CN113900232B - 光学系统、取像模组及电子设备 - Google Patents

光学系统、取像模组及电子设备 Download PDF

Info

Publication number
CN113900232B
CN113900232B CN202111213926.5A CN202111213926A CN113900232B CN 113900232 B CN113900232 B CN 113900232B CN 202111213926 A CN202111213926 A CN 202111213926A CN 113900232 B CN113900232 B CN 113900232B
Authority
CN
China
Prior art keywords
lens
lens element
optical system
image
paraxial region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111213926.5A
Other languages
English (en)
Other versions
CN113900232A (zh
Inventor
杨健
华露
李明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Jingchao Optical Co Ltd
Original Assignee
Jiangxi Jingchao Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Jingchao Optical Co Ltd filed Critical Jiangxi Jingchao Optical Co Ltd
Priority to CN202111213926.5A priority Critical patent/CN113900232B/zh
Publication of CN113900232A publication Critical patent/CN113900232A/zh
Priority to US17/686,330 priority patent/US20230123067A1/en
Priority to EP22162211.1A priority patent/EP4170407A1/en
Application granted granted Critical
Publication of CN113900232B publication Critical patent/CN113900232B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)

Abstract

本发明涉及一种光学系统、取像模组及电子设备。光学系统包括:具有正屈折力的第一透镜,物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;具有负屈折力的第二透镜,物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;具有正屈折力的第三透镜;具有负屈折力的第四透镜;具有屈折力的第五透镜,物侧面于近光轴处为凹面;具有正屈折力的第六透镜,物侧面于近光轴处为凸面;具有负屈折力的第七透镜,物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;光学系统满足:1≤TTL/ImgH≤1.12。上述光学系统,能够兼顾小型化设计和大像面特征的实现。

Description

光学系统、取像模组及电子设备
技术领域
本发明涉及摄像领域,特别是涉及一种光学系统、取像模组及电子设备。
背景技术
随着智能手机、平板电脑、电子阅读器等电子设备的迅速发展,摄像镜头在电子设备中的应用也越来越广泛,为提升电子设备的市场竞争力,业界对摄像镜头也提出了更高的要求。其中,具备小型化设计的摄像镜头更容易应用于电子设备中,也有利于电子设备的便携式设计,而具备大像面特性的摄像镜头容易获得高成像质量。然而,目前的光学系统难以兼顾小型化设计和大像面特性的实现,不利于提升用户的使用体验。
发明内容
基于此,有必要针对目前的光学系统难以兼顾小型化设计和大像面特性的实现的问题,提供一种光学系统、取像模组及电子设备。
一种光学系统,沿光轴由物侧至像侧依次包括:
具有正屈折力的第一透镜,所述第一透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
具有负屈折力的第二透镜,所述第二透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
具有正屈折力的第三透镜;
具有负屈折力的第四透镜;
具有屈折力的第五透镜,所述第五透镜的物侧面于近光轴处为凹面;
具有正屈折力的第六透镜,所述第六透镜的物侧面于近光轴处为凸面;
具有负屈折力的第七透镜,所述第七透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
且所述光学系统满足以下条件式:
1≤TTL/ImgH≤1.12;
其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,即所述光学系统的光学总长,ImgH为所述光学系统的最大视场角所对应的像高的一半。
上述光学系统,第一透镜具有正屈折力,第一透镜的物侧面于近光轴处为凸面,能够有效会聚光线,有利于缩短光学系统的总长,实现小型化设计。第二透镜具有负屈折力,第二透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面,有利于抑制轴上色差的产生,从而提升光学系统的成像质量。第二透镜的凸凹面型与第一透镜配合也有利于进一步缩短光学系统的总长。第三透镜具有正屈折力,与第一透镜的正屈折力配合,有利于缩短光学系统的总长,同时也有利于防止单个透镜的屈折力过强,从而降低光学系统的敏感度。第四透镜具有负屈折力,有利于校正倍率色差。第六透镜具有正屈折力,能够良好地校正像散。第六透镜的物侧面于近光轴处为凸面,有利于缩短光学系统的总长。第七透镜具有负屈折力,第七透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面,能够良好地校正像面弯曲,同时也能够与第六透镜的正屈折力配合,有利于缩短光学系统的总长。
满足上述条件式时,能够合理配置光学系统的光学总长和半像高的比值,有利于缩短光学系统的总长,同时使得光学系统具有较低的敏感度,另外也有利于光学系统具备足够大的成像面以匹配更高像素的感光元件,从而使得光学系统能够拍摄出被摄物更多的细节,提升光学系统的成像质量。具备上述屈折力及面型特征并满足上述条件式,光学系统能够兼顾小型化设计和大像面特征的实现。
在其中一个实施例中,所述光学系统满足以下条件式:
f34<0;
1≤f12/|f34|≤4.5;
其中,f12为所述第一透镜与所述第二透镜的组合焦距,f34为所述第三透镜与所述第四透镜的组合焦距。满足上述条件式时,能够合理配置第一透镜与第二透镜组成的第一透镜组以及第三透镜与第四透镜组成的第二透镜组的有效焦距的比值,使得第一透镜组的正屈折力与第二透镜组的负屈折力达到平衡,有利于第一透镜组和第二透镜组的屈折力在空间上合理分布,从而有利于促进光学系统整体达到像差平衡,进而有利于提升光学系统的成像质量。超过上述条件式的范围,第一透镜组承担的正屈折力与第二透镜组承担的负屈折力差异过大,容易打乱光学系统整体的像差平衡,导致像差增大,从而导致光学系统的解像力下降。
在其中一个实施例中,所述光学系统满足以下条件式:
1.5<(f6-f7)/f≤3;
其中,f6为所述第六透镜的有效焦距,f7为所述第七透镜的有效焦距,f为所述光学系统的有效焦距。满足上述条件式时,能够合理配置第六透镜和第七透镜在光学系统中的屈折力,有利于第六透镜与第七透镜有效校正物侧透镜产生的球差,从而有利于提升光学系统的解像力;另外也有利于压缩第六透镜和第七透镜的轴上尺寸,从而有利于光学系统的小型化设计。
在其中一个实施例中,所述光学系统满足以下条件式:
-17≤f2/R21≤-1;
其中,f2为所述第二透镜的有效焦距,R21为所述第二透镜的物侧面于光轴处的曲率半径。满足上述条件式时,能够合理配置第二透镜的有效焦距及物侧面曲率半径的比值,有利于降低第二透镜的面型复杂度,从而避免T方向场曲畸变的增加,同时,第二透镜的物侧面与第一透镜的像侧面匹配良好,有利于缩短光学系统的总长。低于上述条件式的下限,第二透镜提供的负屈折力不足,不利于像差的平衡;超过上述条件式的上限,第二透镜的像侧面面型过于弯曲,导致第二透镜的公差敏感度增大,从而增大了第二透镜的成型和加工难度。
在其中一个实施例中,所述光学系统满足以下条件式:
1.5≤R71/R72≤3;
其中,R71为所述第七透镜的物侧面于光轴处的曲率半径,R72为所述第七透镜的像侧面于光轴处的曲率半径。满足上述条件式时,能够合理配置第七透镜的物侧面与像侧面的曲率半径的比值,有利于减小边缘视场处光线经第七透镜物侧面的偏转角度,从而有利于降低光学系统的敏感性,进而提升光学系统的成像质量;同时有利于缩短光学系统的有效焦距,从而有利于增大光学系统的光圈,提高光通量,使得光学系统在弱光环境下也能够具备良好的成像质量。低于上述条件式的下限时,第七透镜物侧面的曲率半径过小,第七透镜物侧面的面型弯曲度过大,容易导致光线偏转角度过大,从而增加光学系统的敏感度并增大鬼像产生的风险。超过上述条件式的上限,第七透镜像侧面的面型过于弯曲,容易导致后焦过长,不利于光学系统的小型化。
在其中一个实施例中,所述光学系统满足以下条件式:
-35≤R51/ET5≤-13;
其中,R51为所述第五透镜的物侧面于光轴处的曲率半径,ET5为所述第五透镜的物侧面最大有效口径处至像侧面最大有效口径处于光轴方向上的距离,即所述第五透镜的边缘厚度。满足上述条件式时,能够合理配置第五透镜的物侧面曲率半径与边缘厚度的比值,有利于有效约束第五透镜物侧面的弯曲程度,提升第五透镜的加工可行性,并提高光学系统的组装稳定性,同时还有利于缩短第五透镜的轴上尺寸,从而有利于缩短光学系统的总长。低于上述条件式的下限时,第五透镜物侧面的面型过于平缓,不利于光学系统像差的校正,容易导致成像质量下降;超过上述条件式的上限时,第五透镜物侧面的曲率半径过小,面型过于弯曲,容易导致第五透镜成型良率降低,并降低光学系统的组装稳定性。
在其中一个实施例中,所述光学系统满足以下条件式:
0.5≤(SD72-SD71)/CT7≤1;
其中,SD72为所述第七透镜的像侧面的最大有效半口径,SD71为所述第七透镜的物侧面的最大有效半口径,CT7为所述第七透镜于光轴上的厚度,即所述第七透镜的中心厚度。满足上述条件式时,能够合理配置第七透镜物、像侧最大有效半口径与第七透镜的中心厚度,有利于增大光学系统的成像面,同时也有利于减小镜筒结构排布的压力,并有利于提升第七透镜的加工可行性。超过上述条件式的上限时,第七透镜物、像侧有效口径差异过大,导致边缘光线偏转角增大,从而增大鬼像产生的风险,引入杂光,降低成像品质;低于上述条件式下限时,第七透镜物侧、像侧有效口径差异过小,导致成像面相对亮度不足,从而容易出现暗角。
在其中一个实施例中,所述光学系统满足以下条件式:
1≤SAG62/SAG61≤1.5;
其中,SAG62为所述第六透镜的像侧面于最大有效口径处的矢高,即所述第六透镜的像侧面与光轴的交点至所述第六透镜的像侧面最大有效口径处于光轴方向上的距离,SAG61为所述第六透镜的物侧面于最大有效口径处的矢高,即所述第六透镜的物侧面与光轴的交点至所述第六透镜的物侧面最大有效口径处于光轴方向上的距离。满足上述条件式时,能够合理配置第六透镜像侧面矢高与物侧面矢高的比值,有利于约束第六透镜物侧面和像侧面的面型,限制第六透镜面型的弯曲程度,避免面型过于复杂而增加第六透镜的成型难度;同时也有利于降低成像面主光线的入射角度,使得光学系统更容易匹配感光元件,从而有利于提升成像质量。超过上述条件式的上限时,第六透镜的像侧面矢高过大,第六透镜像侧面的面型过于弯曲,增加第六透镜的成型加工难度;低于上述条件式的下限时,第六透镜的像侧面过于平缓,不利于矫正像差,并增加鬼像产生的风险,不利于成像品质的提升。
一种取像模组,包括感光元件以及上述任一实施例所述的光学系统,所述感光元件设置于所述光学系统的像侧。在所述取像模组中采用上述光学系统,使得取像模组能够兼顾小型化设计和大像面特性的实现,既能够应用于便携式电子设备中,也能够具备良好的成像质量。
一种电子设备,包括壳体以及上述的取像模组,所述取像模组设置于所述壳体。在所述电子设备中采用上述取像模组,电子设备既能够进行便携式设计,也能够具备良好的成像质量,提升用户的使用体验。
附图说明
图1为本申请第一实施例中的光学系统的结构示意图;
图2为本申请第一实施例中的光学系统的纵向球差图、像散图及畸变图;
图3为本申请第二实施例中的光学系统的结构示意图;
图4为本申请第二实施例中的光学系统的纵向球差图、像散图及畸变图;
图5为本申请第三实施例中的光学系统的结构示意图;
图6为本申请第三实施例中的光学系统的纵向球差图、像散图及畸变图;
图7为本申请第四实施例中的光学系统的结构示意图;
图8为本申请第四实施例中的光学系统的纵向球差图、像散图及畸变图;
图9为本申请第五实施例中的光学系统的结构示意图;
图10为本申请第五实施例中的光学系统的纵向球差图、像散图及畸变图;
图11为本申请第六实施例中的光学系统的结构示意图;
图12为本申请第六实施例中的光学系统的纵向球差图、像散图及畸变图;
图13为本申请第七实施例中的光学系统的结构示意图;
图14为本申请第七实施例中的光学系统的纵向球差图、像散图及畸变图;
图15为本申请一实施例中的取像模组的示意图;
图16为本申请一实施例中的电子设备的示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参见图1,在本申请的一些实施例中,光学系统100沿光轴110由物侧到像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7。具体地,第一透镜L1包括物侧面S1及像侧面S2,第二透镜L2包括物侧面S3及像侧面S4,第三透镜L3包括物侧面S5及像侧面S6,第四透镜L4包括物侧面S7及像侧面S8,第五透镜L5包括物侧面S9及像侧面S10,第六透镜L6包括物侧面S11及像侧面S12,第七透镜L7包括物侧面S13及像侧面S14。第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7同轴设置,光学系统100中各透镜共同的轴线即为光学系统100的光轴110。
其中,第一透镜L1具有正屈折力,第一透镜L1的物侧面S1于近光轴110处为凸面,能够有效会聚光线,有利于缩短光学系统100的总长,实现小型化设计。第一透镜L1的像侧面S2于近光轴110处为凹面。第二透镜L2具有负屈折力,第二透镜L2的物侧面S3于近光轴110处为凸面,像侧面S4于近光轴110处为凹面,有利于抑制轴上色差的产生,从而提升光学系统100的成像质量。第二透镜L2的凸凹面型与第一透镜L1配合也有利于进一步缩短光学系统100的总长。第三透镜L3具有正屈折力,与第一透镜L1的正屈折力配合,有利于缩短光学系统100的总长,同时也有利于防止单个透镜的屈折力过强,从而降低光学系统100的敏感度。第四透镜L4具有负屈折力,有利于校正倍率色差。第五透镜L5具有屈折力,第五透镜L5的物侧面S9于近光轴110处为凹面。第六透镜L6具有正屈折力,能够良好地校正像散。第六透镜L6的物侧面S11于近光轴110处为凸面,有利于缩短光学系统100的总长。第七透镜L7具有负屈折力,第七透镜L7的物侧面S13于近光轴110处为凸面,像侧面S14于近光轴110处为凹面,能够良好地校正像面弯曲,同时也能够与第六透镜L6的正屈折力配合,有利于缩短光学系统100的总长。
在一些实施例中,第七透镜L7的物侧面S13与像侧面S14中的至少一者存在反曲点,使得垂轴视场上的屈折力分布趋于平衡,有利于校正轴外视场的像差,提升光学系统100的成像质量。
另外,在一些实施例中,光学系统100还包括位于第七透镜L7像侧的成像面S17,入射光经第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7调节后能够成像于成像面S17。在一些实施例中,光学系统100设置有光阑STO,光阑STO可设置于第一透镜L1的物侧。在一些实施例中,光学系统100还包括设置于第七透镜L7像侧的红外滤光片L8。红外滤光片L8可为红外截止滤光片,用于滤除干扰光,防止干扰光到达光学系统100的成像面S17而影响正常成像。
在一些实施例中,光学系统100的各透镜的物侧面和像侧面均为非球面。非球面结构的采用能够提高透镜设计的灵活性,并有效地校正球差,改善成像质量。在另一些实施例中,光学系统100的各透镜的物侧面和像侧面也可以均为球面。需要注意的是,上述实施例仅是对本申请的一些实施例的举例,在一些实施例中,光学系统100中各透镜的表面可以是非球面或球面的任意组合。
在一些实施例中,光学系统100中的各透镜的材质可以均为玻璃或均为塑料。采用塑料材质的透镜能够减少光学系统100的重量并降低生产成本,配合光学系统100的小尺寸以实现光学系统100的轻薄化设计。而采用玻璃材质的透镜使光学系统100具备优良的光学性能以及较高的耐温性能。需要注意的是,光学系统100中各透镜的材质也可以为玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。
需要注意的是,第一透镜L1并不意味着只存在一片透镜,在一些实施例中,第一透镜L1中也可以存在两片或多片透镜,两片或多片透镜能够形成胶合透镜,胶合透镜最靠近物侧的表面可视为物侧面S1,最靠近像侧的表面可视为像侧面S2。或者,第一透镜L1中的各透镜之间并不形成胶合透镜,但各透镜之间的距离相对固定,此时最靠近物侧的透镜的物侧面为物侧面S1,最靠近像侧的透镜的像侧面为像侧面S2。另外,一些实施例中的第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6或第七透镜L7中的透镜数量也可大于或等于两片,且任意相邻透镜之间可以形成胶合透镜,也可以为非胶合透镜。
进一步地,在一些实施例中,光学系统100满足条件式:1≤TTL/ImgH≤1.12;其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面S17于光轴110上的距离,ImgH为光学系统100的最大视场角所对应的像高的一半。具体地,TTL/ImgH可以为:1.030、1.045、1.052、1.067、1.073、1.084、1.099、1.102、1.113或1.120。满足上述条件式时,能够合理配置光学系统100的光学总长和半像高的比值,有利于缩短光学系统100的总长,同时使得光学系统100具有较低的敏感度,另外也有利于光学系统100具备足够大的成像面以匹配更高像素的感光元件,从而使得光学系统100能够拍摄出被摄物更多的细节,提升光学系统100的成像质量。具备上述屈折力及面型特征并满足上述条件式,光学系统100能够兼顾小型化设计和大像面特征的实现。
需要说明的是,在一些实施例中,光学系统100可以匹配具有矩形感光面的感光元件,光学系统100的成像面S17与感光元件的感光面重合。此时,光学系统100成像面S17上有效像素区域具有水平方向以及对角线方向,则光学系统100的最大视场角可以理解为光学系统100对角线方向的最大视场角,ImgH可以理解为光学系统100成像面S17上有效像素区域对角线方向的长度的一半。
在一些实施例中,光学系统100满足条件式:f34<0;1≤f12/|f34|≤4.5;其中,f12为第一透镜L1与第二透镜L2的组合焦距,f34为第三透镜L3与第四透镜L4的组合焦距。具体地,f12/|f34|可以为:1.100、1.152、1.198、1.473、1.866、2.205、2.257、2.638、2.994或4.385。满足上述条件式时,能够合理配置第一透镜L1与第二透镜L2组成的第一透镜组以及第三透镜L3与第四透镜L4组成的第二透镜组的有效焦距的比值,使得第一透镜组的正屈折力与第二透镜组的负屈折力达到平衡,有利于第一透镜组和第二透镜组的屈折力在空间上合理分布,从而有利于促进光学系统100整体达到像差平衡,进而有利于提升光学系统100的成像质量。超过上述条件式的范围,第一透镜组承担的正屈折力与第二透镜组承担的负屈折力差异过大,容易打乱光学系统100整体的像差平衡,导致像差增大,从而导致光学系统100的解像力下降。
在一些实施例中,光学系统100满足条件式:1.5<(f6-f7)/f≤3;其中,f6为第六透镜L6的有效焦距,f7为第七透镜L7的有效焦距,f为光学系统100的有效焦距。具体地,(f6-|f7|)/f可以为:1.856、1.877、1.892、1.955、2.154、2.387、2.555、2.603、2.711或2.746。满足上述条件式时,能够合理配置第六透镜L6和第七透镜L7在光学系统100中的屈折力,有利于第六透镜L6与第七透镜L7有效校正物侧透镜产生的球差,从而有利于提升光学系统100的解像力;另外也有利于压缩第六透镜L6和第七透镜L7的轴上尺寸,从而有利于光学系统100的小型化设计。
在一些实施例中,光学系统100满足条件式:-17≤f2/R21≤-1;其中,f2为第二透镜L2的有效焦距,R21为第二透镜L2的物侧面S3于光轴110处的曲率半径。具体地,f2/R21可以为:-16.890、-15.254、-12.360、-10.885、-7.336、-5.120、-4.336、-3.512、-2.558或-1.997。满足上述条件式时,能够合理配置第二透镜L2的有效焦距及物侧面S3曲率半径的比值,有利于降低第二透镜L2的面型复杂度,从而避免T方向场曲畸变的增加,同时,第二透镜L2的物侧面S3与第一透镜L1的像侧面S2匹配良好,有利于缩短光学系统100的总长。低于上述条件式的下限,第二透镜L2提供的负屈折力不足,不利于像差的平衡;超过上述条件式的上限,第二透镜L2的像侧面S4面型过于弯曲,导致第二透镜L2的公差敏感度增大,从而增大了第二透镜L2的成型和加工难度。
在一些实施例中,光学系统100满足条件式:1.5≤R71/R72≤3;其中,R71为第七透镜L7的物侧面S13于光轴110处的曲率半径,R72为第七透镜L7的像侧面S14于光轴110处的曲率半径。具体地,R71/R72可以为:1.926、2.025、2.074、2.110、2.164、2.199、2.325、2.398、2.422或2.581。满足上述条件式时,能够合理配置第七透镜L7的物侧面S13与像侧面S14的曲率半径的比值,有利于减小边缘视场处光线经第七透镜L7物侧面S13的偏转角度,从而有利于降低光学系统100的敏感性,进而提升光学系统100的成像质量;同时有利于缩短光学系统100的有效焦距,从而有利于增大光学系统100的光圈,提高光通量,使得光学系统100在弱光环境下也能够具备良好的成像质量。低于上述条件式的下限时,第七透镜L7物侧面S13的曲率半径过小,第七透镜L7物侧面S13的面型弯曲度过大,容易导致光线偏转角度过大,从而增加光学系统100的敏感度并增大鬼像产生的风险。超过上述条件式的上限,第七透镜L7像侧面S14的面型过于弯曲,容易导致后焦过长,不利于光学系统100的小型化。
在一些实施例中,光学系统100满足条件式:-35≤R51/ET5≤-13;其中,R51为第五透镜L5的物侧面S9于光轴110处的曲率半径,ET5为第五透镜L5的物侧面S9最大有效口径处至像侧面S10最大有效口径处于光轴110方向上的距离。具体地,R51/ET5可以为:-33.992、-30.265、-28.614、-25.337、-20.146、-19.555、-17.985、-15.631、-14.320或-13.910。满足上述条件式时,能够合理配置第五透镜L5的物侧面S9曲率半径与边缘厚度的比值,有利于有效约束第五透镜L5物侧面S9的弯曲程度,提升第五透镜L5的加工可行性,并提高光学系统100的组装稳定性,同时还有利于缩短第五透镜L5的轴上尺寸,从而有利于缩短光学系统100的总长。低于上述条件式的下限时,第五透镜L5物侧面S9的面型过于平缓,不利于光学系统100像差的校正,容易导致成像质量下降;超过上述条件式的上限时,第五透镜L5物侧面S9的曲率半径过小,面型过于弯曲,容易导致第五透镜L5成型良率降低,并降低光学系统100的组装稳定性。
在一些实施例中,光学系统100满足条件式:0.5≤(SD72-SD71)/CT7≤1;其中,SD72为第七透镜L7的像侧面S14的最大有效半口径,SD71为第七透镜L7的物侧面S13的最大有效半口径,CT7为第七透镜L7于光轴110上的厚度。具体地,(SD72-SD71)/CT7可以为:0.682、0.702、0.725、0.738、0.744、0.788、0.796、0.855、0.863或0.944。满足上述条件式时,能够合理配置第七透镜L7物、像侧最大有效半口径与第七透镜L7的中心厚度,有利于增大光学系统100的成像面S17,同时也有利于减小镜筒结构排布的压力,并有利于提升第七透镜L7的加工可行性。超过上述条件式的上限时,第七透镜L7物、像侧有效口径差异过大,导致边缘光线偏转角增大,从而增大鬼像产生的风险,引入杂光,降低成像品质;低于上述条件式下限时,第七透镜L7物侧、像侧有效口径差异过小,导致成像面S17相对亮度不足,从而容易出现暗角。
在一些实施例中,光学系统100满足条件式:1≤SAG62/SAG61≤1.5;其中,SAG62为第六透镜L6的像侧面S12于最大有效口径处的矢高,SAG61为第六透镜L6的物侧面S11于最大有效口径处的矢高。具体地,SAG62/SAG61可以为:1.128、1.155、1.182、1.237、1.289、1.305、1.325、1.398、1.433或1.486。满足上述条件式时,能够合理配置第六透镜L6像侧面S12矢高与物侧面S11矢高的比值,有利于约束第六透镜L6物侧面S11和像侧面S12的面型,限制第六透镜L6面型的弯曲程度,避免面型过于复杂而增加第六透镜L6的成型难度;同时也有利于降低成像面S17主光线的入射角度,使得光学系统100更容易匹配感光元件,从而有利于提升成像质量。超过上述条件式的上限时,第六透镜L6的像侧面S12矢高过大,第六透镜L6像侧面S12的面型过于弯曲,增加第六透镜L6的成型加工难度;低于上述条件式的下限时,第六透镜L6的像侧面S12过于平缓,不利于矫正像差,并增加鬼像产生的风险,不利于成像品质的提升。
以上的有效焦距及组合焦距数值的参考波长均为555nm。
根据上述各实施例的描述,以下提出更为具体的实施例及附图予以详细说明。
第一实施例
请参见图1和图2,图1为第一实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6以及具有负屈折力的第七透镜L7。图2由左至右依次为第一实施例中光学系统100的纵向球差、像散及畸变的曲线图,其中像散图和畸变图的参考波长为555nm,其他实施例相同。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凹面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的物侧面S9于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的像侧面S10于近光轴110处为凸面,于圆周处为凹面;
第六透镜L6的物侧面S11于近光轴110处为凸面,于圆周处为凸面;
第六透镜L6的像侧面S12于近光轴110处为凹面,于圆周处为凸面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凹面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的物侧面和像侧面均为非球面。
需要注意的是,在本申请中,当描述透镜的一个表面于近光轴110处(该表面的中心区域)为凸面时,可理解为该透镜的该表面于光轴110附近的区域为凸面。当描述透镜的一个表面于圆周处为凹面时,可理解为该表面在靠近最大有效半径处的区域为凹面。举例而言,当该表面于近光轴110处为凸面,且于圆周处也为凸面时,该表面由中心(该表面与光轴110的交点)至边缘方向的形状可以为纯粹的凸面;或者是先由中心的凸面形状过渡到凹面形状,随后在靠近最大有效半径处时变为凸面。此处仅为说明光轴110处与圆周处的关系而做出的示例,表面的多种形状结构(凹凸关系)并未完全体现,但其他情况可根据以上示例推导得出。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的材质均为塑料。
进一步地,光学系统100满足条件式:TTL/ImgH=1.112;其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面S17于光轴110上的距离,ImgH为光学系统100的最大视场角所对应的像高的一半。满足上述条件式时,能够合理配置光学系统100的光学总长和半像高的比值,有利于缩短光学系统100的总长,同时使得光学系统100具有较低的敏感度,另外也有利于光学系统100具备足够大的成像面以匹配更高像素的感光元件,从而使得光学系统100能够拍摄出被摄物更多的细节,提升光学系统100的成像质量。具备上述屈折力及面型特征并满足上述条件式,光学系统100能够兼顾小型化设计和大像面特征的实现。
光学系统100满足条件式:f34<0;f12/|f34|=2.219;其中,f12为第一透镜L1与第二透镜L2的组合焦距,f34为第三透镜L3与第四透镜L4的组合焦距。满足上述条件式时,能够合理配置第一透镜L1与第二透镜L2组成的第一透镜组以及第三透镜L3与第四透镜L4组成的第二透镜组的有效焦距的比值,使得第一透镜组的正屈折力与第二透镜组的负屈折力达到平衡,有利于第一透镜组和第二透镜组的屈折力在空间上合理分布,从而有利于促进光学系统100整体达到像差平衡,进而有利于提升光学系统100的成像质量。
光学系统100满足条件式:(f6-f7)/f=2.736;其中,f6为第六透镜L6的有效焦距,f7为第七透镜L7的有效焦距,f为光学系统100的有效焦距。满足上述条件式时,能够合理配置第六透镜L6和第七透镜L7在光学系统100中的屈折力,有利于第六透镜L6与第七透镜L7有效校正物侧透镜产生的球差,从而有利于提升光学系统100的解像力;另外也有利于压缩第六透镜L6和第七透镜L7的轴上尺寸,从而有利于光学系统100的小型化设计。
光学系统100满足条件式:f2/R21=-1.997;其中,f2为第二透镜L2的有效焦距,R21为第二透镜L2的物侧面S3于光轴110处的曲率半径。满足上述条件式时,能够合理配置第二透镜L2的有效焦距及物侧面S3曲率半径的比值,有利于降低第二透镜L2的面型复杂度,从而避免T方向场曲畸变的增加,同时,第二透镜L2的物侧面S3与第一透镜L1的像侧面S2匹配良好,有利于缩短光学系统100的总长。
光学系统100满足条件式:R71/R72=2.368;其中,R71为第七透镜L7的物侧面S13于光轴110处的曲率半径,R72为第七透镜L7的像侧面S14于光轴110处的曲率半径。满足上述条件式时,能够合理配置第七透镜L7的物侧面S13与像侧面S14的曲率半径的比值,有利于减小边缘视场处光线经第七透镜L7物侧面S13的偏转角度,从而有利于降低光学系统100的敏感性,进而提升光学系统100的成像质量;同时有利于缩短光学系统100的有效焦距,从而有利于增大光学系统100的光圈,提高光通量,使得光学系统100在弱光环境下也能够具备良好的成像质量。
光学系统100满足条件式:R51/ET5=-13.910;其中,R51为第五透镜L5的物侧面S9于光轴110处的曲率半径,ET5为第五透镜L5的物侧面S9最大有效口径处至像侧面S10最大有效口径处于光轴110方向上的距离。满足上述条件式时,能够合理配置第五透镜L5的物侧面S9曲率半径与边缘厚度的比值,有利于有效约束第五透镜L5物侧面S9的弯曲程度,提升第五透镜L5的加工可行性,并提高光学系统100的组装稳定性,同时还有利于缩短第五透镜L5的轴上尺寸,从而有利于缩短光学系统100的总长;另外还有利于校正光学系统100的像差。
光学系统100满足条件式:(SD72-SD71)/CT7=0.682;其中,SD72为第七透镜L7的像侧面S14的最大有效半口径,SD71为第七透镜L7的物侧面S13的最大有效半口径,CT7为第七透镜L7于光轴110上的厚度。满足上述条件式时,能够合理配置第七透镜L7物、像侧最大有效半口径与第七透镜L7的中心厚度,有利于增大光学系统100的成像面S17,同时也有利于减小镜筒结构排布的压力,并有利于提升第七透镜L7的加工可行性。
光学系统100满足条件式:SAG62/SAG61=1.486;其中,SAG62为第六透镜L6的像侧面S12于最大有效口径处的矢高,SAG61为第六透镜L6的物侧面S11于最大有效口径处的矢高。满足上述条件式时,能够合理配置第六透镜L6像侧面S12矢高与物侧面S11矢高的比值,有利于约束第六透镜L6物侧面S11和像侧面S12的面型,限制第六透镜L6面型的弯曲程度,避免面型过于复杂而增加第六透镜L6的成型难度;同时也有利于降低成像面S17主光线的入射角度,使得光学系统100更容易匹配感光元件,从而有利于提升成像质量。
另外,光学系统100的各项参数由表1给出。其中,由物面(图未示出)至成像面S17的各元件依次按照表1从上至下的各元件的顺序排列。表1中的Y半径为相应面序号的物侧面或像侧面于光轴110处的曲率半径。面序号S1和面序号S2分别为第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。第一透镜L1的“厚度”参数列中的第一个数值为该透镜于光轴110上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一表面于光轴110上的距离。
需要注意的是,在该实施例及以下各实施例中,光学系统100也可不设置红外滤光片L8,但此时第七透镜L7的像侧面S14至成像面S17的距离保持不变。
在第一实施例中,光学系统100的有效焦距f=4.864mm,光学总长TTL=5.86mm,最大视场角FOV=94.291deg,光圈数FNO=2.199。光学系统100能够满足小型化设计的需求,并具备大光圈特性以及大像面特性,具备良好的成像质量。
各透镜的焦距的参考波长为555nm,各透镜的折射率和阿贝数的参考波长均为587.56nm,其他实施例也相同。
表1
Figure BDA0003309892030000081
Figure BDA0003309892030000091
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表2给出。其中,面序号从S1-S14分别表示像侧面或物侧面S1-S14。而从上到下的K-A20分别表示非球面系数的类型,其中,K表示圆锥系数,A4表示四次非球面系数,A6表示六次非球面系数,A8表示八次非球面系数,以此类推。另外,非球面系数公式如下:
Figure BDA0003309892030000092
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴110的距离,c为非球面顶点的曲率,K为圆锥系数,Ai为非球面面型公式中与第i项高次项相对应的系数。
表2
面序号 S1 S2 S3 S4 S5 S6 S7
K -8.593E-01 1.728E+01 7.150E+01 2.554E+01 -9.800E+01 3.849E+01 9.800E+01
A4 1.381E-02 -5.562E-02 -7.449E-02 -4.008E-02 3.183E-02 2.456E-02 -1.016E-01
A6 2.229E-02 -3.123E-03 2.919E-02 -4.495E-03 -9.349E-02 1.823E-02 7.784E-02
A8 -1.043E-01 -1.210E-01 -6.519E-02 8.314E-02 2.800E-01 -2.425E-01 -3.413E-01
A10 2.981E-01 4.900E-01 3.304E-01 -1.140E-01 -1.006E+00 6.601E-01 8.405E-01
A12 -5.544E-01 -1.179E+00 -6.821E-01 1.400E-01 2.331E+00 -1.138E+00 -1.341E+00
A14 6.466E-01 1.714E+00 8.658E-01 -1.184E-01 -3.440E+00 1.242E+00 1.407E+00
A16 -4.630E-01 -1.496E+00 -7.055E-01 4.139E-02 3.090E+00 -8.463E-01 -9.393E-01
A18 1.833E-01 7.167E-01 3.377E-01 0.000E+00 -1.557E+00 3.244E-01 3.606E-01
A20 -3.083E-02 -1.452E-01 -7.046E-02 0.000E+00 3.374E-01 -5.204E-02 -5.991E-02
面序号 S8 S9 S10 S11 S12 S13 S14
K -9.590E+01 1.576E+00 8.483E-01 -2.011E+01 -1.157E+01 -2.490E+01 -6.190E+00
A4 -6.722E-02 3.170E-02 -1.195E-01 3.757E-02 4.903E-02 -1.573E-01 -8.029E-02
A6 2.223E-02 -2.253E-02 1.595E-01 -4.004E-02 -3.495E-02 7.233E-02 3.218E-02
A8 -4.467E-02 6.292E-02 -1.611E-01 6.643E-03 2.422E-03 -2.498E-02 -9.922E-03
A10 3.071E-02 -1.315E-01 1.131E-01 -1.660E-04 3.603E-03 5.892E-03 2.009E-03
A12 1.863E-02 1.301E-01 -5.658E-02 5.242E-04 -1.666E-03 -8.854E-04 -2.540E-04
A14 -4.524E-02 -7.414E-02 1.965E-02 -3.410E-04 3.553E-04 8.351E-05 1.978E-05
A16 3.217E-02 2.492E-02 -4.347E-03 7.983E-05 -4.141E-05 -4.804E-06 -9.212E-07
A18 -1.030E-02 -4.553E-03 5.383E-04 -8.303E-06 2.538E-06 1.545E-07 2.354E-08
A20 1.246E-03 3.473E-04 -2.817E-05 3.244E-07 -6.407E-08 -2.132E-09 -2.541E-10
另外,图2包括光学系统100的纵向球差曲线图(Longitudinal SphericalAberration),纵向球差曲线表示不同波长的光线经由镜头后的汇聚焦点偏离,其中,纵坐标表示归一化的由光瞳中心至光瞳边缘的光瞳坐标(Normalized Pupil Coordinator),横坐标表示焦点偏移,即成像面S17到光线与光轴110交点的距离(单位为mm)。由纵向球差图可知,第一实施例中的各波长光线的汇聚焦点偏离程度趋于一致,成像画面中的弥散斑或色晕得到有效抑制。图2还包括光学系统100的像散曲线图(ASTIGMATIC FIELD CURVES),其中,横坐标表示焦点偏移,纵坐标表示像高,单位为mm,且像散曲线图中的S曲线代表555nm下的弧矢场曲,T曲线代表555nm下的子午场曲。由图中可知,光学系统100的场曲较小,各视场的场曲和像散均得到了良好的校正,视场中心和边缘均拥有清晰的成像。图2还包括光学系统100的畸变曲线图(DISTORTION),畸变曲线表示不同视场角对应的畸变大小值,其中,横坐标表示畸变值,单位为%,纵坐标表示像高,单位为mm。由图中可知,由主光束引起的图像变形较小,系统的成像质量优良。
第二实施例
请参见图3和图4,图3为第二实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有正屈折力的第六透镜L6以及具有负屈折力的第七透镜L7。图4由左至右依次为第二实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凹面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的物侧面S9于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的像侧面S10于近光轴110处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于近光轴110处为凸面,于圆周处为凸面;
第六透镜L6的像侧面S12于近光轴110处为凹面,于圆周处为凹面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的材质均为塑料。
另外,光学系统100的各项参数由表3给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表3
Figure BDA0003309892030000101
/>
Figure BDA0003309892030000111
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表4给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表4
面序号 S1 S2 S3 S4 S5 S6 S7
K -8.343E-01 1.617E+01 5.496E+01 2.581E+01 -6.410E+01 4.105E+01 -9.800E+01
A4 1.428E-02 -5.999E-02 -7.304E-02 -3.931E-02 4.844E-04 -3.413E-03 -9.561E-02
A6 2.143E-02 3.230E-03 4.083E-02 1.572E-02 -6.121E-02 -3.761E-02 -1.372E-02
A8 -1.081E-01 -1.738E-01 -1.677E-01 2.229E-02 2.277E-01 9.501E-02 6.690E-02
A10 3.399E-01 7.423E-01 7.543E-01 -9.246E-04 -9.097E-01 -2.719E-01 -1.914E-01
A12 -6.808E-01 -1.866E+00 -1.773E+00 -5.808E-03 2.187E+00 4.609E-01 3.487E-01
A14 8.446E-01 2.823E+00 2.544E+00 -1.642E-02 -3.312E+00 -5.102E-01 -3.783E-01
A16 -6.365E-01 -2.554E+00 -2.227E+00 1.280E-02 3.048E+00 3.468E-01 2.327E-01
A18 2.635E-01 1.267E+00 1.090E+00 0.000E+00 -1.570E+00 -1.321E-01 -7.282E-02
A20 -4.619E-02 -2.657E-01 -2.271E-01 0.000E+00 3.476E-01 2.229E-02 8.825E-03
面序号 S8 S9 S10 S11 S12 S13 S14
K -7.618E+01 2.123E+00 1.082E+00 -1.626E+01 -3.956E+00 -2.617E+01 -5.719E+00
A4 -6.592E-02 1.914E-02 -1.271E-01 1.863E-02 7.202E-02 -1.638E-01 -8.485E-02
A6 1.391E-02 1.925E-02 1.489E-01 -1.720E-02 -6.225E-02 7.232E-02 3.461E-02
A8 -2.537E-02 -2.225E-02 -1.263E-01 -1.483E-02 1.860E-02 -2.396E-02 -1.025E-02
A10 1.374E-02 -2.301E-02 7.041E-02 1.310E-02 -2.324E-03 5.546E-03 1.971E-03
A12 1.957E-02 3.992E-02 -2.681E-02 -4.617E-03 -2.513E-04 -8.263E-04 -2.386E-04
A14 -3.317E-02 -2.431E-02 7.434E-03 8.770E-04 1.333E-04 7.751E-05 1.798E-05
A16 2.059E-02 7.561E-03 -1.440E-03 -8.991E-05 -1.919E-05 -4.438E-06 -8.177E-07
A18 -5.861E-03 -1.182E-03 1.670E-04 4.427E-06 1.250E-06 1.420E-07 2.063E-08
A20 6.321E-04 7.320E-05 -8.460E-06 -7.088E-08 -3.122E-08 -1.949E-09 -2.230E-10
根据上述所提供的各参数信息,可推得以下数据:
TTL/ImgH 1.097 R71/R72 2.403
f12/|f34| 1.479 R51/ET5 -18.457
(f6-f7)/f 2.524 (SD72-SD71)/CT7 0.744
f2/R21 -2.955 SAG62/SAG61 1.390
另外,由图4中的像差图可知,光学系统100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第三实施例
请参见图5和图6,图5为第三实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有正屈折力的第六透镜L6以及具有负屈折力的第七透镜L7。图6由左至右依次为第三实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凹面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的物侧面S9于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的像侧面S10于近光轴110处为凸面,于圆周处为凹面;
第六透镜L6的物侧面S11于近光轴110处为凸面,于圆周处为凸面;
第六透镜L6的像侧面S12于近光轴110处为凹面,于圆周处为凸面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凹面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的材质均为塑料。
另外,光学系统100的各项参数由表5给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表5
Figure BDA0003309892030000121
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表6给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表6
Figure BDA0003309892030000122
/>
Figure BDA0003309892030000131
并且,根据上述所提供的各参数信息,可推得以下数据:
TTL/ImgH 1.116 R71/R72 2.105
f12/|f34| 2.663 R51/ET5 -21.085
(f6-f7)/f 2.746 (SD72-SD71)/CT7 0.752
f2/R21 -2.273 SAG62/SAG61 1.423
另外,由图6中的像差图可知,光学系统100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第四实施例
请参见图7和图8,图7为第四实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有正屈折力的第六透镜L6以及具有负屈折力的第七透镜L7。图8由左至右依次为第四实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凹面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的物侧面S7于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的物侧面S9于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于近光轴110处为凸面,于圆周处为凸面;
第六透镜L6的像侧面S12于近光轴110处为凹面,于圆周处为凹面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凹面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的材质均为塑料。
另外,光学系统100的各项参数由表7给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表7
Figure BDA0003309892030000141
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表8给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表8
Figure BDA0003309892030000142
Figure BDA0003309892030000151
并且,根据上述所提供的各参数信息,可推得以下数据:
TTL/ImgH 1.120 R71/R72 2.205
f12/|f34| 1.100 R51/ET5 -21.840
(f6-f7)/f 2.623 (SD72-SD71)/CT7 0.706
f2/R21 -4.064 SAG62/SAG61 1.266
另外,由图8中的像差图可知,光学系统100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第五实施例
请参见图9和图10,图9为第五实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6以及具有负屈折力的第七透镜L7。图10由左至右依次为第五实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凹面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的物侧面S7于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于近光轴110处为凸面,于圆周处为凸面;
第六透镜L6的像侧面S12于近光轴110处为凹面,于圆周处为凹面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凹面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的材质均为塑料。
另外,光学系统100的各项参数由表9给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表9
Figure BDA0003309892030000152
Figure BDA0003309892030000161
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表10给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表10
面序号 S1 S2 S3 S4 S5 S6 S7
K -1.191E+00 1.294E+01 4.819E+01 3.056E+01 -9.800E+01 4.638E+01 1.421E+01
A4 1.051E-02 -6.468E-02 -6.834E-02 -3.816E-02 -2.556E-02 -2.377E-02 -9.507E-02
A6 5.462E-02 -4.763E-02 -3.283E-02 5.795E-02 1.525E-01 -1.039E-01 -7.034E-03
A8 -3.050E-01 1.202E-01 2.016E-01 -2.004E-01 -1.074E+00 5.919E-01 4.667E-02
A10 9.370E-01 -4.455E-01 -6.331E-01 5.709E-01 3.888E+00 -1.959E+00 -1.279E-01
A12 -1.799E+00 1.065E+00 1.582E+00 -7.535E-01 -8.736E+00 3.723E+00 2.000E-01
A14 2.133E+00 -1.542E+00 -2.470E+00 4.829E-01 1.222E+01 -4.304E+00 -1.574E-01
A16 -1.530E+00 1.296E+00 2.261E+00 -1.197E-01 -1.033E+01 2.975E+00 4.010E-02
A18 6.064E-01 -5.783E-01 -1.112E+00 0.000E+00 4.809E+00 -1.134E+00 1.532E-02
A20 -1.018E-01 1.033E-01 2.236E-01 0.000E+00 -9.368E-01 1.850E-01 -7.508E-03
面序号 S8 S9 S10 S11 S12 S13 S14
K 1.728E+01 2.681E+00 6.401E+00 -5.603E+00 5.208E+00 -1.369E+01 -4.718E+00
A4 -5.974E-02 -2.592E-02 -1.713E-01 2.337E-02 1.436E-01 -1.729E-01 -9.943E-02
A6 1.255E-02 1.166E-01 2.001E-01 -4.023E-02 -8.648E-02 7.561E-02 4.378E-02
A8 -2.554E-02 -1.826E-01 -1.830E-01 3.146E-02 1.681E-03 -2.289E-02 -1.411E-02
A10 7.623E-03 1.708E-01 1.362E-01 -4.449E-02 1.480E-02 4.909E-03 2.994E-03
A12 3.126E-02 -1.229E-01 -7.909E-02 3.317E-02 -6.909E-03 -7.011E-04 -4.024E-04
A14 -3.973E-02 6.481E-02 3.162E-02 -1.335E-02 1.554E-03 6.439E-05 3.368E-05
A16 2.103E-02 -2.238E-02 -7.761E-03 2.967E-03 -1.924E-04 -3.645E-06 -1.697E-06
A18 -5.324E-03 4.399E-03 1.040E-03 -3.409E-04 1.257E-05 1.157E-07 4.703E-08
A20 5.259E-04 -3.668E-04 -5.814E-05 1.578E-05 -3.385E-07 -1.576E-09 -5.514E-10
并且,根据上述所提供的各参数信息,可推得以下数据:
TTL/ImgH 1.030 R71/R72 1.926
f12/|f34| 1.148 R51/ET5 -28.859
(f6-f7)/f 2.494 (SD72-SD71)/CT7 0.735
f2/R21 -12.602 SAG62/SAG61 1.128
另外,由图10中的像差图可知,光学系统100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第六实施例
请参见图11和图12,图11为第六实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6以及具有负屈折力的第七透镜L7。图12由左至右依次为第六实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凹面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凹面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于近光轴110处为凸面,于圆周处为凸面;
第六透镜L6的像侧面S12于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凹面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的材质均为塑料。
另外,光学系统100的各项参数由表11给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表11
Figure BDA0003309892030000171
Figure BDA0003309892030000181
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表12给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表12
面序号 S1 S2 S3 S4 S5 S6 S7
K -1.007E+00 1.312E+01 4.682E+01 3.037E+01 -9.800E+01 3.993E+01 9.800E+01
A4 8.986E-03 -5.835E-02 -6.496E-02 -3.129E-02 -1.736E-02 -2.053E-02 -1.129E-01
A6 5.728E-02 -3.666E-02 -1.635E-03 2.649E-02 1.363E-01 -7.438E-02 3.786E-02
A8 -2.660E-01 3.060E-02 -2.304E-02 -7.998E-02 -9.844E-01 4.735E-01 -3.474E-02
A10 7.117E-01 -7.200E-02 1.812E-01 2.544E-01 3.463E+00 -1.599E+00 -1.691E-02
A12 -1.195E+00 9.966E-02 -3.430E-01 -3.044E-01 -7.468E+00 3.015E+00 9.325E-02
A14 1.245E+00 -4.486E-02 4.197E-01 1.636E-01 9.948E+00 -3.429E+00 -9.941E-02
A16 -7.873E-01 -6.128E-02 -3.621E-01 -2.962E-02 -7.970E+00 2.320E+00 3.090E-02
A18 2.743E-01 8.189E-02 1.961E-01 0.000E+00 3.499E+00 -8.614E-01 9.741E-03
A20 -4.032E-02 -2.903E-02 -4.926E-02 0.000E+00 -6.394E-01 1.365E-01 -5.366E-03
面序号 S8 S9 S10 S11 S12 S13 S14
K -3.918E+01 4.133E+00 9.477E+00 -6.319E+00 9.800E+01 -2.457E+01 -5.134E+00
A4 -7.592E-02 -3.705E-02 -1.463E-01 2.028E-02 1.507E-01 -1.790E-01 -1.018E-01
A6 4.421E-02 1.145E-01 1.480E-01 -3.639E-02 -9.748E-02 7.576E-02 4.444E-02
A8 -6.351E-02 -1.610E-01 -1.406E-01 1.194E-02 2.277E-02 -2.104E-02 -1.376E-02
A10 4.784E-02 1.361E-01 1.142E-01 -1.052E-02 7.130E-04 4.159E-03 2.805E-03
A12 -4.574E-03 -8.538E-02 -6.863E-02 7.816E-03 -1.993E-03 -5.610E-04 -3.651E-04
A14 -1.829E-02 3.926E-02 2.725E-02 -3.277E-03 5.635E-04 4.961E-05 2.980E-05
A16 1.330E-02 -1.223E-02 -6.552E-03 7.502E-04 -7.663E-05 -2.738E-06 -1.470E-06
A18 -3.788E-03 2.250E-03 8.583E-04 -8.664E-05 5.259E-06 8.537E-08 4.003E-08
A20 3.957E-04 -1.801E-04 -4.695E-05 3.933E-06 -1.459E-07 -1.148E-09 -4.623E-10
并且,根据上述所提供的各参数信息,可推得以下数据:
TTL/ImgH 1.059 R71/R72 2.581
f12/|f34| 1.360 R51/ET5 -30.866
(f6-f7)/f 2.002 (SD72-SD71)/CT7 0.730
f2/R21 -16.890 SAG62/SAG61 1.340
另外,由图12中的像差图可知,光学系统100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第七实施例
请参见图13和图14,图13为第七实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6以及具有负屈折力的第七透镜L7。图14由左至右依次为第七实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凹面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的物侧面S9于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凹面;
第六透镜L6的物侧面S11于近光轴110处为凸面,于圆周处为凸面;
第六透镜L6的像侧面S12于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的材质均为塑料。
另外,光学系统100的各项参数由表13给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表13
Figure BDA0003309892030000191
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表14给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表14
Figure BDA0003309892030000192
/>
Figure BDA0003309892030000201
并且,根据上述所提供的各参数信息,可推得以下数据:
TTL/ImgH 1.066 R71/R72 2.237
f12/|f34| 4.385 R51/ET5 -33.992
(f6-f7)/f 1.856 (SD72-SD71)/CT7 0.944
f2/R21 -6.611 SAG62/SAG61 1.352
另外,由图14中的像差图可知,光学系统100的纵向球差、像散和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
请参见图15,在一些实施例中,光学系统100可与感光元件210组装形成取像模组200。此时,感光元件210的感光面可视为光学系统100的成像面S17。取像模组200还可设置有红外滤光片L8,红外滤光片L8设置于第七透镜L7的像侧面S14与成像面S17之间。具体地,感光元件210可以为电荷耦合元件(Charge Coupled Device,CCD)或互补金属氧化物半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)。在取像模组200中采用上述光学系统100,使得取像模组200能够兼顾小型化设计和大像面特性的实现,既能够应用于便携式电子设备中,也能够具备良好的成像质量。
请参见图15和图16,在一些实施例中,取像模组200可应用于电子设备300中,电子设备300包括壳体310,取像模组200设置于壳体310。具体地,电子设备300可以为但不限于便携电话机、视频电话、智能手机、电子书籍阅读器、行车记录仪等车载摄像设备或智能手表等可穿戴装置。当电子设备300为智能手机时,壳体310可以为电子设备300的中框。在电子设备300中采用上述取像模组200,电子设备300既能够进行便携式设计,也能够具备良好的成像质量,提升用户的使用体验。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种光学系统,其特征在于,所述光学系统中具有屈折力的透镜的数量为七片,所述光学系统沿光轴由物侧至像侧依次包括:
具有正屈折力的第一透镜,所述第一透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
具有负屈折力的第二透镜,所述第二透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
具有正屈折力的第三透镜;
具有负屈折力的第四透镜;
具有屈折力的第五透镜,所述第五透镜的物侧面于近光轴处为凹面;
具有正屈折力的第六透镜,所述第六透镜的物侧面于近光轴处为凸面;
具有负屈折力的第七透镜,所述第七透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
且所述光学系统满足以下条件式:
1≤TTL/ImgH≤1.12;
1.5≤R71/R72≤3;
其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,ImgH为所述光学系统的最大视场角所对应的像高的一半,R71为所述第七透镜的物侧面于光轴处的曲率半径,R72为所述第七透镜的像侧面于光轴处的曲率半径。
2.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
1≤SAG62/SAG61≤1.5;
其中,SAG62为所述第六透镜的像侧面于最大有效口径处的矢高,SAG61为所述第六透镜的物侧面于最大有效口径处的矢高。
3.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
1.5<(f6-f7)/f≤3;
其中,f6为所述第六透镜的有效焦距,f7为所述第七透镜的有效焦距,f为所述光学系统的有效焦距。
4.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
-17≤f2/R21≤-1;
其中,f2为所述第二透镜的有效焦距,R21为所述第二透镜的物侧面于光轴处的曲率半径。
5.根据权利要求1所述的光学系统,其特征在于,还包括光阑,所述光阑设于所述第一透镜的物侧。
6.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
-35≤R51/ET5≤-13;
其中,R51为所述第五透镜的物侧面于光轴处的曲率半径,ET5为所述第五透镜的物侧面最大有效口径处至像侧面最大有效口径处于光轴方向上的距离。
7.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
0.5≤(SD72-SD71)/CT7≤1;
其中,SD72为所述第七透镜的像侧面的最大有效半口径,SD71为所述第七透镜的物侧面的最大有效半口径,CT7为所述第七透镜于光轴上的厚度。
8.根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
f34<0;
1≤f12/|f34|≤4.5;
其中,f12为所述第一透镜与所述第二透镜的组合焦距,f34为所述第三透镜与所述第四透镜的组合焦距。
9.一种取像模组,其特征在于,包括感光元件以及权利要求1-8任一项所述的光学系统,所述感光元件设置于所述光学系统的像侧。
10.一种电子设备,其特征在于,包括壳体以及权利要求9所述的取像模组,所述取像模组设置于所述壳体。
CN202111213926.5A 2021-10-19 2021-10-19 光学系统、取像模组及电子设备 Active CN113900232B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202111213926.5A CN113900232B (zh) 2021-10-19 2021-10-19 光学系统、取像模组及电子设备
US17/686,330 US20230123067A1 (en) 2021-10-19 2022-03-03 Optical system, image acquisition module and electronic device
EP22162211.1A EP4170407A1 (en) 2021-10-19 2022-03-15 Seven-lens imaging objective

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111213926.5A CN113900232B (zh) 2021-10-19 2021-10-19 光学系统、取像模组及电子设备

Publications (2)

Publication Number Publication Date
CN113900232A CN113900232A (zh) 2022-01-07
CN113900232B true CN113900232B (zh) 2023-07-04

Family

ID=79192703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111213926.5A Active CN113900232B (zh) 2021-10-19 2021-10-19 光学系统、取像模组及电子设备

Country Status (3)

Country Link
US (1) US20230123067A1 (zh)
EP (1) EP4170407A1 (zh)
CN (1) CN113900232B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6882838B2 (ja) * 2019-03-07 2021-06-02 カンタツ株式会社 撮像レンズ
CN114675399B (zh) * 2022-03-10 2023-09-05 江西晶超光学有限公司 光学镜头、摄像模组及电子设备
CN114675408B (zh) * 2022-05-27 2022-09-13 江西晶超光学有限公司 光学系统、取像模组及电子设备
CN117406398B (zh) * 2023-12-14 2024-03-08 江西联创电子有限公司 光学镜头

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020030273A (ja) * 2018-08-21 2020-02-27 カンタツ株式会社 撮像レンズ
CN111999859A (zh) * 2020-09-25 2020-11-27 南昌欧菲精密光学制品有限公司 光学成像系统、取像模组和电子装置
CN112965206A (zh) * 2021-03-08 2021-06-15 浙江舜宇光学有限公司 光学成像系统
WO2021196030A1 (zh) * 2020-03-31 2021-10-07 江西晶超光学有限公司 光学系统、镜头模组和电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031628B (zh) * 2018-10-29 2023-08-04 浙江舜宇光学有限公司 光学成像镜片组
JP7347991B2 (ja) * 2019-08-16 2023-09-20 東京晨美光学電子株式会社 撮像レンズ
JP7002508B2 (ja) * 2019-08-19 2022-01-20 東京晨美光学電子株式会社 撮像レンズ
JP6919028B1 (ja) * 2020-06-23 2021-08-11 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 撮像レンズ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020030273A (ja) * 2018-08-21 2020-02-27 カンタツ株式会社 撮像レンズ
WO2021196030A1 (zh) * 2020-03-31 2021-10-07 江西晶超光学有限公司 光学系统、镜头模组和电子设备
CN111999859A (zh) * 2020-09-25 2020-11-27 南昌欧菲精密光学制品有限公司 光学成像系统、取像模组和电子装置
CN112965206A (zh) * 2021-03-08 2021-06-15 浙江舜宇光学有限公司 光学成像系统

Also Published As

Publication number Publication date
CN113900232A (zh) 2022-01-07
EP4170407A1 (en) 2023-04-26
US20230123067A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
CN110456490B (zh) 摄像透镜组
CN110554484B (zh) 光学成像系统
CN107436481B (zh) 摄像透镜组
CN107490841B (zh) 摄像透镜组
CN109239891B (zh) 光学成像透镜组
CN113900232B (zh) 光学系统、取像模组及电子设备
CN109358415B (zh) 光学成像镜头
CN109613683B (zh) 光学成像系统
CN113552696B (zh) 光学系统、取像模组及电子设备
CN113805310B (zh) 光学系统、取像模组及电子设备
CN114114654B (zh) 光学系统、取像模组及电子设备
CN108535844B (zh) 摄影镜头
CN112612117A (zh) 光学系统、取像模组及电子设备
CN114488488B (zh) 摄像镜头
CN113156612B (zh) 光学系统、取像模组及电子设备
CN112748541B (zh) 摄像镜头
CN212540842U (zh) 光学系统、取像模组及电子设备
CN113189748A (zh) 光学系统、取像模组及电子设备
CN113484978A (zh) 摄像镜头组
CN113900225B (zh) 光学系统、取像模组及电子设备
CN113900226B (zh) 光学系统、取像模组及电子设备
CN114326052B (zh) 光学系统、取像模组及电子设备
CN114326019B (zh) 光学系统、取像模组及电子设备
CN113514931B (zh) 光学成像镜头
CN112925086B (zh) 光学系统、取像模组及电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant