WO2021147470A1 - 摄像镜头 - Google Patents
摄像镜头 Download PDFInfo
- Publication number
- WO2021147470A1 WO2021147470A1 PCT/CN2020/127918 CN2020127918W WO2021147470A1 WO 2021147470 A1 WO2021147470 A1 WO 2021147470A1 CN 2020127918 W CN2020127918 W CN 2020127918W WO 2021147470 A1 WO2021147470 A1 WO 2021147470A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- refractive power
- imaging
- abbe number
- curvature
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/04—Reversed telephoto objectives
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/64—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
Definitions
- the present invention relates to a camera lens, in particular to a mobile phone camera lens assembly and WEB camera lens composed of CCD, CMOS and other imaging elements suitable for high pixels, TTL (total optical length)/IH (image height) ⁇ 1.30 and An imaging lens composed of seven lenses that is thin and has a full angle of view (hereinafter referred to as 2 ⁇ ) of 80° or more, and has good optical characteristics.
- a camera lens in particular to a mobile phone camera lens assembly and WEB camera lens composed of CCD, CMOS and other imaging elements suitable for high pixels, TTL (total optical length)/IH (image height) ⁇ 1.30 and An imaging lens composed of seven lenses that is thin and has a full angle of view (hereinafter referred to as 2 ⁇ ) of 80° or more, and has good optical characteristics.
- Reference 1 describes an imaging lens composed of these seven lenses.
- the imaging lens consists of a first lens with positive refractive power, a second lens with negative refractive power, and a third lens with positive refractive power from the object side.
- a fourth lens with positive refractive power, a fifth lens with negative refractive power, a sixth lens with positive refractive power, and a seventh lens with negative refractive power is also advancing.
- the object of the present invention is to provide an imaging lens composed of seven lenses that is thin, wide-angle, and has good optical characteristics.
- an embodiment of the present invention provides an imaging lens, the imaging lens sequentially comprising from the object side to the image side: a first lens with a positive refractive power, a second lens with a negative refractive power, A third lens with positive refractive power, a fourth lens with positive refractive power, a fifth lens with negative refractive power, a sixth lens with positive refractive power, and a seventh lens with negative refractive power;
- the overall focal length of the imaging lens is f
- the focal length of the first lens is f1
- the focal length of the second lens is f2
- the focal length of the fifth lens is f5
- the Abbe number of the first lens is ⁇ 1
- the Abbe number of the second lens is ⁇ 2
- the Abbe number of the third lens is ⁇ 3, which satisfies the following relations (1) ⁇ (4):
- the focal length of the third lens is f3, and satisfies the following relationship (5):
- the focal length of the fourth lens is f4, and satisfies the following relationship (6):
- the beneficial effect of the present invention is that: according to the imaging lens of the present invention, the Abbe number of the first lens and the Abbe number of the second lens are reasonably controlled, and the Abbe number of the first lens and the Abbe number of the third lens are reasonably controlled.
- the difference, the ratio of the focal length of the first lens to the focal length of the second lens, and the power distribution of the fifth lens can achieve TTL (total optical length)/IH (image height) ⁇ 1.30, low profile, and 2 ⁇ > 80° wide angle.
- TTL total optical length
- IH image height
- FIG. 1 is a schematic diagram of the structure of an imaging lens according to a first embodiment of the present invention
- FIG. 2 is a schematic diagram of axial aberration, curvature of field, and distortion of the imaging lens of the first embodiment of the present invention
- FIG. 3 is a schematic diagram of the structure of an imaging lens according to a second embodiment of the present invention.
- FIG. 4 is a schematic diagram of axial aberration, curvature of field, and distortion of the imaging lens of the second embodiment of the present invention
- FIG. 5 is a schematic diagram of the structure of an imaging lens according to a third embodiment of the present invention.
- FIG. 6 is a schematic diagram of axial aberration, curvature of field, and distortion of the imaging lens of the third embodiment of the present invention.
- FIG. 7 is a schematic structural diagram of an imaging lens according to a fourth embodiment of the present invention.
- FIG. 8 is a schematic diagram of axial aberration, curvature of field, and distortion of the imaging lens of the fourth embodiment of the present invention.
- FIG. 9 is a schematic diagram of the structure of an imaging lens according to a fifth embodiment of the present invention.
- FIG. 10 is a schematic diagram of axial aberration, curvature of field, and distortion of the imaging lens of the fifth embodiment of the present invention.
- the imaging lens LA includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens L6, and a seventh lens in order from the object side to the image side.
- An optical filter GF is arranged between the seventh lens L7 and the image plane Si.
- this optical filter GF a glass cover plate, various filters, etc. can be used.
- the optical filter GF may be arranged in a different position, or this structure may be omitted.
- the first lens L1 is a lens with positive refractive power
- the second lens L2 is a lens with negative refractive power
- the third lens L3 is a lens with positive refractive power
- the fourth lens L4 is a lens with positive refractive power.
- the lens L5 is a lens with negative refractive power
- the sixth lens L6 is a lens with positive refractive power
- the seventh lens L7 is a lens with negative refractive power.
- the entire surfaces of the seven lens surfaces preferably have an aspherical shape.
- the imaging lens LA Define the overall focal length of the imaging lens LA as f, the focal length of the first lens L1 as f1, the focal length of the second lens L2 as f2, the focal length of the fifth lens L5 as f5, the Abbe number of the first lens L1 as ⁇ 1,
- the Abbe number of the lens L2 is ⁇ 2
- the Abbe number of the third lens L3 is ⁇ 3
- the imaging lens LA satisfies the following relational expressions (1) to (4).
- the relational expression (1) specifies the difference between the Abbe number v1 of the first lens L1 and the Abbe number v2 of the second lens L2. Outside the range of the relational expression (1), it is difficult to correct on-axis and off-axis chromatic aberrations due to wide-angle and thinning, which is not preferable.
- the relational expression (2) specifies the difference between the Abbe number v1 of the first lens L1 and the Abbe number v3 of the third lens L3. Outside the range of relational expression (2), it is difficult to correct on-axis and off-axis chromatic aberrations due to wide-angle and thinning, which is not preferable.
- the relationship (3) specifies the ratio of the focal length f1 of the first lens L1 to the focal length f2 of the second lens L2. Outside the range of relational expression (3), it is difficult to correct on-axis and off-axis chromatic aberrations due to wide-angle and thinning, which is not preferable.
- the relationship (4) specifies the negative refractive power of the fifth lens L5. Outside the range of the relational expression (4), wide-angle and thinning with good optical characteristics become difficult, which is not preferable.
- the third lens L3 has a positive refractive power, and the focal length of the third lens L3 is f3, which satisfies the following relationship (5):
- the relationship (5) specifies the positive refractive power of the third lens L3. Within the range of the relational expression (5), it has a wide angle and a thinner profile with good optical characteristics.
- the fourth lens L4 has positive refractive power, and the focal length of the fourth lens L4 is f4, which satisfies the following relationship (6):
- the relationship (6) specifies the positive refractive power of the fourth lens L4. Within the range of the relational expression (6), it has a wide angle and a thinner profile with good optical characteristics.
- the seven lenses that make up the imaging lens LA can obtain TTL (total optical length)/IH (image height) ⁇ 1.30 and a thin, 2 ⁇ >80° wide angle with good optical characteristics through the above-mentioned structure and satisfying the above-mentioned relational expressions.
- the camera lens consists of seven lenses.
- imaging lens LA of the present invention will be described using specific embodiments.
- the symbols described in each embodiment are represented as follows.
- the unit of focal length, on-axis distance, on-axis thickness, radius of curvature, and image height is millimeter, abbreviated as "mm”.
- R The radius of curvature of the optical surface, and the radius of curvature of the center in the case of a lens
- R1 The curvature radius of the object side of the first lens L1
- R2 The curvature radius of the image side of the first lens L1
- R3 The curvature radius of the object side of the second lens L2
- R4 The curvature radius of the image side of the second lens L2
- R5 The radius of curvature of the object side of the third lens L3
- R6 The radius of curvature of the image side surface of the third lens L3
- R7 The radius of curvature of the object side of the fourth lens L4
- R8 The radius of curvature of the image side of the fourth lens L4
- R9 The radius of curvature of the object side of the fifth lens L5
- R10 The radius of curvature of the image side surface of the fifth lens L5
- R11 The radius of curvature of the object side of the sixth lens L6
- R12 The radius of curvature of the image side surface of the sixth lens L6
- R13 The radius of curvature of the object side of the seventh lens L7
- R14 The radius of curvature of the image side of the seventh lens L7
- R15 The curvature radius of the object side of the optical filter GF
- R16 The curvature radius of the image side of the optical filter GF
- nd1 the refractive index of the d-line of the first lens L1
- nd2 the refractive index of the d-line of the second lens L2
- ndg The refractive index of the d-line of the optical filter GF
- ⁇ g Abbe number of optical filter GF
- TTL Total optical length (the on-axis distance from the object side of the first lens L1 to the image surface)
- FIG. 1 is a configuration diagram showing the arrangement of imaging lens LA according to the first embodiment.
- Table 1 shows the design data of the first lens L1 to the seventh lens L7 of the imaging lens LA of the first embodiment, including the radius of curvature R, the axial thickness or the axial distance d, the refractive index nd, the Abbe number vd, and the effective Radius, where the data of refractive index nd, Abbe number vd and effective radius correspond to a wavelength of 588.0 nm.
- Table 2 shows the conic coefficient and aspheric coefficient of each lens in the imaging lens LA of the first embodiment of the present invention.
- k is the conic coefficient
- A4, A6, A8, A10, A12, A14, A16, A18, A20 are aspherical coefficients.
- the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (7).
- the present invention is not limited to the aspheric polynomial form represented by the formula (7).
- Table 3 shows data of 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, f6, f7, TTL, LB, and IH of the imaging lens LA of the first embodiment of the present invention.
- Table 16 shows the values corresponding to the parameters specified in the relational expressions (1)-(6) in the first to fifth embodiments.
- the first embodiment satisfies the relational expressions (1)-(6).
- the curvature of field S in the schematic diagram of curvature of field in FIG. 2 is the curvature of field in the sagittal direction
- T is the curvature of field in the meridional direction
- FIG. 3 is a configuration diagram showing the arrangement of imaging lens LA of the second embodiment.
- Table 4 shows the design data of the first lens L1 to the seventh lens L7 constituting the imaging lens LA of the second embodiment, including the radius of curvature R, the axial thickness or the axial distance d, the refractive index nd, the Abbe number vd, and The effective radius, where the refractive index nd, Abbe number vd, and effective radius data correspond to a wavelength of 588.0 nm.
- Table 5 shows the conic coefficient and aspheric coefficient of each lens in the imaging lens LA of the second embodiment of the present invention.
- Table 6 shows data of 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, f6, f7, TTL, LB, and IH of the imaging lens LA of the second embodiment of the present invention.
- the second embodiment satisfies the relational expressions (1)-(6).
- FIG. 4 shows a schematic diagram of the axial aberration of the light having wavelengths of 486.0 nm, 588.0 nm, and 666.0 nm passing through the imaging lens LA of the second embodiment, and the field curvature of the 588.0 nm light passing through the imaging lens LA of the second embodiment. And distortion diagram.
- FIG. 5 is a configuration diagram showing the arrangement of imaging lens LA of the third embodiment.
- Table 7 shows the design data of the first lens L1 to the seventh lens L7 constituting the imaging lens LA of the third embodiment, including the radius of curvature R, the axial thickness or the axial distance d, the refractive index nd, the Abbe number vd, and The effective radius, where the refractive index nd, Abbe number vd, and effective radius data correspond to a wavelength of 588.0 nm.
- Table 8 shows the conic coefficient and aspheric coefficient of each lens in the imaging lens LA of the third embodiment of the present invention.
- Table 9 shows data of 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, f6, f7, TTL, LB, and IH of the imaging lens LA of the third embodiment of the present invention.
- the third embodiment satisfies the relational expressions (1)-(6).
- FIG. 6 shows a schematic diagram of the axial aberration of the light having wavelengths of 486.0 nm, 588.0 nm, and 666.0 nm passing through the imaging lens LA of the third embodiment, and the field curvature of the 588.0 nm light passing through the imaging lens LA of the third embodiment. And distortion diagram.
- FIG. 7 is a configuration diagram showing the arrangement of imaging lens LA of the fourth embodiment.
- Table 10 shows the design data of the first lens L1 to the seventh lens L7 constituting the imaging lens LA of the fourth embodiment, including the radius of curvature R, the axial thickness or the axial distance d, the refractive index nd, the Abbe number vd, and The effective radius, where the refractive index nd, Abbe number vd, and effective radius data correspond to a wavelength of 588.0 nm.
- Table 11 shows the conic coefficient and aspheric coefficient of each lens in the imaging lens LA of the fourth embodiment of the present invention.
- Table 12 shows data of 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, f6, f7, TTL, LB, and IH of the imaging lens LA of the fourth embodiment of the present invention.
- the fourth embodiment satisfies the relational expressions (1)-(6).
- FIG. 8 shows a schematic diagram of the axial aberration of the light having wavelengths of 486.0 nm, 588.0 nm, and 666.0 nm passing through the imaging lens LA of the fourth embodiment, and the field curvature of the 588.0 nm light passing through the imaging lens LA of the fourth embodiment. And distortion diagram.
- FIG. 9 is a configuration diagram showing the arrangement of an imaging lens LA according to a fifth embodiment.
- Table 13 shows the design data of the first lens L1 to the seventh lens L7 constituting the imaging lens LA of the fifth embodiment, including the radius of curvature R, the axial thickness or the axial distance d, the refractive index nd, the Abbe number vd, and The effective radius, where the refractive index nd, Abbe number vd, and effective radius data correspond to a wavelength of 588.0 nm.
- Table 14 shows the conic coefficient and aspheric coefficient of each lens in the imaging lens LA of the fifth embodiment of the present invention.
- Table 15 shows data of 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, f6, f7, TTL, LB, and IH of the imaging lens LA of the fifth embodiment of the present invention.
- the fifth embodiment satisfies the relational expressions (1)-(6).
- FIG. 10 shows a schematic diagram of the axial aberration of the light having wavelengths of 486.0 nm, 588.0 nm, and 666.0 nm passing through the imaging lens LA of the fifth embodiment, and the field curvature of the 588.0 nm light passing through the imaging lens LA of the fifth embodiment. And distortion diagram.
- Table 16 shows the values corresponding to the parameters specified in the relational expressions (1)-(6) in the first embodiment to the fifth embodiment.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
一种摄像镜头(LA),自物侧至像侧依序包含:具有正屈折力的第一透镜(L1),具有负屈折力的第二透镜(L2),具有正屈折力的第三透镜(L3),具有正屈折力的第四透镜(L4),具有负屈折力的第五透镜(L5),具有正屈折力的第六透镜(L6),以及具有负屈折力的第七透镜(L7);且满足所规定的关系式。摄像镜头(LA)具有薄型、广角的优点,并且具有良好的光学特性。
Description
本发明涉及一种摄像镜头,特别是涉及一种适用于高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头、TTL(光学总长)/IH(像高)<1.30及薄型以及全视角(以下表示为2ω)在80°以上的、并且具有良好光学特性的七个透镜构成的摄像镜头。
近年来,广泛普及了使用CCD或CMOS等摄像元件的各种摄像装置。随着这些摄像元件的小型化和高性能化,迫切需求薄型、广角并且具有良好的光学特性的摄像镜头。
因此,目前正在推进关于薄型、广角并且具有良好的光学特性的七个透镜构成的摄像镜头的技术开发。对比文件1记载了作为这七个透镜构成的摄像镜头,该摄像镜头从物侧依序由具有正屈折力的第一透镜,具有负屈折力的第二透镜,具有正屈折力的第三透镜,具有正屈折力的第四透镜,具有负屈折力的第五透镜,具有正屈折力的第六透镜,具有负屈折力的第七透镜构成。
对比文件“特开2014-102408号公报”的实施例一、二、六、七、八、九、十中公开的摄像镜头,第一透镜的阿贝数和第二透镜的阿贝数之差,第一透镜的阿贝数和第三透镜的阿贝数之差,第一透镜的焦距和第二透镜的焦距之比,第五透镜的功率分配不充分,因此薄型化以及广角化不充分。
发明内容
本发明的目的是提供一种薄型、广角并且具有良好的光学特性的七个透镜构成的摄像镜头。
为解决上述技术问题,本发明的实施方式提供了一种摄像镜头,该摄像镜头,自物侧至像侧依序包含:具有正屈折力的第一透镜,具有负屈折力的第二透镜,具有正屈折力的第三透镜,具有正屈折力的第四透镜,具有负屈折力的第五透镜,具有正屈折力的第六透镜,以及具有负屈折力的第七透镜;
摄像镜头整体的焦距为f,第一透镜的焦距为f1,第二透镜的焦距为f2,第五透镜的焦距为f5,第一透镜的阿贝数为ν1,第二透镜的阿贝数为ν2,第三透镜的阿贝数为ν3,满足下列关系式(1)~(4):
50.00≦ν1-ν2≦70.00 (1);
50.00≦ν1-ν3≦70.00 (2);
-0.25≦f1/f2≦-0.10 (3);
-100.00≦f5/f≦-25.00 (4)。
优选的,所述第三透镜的焦距为f3,且满足下列关系式(5):
25.00≦f3/f≦48.00 (5)。
优选的,所述第四透镜的焦距为f4,且满足下列关系式(6):
35.00≦f4/f≦300.00 (6)。
本发明的有益效果在于:根据本发明的摄像镜头,通过合理控制第一透镜的阿贝数与第二透镜的阿贝数之差、第一透镜的阿贝数与第三透镜的阿贝数之差、第一透镜的焦距与第二透镜的焦距之比、以及第五透镜的功率分配,能够实现TTL(光学总长)/IH(像高)<1.30、薄型以及2ω>80°广角的良好光学特性。
图1是本发明第一实施方式的摄像镜头的结构示意图;
图2是本发明第一实施方式的摄像镜头的轴向像差、场曲、畸变示意图;
图3是本发明第二实施方式的摄像镜头的结构示意图;
图4是本发明第二实施方式的摄像镜头的轴向像差、场曲、畸变示意图;
图5是本发明第三实施方式的摄像镜头的结构示意图;
图6是本发明第三实施方式的摄像镜头的轴向像差、场曲、畸变示意图;
图7是本发明第四实施方式的摄像镜头的结构示意图;
图8是本发明第四实施方式的摄像镜头的轴向像差、场曲、畸变示意图;
图9是本发明第五实施方式的摄像镜头的结构示意图;
图10是本发明第五实施方式的摄像镜头的轴向像差、场曲、畸变示意图。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
参考附图,该摄像镜头LA,从物侧至像侧依序包含第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7的七个透镜结构的透镜系统。在第七透镜L7与像面Si之间配置有光学过滤片GF。作为该光学过滤片GF,可以为玻璃盖板及各种过滤器等。在本发明中,光学过滤片GF也可以配置在不同的位置,也可以省略该结构。
第一透镜L1是具有正屈折力的透镜,第二透镜L2是具有负屈折力的透镜,第三透镜L3是具有正屈折力的透镜,第四透镜L4是具有正屈折力的透镜,第五透镜L5是具有负屈折力的透镜,第六透镜L6是具有正屈折力的透镜,第七透镜L7是具有负屈折力的透镜。为了良好地校正各种像差,这七个透镜表面的整个表面优选具有非球面形状。
定义摄像镜头LA整体的焦距为f,第一透镜L1的焦距为f1,第二透镜L2的焦距为f2,第五透镜L5的焦距为f5,第一透镜L1的阿贝数为ν1,第二透镜L2的阿贝数为ν2,第三透镜L3的阿贝数为ν3,该摄像镜头LA满足下列关系式(1)~(4)。
50.00≦ν1-ν2≦70.00 (1)
50.00≦ν1-ν3≦70.00 (2)
-0.25≦f1/f2≦-0.10 (3)
-100.00≦f5/f≦-25.00 (4)
关系式(1)规定了第一透镜L1的阿贝数v1与第二透镜L2的阿贝数v2之差。在关系式(1)的范围外,伴随着广角、薄型化,难以补正轴上、轴外的色像差,所以不优选。
关系式(2)规定了第一透镜L1的阿贝数v1与第三透镜L3的阿贝数v3之差。在关系式(2)的范围外,伴随着广角、薄型化,难以补正轴上、轴外的色像差,所以不优选。
关系式(3)规定了第一透镜L1的焦距f1与第二透镜L2的焦距f2之比。在关系式(3)的范围外,伴随着广角、薄型化,难以补正轴上、轴外的色像差,所以不优选。
关系式(4)规定了第五透镜L5的负屈折力。在关系式(4)的范围外,具有良好的光学特性的广角、薄型化变得困难,因此不优选。
第三透镜L3具有正屈折力,第三透镜L3的焦距为f3,满足下列关系式(5):
25.00≦f3/f≦48.00 (5)
关系式(5)规定第三透镜L3的正屈折力。在关系式(5)的范围内,具有良好的光学特性的广角、薄型化。
第四透镜L4具有正屈折力,第四透镜L4的焦距为f4,满足下列关系式(6):
35.00≦f4/f≦300.00 (6)
关系式(6)规定了第四透镜L4的正屈折力。在关系式(6)的范围内,具有良好的光学特性的广角、薄型化。
构成摄像镜头LA的七个透镜分别通过上述结构和满足上述关系式,能够得到由TTL(光学总长)/IH(像高)<1.30和薄型的、2ω>80°的广角且具有良好的光学特性的七个透镜构成的摄像镜头。
以下,使用具体实施方式对本发明的摄像镜头LA进行说明。在各实施方式中描述的符号表示如下。另外,焦距、轴上距离、轴上厚度、曲率半径、像高的单位为毫米,缩写“mm”。
LA:摄像镜头
L1:第一透镜
L2:第二透镜
L3:第三透镜
L4:第四透镜
L5:第五透镜
L6:第六透镜
L7:第七透镜
GF:光学过滤片
f:摄像镜头LA整体的焦距
f1:第一透镜L1的焦距
f2:第二透镜L2的焦距
f3:第三透镜L3的焦距
f4:第四透镜L4的焦距
f5:第五透镜L5的焦距
f6:第六透镜L6的焦距
f7:第七透镜L7的焦距
Fno:F数
2ω:视场角
Stop:光圈
R:光学面的曲率半径、透镜时为中心曲率半径
R1:第一透镜L1的物侧面的曲率半径
R2:第一透镜L1的像侧面的曲率半径
R3:第二透镜L2的物侧面的曲率半径
R4:第二透镜L2的像侧面的曲率半径
R5:第三透镜L3的物侧面的曲率半径
R6:第三透镜L3的像侧面的曲率半径
R7:第四透镜L4的物侧面的曲率半径
R8:第四透镜L4的像侧面的曲率半径
R9:第五透镜L5的物侧面的曲率半径
R10:第五透镜L5的像侧面的曲率半径
R11:第六透镜L6的物侧面的曲率半径
R12:第六透镜L6的像侧面的曲率半径
R13:第七透镜L7的物侧面的曲率半径
R14:第七透镜L7的像侧面的曲率半径
R15:光学过滤片GF的物侧面的曲率半径
R16:光学过滤片GF的像侧面的曲率半径
d:透镜的轴上厚度或透镜之间的轴上距离
d0:从光圈STOP到第一透镜L1物侧面的轴上距离
d1:第一透镜L1的轴上厚度
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离
d3:第二透镜L2的轴上厚度
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离
d5:第三透镜L3的轴上厚度
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离
d7:第四透镜L4的轴上厚度
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离
d9:第五透镜L5的轴上厚度
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离
d11:第六透镜L6的轴上厚度
d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离
d13:第七透镜L7的轴上厚度
d14:第七透镜L7的像侧面到光学过滤片GF的物侧面的轴上距离
d15:光学过滤片GF的轴上厚度
d16:光学过滤片GF的像侧面到像面的轴上距离
nd:d线的折射率
nd1:第一透镜L1的d线的折射率
nd2:第二透镜L2的d线的折射率
nd3:第三透镜L3的d线的折射率
nd4:第四透镜L4的d线的折射率
nd5:第五透镜L5的d线的折射率
nd6:第六透镜L6的d线的折射率
nd7:第七透镜L7的d线的折射率
ndg:光学过滤片GF的d线的折射率
νd:阿贝数
ν1:第一透镜L1的阿贝数
ν2:第二透镜L2的阿贝数
ν3:第三透镜L3的阿贝数
ν4:第四透镜L4的阿贝数
ν5:第五透镜L5的阿贝数
ν6:第六透镜L6的阿贝数
ν7:第七透镜L7的阿贝数
νg:光学过滤片GF的阿贝数
TTL:光学总长(从第一透镜L1的物侧面到像面的轴上距离)
LB:从第七透镜L7的像侧面到像面的轴上距离(包括光学过滤片GF的厚度)
IH:像高
(第一实施方式)
图1是表示第一实施方式的摄像镜头LA的配置的结构图。表1示出第 一实施方式的摄像镜头LA的第一透镜L1至第七透镜L7的设计数据,包括曲率半径R、轴上厚度或轴上距离d、折射率nd、阿贝数vd以及有效半径,其中,折射率nd、阿贝数vd以及有效半径的数据对应波长为588.0nm。
【表1】
参考波长=588nm
表2示出本发明第一实施方式的摄像镜头LA中各透镜的圆锥系数和非球面系数。
【表2】
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
y=(x
2/R)/[1+{1-(k+1)(x
2/R
2)}
1/2]+A4x
4+A6x
6+A8x
8+A10x
10+A12x
12+A14x
14+A16x
16+A18x
18+A20x
20 (7)
为方便起见,各个透镜面的非球面使用上述公式(7)中所示的非球面。但是,本发明不限于该公式(7)表示的非球面多项式形式。
表3示出本发明第一实施方式的摄像镜头LA的2ω、Fno、f、f1、f2、f3、f4、f5、f6、f7、TTL、LB、IH的数据。
【表3】
2ω(°) | 83.02 |
Fno | 1.88 |
f(mm) | 6.278 |
f1(mm) | 5.545 |
f2(mm) | -22.345 |
f3(mm) | 157.568 |
f4(mm) | 220.345 |
f5(mm) | -627.136 |
f6(mm) | 20.476 |
f7(mm) | -6.317 |
TTL(mm) | 7.202 |
LB(mm) | 0.958 |
IH(mm) | 5.644 |
后出现的表16示出第一实施方式至第五实施方式关于关系式(1)-(6)中已规定的参数所对应的值。
如表16所示,第一实施方式满足关系式(1)-(6)。
图2示出了波长为486.0nm、588.0nm、666.0nm的光经过第一实施方式的摄像镜头LA的轴向像差示意图、以及588.0nm的光经过第一实施方式的摄像镜头LA的场曲和畸变示意图。另外,图2的场曲示意图中的场曲S是弧矢方向的场曲,T是子午方向的场曲,在之后的第二实施方式至第五实施方式中也一样。
第一实施方式的摄像镜头LA为2ω=83.02°、TTL/IH=1.276,具有广角、薄型的优点,及如图2所示,其轴上、轴外的色像差得到充分补正,具有良好的光学特性。
(第二实施方式)
图3是表示第二实施方式的摄像镜头LA的配置的结构图。表4示出构成第二实施方式的摄像镜头LA的第一透镜L1至第七透镜L7的设计数据,包括曲率半径R、轴上厚度或轴上距离d、折射率nd、阿贝数vd以及有效半径,其中,折射率nd、阿贝数vd以及有效半径的数据对应波长为588.0nm。
【表4】
参考波长=588nm
表5示出本发明第二实施方式的摄像镜头LA中各透镜的圆锥系数和非球面系数。
【表5】
表6示出本发明第二实施方式的摄像镜头LA的2ω、Fno、f、f1、f2、f3、f4、f5、f6、f7、TTL、LB、IH的数据。
【表6】
2ω(°) | 83.02 |
Fno | 1.88 |
f(mm) | 6.277 |
f1(mm) | 5.836 |
f2(mm) | -33.346 |
f3(mm) | 229.096 |
f4(mm) | 1051.329 |
f5(mm) | -392.287 |
f6(mm) | 16.309 |
f7(mm) | -6.005 |
TTL(mm) | 7.202 |
LB(mm) | 0.979 |
IH(mm) | 5.644 |
如表16所示,第二实施方式满足关系式(1)-(6)。
图4示出了波长为486.0nm、588.0nm、666.0nm的光经过第二实施方式的摄像镜头LA的轴向像差示意图、以及588.0nm的光经过第二实施方式的摄像镜头LA的场曲和畸变示意图。
第二实施方式的摄像镜头LA为2ω=83.02°、TTL/IH=1.276,具有广角、薄型的优点,及如图4所示,其轴上、轴外的色像差得到充分补正,具有良好的光学特性。
(第三实施方式)
图5是表示第三实施方式的摄像镜头LA的配置的结构图。表7示出构成第三实施方式的摄像镜头LA的第一透镜L1至第七透镜L7的设计数据,包括曲率半径R、轴上厚度或轴上距离d、折射率nd、阿贝数vd以及有效半径,其中,折射率nd、阿贝数vd以及有效半径的数据对应波长为588.0nm。
【表7】
参考波长=588nm
表8示出本发明第三实施方式的摄像镜头LA中各透镜的圆锥系数和非球面系数。
【表8】
表9示出本发明第三实施方式的摄像镜头LA的2ω、Fno、f、f1、f2、f3、f4、f5、f6、f7、TTL、LB、IH的数据。
【表9】
2ω(°) | 83.01 |
Fno | 2.10 |
f(mm) | 6.287 |
f1(mm) | 6.048 |
f2(mm) | -54.950 |
f3(mm) | 301.125 |
f4(mm) | 1879.671 |
f5(mm) | -157.792 |
f6(mm) | 21.187 |
f7(mm) | -6.321 |
TTL(mm) | 7.184 |
LB(mm) | 1.062 |
IH(mm) | 5.644 |
如表16所示,第三实施方式满足关系式(1)-(6)。
图6示出了波长为486.0nm、588.0nm、666.0nm的光经过第三实施方式的摄像镜头LA的轴向像差示意图、以及588.0nm的光经过第三实施方式的摄像镜头LA的场曲和畸变示意图。
第三实施方式的摄像镜头LA为2ω=83.01°、TTL/IH=1.273,具有广角、薄型的优点,及如图6所示,其轴上、轴外的色像差得到充分补正,具有良好的光学特性。
(第四实施方式)
图7是表示第四实施方式的摄像镜头LA的配置的结构图。表10示出构成第四实施方式的摄像镜头LA的第一透镜L1至第七透镜L7的设计数据,包括曲率半径R、轴上厚度或轴上距离d、折射率nd、阿贝数vd以及有效半径,其中,折射率nd、阿贝数vd以及有效半径的数据对应波长为588.0nm。
【表10】
参考波长=588nm
表11示出本发明第四实施方式的摄像镜头LA中各透镜的圆锥系数和非球面系数。
【表11】
表12示出本发明第四实施方式的摄像镜头LA的2ω、Fno、f、f1、f2、f3、f4、f5、f6、f7、TTL、LB、IH的数据。
【表12】
2ω(°) | 83.02 |
Fno | 1.87 |
f(mm) | 6.262 |
f1(mm) | 5.892 |
f2(mm) | -33.675 |
f3(mm) | 187.848 |
f4(mm) | 281.772 |
f5(mm) | -547.891 |
f6(mm) | 15.494 |
f7(mm) | -5.727 |
TTL(mm) | 7.202 |
LB(mm) | 0.964 |
IH(mm) | 5.644 |
如表16所示,第四实施方式满足关系式(1)-(6)。
图8示出了波长为486.0nm、588.0nm、666.0nm的光经过第四实施方式的摄像镜头LA的轴向像差示意图、以及588.0nm的光经过第四实施方式的摄像镜头LA的场曲和畸变示意图。
第四实施方式的摄像镜头LA为2ω=83.02°、TTL/IH=1.276,具有广角、薄型的优点,及如图8所示,其轴上、轴外的色像差得到充分补正,具有良好的光学特性。
(第五实施方式)
图9是表示第五实施方式的摄像镜头LA的配置的结构图。表13示出构成第五实施方式的摄像镜头LA的第一透镜L1至第七透镜L7的设计数据,包括曲率半径R、轴上厚度或轴上距离d、折射率nd、阿贝数vd以及有效半径,其中,折射率nd、阿贝数vd以及有效半径的数据对应波长为588.0nm。
【表13】
参考波长=588nm
表14示出本发明第五实施方式的摄像镜头LA中各透镜的圆锥系数和非球面系数。
【表14】
表15示出本发明第五实施方式的摄像镜头LA的2ω、Fno、f、f1、f2、f3、f4、f5、f6、f7、TTL、LB、IH的数据。
【表15】
2ω(°) | 83.02 |
Fno | 1.88 |
f(mm) | 6.275 |
f1(mm) | 5.850 |
f2(mm) | -33.437 |
f3(mm) | 276.116 |
f4(mm) | 1694.350 |
f5(mm) | 175.710 |
f6(mm) | 14.025 |
f7(mm) | 5.688 |
TTL(mm) | 7.202 |
LB(mm) | 0.959 |
IH(mm) | 5.644 |
如表16所示,第五实施方式满足关系式(1)-(6)。
图10示出了波长为486.0nm、588.0nm、666.0nm的光经过第五实施方式的摄像镜头LA的轴向像差示意图、以及588.0nm的光经过第五实施方式的摄像镜头LA的场曲和畸变示意图。
第五实施方式的摄像镜头LA为2ω=83.02°、TTL/IH=1.276,具有广角、薄型的优点,及如图10所示,其轴上、轴外的色像差得到充分补正,具有良好的光学特性。
表16示出了第一实施方式至第五实施方式中的关系式(1)-(6)中已规定的参数所对应的值。
【表16】
第一实施方式 | 第二实施方式 | 第三实施方式 | 第四实施方式 | 第五实施方式 | 备注 | |
v1-v2 | 50.055 | 62.262 | 69.740 | 62.262 | 62.262 | (1)式 |
v1-v3 | 50.055 | 62.262 | 69.740 | 62.262 | 62.262 | (2)式 |
f1/f2 | -0.248 | -0.175 | -0.110 | -0.175 | -0.175 | (3)式 |
f5/f | -99.900 | -62.500 | -25.100 | -87.500 | -28.000 | (4)式 |
f3/f | 25.100 | 36.500 | 47.900 | 30.000 | 44.000 | (5)式 |
f4/f | 35.100 | 167.500 | 299.000 | 45.000 | 270.000 | (6)式 |
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。
Claims (3)
- 一种摄像镜头,其特征在于,所述摄像镜头,自物侧至像侧依序包含:具有正屈折力的第一透镜,具有负屈折力的第二透镜,具有正屈折力的第三透镜,具有正屈折力的第四透镜,具有负屈折力的第五透镜,具有正屈折力的第六透镜,以及具有负屈折力的第七透镜;所述摄像镜头的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第五透镜的焦距为f5,所述第一透镜的阿贝数为ν1,所述第二透镜的阿贝数为ν2,所述第三透镜的阿贝数为ν3,满足下列关系式(1)~(4):50.00≦ν1-ν2≦70.00 (1);50.00≦ν1-ν3≦70.00 (2);-0.25≦f1/f2≦-0.10 (3);-100.00≦f5/f≦-25.00 (4)。
- 根据权利要求1所述的摄像镜头,其特征在于,所述第三透镜的焦距为f3,且满足下列关系式(5):25.00≦f3/f≦48.00 (5)。
- 根据权利要求1所述的摄像镜头,其特征在于,所述第四透镜的焦距为f4,且满足下列关系式(6):35.00≦f4/f≦300.00 (6)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020006772A JP6757480B1 (ja) | 2020-01-20 | 2020-01-20 | 撮像レンズ |
JP2020-006772 | 2020-01-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021147470A1 true WO2021147470A1 (zh) | 2021-07-29 |
Family
ID=71980134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/127918 WO2021147470A1 (zh) | 2020-01-20 | 2020-11-10 | 摄像镜头 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11372215B2 (zh) |
JP (1) | JP6757480B1 (zh) |
CN (1) | CN111538132B (zh) |
WO (1) | WO2021147470A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6757480B1 (ja) * | 2020-01-20 | 2020-09-16 | エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド | 撮像レンズ |
CN111308663A (zh) * | 2020-03-26 | 2020-06-19 | 浙江舜宇光学有限公司 | 光学成像镜头 |
JP6894037B1 (ja) * | 2020-09-18 | 2021-06-23 | エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド | 撮像レンズ |
TW202417918A (zh) * | 2021-08-09 | 2024-05-01 | 南韓商三星電機股份有限公司 | 光學成像系統 |
CN114137704B (zh) * | 2021-12-08 | 2023-05-30 | 玉晶光电(厦门)有限公司 | 光学成像镜头 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000241703A (ja) * | 1999-02-24 | 2000-09-08 | Kyocera Corp | コンパクトズームレンズ |
CN203606556U (zh) * | 2012-11-21 | 2014-05-21 | 康达智株式会社 | 摄像镜头 |
JP2015072403A (ja) * | 2013-10-04 | 2015-04-16 | コニカミノルタ株式会社 | 撮像レンズ、撮像装置及び携帯端末 |
CN107272143A (zh) * | 2016-03-31 | 2017-10-20 | 先进光电科技股份有限公司 | 光学成像系统 |
CN206946076U (zh) * | 2016-11-28 | 2018-01-30 | 三星电机株式会社 | 光学成像系统 |
CN108132524A (zh) * | 2017-12-29 | 2018-06-08 | 玉晶光电(厦门)有限公司 | 光学成像镜头 |
CN109491044A (zh) * | 2017-09-13 | 2019-03-19 | 大立光电股份有限公司 | 影像系统镜组、取像装置及电子装置 |
JP6757480B1 (ja) * | 2020-01-20 | 2020-09-16 | エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド | 撮像レンズ |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002006219A (ja) * | 2000-06-23 | 2002-01-09 | Asahi Optical Co Ltd | ズームレンズ系及びそのフォーカス方法 |
TWI600920B (zh) * | 2015-09-17 | 2017-10-01 | 先進光電科技股份有限公司 | 光學成像系統(一) |
CN110753868B (zh) * | 2017-06-08 | 2022-10-04 | 宁波舜宇光电信息有限公司 | 光学镜头和镜头模组 |
CN108873255B (zh) * | 2018-07-09 | 2023-08-25 | 浙江舜宇光学有限公司 | 光学成像系统 |
-
2020
- 2020-01-20 JP JP2020006772A patent/JP6757480B1/ja active Active
- 2020-02-05 CN CN202010080623.XA patent/CN111538132B/zh active Active
- 2020-03-30 US US16/835,286 patent/US11372215B2/en active Active
- 2020-11-10 WO PCT/CN2020/127918 patent/WO2021147470A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000241703A (ja) * | 1999-02-24 | 2000-09-08 | Kyocera Corp | コンパクトズームレンズ |
CN203606556U (zh) * | 2012-11-21 | 2014-05-21 | 康达智株式会社 | 摄像镜头 |
JP2015072403A (ja) * | 2013-10-04 | 2015-04-16 | コニカミノルタ株式会社 | 撮像レンズ、撮像装置及び携帯端末 |
CN107272143A (zh) * | 2016-03-31 | 2017-10-20 | 先进光电科技股份有限公司 | 光学成像系统 |
CN206946076U (zh) * | 2016-11-28 | 2018-01-30 | 三星电机株式会社 | 光学成像系统 |
CN109491044A (zh) * | 2017-09-13 | 2019-03-19 | 大立光电股份有限公司 | 影像系统镜组、取像装置及电子装置 |
CN108132524A (zh) * | 2017-12-29 | 2018-06-08 | 玉晶光电(厦门)有限公司 | 光学成像镜头 |
JP6757480B1 (ja) * | 2020-01-20 | 2020-09-16 | エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド | 撮像レンズ |
Also Published As
Publication number | Publication date |
---|---|
JP2021113916A (ja) | 2021-08-05 |
CN111538132A (zh) | 2020-08-14 |
JP6757480B1 (ja) | 2020-09-16 |
CN111538132B (zh) | 2021-09-28 |
US20210223513A1 (en) | 2021-07-22 |
US11372215B2 (en) | 2022-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021189915A1 (zh) | 摄像镜头 | |
CN109541781B (zh) | 摄像镜头 | |
WO2020125161A1 (zh) | 摄像镜头 | |
CN105866921B (zh) | 摄像镜头 | |
CN105866924B (zh) | 摄像镜头 | |
WO2021189916A1 (zh) | 摄像镜头 | |
WO2020125158A1 (zh) | 摄像镜头 | |
WO2021147470A1 (zh) | 摄像镜头 | |
WO2021189917A1 (zh) | 摄像镜头 | |
WO2020125162A1 (zh) | 摄像镜头 | |
WO2021258612A1 (zh) | 摄像镜头 | |
WO2022052273A1 (zh) | 摄像光学镜头 | |
CN105892011A (zh) | 摄像镜头 | |
WO2022000658A1 (zh) | 摄像光学镜头 | |
CN110262005B (zh) | 摄像光学镜头 | |
CN105866925A (zh) | 摄像镜头 | |
WO2022000659A1 (zh) | 摄像光学镜头 | |
WO2021169447A1 (zh) | 摄像镜头 | |
CN110865448B (zh) | 摄像光学镜头 | |
WO2022057031A1 (zh) | 摄像镜头 | |
WO2020125159A1 (zh) | 摄像镜头 | |
WO2022000647A1 (zh) | 摄像光学镜头 | |
WO2022067950A1 (zh) | 摄像光学镜头 | |
WO2022067957A1 (zh) | 摄像光学镜头 | |
WO2022067955A1 (zh) | 摄像光学镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20915817 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20915817 Country of ref document: EP Kind code of ref document: A1 |