WO2021258612A1 - 摄像镜头 - Google Patents

摄像镜头 Download PDF

Info

Publication number
WO2021258612A1
WO2021258612A1 PCT/CN2020/127940 CN2020127940W WO2021258612A1 WO 2021258612 A1 WO2021258612 A1 WO 2021258612A1 CN 2020127940 W CN2020127940 W CN 2020127940W WO 2021258612 A1 WO2021258612 A1 WO 2021258612A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
curvature
refractive power
radius
object side
Prior art date
Application number
PCT/CN2020/127940
Other languages
English (en)
French (fr)
Inventor
新田耕二
寺岡弘之
Original Assignee
诚瑞光学(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(深圳)有限公司 filed Critical 诚瑞光学(深圳)有限公司
Publication of WO2021258612A1 publication Critical patent/WO2021258612A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present invention relates to an imaging lens, and in particular to a portable module camera, WEB camera, etc., suitable for high-resolution CCD, CMOS and other imaging elements.
  • the field of view (hereinafter referred to as 2 ⁇ ) is a wide angle of 80° or more and has good optical characteristics and is an imaging lens composed of 7 lenses.
  • imaging elements such as CCD and CMOS have become widespread. With the miniaturization and high performance of these imaging elements, an imaging lens with a low height, a wide angle, and good optical characteristics is sought.
  • Patent Document 1 proposes the following imaging lens: a first lens with positive refractive power, a second lens with negative refractive power, and a lens with positive refractive power are used in order from the object side.
  • the third lens, the fourth lens with negative refractive power, the fifth lens with negative refractive power, the sixth lens with positive refractive power, and the seventh lens with negative refractive power are formed.
  • the distortion of the maximum image height, the difference between the Abbe number of the first lens and the Abbe number of the second lens, the Abbe number of the first lens and that of the fourth lens The difference in bay number, the ratio of the focal length of the first lens to the focal length of the second lens, and the power distribution of the fifth lens are insufficient, and therefore the height reduction is insufficient.
  • Patent Document 1 JP Publication No. 2015-132664
  • the object of the present invention is to provide an imaging lens composed of 7 lenses that has a low height, a wide angle, and good optical characteristics.
  • the distortion of the maximum image height, the difference between the Abbe number of the first lens and the Abbe number of the second lens, the difference between the Abbe number of the first lens and the Abbe number of the fourth lens, the first The ratio of the focal length of the lens to the focal length of the second lens and the power distribution of the fifth lens have been intensively discussed. As a result, it has been found that an imaging lens can be obtained that improves the problems of the prior art, thereby completing the present invention.
  • the imaging lens described in claim 1 is provided with a first lens having a positive refractive power, a second lens having a negative refractive power, a third lens having a positive refractive power, a fourth lens having a negative refractive power, and The fifth lens with negative refractive power, the sixth lens with positive refractive power, and the seventh lens with negative refractive power, and satisfy the following relations (1) to (5):
  • DMI represents the distortion of the maximum image height
  • ⁇ 1 represents the Abbe number of the first lens
  • ⁇ 2 represents the Abbe number of the second lens
  • ⁇ 4 represents the Abbe number of the fourth lens
  • f the overall focal length of the camera lens
  • f1 represents the focal length of the first lens
  • f2 represents the focal length of the second lens
  • f5 represents the focal length of the fifth lens.
  • the camera lens described in Technical Solution 2 is based on the camera lens described in Technical Solution 1, and satisfies the following relationship (6):
  • R9 represents the radius of curvature of the object side surface of the fifth lens
  • R10 represents the radius of curvature of the image side surface of the fifth lens.
  • the camera lens described in technical solution 3 is based on the camera lens described in technical solution 1, and satisfies the following relationship (7):
  • R1 represents the radius of curvature of the object side of the first lens
  • R2 represents the radius of curvature of the image side surface of the first lens.
  • an imaging lens suitable for portable module cameras, WEB cameras, etc. that use high-resolution CCD, CMOS, and other imaging elements, and the height is reduced to TTL (optical length)/IH (image height) ⁇ 1.30, to ensure a wide angle of 2 ⁇ >80° or more, and has good optical characteristics, it is composed of 7 lenses.
  • FIG. 1 is a diagram showing a schematic configuration of an imaging lens LA according to Example 1 of the present invention.
  • FIG. 2 is a diagram showing spherical aberration, curvature of field, and distortion of the imaging lens LA according to Example 1 of the present invention.
  • Fig. 3 is a diagram showing a schematic configuration of an imaging lens LA according to Example 2 of the present invention.
  • FIG. 4 is a diagram showing spherical aberration, curvature of field, and distortion of imaging lens LA according to Example 2 of the present invention.
  • Fig. 5 is a diagram showing a schematic configuration of an imaging lens LA according to Example 3 of the present invention.
  • FIG. 6 is a diagram showing spherical aberration, curvature of field, and distortion of imaging lens LA according to Example 3 of the present invention.
  • Fig. 7 is a diagram showing a schematic configuration of an imaging lens LA according to Example 4 of the present invention.
  • FIG. 8 is a diagram showing spherical aberration, curvature of field, and distortion of the imaging lens LA according to Example 4 of the present invention.
  • FIG. 9 is a diagram showing a schematic configuration of an imaging lens LA according to Example 5 of the present invention.
  • FIG. 10 is a diagram showing spherical aberration, curvature of field, and distortion of imaging lens LA according to Example 5 of the present invention.
  • the imaging lens LA includes a lens system in which a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 are arranged from the object side to the image side.
  • a glass plate GF is arranged between the seventh lens L7 and the image surface. As this glass plate GF, cover glass, various filters, etc. are conceived. In the present invention, the glass plate GF can be arranged in different positions, and can also be omitted.
  • the first lens L1 is a lens with positive refractive power
  • the second lens L2 is a lens with negative refractive power
  • the third lens L3 is a lens with positive refractive power
  • the fourth lens L4 is a lens with negative refractive power.
  • the lens L5 is a lens with negative refractive power
  • the sixth lens L6 is a lens with positive refractive power
  • the seventh lens L7 is a lens with negative refractive power.
  • the camera lens LA satisfies the following relations (1) to (5):
  • f5 The focal length of the fifth lens.
  • Relation (1) specifies the distortion of the maximum image height. If the lower limit of relation (1) is exceeded, the correction of various aberrations is easy, but it becomes difficult to reduce the height, so it is not preferable. If the upper limit is exceeded, although the lower limit is advantageous, the correction of various aberrations It becomes difficult, so it is not preferable.
  • the relational expression (2) defines the difference between the Abbe number ⁇ 1 of the first lens L1 and the Abbe number ⁇ 2 of the second lens L2. By being in the range of the relational expression (2), the correction of the on-axis and off-axis chromatic aberration is easy due to the reduction in height, which is preferable.
  • the relational expression (3) defines the difference between the Abbe number ⁇ 1 of the first lens L1 and the Abbe number ⁇ 4 of the fourth lens L4. By being in the range of the relational expression (3), the correction of the on-axis and off-axis chromatic aberration is easy due to the reduction in height, which is preferable.
  • the relationship (4) specifies the ratio of the focal length f1 of the first lens L1 to the focal length f2 of the second lens L2.
  • the relationship (5) specifies the negative refractive power of the fifth lens L5.
  • the correction of the on-axis and off-axis chromatic aberration is easy due to the reduction in height, which is preferable.
  • the fifth lens L5 has negative refractive power and satisfies the following relationship (6):
  • R9 The radius of curvature of the object side of the fifth lens
  • R10 The radius of curvature of the image side surface of the fifth lens.
  • the relational expression (6) defines the ratio of the radius of curvature R9 of the object side of the fifth lens L5 to the radius of curvature R10 of the image side surface of the fifth lens L5.
  • the first lens L1 has a positive refractive power and satisfies the following relationship (7):
  • R1 The curvature radius of the object side of the first lens
  • R2 The radius of curvature of the image side surface of the first lens.
  • the relational expression (7) defines the ratio of the radius of curvature R1 of the object side of the first lens L1 to the radius of curvature R2 of the image side surface of the first lens L1.
  • the 7 lenses that make up the imaging lens LA meet the above-mentioned configuration and relational expressions, so that the height can be reduced to TTL (optical length)/IH (image height) ⁇ 1.30, 2 ⁇ > 80° or more wide angle and good optics can be obtained.
  • TTL optical length
  • IH image height
  • R The radius of curvature of the optical surface, in the case of a lens, the radius of curvature of the center
  • R1 the radius of curvature of the object side of the first lens L1
  • R2 the radius of curvature of the image side surface of the first lens L1
  • R3 the radius of curvature of the object side surface of the second lens L2
  • R4 the radius of curvature of the image side surface of the second lens L2
  • R5 the radius of curvature of the object side surface of the third lens L3
  • R6 The radius of curvature of the image side surface of the third lens L3
  • R7 The curvature radius of the object side of the fourth lens L4
  • R8 The radius of curvature of the image side surface of the fourth lens L4
  • R9 the radius of curvature of the object side surface of the fifth lens L5
  • R10 the radius of curvature of the image side surface of the fifth lens L5
  • R11 the radius of curvature of the object side surface of the sixth lens L6
  • R12 The radius of curvature of the image side surface of the sixth lens L6
  • R13 the radius of curvature of the object side surface of the seventh lens L7
  • R14 the radius of curvature of the image side surface of the seventh lens L7
  • R16 The curvature radius of the image side surface of the glass plate GF
  • d the center thickness of the lens or the distance between the lenses
  • d2 the axial distance from the image side surface of the first lens L1 to the object side surface of the second lens L2
  • nd1 the refractive index of the d-line of the first lens L1
  • nd2 the refractive index of the d-line of the second lens L2
  • ndg the refractive index of the d-line of the glass plate GF
  • TTL optical length (the on-axis distance from the object side of the first lens L1 to the image surface)
  • the aspherical surface of each lens surface uses the aspherical surface shown in equation (8).
  • the present invention is not limited to the aspheric polynomial of equation (8).
  • FIG. 1 is a configuration diagram showing the arrangement of an imaging lens LA of Example 1.
  • the first lens L1 to the seventh lens L7 constituting the imaging lens LA of Example 1 have the respective object side and image side curvature radii R, lens center thickness or inter-lens distance d, refractive index nd, and Abbe number ⁇ as shown in the table
  • the conic coefficient k and aspheric coefficients are shown in Table 2
  • 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, f6, f7, TTL, and IH are shown in Table 3.
  • Table 16 described later shows values corresponding to the parameters defined by the relational expressions (1) to (7) of each of Examples 1 to 5.
  • Example 1 satisfies relational expressions (1) to (7).
  • the spherical aberration, curvature of field, and distortion of the imaging lens LA of Embodiment 1 are shown in FIG. 2.
  • S in the field curvature of the figure is the field curvature for the sagittal image surface
  • T is the field curvature for the meridional image surface, and the same applies to Embodiments 2 to 5.
  • FIG. 3 is a configuration diagram showing the arrangement of imaging lens LA of Example 2.
  • the first lens L1 to the seventh lens L7 constituting the imaging lens LA of Example 2 have respective object side and image side curvature radii R, lens center thickness or inter-lens distance d, refractive index nd, and Abbe number ⁇ as shown in the table
  • the conic coefficient k and aspheric coefficients are shown in Table 5, and 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, f6, f7, TTL, IH are shown in Table 6.
  • Example 2 satisfies relational expressions (1) to (7).
  • the spherical aberration, curvature of field, and distortion of the imaging lens LA of Embodiment 2 are shown in FIG. 4.
  • FIG. 5 is a configuration diagram showing the arrangement of imaging lens LA of Example 3.
  • the first lens L1 to the seventh lens L7 constituting the imaging lens LA of Example 3 have the respective object side and image side curvature radii R, lens center thickness or inter-lens distance d, refractive index nd, and Abbe number ⁇ as shown in the table
  • the conic coefficient k and aspheric coefficients are shown in Table 8
  • 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, f6, f7, TTL, and IH are shown in Table 9.
  • Example 3 as shown in Table 16, satisfies relational expressions (1) to (7).
  • the spherical aberration, curvature of field, and distortion of the imaging lens LA of the third embodiment are shown in FIG. 6.
  • FIG. 7 is a configuration diagram showing the arrangement of imaging lens LA of Example 4.
  • the first lens L1 to the seventh lens L7 constituting the imaging lens LA of Example 4 have respective object side and image side curvature radii R, lens center thickness or inter-lens distance d, refractive index nd, and Abbe number ⁇ as shown in the table
  • the conic coefficient k and aspheric coefficients are shown in Table 11, and 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, f6, f7, TTL, IH are shown in Table 12.
  • Example 4 as shown in Table 16, satisfies relational expressions (1) to (7).
  • the spherical aberration, curvature of field, and distortion of the imaging lens LA of the embodiment 4 are shown in FIG. 8.
  • FIG. 9 is a configuration diagram showing the arrangement of imaging lens LA of Example 5.
  • the first lens L1 to the seventh lens L7 constituting the imaging lens LA of Example 5 have respective object side and image side curvature radii R, lens center thickness or inter-lens distance d, refractive index nd, and Abbe number v as shown in the table
  • the conic coefficient k and aspheric coefficients are shown in Table 14, and 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, f6, f7, TTL, IH are shown in Table 15.
  • Example 5 as shown in Table 16, satisfies relational expressions (1) to (7).
  • the spherical aberration, curvature of field, and distortion of the imaging lens LA of the embodiment 5 are shown in FIG. 10.
  • Table 16 shows values corresponding to the parameters defined by the relational expressions (1) to (7) of Examples 1 to 5.
  • Example 2 Example 3
  • Example 4 Example 5 Remark DMI 5.030 14.793 9.938 12.259 7.671 (1) formula v1-v3 69.941 50.011 62.262 63.235 56.075 (2) formula v1-v4 69.941 50.011 62.262 63.235 56.075 (3) formula f1/f2 -0.345 -0.155 -0.225 -0.200 -0.300 (4) formula f5/f -1.995 -0.505 -1.550 -1.000 -1.700 (5) formula R9/R10 -0.205 -2.200 -4.995 -1.500 -3.800 (6) formula R1/R2 0.205 0.346 0.280 0.299 0.250 (7) formula

Abstract

本发明提供一种低高度、广角且具有良好的光学特性的利用7片透镜而构成的摄像镜头。该摄像镜头从物侧起依次配置有具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有正屈折力的第三透镜、具有负屈折力的第四透镜、具有负屈折力的第五透镜、具有正屈折力的第六透镜以及具有负屈折力的第七透镜,且满足给定的关系式。

Description

摄像镜头 技术领域
本发明涉及摄像镜头,尤其涉及适合于采用高像素用CCD、CMOS等摄像元件的便携式用模块相机、WEB相机等的、低高度化为TTL(光学长度)/IH(像高)<1.30、全视场角(以下,设为2ω)为80°以上的广角且具有良好的光学特性的利用7片透镜而构成的摄像镜头。
背景技术
近年,采用CCD、CMOS等摄像元件的各种摄像装置广泛普及。伴随这些摄像元件的小型化、高性能化,寻求低高度、广角且具有良好的光学特性的摄像镜头。
与低高度、广角且具有良好的光学特性的利用7片透镜而构成的摄像镜头相关的技术开发正在推进。作为该7片透镜结构的摄像镜头,在专利文献1中提出了如下摄像镜头:从物侧起依次利用具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有正屈折力的第三透镜、具有负屈折力的第四透镜、具有负屈折力的第五透镜、具有正屈折力的第六透镜以及具有负屈折力的第七透镜而构成。
关于专利文献1的实施例中公开的摄像镜头,最大像高的畸变、第一透镜的阿贝数与第二透镜的阿贝数之差、第一透镜的阿贝数与第四透镜的阿贝数之差、第一透镜的焦距与第二透镜的焦距之比、第五透镜的光焦度分配不充分,因此低高度化不充分。
现有技术文献
专利文献
专利文献1:JP特开2015-132664号公报
发明内容
(发明所要解决的课题)
本发明的目的在于,提供低高度、广角且具有良好的光学特性的利用7片透镜而构成的摄像镜头。
(用于解决课题的技术方案)
为了达成上述目标,对最大像高的畸变、第一透镜的阿贝数与第二透镜的阿贝数之差、第一透镜的阿贝数与第四透镜的阿贝数之差、第一透镜的焦距与第二透镜的焦距之比、第五透镜的光焦度分配进行了锐意探讨,结果发现可得到改善了现有技术的课题的摄像镜头,从而完成本发明。
技术方案1记载的摄像镜头从物侧起依次配置有具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有正屈折力的第三透镜、具有负屈折力的第四透镜、具有负屈折力的第五透镜、具有正屈折力的第六透镜以及具有负屈折力的第七透镜,且满足下列关系式(1)~(5):
5.00≤DMI≤15.00  (1)
50.00≤ν1-ν2≤70.00  (2)
50.00≤ν1-ν4≤70.00  (3)
-0.35≤f1/f2≤-0.15  (4)
-2.00≤f5/f≤-0.50  (5)
其中,
DMI表示最大像高的畸变,
ν1表示第一透镜的阿贝数,
ν2表示第二透镜的阿贝数,
ν4表示第四透镜的阿贝数,
f表示摄像镜头整体的焦距,
f1表示第一透镜的焦距,
f2表示第二透镜的焦距,
f5表示第五透镜的焦距。
技术方案2记载的摄像镜头是在技术方案1记载的摄像镜头的基础上,满足下列关系式(6):
-5.00≤R9/R10≤-0.20  (6)
其中,
R9表示第五透镜的物侧面的曲率半径,
R10表示第五透镜的像侧面的曲率半径。
技术方案3记载的摄像镜头是在技术方案1记载的摄像镜头的基础上,满足下列关系式(7):
0.02≤R1/R2≤0.35  (7)
其中,
R1表示第一透镜的物侧面的曲率半径,
R2表示第一透镜的像侧面的曲率半径。
(发明效果)
根据本发明,尤其能提供一种摄像镜头,适合于采用高像素用CCD、CMOS等摄像元件的便携式用模块相机、WEB相机等,低高度化为TTL(光学长度)/IH(像高)<1.30,保证2ω>80°以上的广角,且具有良好的光学特性,利用7片透镜而构成。
附图说明
图1是表示本发明的实施例1的摄像镜头LA的概略构成的图。
图2是表示本发明的实施例1的摄像镜头LA的球差、场曲、畸变的图。
图3是表示本发明的实施例2的摄像镜头LA的概略构成的图。
图4是表示本发明的实施例2的摄像镜头LA的球差、场曲、畸变的图。
图5是表示本发明的实施例3的摄像镜头LA的概略构成的图。
图6是表示本发明的实施例3的摄像镜头LA的球差、场曲、畸变的图。
图7是表示本发明的实施例4的摄像镜头LA的概略构成的图。
图8是表示本发明的实施例4的摄像镜头LA的球差、场曲、畸变的图。
图9是表示本发明的实施例5的摄像镜头LA的概略构成的图。
图10是表示本发明的实施例5的摄像镜头LA的球差、场曲、畸变的图。
具体实施方式
针对本发明所涉及的摄像镜头的实施方式进行说明。该摄像镜头LA具备透镜系统,该透镜系统是从物侧向像侧配置有第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的7片透镜结构。在第七透镜L7与像面之间配置玻璃平板GF。作为该玻璃平板GF,设想了盖板玻璃以及各种滤光片等。在本发明中,玻璃平板GF可以配置于不同位置,还可以省略。
第一透镜L1是具有正屈折力的透镜,第二透镜L2是具有负屈折力的透镜,第三透镜L3是具有正屈折力的透镜,第四透镜L4是具有负屈折力的透镜,第五透镜L5是具有负屈折力的透镜,第六透镜L6是具有正屈折力的透镜,第七透镜L7是具有负屈折力的透镜。关于这7片透镜的表面,为了良好地校正诸像差,期望将所有面设为非球面形状。
该摄像镜头LA满足下列关系式(1)~(5):
5.00≤DMI≤15.00  (1)
50.00≤ν1-ν2≤70.00  (2)
50.00≤ν1-ν4≤70.00  (3)
-0.35≤f1/f2≤-0.15  (4)
-2.00≤f5/f≤-0.50  (5)
其中,
DMI:最大像高的畸变
ν1:第一透镜的阿贝数
ν2:第二透镜的阿贝数
ν4:第四透镜的阿贝数
f:摄像镜头整体的焦距
f1:第一透镜的焦距
f2:第二透镜的焦距
f5:第五透镜的焦距。
关系式(1)规定最大像高的畸变。若超过关系式(1)的下限值,虽然诸像差的校正容易,但低高度化变难,因此不优选,若超过上限值,虽然对低高度化有利,但诸像差的校正变难,因此不优选。
关系式(2)规定第一透镜L1的阿贝数ν1与第二透镜L2的阿贝数ν2 之差。通过处于关系式(2)的范围内,从而伴随低高度化,轴上、轴外的色差的校正容易,因此优选。
关系式(3)规定第一透镜L1的阿贝数ν1与第四透镜L4的阿贝数ν4之差。通过处于关系式(3)的范围内,从而伴随低高度化,轴上、轴外的色差的校正容易,因此优选。
关系式(4)规定第一透镜L1的焦距f1与第二透镜L2的焦距f2之比。通过处于关系式(4)的范围内,从而伴随低高度化,轴上、轴外的色差的校正容易,因此优选。
关系式(5)规定第五透镜L5的负屈折力。通过处于关系式(5)的范围内,从而伴随低高度化,轴上、轴外的色差的校正容易,因此优选。
第五透镜L5具有负屈折力,满足下列关系式(6):
-5.00≤R9/R10≤-0.20  (6)
其中,
R9:第五透镜的物侧面的曲率半径
R10:第五透镜的像侧面的曲率半径。
关系式(6)规定第五透镜L5的物侧的曲率半径R9与第五透镜L5的像侧面的曲率半径R10之比。通过处于关系式(6)的范围内,从而伴随低高度化,诸像差的校正容易,因此优选。
第一透镜L1具有正屈折力,满足下列关系式(7):
0.02≤R1/R2≤0.35  (7)
其中,
R1:第一透镜的物侧面的曲率半径
R2:第一透镜的像侧面的曲率半径。
关系式(7)规定第一透镜L1的物侧的曲率半径R1与第一透镜L1的像侧面的曲率半径R2之比。通过处于关系式(7)的范围内,从而伴随低高度化,诸像差的校正容易,因此优选。
构成摄像镜头LA的7片透镜分别满足上述构成以及关系式,从而能得到低高度化为TTL(光学长度)/IH(像高)<1.30、保证2ω>80°以上的广角且具有良好的光学特性的利用7片透镜而构成的摄像镜头。
(实施例)
以下,使用实施例来说明本发明的摄像镜头LA。各实施例记载的记号如下所示。此外,距离、半径以及中心厚度的单位是mm。
f:摄像镜头LA整体的焦距
f1:第一透镜L1的焦距
f2:第二透镜L2的焦距
f3:第三透镜L3的焦距
f4:第四透镜L4的焦距
f5:第五透镜L5的焦距
f6:第六透镜L6的焦距
f7:第七透镜L7的焦距
Fno:F值
2ω:全视场角
S1:开口光圈
R:光学面的曲率半径,透镜的情况下为中心曲率半径
R1:第一透镜L1的物侧面的曲率半径
R2:第一透镜L1的像侧面的曲率半径
R3:第二透镜L2的物侧面的曲率半径
R4:第二透镜L2的像侧面的曲率半径
R5:第三透镜L3的物侧面的曲率半径
R6:第三透镜L3的像侧面的曲率半径
R7:第四透镜L4的物侧面的曲率半径
R8:第四透镜L4的像侧面的曲率半径
R9:第五透镜L5的物侧面的曲率半径
R10:第五透镜L5的像侧面的曲率半径
R11:第六透镜L6的物侧面的曲率半径
R12:第六透镜L6的像侧面的曲率半径
R13:第七透镜L7的物侧面的曲率半径
R14:第七透镜L7的像侧面的曲率半径
R15:玻璃平板GF的物侧面的曲率半径
R16:玻璃平板GF的像侧面的曲率半径
d:透镜的中心厚度或透镜间距离
d0:从开口光圈S1到第一透镜L1的物侧面的轴上距离
d1:第一透镜L1的中心厚度
d2:从第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离
d3:第二透镜L2的中心厚度
d4:从第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离
d5:第三透镜L3的中心厚度
d6:从第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离
d7:第四透镜L4的中心厚度
d8:从第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离
d9:第五透镜L5的中心厚度
d10:从第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离
d11:第六透镜L6的中心厚度
d12:从第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离
d13:第七透镜L7的中心厚度
d14:从第七透镜L7的像侧面到玻璃平板GF的物侧面的轴上距离
d15:玻璃平板GF的中心厚度
d16:从玻璃平板GF的像侧面到像面的轴上距离
nd:d线的折射率
nd1:第一透镜L1的d线的折射率
nd2:第二透镜L2的d线的折射率
nd3:第三透镜L3的d线的折射率
nd4:第四透镜L4的d线的折射率
nd5:第五透镜L5的d线的折射率
nd6:第六透镜L6的d线的折射率
nd7:第七透镜L7的d线的折射率
ndg:玻璃平板GF的d线的折射率
ν:阿贝数
ν1:第一透镜L1的阿贝数
ν2:第二透镜L2的阿贝数
ν3:第三透镜L3的阿贝数
ν4:第四透镜L4的阿贝数
ν5:第五透镜L5的阿贝数
ν6:第六透镜L6的阿贝数
ν7:第七透镜L7的阿贝数
νg:玻璃平板GF的阿贝数
TTL:光学长度(从第一透镜L1的物侧面到像面的轴上距离)
LB:从第七透镜L7的像侧面到像面的轴上距离(包含玻璃平板GF的厚度)
y=(x 2/R)/[1+{1-(k+1)(x 2/R 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20   (8)
为方便起见,各透镜面的非球面使用式(8)中所示的非球面。然而,本发明不限于该式(8)的非球面多项式。
(实施例1)
图1是表示实施例1的摄像镜头LA的配置的构成图。构成实施例1的摄像镜头LA的第一透镜L1~第七透镜L7的各自的物侧以及像侧的曲率半径R、透镜中心厚度或透镜间距离d、折射率nd、阿贝数ν如表1所示,圆锥系数k、非球面系数如表2所示,2ω、Fno、f、f1、f2、f3、f4、f5、f6、f7、TTL、IH如表3所示。
(表1)
Figure PCTCN2020127940-appb-000001
                                                               参照波长=588nm
(表2)
Figure PCTCN2020127940-appb-000002
(表3)
2ω(°) 82.30
Fno 1.85
f(mm) 6.087
f1(mm) 6.003
f2(mm) -17.400
f3(mm) 23.720
f4(mm) -47.963
f5(mm) -12.144
f6(mm) 5.213
f7(mm) -4.717
TTL(mm) 7.197
LB(mm) 0.979
IH(mm) 5.600
后述的表16示出与各实施例1~5的关系式(1)~(7)规定的参数对应的值。
实施例1如表16所示,满足关系式(1)~(7)。
实施例1的摄像镜头LA的球差、场曲、畸变如图2所示。此外,图的场曲的S是针对弧矢像面的场曲,T是针对子午像面的场曲,在实施例2~5中也同样。实施例1的摄像镜头LA如图2所示可知,2ω=82.30°,广角低高度化为TTL/IH=1.285,具有良好的光学特性。
(实施例2)
图3是表示实施例2的摄像镜头LA的配置的构成图。构成实施例2的摄像镜头LA的第一透镜L1~第七透镜L7的各自的物侧以及像侧的曲率半径R、透镜中心厚度或透镜间距离d、折射率nd、阿贝数ν如表4所示,圆锥系数k、非球面系数如表5所示,2ω、Fno、f、f1、f2、f3、f4、f5、f6、f7、TTL、IH如表6所示。
(表4)
Figure PCTCN2020127940-appb-000003
                                                              参照波长=588nm
(表5)
Figure PCTCN2020127940-appb-000004
(表6)
2ω(°) 82.30
Fno 1.85
f(mm) 5.564
f1(mm) 6.617
f2(mm) -42.690
f3(mm) 15.456
f4(mm) -139.785
f5(mm) -2.810
f6(mm) 2.289
f7(mm) -4.124
TTL(mm) 7.075
LB(mm) 1.097
IH(mm) 5.600
实施例2如表16所示,满足关系式(1)~(7)。
实施例2的摄像镜头LA的球差、场曲、畸变如图4所示。实施例2的摄像镜头LA如图4所示可知,2ω=82.30°,广角低高度化为TTL/IH=1.263,具有良好的光学特性。
(实施例3)
图5是表示实施例3的摄像镜头LA的配置的构成图。构成实施例3的摄像镜头LA的第一透镜L1~第七透镜L7的各自的物侧以及像侧的曲率半径R、透镜中心厚度或透镜间距离d、折射率nd、阿贝数ν如表7所示,圆锥系数k、非球面系数如表8所示,2ω、Fno、f、f1、f2、f3、f4、f5、f6、f7、TTL、IH如表9所示。
(表7)
Figure PCTCN2020127940-appb-000005
                                                               参照波长=588nm
(表8)
Figure PCTCN2020127940-appb-000006
(表9)
2ω(°) 81.48
Fno 1.90
f(mm) 5.905
f1(mm) 6.379
f2(mm) -28.301
f3(mm) 169.496
f4(mm) -28.497
f5(mm) -9.152
f6(mm) 3.965
f7(mm) -5.614
TTL(mm) 7.197
LB(mm) 1.120
IH(mm) 5.600
实施例3如表16所示,满足关系式(1)~(7)。
实施例3的摄像镜头LA的球差、场曲、畸变如图6所示。实施例3的摄像镜头LA如图6所示可知,2ω=81.48°,广角低高度化为TTL/IH=1.285,具有良好的光学特性。
(实施例4)
图7是表示实施例4的摄像镜头LA的配置的构成图。构成实施例4的摄像镜头LA的第一透镜L1~第七透镜L7的各自的物侧以及像侧的曲率半径R、透镜中心厚度或透镜间距离d、折射率nd、阿贝数ν如表10所示,圆锥系数k、非球面系数如表11所示,2ω、Fno、f、f1、f2、f3、f4、f5、f6、f7、TTL、IH如表12所示。
(表10)
Figure PCTCN2020127940-appb-000007
                                                               参照波长=588nm
(表11)
Figure PCTCN2020127940-appb-000008
(表12)
2ω(°) 84.18
Fno 1.85
f(mm) 5.504
f1(mm) 5.886
f2(mm) -29.428
f3(mm) 14.220
f4(mm) -35.203
f5(mm) -5.504
f6(mm) 3.191
f7(mm) -3.895
TTL(mm) 7.034
LB(mm) 1.110
IH(mm) 5.600
实施例4如表16所示,满足关系式(1)~(7)。
实施例4的摄像镜头LA的球差、场曲、畸变如图8所示。实施例4的摄像镜头LA如图8所示可知,2ω=84.18°,广角低高度化为TTL/IH=1.256,具有良好的光学特性。
(实施例5)
图9是表示实施例5的摄像镜头LA的配置的构成图。构成实施例5的摄像镜头LA的第一透镜L1~第七透镜L7的各自的物侧以及像侧的曲率半径R、透镜中心厚度或透镜间距离d、折射率nd、阿贝数v如表13所示,圆锥系数k、非球面系数如表14所示,2ω、Fno、f、f1、f2、f3、f4、f5、f6、f7、TTL、IH如表15所示。
(表13)
Figure PCTCN2020127940-appb-000009
                                                                 参照波长=588nm
(表14)
Figure PCTCN2020127940-appb-000010
(表15)
2ω(°) 80.98
Fno 1.85
f(mm) 6.078
f1(mm) 5.478
f2(mm) -18.260
f3(mm) 24.266
f4(mm) -12.442
f5(mm) -10.333
f6(mm) 3.853
f7(mm) -4.384
TTL(mm) 7.197
LB(mm) 1.127
IH(mm) 5.600
实施例5如表16所示,满足关系式(1)~(7)。
实施例5的摄像镜头LA的球差、场曲、畸变如图10所示。实施例5的摄像镜头LA如图10所示可知,2ω=80.98°,广角低高度化为TTL/IH=1.285,具有良好的光学特性。
表16示出与实施例1~5的关系式(1)~(7)规定的参数对应的值。
(表16)
  实施例1 实施例2 实施例3 实施例4 实施例5 备注
DMI 5.030 14.793 9.938 12.259 7.671 (1)式
v1-v3 69.941 50.011 62.262 63.235 56.075 (2)式
v1-v4 69.941 50.011 62.262 63.235 56.075 (3)式
f1/f2 -0.345 -0.155 -0.225 -0.200 -0.300 (4)式
f5/f -1.995 -0.505 -1.550 -1.000 -1.700 (5)式
R9/R10 -0.205 -2.200 -4.995 -1.500 -3.800 (6)式
R1/R2 0.205 0.346 0.280 0.299 0.250 (7)式

Claims (3)

  1. 一种摄像镜头,其特征在于,
    从物侧起依次配置有具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有正屈折力的第三透镜、具有负屈折力的第四透镜、具有负屈折力的第五透镜、具有正屈折力的第六透镜以及具有负屈折力的第七透镜,且满足下列关系式(1)~(5):
    5.00≤DMI≤15.00  (1)
    50.00≤ν1-ν2≤70.00  (2)
    50.00≤ν1-ν4≤70.00  (3)
    -0.35≤f1/f2≤-0.15  (4)
    -2.00≤f5/f≤-0.50  (5)
    其中,
    DMI表示最大像高的畸变,
    ν1表示第一透镜的阿贝数,
    ν2表示第二透镜的阿贝数,
    ν4表示第四透镜的阿贝数,
    f表示摄像镜头整体的焦距,
    f1表示第一透镜的焦距,
    f2表示第二透镜的焦距,
    f5表示第五透镜的焦距。
  2. 根据权利要求1所述的摄像镜头,其特征在于,
    所述摄像镜头满足下列关系式(6):
    -5.00≤R9/R10≤-0.20  (6)
    其中,
    R9表示第五透镜的物侧面的曲率半径,
    R10表示第五透镜的像侧面的曲率半径。
  3. 根据权利要求1所述的摄像镜头,其特征在于,
    所述摄像镜头满足下列关系式(7):
    0.02≤R1/R2≤0.35  (7)
    其中,
    R1表示第一透镜的物侧面的曲率半径,
    R2表示第一透镜的像侧面的曲率半径。
PCT/CN2020/127940 2020-06-23 2020-11-11 摄像镜头 WO2021258612A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020108213A JP6919028B1 (ja) 2020-06-23 2020-06-23 撮像レンズ
JP2020-108213 2020-06-23

Publications (1)

Publication Number Publication Date
WO2021258612A1 true WO2021258612A1 (zh) 2021-12-30

Family

ID=72570041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127940 WO2021258612A1 (zh) 2020-06-23 2020-11-11 摄像镜头

Country Status (4)

Country Link
US (1) US20210396962A1 (zh)
JP (1) JP6919028B1 (zh)
CN (1) CN111722365B (zh)
WO (1) WO2021258612A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6919028B1 (ja) * 2020-06-23 2021-08-11 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 撮像レンズ
CN111538142B (zh) * 2020-07-13 2020-10-20 瑞声通讯科技(常州)有限公司 摄像光学镜头
WO2022116145A1 (zh) * 2020-12-04 2022-06-09 欧菲光集团股份有限公司 光学系统、取像装置及电子装置
CN115016098B (zh) * 2021-01-20 2023-11-03 浙江舜宇光学有限公司 光学成像镜头
CN113900232B (zh) * 2021-10-19 2023-07-04 江西晶超光学有限公司 光学系统、取像模组及电子设备
CN116931220A (zh) * 2022-04-08 2023-10-24 华为技术有限公司 镜头组件、摄像头模组及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120076210A (ko) * 2010-12-29 2012-07-09 주식회사 나노포토닉스 어안 렌즈
CN109613679A (zh) * 2018-12-31 2019-04-12 瑞声声学科技(深圳)有限公司 摄像光学镜头
CN111077647A (zh) * 2019-12-23 2020-04-28 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111090165A (zh) * 2018-10-23 2020-05-01 康达智株式会社 摄像镜头
CN111722365A (zh) * 2020-06-23 2020-09-29 瑞声通讯科技(常州)有限公司 摄像镜头

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012155223A (ja) * 2011-01-27 2012-08-16 Tamron Co Ltd 広角単焦点レンズ
JP5963360B2 (ja) * 2012-11-21 2016-08-03 カンタツ株式会社 撮像レンズ
JP6160423B2 (ja) * 2013-10-04 2017-07-12 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
TWI557426B (zh) * 2014-06-25 2016-11-11 先進光電科技股份有限公司 光學成像系統
JP6376561B2 (ja) * 2014-10-29 2018-08-22 カンタツ株式会社 撮像レンズ
TWI646367B (zh) * 2017-06-30 2019-01-01 大立光電股份有限公司 成像系統透鏡組、取像裝置及電子裝置
TWI675221B (zh) * 2018-06-06 2019-10-21 大立光電股份有限公司 取像光學鏡片組、取像裝置及電子裝置
JP6814521B2 (ja) * 2018-08-21 2021-01-20 カンタツ株式会社 撮像レンズ
TWI657282B (zh) * 2018-09-05 2019-04-21 大立光電股份有限公司 取像透鏡系統、取像裝置及電子裝置
CN209044156U (zh) * 2018-10-29 2019-06-28 浙江舜宇光学有限公司 光学成像镜片组
CN209215717U (zh) * 2018-11-28 2019-08-06 浙江舜宇光学有限公司 光学成像系统
CN117471655A (zh) * 2018-12-06 2024-01-30 浙江舜宇光学有限公司 光学成像系统
CN109491047B (zh) * 2018-12-07 2024-01-30 浙江舜宇光学有限公司 光学成像镜头
CN109491051B (zh) * 2018-12-28 2021-05-28 诚瑞光学(常州)股份有限公司 摄像光学镜头
KR102207276B1 (ko) * 2019-02-27 2021-01-25 삼성전기주식회사 촬상 광학계
CN113614603A (zh) * 2019-03-29 2021-11-05 索尼集团公司 成像镜头和成像设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120076210A (ko) * 2010-12-29 2012-07-09 주식회사 나노포토닉스 어안 렌즈
CN111090165A (zh) * 2018-10-23 2020-05-01 康达智株式会社 摄像镜头
CN109613679A (zh) * 2018-12-31 2019-04-12 瑞声声学科技(深圳)有限公司 摄像光学镜头
CN111077647A (zh) * 2019-12-23 2020-04-28 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111722365A (zh) * 2020-06-23 2020-09-29 瑞声通讯科技(常州)有限公司 摄像镜头

Also Published As

Publication number Publication date
JP2022003380A (ja) 2022-01-11
US20210396962A1 (en) 2021-12-23
CN111722365B (zh) 2022-03-01
CN111722365A (zh) 2020-09-29
JP6919028B1 (ja) 2021-08-11

Similar Documents

Publication Publication Date Title
WO2021189915A1 (zh) 摄像镜头
WO2021189916A1 (zh) 摄像镜头
WO2021189917A1 (zh) 摄像镜头
WO2021258612A1 (zh) 摄像镜头
WO2020125161A1 (zh) 摄像镜头
WO2020125163A1 (zh) 摄像镜头
WO2020125162A1 (zh) 摄像镜头
WO2020125158A1 (zh) 摄像镜头
JP6738470B1 (ja) 撮像レンズ
JP5951912B1 (ja) 撮像レンズ
WO2021169447A1 (zh) 摄像镜头
JP2017122843A (ja) 撮像レンズ
WO2022057031A1 (zh) 摄像镜头
JP2017122844A (ja) 撮像レンズ
JP2017122876A (ja) 撮像レンズ
WO2021147470A1 (zh) 摄像镜头
WO2021232702A1 (zh) 折反射光学系统的摄像镜头
WO2022000647A1 (zh) 摄像光学镜头
WO2020125159A1 (zh) 摄像镜头
WO2021168881A1 (zh) 摄像光学镜头
WO2022011738A1 (zh) 摄像光学镜头
WO2022021457A1 (zh) 摄像光学镜头
WO2022021456A1 (zh) 摄像光学镜头
WO2021258611A1 (zh) 折反射光学系统的摄像镜头
WO2022088252A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941869

Country of ref document: EP

Kind code of ref document: A1