度(非球面上距离光轴为R的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
为方便起见,各个透镜面的非球面使用上述公式(5)中所示的非球面。但是,本发明不限于该公式(5)表示的非球面多项式形式。
表3、表4示出本实施例的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 0 / / /
P1R2 1 0.775 / /
P2R1 1 0.675 / /
P2R2 2 0.855 0.935 /
P3R1 2 0.265 0.555 /
P3R2 2 0.115 1.065 /
P4R1 2 0.735 1.345 /
P4R2 2 0.605 1.065 /
P5R1 3 0.185 1.025 2.025
P5R2 3 0.455 2.195 2.365
【表4】
  驻点个数 驻点位置1 驻点位置2 驻点位置3
P1R1 0 / / /
P1R2 0 / / /
P2R1 1 0.865 / /
P2R2 0 / / /
P3R1 2 0.465 0.625 /
P3R2 2 0.195 1.175 /
P4R1 1 1.015 / /
P4R2 0 / / /
P5R1 3 0.345 1.815 2.095
P5R2 1 1.265 / /
另外,在后续的表21中,还列出了第一、二、三、四、五实施方式中各种参数与关系式中已规定的参数所对应的值。
如表21所示,第一实施方式满足各关系式。
图2、图3分别示出了波长为656nm、588nm、546nm、486nm及436nm的光经过摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了波长为546nm的光经过摄像光学镜头10后的场曲及畸变示意图。图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,所述摄像光学镜头10的入瞳直径ENPD为1.317mm,全视场像高IH为2.930mm,对角线方向的视场角FOV为82.38°,使得摄像光学镜头10满足大光圈、广角、超薄的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第二实施方式)
图5是第二实施方式中摄像光学镜头20的结构示意图,第二实施方式与第一实施方式基本相同。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure PCTCN2020106662-appb-000003
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure PCTCN2020106662-appb-000004
Figure PCTCN2020106662-appb-000005
表7、表8示出摄像光学镜头20中各透镜的反曲点及驻点设计数据。
【表7】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 0 / / /
P1R2 0 / / /
P2R1 2 0.645 0.775 /
P2R2 1 0.855 / /
P3R1 0 / / /
P3R2 2 0.205 0.975 /
P4R1 2 0.605 1.295 /
P4R2 2 0.585 1.055 /
P5R1 3 0.255 1.065 2.025
P5R2 3 0.395 2.235 2.345
【表8】
  驻点个数 驻点位置1 驻点位置2
P1R1 0 / /
P1R2 0 / /
P2R1 0 / /
P2R2 0 / /
P3R1 0 / /
P3R2 2 0.365 1.055
P4R1 1 0.945 /
P4R2 0 / /
P5R1 1 0.495 /
P5R2 1 1.225 /
另外,在后续的表21中,还列出了第二实施方式中各种参数与关系式中已规定的参数所对应的值,显然,本实施方式的摄像光学镜头满足上述的关系式。
图6、图7分别示出了波长为656nm、588nm、546nm、486nm及436nm的光经过摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为546nm的光经过摄像光学镜头20后的场曲及畸变示意图。图8的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,所述摄像光学镜头20的入瞳直径ENPD为1.332mm,全视场像高IH为2.930mm,对角线方向的视场角FOV为82.00°,使得摄像光学镜头20满足大光圈、广角、超薄的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第三实施方式)
图9是第三实施方式中摄像光学镜头30的结构示意图,第三实施方式与第一实施方式基本相同,以下列表中符号含义与第一实施方式也相同,故对于相同的部分此处不再赘述,以下仅列出不同点。
在本实施例中,第二透镜L2的物侧面于近轴处为凸面。
在本实施例中,第三透镜L3的物侧面于近轴处为凸面。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure PCTCN2020106662-appb-000006
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
Figure PCTCN2020106662-appb-000007
表11、表12示出摄像光学镜头30中各透镜的反曲点及驻点设计数据。
【表11】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 0 / / /
P1R2 0 / / /
P2R1 3 0.195 0.695 0.865
P2R2 3 0.495 0.655 0.865
P3R1 3 0.325 0.455 0.575
P3R2 2 0.315 1.045 /
P4R1 3 0.865 1.345 1.465
P4R2 2 0.415 1.045 /
P5R1 3 0.205 1.035 2.055
P5R2 3 0.445 2.225 2.375
【表12】
  驻点个数 驻点位置1 驻点位置2 驻点位置3
P1R1 0 / / /
P1R2 0 / / /
P2R1 1 0.345 / /
P2R2 1 0.955 / /
P3R1 1 0.725 / /
P3R2 1 0.515 / /
P4R1 1 1.085 / /
P4R2 2 0.865 1.165 /
P5R1 3 0.345 2.025 2.075
P5R2 1 1.295 / /
另外,在后续的表21中,还列出了第三实施方式中各种参数与关系式中已规定的参数所对应的值。显然,本实施方式的摄像光学镜头满足上述的关系式。
图10、图11分别示出了波长为656nm、588nm、546nm、486nm及436nm的光经过摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为546nm的光经过摄像光学镜头30后的场曲及畸变示意图。图12的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,所述摄像光学镜头30的入瞳直径ENPD为1.326mm,全视场像高IH为2.930mm,对角线方向的视场角FOV为81.75°,使得所述摄像光学镜头30满足大光圈、广角、超薄的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第四实施方式)
图13是第四实施方式中摄像光学镜头40的结构示意图,第四实施方式与第一实施方式基本相同,以下列表中符号含义与第一实施方式也相同,故对于相同的部分此处不再赘述,以下仅列出不同点。
在本实施例中,第一透镜L1的像侧面于近轴处为凹面。
在本实施例中,第二透镜L2的物侧面于近轴处为凸面。
在本实施例中,第三透镜L3的像侧面于近轴处为凸面。
表13示出本发明第四实施方式的摄像光学镜头40的设计数据。
【表13】
Figure PCTCN2020106662-appb-000008
Figure PCTCN2020106662-appb-000009
表14示出本发明第四实施方式的摄像光学镜头40中各透镜的非球面数据。
【表14】
Figure PCTCN2020106662-appb-000010
表15、表16示出摄像光学镜头40中各透镜的反曲点及驻点设计数据。
【表15】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3 反曲点位置4 反曲点位置5
P1R1 0 / / / / /
P1R2 1 0.095 / / / /
P2R1 2 0.235 0.765 / / /
P2R2 2 0.335 0.755 / / /
P3R1 2 0.375 0.865 / / /
P3R2 5 0.375 0.625 0.825 0.885 1.215
P4R1 2 0.885 1.375 / / /
P4R2 2 0.545 1.085 / / /
P5R1 3 0.185 0.965 2.025 / /
P5R2 3 0.445 2.155 2.295 / /
【表16】
  驻点个数 驻点位置1 驻点位置2
P1R1 0 / /
P1R2 1 0.155 /
P2R1 1 0.445 /
P2R2 0 / /
P3R1 2 0.815 0.895
P3R2 0 / /
P4R1 1 1.115 /
P4R2 2 0.825 1.335
P5R1 1 0.325 /
P5R2 1 1.195 /
另外,在后续的表21中,还列出了第四实施方式中各种参数与关系式中已规定的参数所对应的值,显然,本实施方式的摄像光学镜头满足上述的关系式。
图14、图15分别示出了波长为656nm、588nm、546nm、486nm及436nm的光经过摄像光学镜头40后的轴向像差以及倍率色差示意图。图16则示出了,波长为546nm的光经过摄像光学镜头40后的场曲及畸变示意图。图16的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,所述摄像光学镜头40的入瞳直径ENPD为1.359mm,全视场像高IH为2.930mm,对角线方向的视场角FOV为81.57°,使得摄像光学镜头40满足大光圈、广角、超薄的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第五实施方式)
图17是第五实施方式中摄像光学镜头50的结构示意图,第五实施方式与第一实施方式基本相同,以下列表中符号含义与第一实施方式也相同,故对于相同的部分此处不再赘述,以下仅列出不同点。
在本实施例中,第二透镜L2的物侧面于近轴处为凸面。
在本实施例中,第三透镜L3的物侧面于近轴处为凸面。
表17示出本发明第五实施方式的摄像光学镜头50的设计数据。
【表17】
Figure PCTCN2020106662-appb-000011
Figure PCTCN2020106662-appb-000012
表18示出本发明第五实施方式的摄像光学镜头50中各透镜的非球面数据。
【表18】
Figure PCTCN2020106662-appb-000013
表19、表20示出摄像光学镜头50中各透镜的反曲点及驻点设计数据。
【表19】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 0 / / /
P1R2 0 / / /
P2R1 3 0.205 0.705 0.855
P2R2 3 0.475 0.665 0.835
P3R1 1 0.295 / /
P3R2 2 0.315 1.045 /
P4R1 2 0.875 1.365 /
P4R2 3 0.445 1.065 1.635
P5R1 2 0.165 1.165 /
P5R2 2 0.475 2.315 /
【表20】
  驻点个数 驻点位置1 驻点位置2
P1R1 0 / /
P1R2 0 / /
P2R1 1 0.355 /
P2R2 1 0.945 /
P3R1 1 0.595 /
P3R2 1 0.515 /
P4R1 1 1.105 /
P4R2 2 0.975 1.135
P5R1 1 0.275 /
P5R2 1 1.385 /
另外,在后续的表21中,还列出了第五实施方式中各种参数与关系式中已规定的参数所对应的值,显然,本实施方式的摄像光学镜头满足上述的关系式。
图18、图19分别示出了波长为656nm、588nm、546nm、486nm及436nm的光经过摄像光学镜头50后的轴向像差以及倍率色差示意图。图20则示出了,波长为546nm的光经过摄像光学镜头50后的场曲及畸变示意图。图20的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,所述摄像光学镜头50的入瞳直径ENPD为1.359mm,全视场像高IH为2.930mm,对角线方向的视场角FOV为81.51°,使得摄像光学镜头50满足大光圈、广角、超薄的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
以下表21根据上述关系式列出了第一实施方式、第二实施方式、第三实施方式、第四实施方式及第五实施方式中对应关系式的数值,以及其他相关参数的取值。
【表21】
参数及关系式 实施例1 实施例2 实施例3 实施例4 实施例5
f1/f 1.01 0.90 1.20 1.30 1.20
f3/f -3.32 -2.50 -5.00 -3.58 -4.44
d1/d2 21.40 24.54 10.06 10.02 10.06
(R7+R8)/(R7-R8) 0.01 0.00 0.90 0.28 0.88
f 3.266 3.304 3.287 3.276 3.294
f1 3.295 2.976 3.945 4.257 3.969
f2 -9.261 -9.318 -27.528 -300.054 -35.791
f3 -10.840 -8.262 -16.426 -11.728 -14.631
f4 2.165 2.717 2.284 2.362 2.254
f5 -2.131 -2.623 -1.982 -2.059 -1.838
f12 4.451 3.898 4.334 4.120 4.244
FNO 2.48 2.48 2.48 2.41 2.42
FOV 82.38° 82.00° 81.75° 81.57° 81.51°
TTL 4.370 4.370 4.375 4.399 4.407
IH 2.930 2.930 2.930 2.930 2.930
光圈值FNO:是指摄像光学镜头的有效焦距和入瞳直径的比值。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头共包含五片透镜,五片所述透镜由物侧至像侧依次为:具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有负屈折力的第三透镜、具有正屈折力的第四透镜及具有负屈折力的第五透镜;
    其中,所述摄像光学镜头整体的焦距为f,所述第一透镜的焦距为f1,所述第三透镜的焦距为f3,所述第四透镜的物侧面的曲率半径为R7,所述第四透镜的像侧面的曲率半径为R8,所述第一透镜的轴上厚度为d1,所述第一透镜的像侧面到所述第二透镜的物侧面的轴上距离为d2,且满足下列关系式:
    0.90≤f1/f≤1.30;
    -5.00≤f3/f≤-2.50;
    10.00≤d1/d2≤25.00;
    0≤(R7+R8)/(R7-R8)≤0.90。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,满足下列关系式:2.00≤R9/R10≤12.00。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的物侧面的曲率半径为R1,所述第一透镜的像侧面的曲率半径为R2,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -2.49≤(R1+R2)/(R1-R2)≤-0.40;
    0.14≤d1/TTL≤0.50。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的焦距为f2,所述第二透镜的物侧面的曲率半径为R3,所述第二透镜的像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -183.18≤f2/f≤-1.88;
    -0.18≤(R3+R4)/(R3-R4)≤58.22;
    0.02≤d3/TTL≤0.08。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -11.33≤(R5+R6)/(R5-R6)≤2.23;
    0.02≤d5/TTL≤0.09。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的焦距为f4,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.33≤f4/f≤1.23;
    0.05≤d7/TTL≤0.22。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的焦距为f5,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -1.59≤f5/f≤-0.37;
    0.59≤(R9+R10)/(R9-R10)≤4.49;
    0.04≤d9/TTL≤0.14。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的像高为IH,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:TTL/IH≤1.51。
  9. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的视场角为FOV,且满足下列关系式:FOV≥81.00°。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜与所述第二透镜的组合焦距为f12,满足下列关系式:0.59≤f12/f≤2.04。
PCT/CN2020/106662 2020-07-20 2020-08-03 摄像光学镜头 WO2022016605A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010695365.6A CN111736305B (zh) 2020-07-20 2020-07-20 摄像光学镜头
CN202010695365.6 2020-07-20

Publications (1)

Publication Number Publication Date
WO2022016605A1 true WO2022016605A1 (zh) 2022-01-27

Family

ID=72654938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106662 WO2022016605A1 (zh) 2020-07-20 2020-08-03 摄像光学镜头

Country Status (4)

Country Link
US (1) US11714262B2 (zh)
JP (1) JP7083388B2 (zh)
CN (1) CN111736305B (zh)
WO (1) WO2022016605A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI769536B (zh) 2020-09-28 2022-07-01 大立光電股份有限公司 影像鏡頭、取像裝置及電子裝置
CN112014950B (zh) * 2020-10-12 2021-01-01 瑞泰光学(常州)有限公司 摄像光学镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282000A (ja) * 2009-06-04 2010-12-16 Optical Logic Inc 撮像レンズ
CN110764231A (zh) * 2019-11-22 2020-02-07 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN110865449A (zh) * 2019-11-22 2020-03-06 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111025557A (zh) * 2019-12-23 2020-04-17 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111077644A (zh) * 2019-12-23 2020-04-28 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111142219A (zh) * 2019-12-16 2020-05-12 瑞声通讯科技(常州)有限公司 摄像光学镜头

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5348563B2 (ja) * 2010-01-13 2013-11-20 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
TWI422900B (zh) * 2010-12-23 2014-01-11 Largan Precision Co Ltd 光學攝影鏡頭組
TWI447471B (zh) * 2011-05-24 2014-08-01 Largan Precision Co Ltd 影像拾取鏡片組
TWI436089B (zh) * 2011-08-04 2014-05-01 Largan Precision Co Ltd 影像拾取光學透鏡組
JP2013088504A (ja) * 2011-10-14 2013-05-13 Olympus Corp 結像光学系及びそれを有する撮像装置
JPWO2013137312A1 (ja) * 2012-03-15 2015-08-03 コニカミノルタ株式会社 撮像レンズ、撮像装置、及び携帯端末
TWI449948B (zh) * 2012-11-30 2014-08-21 Largan Precision Co Ltd 影像擷取光學鏡組
JP6160423B2 (ja) * 2013-10-04 2017-07-12 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
KR101983187B1 (ko) * 2016-12-20 2019-05-28 삼성전기주식회사 촬상 광학계
TWI622829B (zh) * 2017-07-19 2018-05-01 大立光電股份有限公司 光學影像擷取鏡頭、取像裝置及電子裝置
TWI644142B (zh) * 2018-01-25 2018-12-11 大立光電股份有限公司 成像用光學鏡組、取像裝置及電子裝置
US10613293B2 (en) * 2018-02-11 2020-04-07 AAC Technologies Pte. Ltd. Camera optical lens
JP6805300B2 (ja) * 2018-12-27 2020-12-23 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 撮像光学レンズ
CN110161652B (zh) * 2018-12-30 2021-07-30 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110297313B (zh) * 2019-06-29 2021-05-14 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110955020B (zh) * 2019-06-29 2021-12-24 瑞声光学解决方案私人有限公司 摄像光学镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282000A (ja) * 2009-06-04 2010-12-16 Optical Logic Inc 撮像レンズ
CN110764231A (zh) * 2019-11-22 2020-02-07 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN110865449A (zh) * 2019-11-22 2020-03-06 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111142219A (zh) * 2019-12-16 2020-05-12 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111025557A (zh) * 2019-12-23 2020-04-17 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111077644A (zh) * 2019-12-23 2020-04-28 瑞声通讯科技(常州)有限公司 摄像光学镜头

Also Published As

Publication number Publication date
CN111736305B (zh) 2020-11-17
US11714262B2 (en) 2023-08-01
US20220019058A1 (en) 2022-01-20
JP2022020542A (ja) 2022-02-01
CN111736305A (zh) 2020-10-02
JP7083388B2 (ja) 2022-06-10

Similar Documents

Publication Publication Date Title
WO2020134373A1 (zh) 摄像光学镜头
WO2022016624A1 (zh) 摄像光学镜头
WO2022011738A1 (zh) 摄像光学镜头
WO2022057036A1 (zh) 摄像光学镜头
WO2022052258A1 (zh) 摄像光学镜头
WO2022082929A1 (zh) 摄像光学镜头
WO2022016629A1 (zh) 摄像光学镜头
WO2021248578A1 (zh) 摄像光学镜头
WO2021258441A1 (zh) 摄像光学镜头
WO2022057046A1 (zh) 摄像光学镜头
WO2022057049A1 (zh) 摄像光学镜头
WO2022047987A1 (zh) 摄像光学镜头
WO2022016605A1 (zh) 摄像光学镜头
WO2022047986A1 (zh) 摄像光学镜头
WO2022000657A1 (zh) 摄像光学镜头
WO2022041382A1 (zh) 摄像光学镜头
WO2022134183A1 (zh) 摄像光学镜头
WO2022052269A1 (zh) 摄像光学镜头
WO2022016625A1 (zh) 摄像光学镜头
WO2022047980A1 (zh) 摄像光学镜头
WO2022047985A1 (zh) 摄像光学镜头
WO2022057047A1 (zh) 摄像光学镜头
WO2022007029A1 (zh) 摄像光学镜头
WO2022011740A1 (zh) 摄像光学镜头
WO2022047988A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946165

Country of ref document: EP

Kind code of ref document: A1