WO2021187908A1 - 슬롯 다이 코팅 장치 - Google Patents

슬롯 다이 코팅 장치 Download PDF

Info

Publication number
WO2021187908A1
WO2021187908A1 PCT/KR2021/003343 KR2021003343W WO2021187908A1 WO 2021187908 A1 WO2021187908 A1 WO 2021187908A1 KR 2021003343 W KR2021003343 W KR 2021003343W WO 2021187908 A1 WO2021187908 A1 WO 2021187908A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
unit
active material
electrode active
energy
Prior art date
Application number
PCT/KR2021/003343
Other languages
English (en)
French (fr)
Inventor
박찬우
배관홍
이용태
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210034347A external-priority patent/KR102655289B1/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US17/626,718 priority Critical patent/US20220241813A1/en
Priority to CN202180003993.6A priority patent/CN114007763B/zh
Priority to EP21770473.3A priority patent/EP3984653A4/en
Publication of WO2021187908A1 publication Critical patent/WO2021187908A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • B05C5/0262Coating heads with slot-shaped outlet adjustable in width, i.e. having lips movable relative to each other in order to modify the slot width, e.g. to close it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • B05C5/0258Coating heads with slot-shaped outlet flow controlled, e.g. by a valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1007Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material
    • B05C11/1013Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material responsive to flow or pressure of liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1039Recovery of excess liquid or other fluent material; Controlling means therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a slot die coating apparatus, and more particularly, to a slot die coating apparatus for improving coating uniformity.
  • Secondary batteries are attracting a lot of attention as an energy source for power devices such as electric bicycles, electric vehicles, and hybrid electric vehicles, as well as mobile devices such as cell phones, digital cameras, and laptops.
  • the process of manufacturing the secondary battery may include coating and drying an active material, a binder, a conductive material, and the like, respectively, to a positive and negative electrode conductive current collector to a predetermined thickness in the form of a slurry. Thereafter, the electrode assembly formed by winding or stacking with a separator interposed between the two conductive current collectors is accommodated in a cylindrical or prismatic can, pouch, or the like, and sealed to manufacture a secondary battery.
  • the slurry containing such an active material should be uniformly coated on the current collector.
  • a slot die coating process may be performed.
  • Slot die coating is a method in which a slurry is supplied between a thin metal plate in the shape of a nozzle called a slot die using a pump, and applied to the surface of the current collector with a constant thickness. At this time, it is important to control the viscosity of the slurry, the flow of the slurry, and the distance between the slot die and the current collector in order to achieve a uniform coating.
  • the flow rate of the slurry exiting the slot die may vary greatly depending on the shape of the slot die and its position in the slot die.
  • the problem to be solved by the present invention is to provide a slot die coating apparatus that improves coating uniformity.
  • the slot die coating apparatus is discharged through a slot die including a first die block and a second die block, and a discharge port formed by combining the first die block and the second die block.
  • a sensor unit measuring a flow rate of the electrode active material slurry, the sensor unit being formed inside the first die block, and the sensor unit being connected to the outlet through an energy dissipating unit and an energy absorbing unit.
  • the energy emitting part and the energy absorbing part may be formed of a transparent material.
  • the sensor unit may measure the flow rate of the electrode active material slurry by sensing infrared energy or magnetic energy of the electrode active material slurry.
  • the energy emitting part and the energy absorbing part may be positioned to be spaced apart from each other along a discharge direction of the discharge port.
  • a plurality of the energy emitting part and the energy absorbing part are respectively formed in a direction perpendicular to the discharge direction of the outlet, the plurality of the energy emitting parts are positioned to be spaced apart from each other, and the plurality of the energy absorbing parts may be positioned to be spaced apart from each other. have.
  • a manifold may be formed in the second die block, and a slurry supply unit and a slurry recovery unit may be formed in the manifold.
  • the slot die coating apparatus may further include a control unit for adjusting the flow rate of the electrode active material slurry in response to the signal sensed by the sensor unit.
  • the control unit may include a flow rate control pump positioned between the slurry recovery unit and the slurry supply unit.
  • the slurry recovery unit and the slurry supply unit are in fluid communication with the flow control pump, and the electrode active material slurry recovered from the slurry recovery unit passes through the flow control pump and may be supplied to the manifold through the slurry supply unit. have.
  • the slurry recovery unit is positioned ahead of the discharge port along the discharge direction of the electrode active material slurry, recovers the electrode active material slurry to lower the supply flow rate of the slurry, and the slurry supply unit returns the recovered electrode active material slurry to the manifold. It is possible to increase the supply flow rate of the slurry by supplying it.
  • the pressure can be adjusted by circulating the slurry in the manifold, which is a space in which the slurry is stored inside the slot die.
  • FIG. 1 is a diagram schematically illustrating a process of slurry coating using a slot die coating apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view showing a slot die coating apparatus according to an embodiment of the present invention.
  • FIG. 3 is a view showing the structure of a non-contact flow meter included in the slot die coating apparatus of FIG. 2 .
  • FIG. 4 is a view showing a flow control pump structure included in the slot die coating apparatus of FIG. 2 .
  • FIG. 5 is a top view illustrating a first die block included in the slot die coating apparatus of FIG. 2 .
  • FIG. 6 is a bottom view illustrating a first die block included in the slot die coating apparatus of FIG. 2 .
  • FIG. 7 is a side view illustrating a first die block included in the slot die coating apparatus of FIG. 2 .
  • FIG. 8 is a top view illustrating a second die block included in the slot die coating apparatus of FIG. 2 .
  • FIG. 9 is a bottom view illustrating a second die block included in the slot die coating apparatus of FIG. 2 .
  • FIG. 10 is a side view illustrating a second die block included in the slot die coating apparatus of FIG. 2 .
  • a part of a layer, film, region, plate, etc. when a part of a layer, film, region, plate, etc. is said to be “on” or “on” another part, it includes not only cases where it is “directly on” another part, but also cases where another part is in between. . Conversely, when we say that a part is “just above” another part, we mean that there is no other part in the middle.
  • the reference portion means to be located above or below the reference portion, and to necessarily mean to be located “on” or “on” in the direction opposite to gravity no.
  • planar it means when the target part is viewed from above, and "in cross-section” means when viewed from the side when a cross-section of the target part is vertically cut.
  • FIG. 1 is a diagram schematically illustrating a process of slurry coating using a slot die coating apparatus according to an embodiment of the present invention.
  • the slot die coating apparatus 200 may coat the electrode active material slurry 105 on the electrode current collector 110 while moving in one direction D1 .
  • the electrode active material slurry 105 is a mixture made by mixing fine solid particles in a liquid to a low fluidity state, and the electrode slurry prepared by mixing a binder in a solvent in a certain ratio is coated on the electrode current collector 110 as a thin film, dried and pressed Through the process, it is possible to make an electrode for a secondary battery.
  • the electrode slurry includes an active material, a binder, and a conductive material, and the active material may be a positive electrode active material or a negative electrode active material.
  • the outlet 120 of the slot die coating apparatus 200 may be disposed toward the electrode current collector 110 in a direction perpendicular to the upper surface of the electrode current collector 110 .
  • the slurry injected into the slot die coating apparatus 200 through the slurry inlet 250 may be discharged through the outlet 120 .
  • the design change of the internal structure shape of the manifold of the slot die coating device 200 or the die of the slot die coating device 200 The distance between the block and the electrode current collector 110 may be adjusted.
  • the improved slot die coating apparatus it is possible to control the flow rate more precisely by the improved slot die coating apparatus to minimize the flow rate deviation by simply changing the design of the internal structure of the manifold or adjusting the slurry discharge interval.
  • the conventional flow control method when a slight difference in the slurry flow rate in the full width direction occurs in the discharge die, it can be known only by checking the coated electrode. It can detect the difference and match it evenly.
  • FIG. 2 is a view showing a slot die coating apparatus according to an embodiment of the present invention.
  • the slot die coating apparatus 200 includes a first die block 200a and a second die block 200b.
  • the first die block 200a and the second die block 200b may be connected by a coupling part 201 , and the coupling part 201 rotates by a hinge method so that the first die block 200a and the second die block 200a and the second die block 200b are connected.
  • the blocks 200b may be in contact with each other.
  • a plate material 230 (shim) may be disposed on the first die block 200a and the second die block 200b, and the plate material may be a thin metal plate.
  • the slot die coating apparatus 200 is a sensor for measuring the flow rate of the electrode active material slurry discharged through the outlet 120 formed by the combination of the first die block 200a and the second die block 200b and a control unit for adjusting the flow rate of the electrode active material slurry in response to the signal sensed by the sensor unit.
  • the sensor unit may be a non-contact flow meter, for example, the energy detection sensor 210 .
  • a slurry supply unit 310 and a slurry recovery unit 320 may be formed in the manifold 220 formed in the second die block 200b.
  • the control unit may be a flow control pump to be described later, and the flow control pump may be located between the slurry recovery unit 320 and the slurry supply unit 310 .
  • the manifold 220 is a space in which the slurry is stored in the slot die coating device 200 and is an internal space of the mechanism for allowing the slurry to come out at a uniform flow rate.
  • a slurry inlet 260 connected to the slurry inlet 250 of FIG. 1 may be formed in the manifold 220 .
  • FIG. 3 is a view showing the structure of a non-contact flow meter included in the slot die coating apparatus of FIG. 2 .
  • the non-contact flow meter is a sensor unit that measures the flow rate of the electrode active material slurry discharged through the outlet 120 .
  • the non-contact flow meter may be an energy sensing sensor 210 .
  • the energy sensing sensor 210 may be formed inside the first die block 200a and may be connected to the outlet 120 through the energy dissipating unit 212 and the energy absorbing unit 214 .
  • the energy emitting part 212 and the energy absorbing part 214 may be positioned to be spaced apart from each other along the discharge direction D2 of the discharge port 120 .
  • the sensor unit should be able to check the amount of the slurry flowing, but if the sensor unit is configured in a contact type, the sensor unit may obstruct the flow of the slurry, so that the slurry flow rate cannot be accurately measured.
  • the energy dissipating unit 212 and the energy absorbing unit 214 may be formed of a transparent material so that the slurry does not contact the sensor unit.
  • the transparent material may be an engineering plastic or glass material having excellent wear resistance.
  • the energy detection sensor 210 may measure the flow rate of the electrode active material slurry 105 by sensing infrared energy or magnetic energy of the electrode active material slurry 105 . Specifically, the energy generated by the energy sensing sensor 210 is irradiated to the electrode active material slurry 105 through the energy dissipating unit 212 , and the energy signal of the irradiated electrode active material slurry 105 is applied to the energy absorbing unit 214 . It is possible to measure the flow rate that can be received from the energy detection sensor 210 through the discharge port 120 .
  • the energy dissipating unit 212 may apply a certain amount of heat to the slurry, and when the heated slurry passes through the energy absorbing unit 214 , a signal may be recognized to measure the flow rate.
  • the energy emitter 212 may correspond to a signal generator of the energy detection sensor 210
  • the energy absorber 214 may correspond to a signal receiver of the energy detection sensor 210 .
  • FIG. 4 is a view showing a flow control pump structure included in the slot die coating apparatus of FIG. 2 .
  • a slurry supply unit 310 and a slurry recovery unit 320 are formed in the manifold 220 formed on the second die block 200b.
  • the slurry supply unit 310 and the slurry recovery unit 320 may circulate the electrode active material slurry 105 in the manifold 220 .
  • the flow control pump 300 is formed between the slurry supply unit 310 and the slurry recovery unit 320 .
  • the slurry recovery unit 320 and the slurry supply unit 310 are in fluid communication with the flow control pump 300 , and the electrode active material slurry 105 recovered from the slurry recovery unit 320 passes through the flow control pump 300 . Thus, it may be supplied to the manifold 220 through the slurry supply unit 310 .
  • the slurry recovery unit 320 is positioned ahead of the discharge port 120 along the discharge direction D2 of the electrode active material slurry 105 to recover the electrode active material slurry 105 to lower the supply flow rate of the slurry.
  • the slurry supply unit 310 may re-supply the recovered electrode active material slurry 105 to the manifold 220 to increase the supply flow rate of the slurry.
  • FIG. 5 is a top view illustrating a first die block included in the slot die coating apparatus of FIG. 2 .
  • 6 is a bottom view illustrating a first die block included in the slot die coating apparatus of FIG. 2 .
  • 7 is a side view illustrating a first die block included in the slot die coating apparatus of FIG. 2 .
  • a plurality of energy dissipating units 212 and energy absorbing units 214 are formed along a direction perpendicular to the discharge direction D2 of the discharge port, respectively, and a plurality of energy dissipating units 212 are formed. Spaced apart from each other, the plurality of energy absorbing parts 214 formed may be spaced apart from each other. As described above, the plurality of energy dissipating units 212 and energy absorbing units 214 are arranged at regular intervals in the width direction of the first die block 200a, and the energy dissipating unit 212 and the energy absorbing unit 214 are formed.
  • the energy detection sensor 210 By forming the energy detection sensor 210 to correspond to the group including, it is possible to measure the flow rate of the electrode active material slurry for each location.
  • FIG. 8 is a top view illustrating a second die block included in the slot die coating apparatus of FIG. 2 .
  • 9 is a bottom view illustrating a second die block included in the slot die coating apparatus of FIG. 2 .
  • 10 is a side view illustrating a second die block included in the slot die coating apparatus of FIG. 2 .
  • a plurality of slurry supply units 310 and a plurality of slurry recovery units 320 are respectively formed along a direction perpendicular to the discharge direction D2 of the discharge port, and the plurality of slurry supply units 310 are spaced apart from each other.
  • the plurality of slurry recovery units 320 may be positioned to be spaced apart from each other. In this way, the plurality of slurry supply units 310 and the slurry recovery unit 320 are arranged at regular intervals in the width direction of the second die block 200b, and the slurry supply unit 310 and the slurry recovery unit 320 are disposed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Coating Apparatus (AREA)

Abstract

본 발명의 일 실시예에 따른 슬롯 다이 코팅 장치는 제1 다이 블록과 제2 다이 블록을 포함하는 슬롯 다이, 및 상기 제1 다이 블록과 상기 제2 다이 블록의 결합에 의해 형성된 토출구를 통해 배출되는 전극 활물질 슬러리의 유량을 측정하는 센서부를 포함하고, 상기 센서부는 상기 제1 다이 블록의 내부에 형성되고, 상기 센서부는 에너지 발산부와 에너지 흡수부를 통해 상기 토출구와 연결된다.

Description

슬롯 다이 코팅 장치
관련 출원(들)과의 상호 인용
본 출원은 2020년 03월 19일자 한국 특허 출원 제10-2020-0034016호 및 2021년 03월 17일자 한국 특허 출원 제10-2021-0034347호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 슬롯 다이 코팅 장치에 관한 것으로서, 보다 구체적으로 코팅 균일성을 향상시키는 슬롯 다이 코팅 장치에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차 전지의 수요가 급격히 증가하고 있다. 이에 따라, 다양한 요구에 부응할 수 있는 이차 전지에 대한 연구가 많이 행해지고 있다.
이차 전지는 휴대폰, 디지털 카메라, 노트북 등의 모바일 기기뿐만 아니라, 전기 자전거, 전기 자동차, 하이브리드 전기 자동차 등의 동력 장치에 대한 에너지원으로도 많은 관심을 모으고 있다.
한편, 이차 전지를 제조하는 과정은 양극 도전 집전체와 음극 도전 집전체에 각각 활물질, 바인더 및 도전재 등을 슬러리 형태의 일정한 두께로 코팅 및 건조하는 단계를 포함할 수 있다. 이후, 상기 양 도전 집전체 사이에는 분리막이 개재되도록 하여 권취 또는 적층하여 형성된 전극 조립체를 원통형 또는 각형 캔, 파우치 등에 수납하고 이를 밀봉 처리하여 이차 전지가 제조될 수 있다.
이차 전지의 충방전 특성을 균일하게 하기 위해서는, 이러한 활물질을 포함하는 슬러리가 집전체에 고르게 코팅되어야 하는데, 이를 위해 슬롯 다이 코팅 공정이 수행될 수 있다. 슬롯 다이 코팅은 펌프를 사용하여 슬러리를 슬롯 다이라고 하는 노즐 형상의 얇은 금속판 사이로 공급하여, 집전체 표면에 일정한 두께로 도포하는 방식이다. 이때, 균일한 코팅을 하기 위해서는 슬러리의 점도, 슬러리의 유동 및 슬롯 다이와 집전체 사이의 거리 제어가 중요하다.
하지만, 점차 폭이 넓은 전극을 코팅하게 됨으로써 슬롯 다이를 빠져 나오는 슬러리의 유량이 슬롯 다이의 형상과 슬롯 다이에서의 위치에 따라 편차가 크게 발생할 수 있다. 또, 슬롯 다이를 통해 흘러 나가는 유량을 측정하기 어렵고, 슬롯 다이의 얇은 금속판 형상 및 두께가 결정되면 슬롯 다이의 형상 및 두께를 코팅 중에 실시간으로 가변 할 수는 없기 때문에 슬러리 유량을 제어할 수 없는 문제가 있다. 따라서, 전극 코팅 불균형이 발생하게 된다.
본 발명이 해결하고자 하는 과제는, 코팅 균일성을 향상시키는 슬롯 다이 코팅 장치를 제공하기 위한 것이다.
그러나, 본 발명의 실시예들이 해결하고자 하는 과제는 상술한 과제에 한정되지 않고 본 발명에 포함된 기술적 사상의 범위에서 다양하게 확장될 수 있다.
본 발명의 일 실시예에 따른 슬롯 다이 코팅 장치는 제1 다이 블록과 제2 다이 블록을 포함하는 슬롯 다이, 및 상기 제1 다이 블록과 상기 제2 다이 블록의 결합에 의해 형성된 토출구를 통해 배출되는 전극 활물질 슬러리의 유량을 측정하는 센서부를 포함하고, 상기 센서부는 상기 제1 다이 블록의 내부에 형성되고, 상기 센서부는 에너지 발산부와 에너지 흡수부를 통해 상기 토출구와 연결된다.
상기 에너지 발산부와 상기 에너지 흡수부는 투명 재료로 형성될 수 있다.
상기 센서부는 상기 전극 활물질 슬러리의 적외선 에너지 또는 자력 에너지를 감지하여 상기 전극 활물질 슬러리의 유량을 측정할 수 있다.
상기 에너지 발산부와 상기 에너지 흡수부는 상기 토출구의 토출 방향을 따라 서로 이격되어 위치할 수 있다.
상기 에너지 발산부와 상기 에너지 흡수부는 각각 상기 토출구의 토출 방향에 수직한 방향을 따라 복수개 형성되며, 상기 복수개 형성된 상기 에너지 발산부는 서로 이격되어 위치하고, 상기 복수개 형성된 상기 에너지 흡수부는 서로 이격되어 위치할 수 있다.
상기 제2 다이 블록에는 매니폴드가 형성되고, 상기 매니폴드에는 슬러리 공급부와 슬러리 회수부가 형성될 수 있다.
상기 슬롯 다이 코팅 장치는 상기 센서부에서 감지된 신호에 대응하여 상기 전극 활물질 슬러리의 유량을 조절하는 제어부를 더 포함할 수 있다.
상기 제어부는, 상기 슬러리 회수부와 상기 슬러리 공급부 사이에 위치하는 유량 제어 펌프를 포함할 수 있다.
상기 슬러리 회수부와 상기 슬러리 공급부는 상기 유량 제어 펌프와 유체적으로 연통하며, 상기 슬러리 회수부에서 회수된 전극 활물질 슬러리는 상기 유량 제어 펌프를 통과하여 상기 슬러리 공급부를 통해서 상기 매니폴드에 공급될 수 있다.
상기 슬러리 회수부는 상기 전극 활물질 슬러리의 토출 방향을 따라 상기 토출구 보다 앞서 위치하여, 상기 전극 활물질 슬러리를 회수하여 슬러리의 공급 유량을 낮추고, 상기 슬러리 공급부는 상기 회수된 전극 활물질 슬러리를 상기 매니폴드에 재공급하여 슬러리의 공급 유량을 높일 수 있다.
실시예들에 따르면, 슬러리가 빠져 나오는 슬롯 다이 출구에 정밀 유량계를 설치함으로써 위치별 슬러리 유량을 측정할 수 있다.
위치별 감지된 슬러리 유량을 실시간으로 균일하게 맞추기 위해, 펌프를 설치함으로써 슬롯 다이 내부에 슬러리가 저장되는 공간인 매니폴드에서 슬러리를 순환시켜 압력을 조절할 수 있다.
도 1은 본 발명의 일 실시예에 따른 슬롯 다이 코팅 장치를 사용하여 슬러리 코팅하는 과정을 개략적으로 나타내는 도면이다.
도 2는 본 발명의 일 실시예에 따른 슬롯 다이 코팅 장치를 나타내는 도면이다.
도 3은 도 2의 슬롯 다이 코팅 장치에 포함되는 비접촉식 유량계의 구조를 나타내는 도면이다.
도 4는 도 2의 슬롯 다이 코팅 장치에 포함되는 유량 제어 펌프 구조를 나타내는 도면이다.
도 5는 도 2의 슬롯 다이 코팅 장치에 포함되는 제1 다이 블록을 나타내는 상면도이다.
도 6은 도 2의 슬롯 다이 코팅 장치에 포함되는 제1 다이 블록을 나타내는 저면도이다.
도 7은 도 2의 슬롯 다이 코팅 장치에 포함되는 제1 다이 블록을 나타내는 측면도이다.
도 8은 도 2의 슬롯 다이 코팅 장치에 포함되는 제2 다이 블록을 나타내는 상면도이다.
도 9는 도 2의 슬롯 다이 코팅 장치에 포함되는 제2 다이 블록을 나타내는 저면도이다.
도 10은 도 2의 슬롯 다이 코팅 장치에 포함되는 제2 다이 블록을 나타내는 측면도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 "상에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한, 기준이 되는 부분 "위에" 또는 "상에" 있다고 하는 것은 기준이 되는 부분의 위 또는 아래에 위치하는 것이고, 반드시 중력 반대 방향을 향하여 "위에" 또는 "상에" 위치하는 것을 의미하는 것은 아니다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.
도 1은 본 발명의 일 실시예에 따른 슬롯 다이 코팅 장치를 사용하여 슬러리 코팅하는 과정을 개략적으로 나타내는 도면이다.
도 1을 참고하면, 본 실시예에 따른 슬롯 다이 코팅 장치(200)는 일방향(D1)으로 이동하면서 전극 집전체(110) 상에 전극 활물질 슬러리(105)를 코팅할 수 있다. 전극 활물질 슬러리(105)는 미세한 고체 입자를 액체 중에 섞어 유동성이 적은 상태로 만든 혼합물로, 바인더를 용매에 일정 비율 혼합해 만든 전극 슬러리를 전극 집전체(110) 위에 얇은 막으로 코팅하고 건조 및 압착 공정을 거쳐 이차 전지용 전극을 만들 수 있다. 상기 전극 슬러리는 활물질, 바인더 및 도전재 등을 포함하며, 활물질은 양극 활물질 또는 음극 활물질일 수 있다.
슬롯 다이 코팅 장치(200)의 토출구(120)는 전극 집전체(110)의 상부면과 수직한 방향으로 전극 집전체(110)를 향해 배치될 수 있다. 슬러리 투입구(250)를 통해 슬롯 다이 코팅 장치(200) 내부로 주입된 슬러리가 토출구(120)를 통해 배출될 수 있다. 일반적으로 슬롯 다이 코팅 장치(200)의 토출구(120)로 나오는 슬러리의 유량을 제어하기 위해, 슬롯 다이 코팅 장치(200)의 매니폴드 내부 구조 형상을 설계 변경하거나 슬롯 다이 코팅 장치(200)의 다이 블록과 전극 집전체(110)와의 간격 등을 조절할 수 있다. 본 실시예에 따르면, 단순히 매니폴드 내부 구조 형상 설계 변경하거나 슬러리 토출 간격 조절 등에서 탈피하여 유량 편차를 최소화하기 위해 개선된 슬롯 다이 코팅 장치에 의해 보다 정밀하게 유량을 제어할 수 있다. 구체적으로, 기존 유량 제어 방식은 토출 다이에서 슬러리 유량이 전폭 방향으로 약간의 차이가 발생할 경우, 코팅된 전극을 확인해야만 알 수 있으나, 본 실시예에 따르면, 전폭 방향으로 구간별로 유량계를 설치하여 유량 차이를 감지하고 균일하게 맞출 수 있다.
이에 대해 하기에서 설명하기로 한다.
도 2는 본 발명의 일 실시예에 따른 슬롯 다이 코팅 장치를 나타내는 도면이다.
도 2를 참고하면, 본 실시예에 따른 슬롯 다이 코팅 장치(200)는 제1 다이 블록(200a)과 제2 다이 블록(200b)을 포함한다. 제1 다이 블록(200a)과 제2 다이 블록(200b)은 결합부(201)에 의해 연결될 수 있고, 결합부(201)는 힌지 방식에 의해 회전하여 제1 다이 블록(200a)과 제2 다이 블록(200b)이 서로 맞닿도록 할 수 있다. 제1 다이 블록(200a)과 제2 다이 블록(200b) 상에 판재(230; Shim)가 배치될 수 있으며, 판재는 얇은 금속판일 수 있다.
본 실시예에 따른 슬롯 다이 코팅 장치(200)는 제1 다이 블록(200a)과 제2 다이 블록(200b)의 결합에 의해 형성된 토출구(120)를 통해 배출되는 전극 활물질 슬러리의 유량을 측정하는 센서부, 및 상기 센서부에서 감지된 신호에 대응하여 전극 활물질 슬러리의 유량을 조절하는 제어부를 포함한다. 상기 센서부는 비접촉식 유량계일 수 있으며, 일례로 에너지 감지 센서(210)일 수 있다. 제2 다이 블록(200b)에 형성된 매니폴드(220)에는 슬러리 공급부(310)와 슬러리 회수부(320)가 형성될 수 있다. 상기 제어부는 후술하는 유량 제어 펌프일 수 있고, 상기 유량 제어 펌프는 슬러리 회수부(320)와 슬러리 공급부(310) 사이에 위치할 수 있다.
매니폴드(220)는 슬롯 다이 코팅 장치(200) 내부에 슬러리가 저장되는 공간으로 슬러리가 균일한 유량으로 나오도록 하는 기구의 내부 공간이다. 매니폴드(220)에는 도 1의 슬러리 투입구(250)와 연결되는 슬러리 출입구(260)가 형성될 수 있다.
도 3은 도 2의 슬롯 다이 코팅 장치에 포함되는 비접촉식 유량계의 구조를 나타내는 도면이다.
도 3을 참고하면, 본 실시예에 따른 비접촉식 유량계는 토출구(120)를 통해 배출되는 전극 활물질 슬러리의 유량을 측정하는 센서부이다. 비접촉식 유량계는 에너지 감지 센서(210)일 수 있다. 에너지 감지 센서(210)는 제1 다이 블록(200a) 내부에 형성되고, 에너지 발산부(212)와 에너지 흡수부(214)를 통해 토출구(120)와 연결될 수 있다. 에너지 발산부(212)와 에너지 흡수부(214)는 토출구(120)의 토출 방향(D2)을 따라 서로 이격되어 위치할 수 있다. 센서부는 슬러리가 흘러가는 양을 확인할 수 있어야 하나, 만약 접촉식으로 센서부를 구성할 경우에는 센서부가 슬러리의 흐름을 방해하여 슬러리 유량을 정확히 측정할 수 없다. 따라서, 본 실시예에 따른 에너지 발산부(212)와 에너지 흡수부(214)는 슬러리가 센서부에 닿지 않도록 투명 재료로 형성될 수 있다. 투명 재료는 내마모성이 우수한 엔지니어링 플라스틱 또는 유리 재질일 수 있다.
본 실시예에 따른 에너지 감지 센서(210)는 전극 활물질 슬러리(105)의 적외선 에너지 또는 자력 에너지를 감지하여 전극 활물질 슬러리(105)의 유량을 측정할 수 있다. 구체적으로, 에너지 감지 센서(210)에서 발생된 에너지를 에너지 발산부(212)를 통해 전극 활물질 슬러리(105)에 조사하고, 조사된 전극 활물질 슬러리(105)의 에너지 신호를 에너지 흡수부(214)를 통해 에너지 감지 센서(210)에서 수신하여, 토출구(120)로 배출될 수 있는 유량을 측정할 수 있다. 예를 들어, 에너지 발산부(212)에서 슬러리에 일정량의 열을 인가해 주고, 열을 받은 슬러리가 에너지 흡수부(214)를 지나갈 때 신호를 인지하여 유량을 측정할 수 있다. 에너지 발산부(212)는 에너지 감지 센서(210)의 신호 발생부에 대응하고, 에너지 흡수부(214)는 에너지 감지 센서(210)의 신호 수신부에 대응할 수 있다.
도 4는 도 2의 슬롯 다이 코팅 장치에 포함되는 유량 제어 펌프 구조를 나타내는 도면이다.
도 4를 참고하면, 제2 다이 블록(200b)에 형성된 매니폴드(220)에는 슬러리 공급부(310)와 슬러리 회수부(320)가 형성되어 있다. 슬러리 공급부(310)와 슬러리 회수부(320)는 매니폴드(220) 내에서 전극 활물질 슬러리(105)를 순환시킬 수 있다. 본 실시예에 따르면, 슬러리 공급부(310)와 슬러리 회수부(320) 사이에 유량 제어 펌프(300)가 형성되어 있다. 슬러리 회수부(320)와 슬러리 공급부(310)는 유량 제어 펌프(300)와 유체적으로 연통하며, 슬러리 회수부(320)에서 회수된 전극 활물질 슬러리(105)는 유량 제어 펌프(300)를 통과하여 슬러리 공급부(310)를 통해서 매니폴드(220)에 공급될 수 있다.
구체적으로, 슬러리 회수부(320)는 전극 활물질 슬러리(105)의 토출 방향(D2)을 따라 토출구(120) 보다 앞서 위치하여, 전극 활물질 슬러리(105)를 회수하여 슬러리의 공급 유량을 낮출 수 있다. 슬러리 공급부(310)는 회수된 전극 활물질 슬러리(105)를 매니폴드(220)에 재공급하여 슬러리의 공급 유량을 높일 수 있다.
도 5는 도 2의 슬롯 다이 코팅 장치에 포함되는 제1 다이 블록을 나타내는 상면도이다. 도 6은 도 2의 슬롯 다이 코팅 장치에 포함되는 제1 다이 블록을 나타내는 저면도이다. 도 7은 도 2의 슬롯 다이 코팅 장치에 포함되는 제1 다이 블록을 나타내는 측면도이다.
도 5 내지 도 7을 참고하면, 에너지 발산부(212)와 에너지 흡수부(214)는 각각 토출구의 토출 방향(D2)에 수직한 방향을 따라 복수개 형성되며, 복수개 형성된 에너지 발산부(212)는 서로 이격되어 위치하고, 복수개 형성된 에너지 흡수부(214)는 서로 이격되어 위치할 수 있다. 이와 같이, 복수의 에너지 발산부(212)와 에너지 흡수부(214)를 제1 다이 블록(200a)의 폭 방향으로 일정 간격으로 배치하고, 에너지 발산부(212)와 에너지 흡수부(214)를 포함하는 그룹에 대응하도록 에너지 감지 센서(210)를 형성함으로써, 위치별 전극 활물질 슬러리 유량을 측정할 수 있다.
도 8은 도 2의 슬롯 다이 코팅 장치에 포함되는 제2 다이 블록을 나타내는 상면도이다. 도 9는 도 2의 슬롯 다이 코팅 장치에 포함되는 제2 다이 블록을 나타내는 저면도이다. 도 10은 도 2의 슬롯 다이 코팅 장치에 포함되는 제2 다이 블록을 나타내는 측면도이다.
도 8 내지 도 10을 참고하면, 슬러리 공급부(310)와 슬러리 회수부(320)는 각각 토출구의 토출 방향(D2)에 수직한 방향을 따라 복수개 형성되며, 복수개 형성된 슬러리 공급부(310)는 서로 이격되어 위치하고, 복수개 형성된 슬러리 회수부(320)는 서로 이격되어 위치할 수 있다. 이와 같이, 복수의 슬러리 공급부(310)와 슬러리 회수부(320)를 제2 다이 블록(200b)의 폭 방향으로 일정 간격으로 배치하고, 슬러리 공급부(310)와 슬러리 회수부(320)를 포함하는 그룹에 대응하도록 유량 제어 펌프(300)를 형성함으로써, 위치별 전극 활물질 슬러리 유량을 측정할 수 있다. 유량 제어 펌프(300)는 매니폴드(220)에서 전극 활물질 슬러리를 순환시킴으로써 압력을 조절할 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
부호의 설명
105: 전극 활물질 슬러리
110: 전극 집전체
120: 토출구
200: 슬롯 다이 코팅 장치
200a: 제1 다이 블록
200b: 제2 다이 블록
210: 에너지 감지 센서
212: 에너지 발산부
214: 에너지 흡수부
220: 매니폴드
300: 유량 제어 펌프
310: 슬러리 공급부
320: 슬러리 회수부

Claims (10)

  1. 제1 다이 블록과 제2 다이 블록을 포함하는 슬롯 다이, 및
    상기 제1 다이 블록과 상기 제2 다이 블록의 결합에 의해 형성된 토출구를 통해 배출되는 전극 활물질 슬러리의 유량을 측정하는 센서부를 포함하고,
    상기 센서부는 상기 제1 다이 블록의 내부에 형성되고, 상기 센서부는 에너지 발산부와 에너지 흡수부를 통해 상기 토출구와 연결되는 슬롯 다이 코팅 장치.
  2. 제1항에서,
    상기 에너지 발산부와 상기 에너지 흡수부는 투명 재료로 형성되는 슬롯 다이 코팅 장치.
  3. 제2항에서,
    상기 센서부는 상기 전극 활물질 슬러리의 적외선 에너지 또는 자력 에너지를 감지하여 상기 전극 활물질 슬러리의 유량을 측정하는 슬롯 다이 코팅 장치.
  4. 제2항에서,
    상기 에너지 발산부와 상기 에너지 흡수부는 상기 토출구의 토출 방향을 따라 서로 이격되어 위치하는 슬롯 다이 코팅 장치.
  5. 제4항에서,
    상기 에너지 발산부와 상기 에너지 흡수부는 각각 상기 토출구의 토출 방향에 수직한 방향을 따라 복수개 형성되며, 상기 복수개 형성된 상기 에너지 발산부는 서로 이격되어 위치하고, 상기 복수개 형성된 상기 에너지 흡수부는 서로 이격되어 위치하는 슬롯 다이 코팅 장치.
  6. 제1항에서,
    상기 제2 다이 블록에는 매니폴드가 형성되고, 상기 매니폴드에는 슬러리 공급부와 슬러리 회수부가 형성되어 있는 슬롯 다이 코팅 장치.
  7. 제1항에서,
    상기 센서부에서 감지된 신호에 대응하여 상기 전극 활물질 슬러리의 유량을 조절하는 제어부를 더 포함하는 슬롯 다이 코팅 장치.
  8. 제7항에서,
    상기 제어부는, 상기 슬러리 회수부와 상기 슬러리 공급부 사이에 위치하는 유량 제어 펌프를 포함하는 슬롯 다이 코팅 장치.
  9. 제8항에서,
    상기 슬러리 회수부와 상기 슬러리 공급부는 상기 유량 제어 펌프와 유체적으로 연통하며, 상기 슬러리 회수부에서 회수된 전극 활물질 슬러리는 상기 유량 제어 펌프를 통과하여 상기 슬러리 공급부를 통해서 상기 매니폴드에 공급되는 슬롯 다이 코팅 장치.
  10. 제9항에서,
    상기 슬러리 회수부는 상기 전극 활물질 슬러리의 토출 방향을 따라 상기 토출구 보다 앞서 위치하여, 상기 전극 활물질 슬러리를 회수하여 슬러리의 공급 유량을 낮추고, 상기 슬러리 공급부는 상기 회수된 전극 활물질 슬러리를 상기 매니폴드에 재공급하여 슬러리의 공급 유량을 높이는 슬롯 다이 코팅 장치.
PCT/KR2021/003343 2020-03-19 2021-03-18 슬롯 다이 코팅 장치 WO2021187908A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/626,718 US20220241813A1 (en) 2020-03-19 2021-03-18 Slot Die Coating Apparatus
CN202180003993.6A CN114007763B (zh) 2020-03-19 2021-03-18 狭缝模具涂布设备
EP21770473.3A EP3984653A4 (en) 2020-03-19 2021-03-18 SLOT NOZZLE COATING DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200034016 2020-03-19
KR10-2020-0034016 2020-03-19
KR10-2021-0034347 2021-03-17
KR1020210034347A KR102655289B1 (ko) 2020-03-19 2021-03-17 슬롯 다이 코팅 장치

Publications (1)

Publication Number Publication Date
WO2021187908A1 true WO2021187908A1 (ko) 2021-09-23

Family

ID=77771531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003343 WO2021187908A1 (ko) 2020-03-19 2021-03-18 슬롯 다이 코팅 장치

Country Status (4)

Country Link
US (1) US20220241813A1 (ko)
EP (1) EP3984653A4 (ko)
CN (1) CN114007763B (ko)
WO (1) WO2021187908A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09299862A (ja) * 1996-05-17 1997-11-25 Koganei Corp 薬液供給装置
JP2005144373A (ja) * 2003-11-18 2005-06-09 Dainippon Screen Mfg Co Ltd 基板処理装置およびスリットノズルへの処理液の充填方法
JP2005152821A (ja) * 2003-11-27 2005-06-16 Toppan Printing Co Ltd 塗布装置及びそれを用いた塗布方法
US20070251450A1 (en) * 2006-04-28 2007-11-01 Applied Materials, Inc. Systems and Methods for Monitoring and Controlling Dispense Using a Digital Optical Sensor
KR101740778B1 (ko) * 2012-06-29 2017-06-08 인터내셔널 비지네스 머신즈 코포레이션 미세유체 표면 처리 디바이스 및 방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA992348A (en) * 1974-03-22 1976-07-06 Helen G. Tucker Measurement of at least one of the fluid flow rate and viscous characteristics using laminar flow and viscous shear
US4170133A (en) * 1978-05-08 1979-10-09 Gardner William L Planar helical flowmeter
JP2917127B2 (ja) * 1996-07-12 1999-07-12 井上金属工業株式会社 塗布装置
JP2001018212A (ja) * 1999-07-05 2001-01-23 Murata Mfg Co Ltd 押出成形金型
US7143637B1 (en) * 2003-04-11 2006-12-05 Mcbrearty Michael Dielectric slit die for in-line monitoring of liquids processing
US20050181245A1 (en) * 2005-03-28 2005-08-18 Honeywell International Inc. Hydrogen and electrical power generator
JP2012061444A (ja) * 2010-09-17 2012-03-29 Nec Corp 塗工装置
KR20120047426A (ko) * 2010-11-04 2012-05-14 김철수 균일한 두께의 코팅층을 형성하기 위한 다이 코팅기
JP2014147857A (ja) * 2013-01-31 2014-08-21 Hitachi Vehicle Energy Ltd ダイコータ装置
JP6084480B2 (ja) * 2013-02-19 2017-02-22 東レエンジニアリング株式会社 電池用極板の製造装置及びその製造方法
JP6422711B2 (ja) * 2013-10-11 2018-11-14 東レエンジニアリング株式会社 電池用極板の製造装置及びその製造方法
JP6074356B2 (ja) * 2013-12-18 2017-02-01 日東電工株式会社 塗工装置及び塗工膜の製造方法
JP6391366B2 (ja) * 2014-08-26 2018-09-19 東レエンジニアリング株式会社 電池用極板の製造装置
JP6425776B1 (ja) * 2017-08-10 2018-11-21 東レエンジニアリング株式会社 塗工装置及び塗工方法
KR102386531B1 (ko) * 2017-09-14 2022-04-15 엘지전자 주식회사 슬러리 코팅장치
JP6940434B2 (ja) * 2018-03-13 2021-09-29 アズビル株式会社 容量式電磁流量計

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09299862A (ja) * 1996-05-17 1997-11-25 Koganei Corp 薬液供給装置
JP2005144373A (ja) * 2003-11-18 2005-06-09 Dainippon Screen Mfg Co Ltd 基板処理装置およびスリットノズルへの処理液の充填方法
JP2005152821A (ja) * 2003-11-27 2005-06-16 Toppan Printing Co Ltd 塗布装置及びそれを用いた塗布方法
US20070251450A1 (en) * 2006-04-28 2007-11-01 Applied Materials, Inc. Systems and Methods for Monitoring and Controlling Dispense Using a Digital Optical Sensor
KR101740778B1 (ko) * 2012-06-29 2017-06-08 인터내셔널 비지네스 머신즈 코포레이션 미세유체 표면 처리 디바이스 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3984653A4 *

Also Published As

Publication number Publication date
CN114007763A (zh) 2022-02-01
EP3984653A1 (en) 2022-04-20
CN114007763B (zh) 2024-02-20
EP3984653A4 (en) 2022-11-02
US20220241813A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
Diehm et al. In situ investigations of simultaneous two‐layer slot die coating of component‐graded anodes for improved high‐energy Li‐ion batteries
WO2022092816A1 (ko) 전극 슬라이딩 영역의 관리 방법
WO2017014449A1 (ko) 단자 플레이트 및 bms가 직접 연결된 구조의 전지모듈
WO2022065890A1 (ko) 듀얼 슬롯 다이 코터
WO2013154241A1 (ko) 집단식 이차전지용 극판 건조 및 이송 장치 및 방법
WO2020231141A1 (ko) 에어 벤트를 포함하는 슬롯 다이 코팅 장치
WO2018080182A1 (ko) 전지 모듈
WO2021187908A1 (ko) 슬롯 다이 코팅 장치
WO2021096169A1 (ko) 압력 조절 부재를 포함하는 전극 슬러리 코팅 장치 및 방법
WO2022065777A1 (ko) 다중 슬롯 다이 코터
WO2022039442A1 (ko) 단열 부재를 포함하는 배터리 모듈
WO2020171626A1 (ko) 전지 모듈 및 그 제조 방법
WO2021010792A1 (ko) 원통형 전지 및 원통형 전지 제조 방법
KR102655289B1 (ko) 슬롯 다이 코팅 장치
WO2022030902A1 (ko) 다중 슬롯 다이 코터
WO2021241902A1 (ko) 슬롯 다이 코팅장치
WO2021045442A1 (ko) 에어 벤트를 포함하는 슬롯 다이 코팅 장치
WO2023121064A1 (ko) 슬롯 다이 코터 및 이를 포함하는 다레인 이중 코팅 장치
WO2024143877A1 (ko) 슬롯 다이 코팅 장치
WO2022114510A1 (ko) 코팅액 유동을 개선한 슬롯 다이 코터
WO2022145652A1 (ko) 듀얼 슬롯 다이 코터
WO2022114511A1 (ko) 코팅액 유동을 개선한 슬롯 다이 코터
WO2022108162A1 (ko) 유량 분배용 가림막을 포함하는 전극 기재 건조 설비 및 방법
WO2024025200A1 (ko) 슬롯 다이 코터
WO2019035553A1 (ko) 슬롯들의 움직임으로 전극 활물질 슬러리의 코팅 형태가 변환되는 슬롯 다이 코터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021770473

Country of ref document: EP

Effective date: 20220113

NENP Non-entry into the national phase

Ref country code: DE