WO2021187192A1 - 内面形状測定機、及び内面形状測定機のアライメント方法 - Google Patents

内面形状測定機、及び内面形状測定機のアライメント方法 Download PDF

Info

Publication number
WO2021187192A1
WO2021187192A1 PCT/JP2021/008943 JP2021008943W WO2021187192A1 WO 2021187192 A1 WO2021187192 A1 WO 2021187192A1 JP 2021008943 W JP2021008943 W JP 2021008943W WO 2021187192 A1 WO2021187192 A1 WO 2021187192A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating body
small hole
camera
work
linear motion
Prior art date
Application number
PCT/JP2021/008943
Other languages
English (en)
French (fr)
Inventor
森井 秀樹
克文 森山
木村 浩章
Original Assignee
株式会社東京精密
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021003449A external-priority patent/JP2021148769A/ja
Application filed by 株式会社東京精密 filed Critical 株式会社東京精密
Priority to DE112021001666.0T priority Critical patent/DE112021001666T5/de
Publication of WO2021187192A1 publication Critical patent/WO2021187192A1/ja
Priority to US17/939,226 priority patent/US11740074B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2408Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring roundness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/047Accessories, e.g. for positioning, for tool-setting, for measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/12Measuring arrangements characterised by the use of optical techniques for measuring diameters internal diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/08Measuring arrangements characterised by the use of mechanical techniques for measuring diameters
    • G01B5/12Measuring arrangements characterised by the use of mechanical techniques for measuring diameters internal diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • G01B5/201Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures for measuring roundness

Definitions

  • the present invention relates to a technique for measuring the inner surface shape of a small hole formed in a work.
  • An inner surface shape measuring machine that measures the roundness of a work by rotating the work around a rotation axis in a shape measuring device that measures the shape of the work by moving the contact type or non-contact type probe and the work relative to each other. It has been known. In order to measure the roundness with the inner surface shape measuring machine, it is necessary to match the axis of rotation with the axis of the work.
  • Patent Document 1 discloses a technique for measuring the roundness of a hole by bringing a contactor of a detector into contact with the inner peripheral portion of a hole of a work placed on a rotary table.
  • the contactor of the detector is brought into contact with the outer peripheral surface of the work in advance, and the runout of the work is observed at a low magnification while rotating the rotary table, so that the runout of the work is reduced.
  • the mounting position is being adjusted.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an inner surface shape measuring machine for appropriately aligning the positions of holes, and an alignment method for the inner surface shape measuring machine.
  • One aspect of the inner surface shape measuring machine for achieving the above object is a rotating body that rotates about a rotation axis parallel to the first direction, and a linear motion tilting stage supported by the rotating body, which rotates.
  • a first-order probe that includes a linear tilt stage that can change its position in a plane perpendicular to the body and its tilt relative to the plane, and a contact or non-contact probe that extends parallel to the first direction.
  • a displacement detector that detects the displacement of the inner surface of the small hole of the workpiece that is fixed to the linear motion tilting stage and rotates with the rotating body by a probe that can move in the first direction by the linear motion mechanism, and the displacement detector in the first direction.
  • a camera having parallel optical axes, a second position in which the position in the first direction is different from the first position and the first position of the small hole of the work at the first rotation angle of the rotating body, and the rotating body.
  • An observation control unit that observes the first position and the second position of the small hole of the work by a camera at a second rotation angle different from the first rotation angle of the above, and the first rotation angle of the observed rotating body.
  • the position and inclination of the small hole from the coordinates of the first position and the second position of the small hole in the above and the first position and the second position of the small hole at the second rotation angle of the rotating body.
  • It is an inner surface shape measuring machine including a position inclination calculation unit for calculating the above and an output unit for outputting small hole information including the calculated position and inclination of the small hole.
  • stage control unit that controls the linear motion tilt stage based on the small hole information and keeps the deviation between the central axis and the rotation axis of the small hole within the target value. As a result, the positions of the holes can be automatically aligned.
  • the camera can be moved in the first direction by the first linear motion mechanism, and the observation control unit moves the focal position of the camera to the first position and the second position of the narrow hole by the first linear motion mechanism. It is preferable to move it. As a result, the camera can be appropriately focused on the first position and the second position of the small hole, so that the small hole can be appropriately observed by the camera.
  • One aspect of the inner surface shape measuring machine for achieving the above object is a rotating body that rotates about a rotation axis parallel to the first direction, and a linear motion tilting stage supported by the rotating body, which rotates.
  • a first-order probe that includes a linear tilt stage that can change its position in a plane perpendicular to the body and its tilt with respect to the plane, and a contact or non-contact probe that extends parallel to the first direction.
  • a displacement detector that detects the displacement of the inner surface of the small hole of the workpiece that is fixed to the linear motion tilting stage and rotates with the rotating body by a probe that can move in the first direction by the linear motion mechanism, and the displacement detector in the first direction.
  • the hole-shaped pattern of the reference work at the first rotation angle of the rotating body
  • the first observation control unit for observing the first position and the second position with a camera, the first position and the second position of the small hole at the first rotation angle of the observed rotating body, and the rotating body.
  • a second observation control unit for observing by It is an inner surface shape measuring machine provided with.
  • the positions of the holes can be appropriately aligned based on the small hole information. It is particularly effective when the inner diameter is a very small hole of 500 ⁇ m or less.
  • stage control unit that controls the linear motion tilting stage based on the small hole information including the position and inclination of the small hole and keeps the deviation between the central axis and the rotation axis of the small hole within the target value. As a result, the positions of the holes can be automatically aligned.
  • the camera can be moved in the first direction by the first linear motion mechanism, and the second observation control unit sets the focal position of the camera by the first linear motion mechanism to the third position of the narrow hole and the fourth. It is preferable to move it to the position of. As a result, the camera can be appropriately focused on the third position and the fourth position of the small hole, so that the small hole can be appropriately observed by the camera.
  • the first rotation angle and the second rotation angle are 180 ° different from each other. As a result, the position and inclination of the small hole can be calculated accurately.
  • a coaxial illumination optical system that emits light coaxial with the optical axis of the camera.
  • a sponge-like or clay-like reflector is provided, and the reflector allows light incident from a camera-side opening of a small hole of a workpiece arranged between a camera and a linear tilt stage to be transmitted through a linear tilt stage-side opening. It is preferable to reflect it on a small hole. As a result, the light incident from the opening on the camera side of the small hole of the work can be reflected on the small hole at the opening on the linearly inclined stage side without damaging the work.
  • a flexible open-cell structure and a light source for incident light on the open-cell structure are provided, and the open-cell structure is directly formed by a small hole in a workpiece arranged between a camera and a linear motion tilting stage. It is preferable that the light from the light source is incident from the opening on the dynamic tilt stage side. As a result, light can be appropriately incident from the opening on the linearly inclined stage side of the narrow hole of the work.
  • the alignment method of the inner surface shape measuring machine for achieving the above object is a rotating body that rotates about a rotation axis parallel to the first direction, and a linear motion tilting stage supported by the rotating body.
  • a linear tilt stage that can change its position in a plane perpendicular to the first direction and its tilt with respect to the plane, and a contact or non-contact probe that extends parallel to the first direction and is a first straight.
  • An inner surface shape measuring machine including a displacement detector that detects the displacement of the inner surface of a small hole of a workpiece that is fixed to a linear motion tilting stage and rotates together with a rotating body by a probe that can be moved in a first direction by a moving mechanism.
  • the alignment method of the inner surface shape measuring machine for achieving the above object is a rotating body that rotates about a rotation axis parallel to the first direction, and a linear motion tilting stage supported by the rotating body.
  • a linear tilt stage that can change its position in a plane perpendicular to the first direction and its tilt with respect to the plane, and a contact or non-contact probe that extends parallel to the first direction and is a first straight.
  • An inner surface comprising a displacement detector that detects the displacement of the inner surface of a small hole of a workpiece to be measured that is fixed to a linear motion tilting stage and rotates together with a rotating body by a probe that can be moved in a first direction by a moving mechanism.
  • a method of aligning a shape measuring machine in which a reference work having a known shape and having a hole-shaped pattern is fixed to a linear motion tilting stage, and the hole-shaped pattern of the reference work at the first rotation angle of the rotating body is the first.
  • the first of the hole-shaped patterns of the reference work at the second position where the position of the first position and the position in the first direction are different from the first position and the second rotation angle different from the first rotation angle of the rotating body.
  • the first observation control step of observing the position and the second position by a camera having an optical axis parallel to the first direction, and the first of the small holes at the first rotation angle of the observed rotating body.
  • Rotation center coordinate calculation that calculates the rotation center coordinates of the rotating body from the respective coordinates of the position and the second position and the first position and the second position of the small hole at the second rotation angle of the rotating body.
  • the process and the work to be measured are fixed to the linear motion tilting stage, and the third position of the small hole of the work to be measured and the fourth position where the position in the first direction is different from the third position is the first.
  • It is an alignment method of an inner surface shape measuring machine including a position inclination calculation step for calculating an inclination and an inclination.
  • the position of the hole can be appropriately aligned based on the small hole information. It is particularly effective when the inner diameter is a very small hole of 500 ⁇ m or less.
  • the positions of the holes can be properly aligned.
  • FIG. 1 is a schematic view showing the configuration of an inner surface shape measuring machine.
  • FIG. 2 is a schematic view showing an example of a non-contact type and a contact type probe.
  • FIG. 3 is a block diagram showing an electrical configuration of the inner surface shape measuring machine.
  • FIG. 4 is a flowchart showing an example of processing of the alignment method of the inner surface shape measuring machine.
  • FIG. 5 is a schematic view showing observation of the upper opening of the narrow hole by a camera.
  • FIG. 1 is a schematic view showing the configuration of an inner surface shape measuring machine.
  • FIG. 2 is a schematic view showing an example of a non-contact type and a contact type probe.
  • FIG. 3 is a block diagram showing an electrical configuration of the inner surface shape measuring machine.
  • FIG. 7 is a schematic view showing the observation of the lower opening of the narrow hole by the camera.
  • FIG. 11 is a diagram for explaining the movement target coordinates of the upper opening and the movement target coordinates of the lower opening.
  • FIG. 12 is a diagram showing the relationship between the camera and the small hole of the work by the work installation jig.
  • FIG. 13 is a schematic view showing observation of an intermediate position of a small hole by a camera.
  • FIG. 14 is a schematic view showing observation of the small hole by the camera when the position of the small hole of the work is largely deviated from the rotation axis.
  • FIG. 15 is a diagram showing the locus of the center coordinates of the upper opening of the small hole in the shooting range of the camera when the rotating body is rotated.
  • FIG. 16 is a diagram showing an optical path of observation light of the lower opening of the narrow hole of the work incident on the camera.
  • FIG. 17 is a diagram showing a state of observing the lower opening of the narrow hole of the work by the camera.
  • FIG. 18 is a diagram showing insertion of a sponge-like reflector into the lower opening side of the narrow hole of the work.
  • FIG. 19 is a diagram showing the insertion of a clay-like reflector into the lower opening side of the narrow hole of the work.
  • FIG. 20 is a diagram showing the insertion of a scatterer into the lower opening side of the narrow hole of the work.
  • FIG. 21 is a flowchart showing a process of an alignment method of an inner surface shape measuring machine according to another embodiment of the present invention.
  • FIG. 22 is a flowchart showing a process of registering the position of the rotation center coordinates.
  • FIG. 23 is a flowchart showing an alignment process of the work, which is the object to be measured.
  • FIG. 24 is a plan view showing an example of calculation of the coordinates of the center of rotation when the small hole of the work has a protrusion inside.
  • FIG. 25 is a plan view showing an example of calculation of the coordinates of the center of rotation using the reference work.
  • FIG. 26 is a diagram showing an example of a reference work having a planar shape.
  • FIG. 1 is a schematic view showing the configuration of the inner surface shape measuring machine 10 according to the present embodiment.
  • the inner surface shape measuring machine 10 is a device for measuring the inner surface shape (roundness, etc.) of the small hole H formed in the work W.
  • the small hole H is a small hole formed along the central axis of the work W.
  • the inner diameter of the small hole H is a very small diameter (for example, the inner diameter is 500 ⁇ m or less).
  • the X direction, the Y direction, and the Z direction are orthogonal to each other, the X direction is the horizontal direction, the Y direction is the horizontal direction orthogonal to the X direction, and the Z direction is the vertical direction.
  • the inner surface shape measuring machine 10 includes a main body base 12, a rotating body 14, a linear motion tilting stage 16, a work installation jig 18, a column 20, a carriage 22, an arm 24, a displacement detector 28, and a camera. 34 is provided.
  • the rotating body 14 is fixed on the main body base 12. Inside the main body base 12, a motor (not shown) connected to the rotating body 14, an encoder (not shown), and a high-precision rotation mechanism (not shown) are provided. Rotator 14 rotates with high precision around the rotation axis parallel A R in the Z-direction by a driving motor (an example of a first direction). Further, the rotating body 14 detects the rotation angle of the rotating body 14 by the rotation angle signal output from the encoder.
  • the linear motion tilt stage 16 (an example of the linear motion tilt stage) is supported by the rotating body 14 so as to be relatively movable with respect to the rotating body 14.
  • the linear motion tilt stage 16 moves in parallel in the X and Y directions by driving a motor (not shown), and the position in the plane (in the XY plane) perpendicular to the Z direction of the work W fixed to the linear motion tilt stage 16. Can be changed. Further, the linear motion tilt stage 16 tilts in the X direction and the Y direction by driving a motor (not shown), and the tilt of the work W fixed to the linear motion tilt stage 16 with respect to the XY plane can be changed.
  • the work installation jig 18 is placed on the linear motion tilting stage 16.
  • the work W is installed on the work installation jig 18. That is, the work W is fixed to the linear motion tilting stage 16 via the work installation jig 18.
  • the work W has a small hole H having a very small diameter. Fine hole H penetrates straight through the interior of the workpiece W from the upper opening O U (see FIG. 5) to the lower opening O D (see FIG. 7).
  • FIG. 1 shows the state of the work W before alignment. Aligned workpiece W is rotated about the axis of rotation A R together with the rotary member 14.
  • a column (post) 20 extending parallel to the Z direction is erected on the main body base 12.
  • the lower end of the column 20 is fixed to the upper surface of the main body base 12.
  • the carriage 22 is supported by the column 20 so as to be movable in the Z direction.
  • the carriage 22 moves in the Z direction by driving a motor (not shown).
  • the carriage 22 corresponds to a vertical linear motion mechanism (an example of the first linear motion mechanism) for moving the displacement detector 28 and the camera 34 in the Z direction.
  • the arm 24 is supported by the carriage 22 so as to be movable in the X direction (an example of a direction orthogonal to the first direction).
  • the arm 24 moves in the X direction by driving a motor (not shown).
  • the arm 24 corresponds to a horizontal linear motion mechanism for moving the displacement detector 28 and the camera 34 in the X direction.
  • the displacement detector 28 is supported by the arm 24.
  • the displacement detector 28 includes a non-contact or contact probe 30.
  • FIG. 2 is a schematic view showing an example of the probe 30.
  • 202A in FIG. 2 shows a non-contact probe 30.
  • the displacement detector 28 (see FIG. 1) including the non-contact probe 30 includes a light emitting element (not shown) that emits detection light and a light receiving element (not shown) that receives reflected light of the detection light emitted from the light emitting element.
  • the non-contact probe 30 includes an optical fiber 38 and a reflection mirror 40. The light emitted from the light emitting element (not shown) of the displacement detector 28 (see FIG. 1) is guided to the reflection mirror 40 by the optical fiber 38, reflected by the reflection surface of the reflection mirror 40, and incident on the work W.
  • the reflected light reflected by the work W enters the reflection mirror 40, is reflected by the reflection surface of the reflection mirror 40, and is guided to the optical fiber 38.
  • the reflected light guided to the optical fiber 38 is input to a light receiving element (not shown) of the displacement detector 28.
  • the displacement detector 28 detects the displacement of the work W based on the reflected light received by the light receiving element.
  • non-contact type displacement detector 28 As a method of the non-contact type displacement detector 28, known methods such as a laser interferometer, a white interferometer, SD-OCT (Spectral Domain-Optical Coherence Tomography), and SS-OCT (Swept Source-Optical Coherence Tomography) are applied. can do.
  • the displacement detector 28 may detect the displacement of the work W by a contact type. 202B in FIG. 2 shows a contact probe 30.
  • the contact probe 30 includes a contact 42 at its tip that is urged toward the work W.
  • the contactor 42 is displaced according to the shape of the work W.
  • the displacement of the contactor 42 is transmitted to the displacement detector 28 via the probe 30.
  • the displacement detector 28 detects the displacement of the work W based on the displacement of the contactor 42.
  • LVDT Linear Variable Differential Transformer
  • interferometer optical triangulation method
  • thin film strain measurement can be applied.
  • a method may be applied in which the contactor 42 is vibrated at the resonance frequency and the resonance point is changed by the contact.
  • the probe 30 when measuring the roundness of the small hole H of the work W with the inner surface shape measuring machine 10, the probe 30 is moved by the carriage 22 together with the displacement detector 28 in the Z direction, and the work W is moved. It is inserted into the small hole H.
  • the displacement detector 28 detects the displacement of the hole wall (inner side surface) of the small hole H by the probe 30.
  • the camera 34 is supported by the arm 24 with the optical axis AC (see FIG. 12) parallel and downward in the Z direction.
  • the camera 34 includes a coaxial epi-illumination optical system 35 (see FIG. 3, an example of a coaxial illumination optical system) and a magnifying optical system (microscope) (not shown) that magnifies and projects an object to be observed.
  • Coaxial incident illumination optical system 35 includes an illumination light source (not shown), and a half mirror (not shown) that emits light as illumination light optical axis A C coaxial camera 34 from the illumination source.
  • the camera 34 irradiates illumination light to the object to be observed by the camera of the optical axis A C coaxially, can photograph the magnified image of the observed object.
  • coaxial epi-illumination is used here, oblique illumination may be used.
  • the work W is aligned, the probe 30 is inserted into the small hole H of the work W, and the rotating body 14 is rotated to relatively move the work W and the probe 30.
  • the roundness of the small hole H can be measured.
  • FIG. 3 is a block diagram showing an electrical configuration of the inner surface shape measuring machine 10.
  • the inner surface shape measuring machine 10 includes a control device 50.
  • the control device 50 is realized by a general-purpose computer such as a personal computer or a microcomputer.
  • the control device 50 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input / output interface, and the like.
  • various programs such as control programs stored in the ROM are expanded in the RAM, and the programs expanded in the RAM are executed by the CPU to realize the functions of each part in the inner surface shape measuring machine 10. Then, various arithmetic processes and control processes are executed via the input / output interface.
  • the control device 50 includes a measurement control unit 52, a displacement acquisition unit 54, a roundness calculation unit 56, an observation control unit 58, a position inclination calculation unit 60, a stage control unit 62, and an output unit 63. include.
  • the measurement control unit 52 controls a motor (not shown) connected to the carriage 22, the arm 24, and the rotating body 14, respectively, and controls the relative position between the probe 30 of the displacement detector 28 and the small hole H of the work W. ..
  • the displacement acquisition unit 54 controls the displacement detector 28 and acquires the displacement of the hole wall of the small hole H detected by the displacement detector 28.
  • the roundness calculation unit 56 calculates the roundness of the small hole H from the relative position between the probe 30 and the work W acquired from the measurement control unit 52 and the displacement detected by the displacement detector 28.
  • the observation control unit (first and second observation control units) 58 controls the camera 34 and acquires an image taken by the camera 34.
  • the position inclination calculation unit 60 calculates the position and inclination of the small hole H of the work W from the image acquired by the observation control unit 58.
  • the stage control unit 62 controls a motor (not shown) that drives the linear motion tilt stage 16 based on the position and tilt of the small hole H calculated by the position tilt calculation unit 60, and the position and tilt of the linear motion tilt stage 16 To change.
  • the output unit 63 outputs the small hole information including the position and inclination of the small hole H acquired from the position inclination calculation unit 60 to an output interface (not shown).
  • Alignment includes centering that adjusts the position in the XY plane and tilting that adjusts the inclination with respect to the XY plane.
  • the inner surface shape measuring machine 10 can be centered and chilled by the linear motion tilting stage 16.
  • FIG. 4 is a flowchart showing an example of processing of the alignment method of the inner surface shape measuring machine 10.
  • the work W having the narrow hole H is installed in the work installation jig 18 in advance.
  • Workpiece setting jig 18, (not block the lower opening O D) a gap is provided below the opening O D of small holes H of the workpiece W (see FIG. 7) holding the workpiece W.
  • step S2 the measurement control unit 52 drives a motor (not shown) of the arm 24 to move the camera 34 upward in the Z direction of the work W.
  • the measurement control unit 52 (an example of a first position) by driving the motor (not shown) of the camera 34 is moved in the Z direction, the upper opening O U of small holes H a focal position of the camera 34 of the carriage 22 To match.
  • step S3 an example of the observation control step
  • Figure 5 is a schematic diagram showing the observation of the upper opening O U of small holes H by the camera 34.
  • the work W is shown in cross section.
  • Focal plane F U shown in FIG. 5, orthogonal to the optical axis A C of the camera 34, and a plane including the focal point of the camera 34, here are matched to the position of the upper opening O U of small holes H.
  • the dot-hatched portion shown in FIG. 5 is an optical path of the observation light upper opening O U incident on the camera 34, the image I 0U shown in FIG. 5, the upper opening O U observed by the camera 34 It is an image (Z direction view) of an edge portion.
  • the photographing range R is shown in the Z direction, and the cross section of the work W is shown in the Y direction.
  • step S4 the measurement control unit 52 drives the motor (not shown) of the carriage 22 to move the camera 34 in the Z-direction, Z is the upper opening O DU of small holes H a focal position of the camera 34 direction positions tailored to different lower opening O D (an example of a second position).
  • step S5 an example of the observation control step
  • Figure 7 is a schematic diagram illustrating the observation of lower opening O D of small holes H by the camera 34.
  • the work W is shown in cross section.
  • the focal plane F D is aligned with the position of the lower opening O D of the fine hole H.
  • the dot-hatched portion shown in FIG. 7 is an optical path of the observation light lower opening O D incident on the camera 34, the image I 0D shown in FIG. 7, the lower opening being observed by the camera 34 O It is an image (Z direction view) of the edge portion of D.
  • the photographing range R is shown in the Z direction, and the cross section of the work W is shown in the Y direction.
  • step S7 the measurement control unit 52 drives the motor (not shown) of the carriage 22 to move the camera 34 in the Z direction, focus position of the camera 34 to the upper opening O U.
  • step S8 an example of the observation control step
  • step S9 the measurement control unit 52 drives the motor (not shown) of the carriage 22 to move the camera 34 in the Z direction, focus position of the camera 34 to the lower opening O D of the fine hole H ..
  • step S10 an example of the observation control step
  • the photographing range R is shown in the Z direction
  • the cross section of the work W is shown in the Y direction.
  • step S11 an example of a position inclined calculating step
  • set angle theta 180 center coordinates (x, y) of the upper opening O U of small holes H in ° 180 U and center coordinates (x, y) of the lower opening O D 180D and from calculating the position and inclination of the central axis a H of the small hole H of the workpiece W relative to the axis of rotation a R of the rotary body 14.
  • step S12 the position inclined calculator 60 determines whether the deviation between the position and inclination of the central axis A H of the small hole H of the workpiece W with the rotational axis A R is within the target value. If the deviation is larger than the target value, the control device 50 performs the process of step S13. If the deviation is within the target value, the processing of this flowchart is terminated.
  • step S13 the position inclination calculation unit 60 calculates the amount of movement of the linear motion inclination stage 16.
  • Figure 11 is a diagram for explaining the upper opening O U moving target coordinates C U (x, y) and of the moving target coordinates C D of the lower opening O D (x, y).
  • Position inclined calculation unit 60 upper opening O U moving target coordinates C U (x, y) and of the moving target coordinates C D (x, y) of the lower opening O D from the amount of movement of the linear motion tilting stage 16 calculate.
  • the output unit 63 acquires the movement amount (an example of small hole information) of the linear motion tilt stage 16 calculated by the position inclination calculation unit 60 and outputs it to the stage control unit 62 (an example of an output process).
  • step S14 (an example of the stage control process), the stage control unit 62 drives a motor (not shown) of the linear motion tilt stage 16 based on the movement amount calculated in step S13, and sets the linear motion tilt stage 16 at a target position. Move to. After that, the process proceeds to step S1, and the control device 50 performs the same process. By repeating this process, the inner surface shape measuring machine 10, the deviation between the center axis A H of the small hole H of the workpiece W with the rotational axis A R of the rotary body 14 within the target value.
  • the alignment method according to the present embodiment it is possible to align the center axis A H of the fine hole H to the rotation axis A R of the rotary body 14.
  • the optical axis A C of the camera 34 is not necessary to match the rotational axis A R of the rotary body 14 may be aligned with a simple configuration.
  • the alignment method according to the present embodiment is effective when the small hole H is a very small hole having an inner diameter of 500 ⁇ m or less. Further, it is particularly effective when the diameter of the small hole H is 200 ⁇ m or less and the diameter of the probe 30 is 100 ⁇ m or less.
  • the small hole H having a diameter larger than 500 ⁇ m may be used.
  • a column 20 is parallel to upright the rotation axis A R of the rotary body 14.
  • the focus control mechanism of the camera 34 becomes unnecessary, and high-precision alignment is possible. For example, since the position of the rotation axis in the focal plane does not move, it is possible to adopt a high-magnification optical system.
  • the output unit 63 may output the movement amount of the linear motion tilt stage 16 (an example of small hole information) acquired from the position tilt calculation unit 60 to an output interface (not shown) or the like (an example of an output process). ..
  • the output unit 63 acquires the small hole information including the position and inclination of the central axis A H of the small hole H of the workpiece W relative to the axis of rotation A R of the rotary body 14 calculated in step S11, not shown in the output interface such as It may be output to (an example of the output process).
  • the output unit 63 outputs the acquired movement amount to the stage control unit 62.
  • FIG. 12 is a diagram showing the relationship between the camera and the small hole of the work by the work installation jig. 212A of FIG. 12 shows the maximum angle of the observation light incident on the not-shown objective lens of the camera 34 relative to the optical axis A C.
  • Equation 3 Has a relationship of.
  • 212B in FIG. 12 shows the relationship between the camera 34 and the work W when there is a relationship of ⁇ work ⁇ obj.
  • the work W is shown in cross section.
  • Optical path P shown in 212B of the optical path of the observation light incident on the camera 34, an optical path can be used for observation of the lower opening O D.
  • O D the lower opening of the observation light incident on the camera 34.
  • 212C in FIG. 12 shows the relationship between the camera 34 and the work W when there is a relationship of ⁇ work > ⁇ obj.
  • the work W is shown in cross section.
  • the observation light of the lower opening O D will not reach the camera 34, it is impossible to observe the lower opening O D camera 34.
  • the position for observing the small hole H is not limited to the opening, a halfway position of the fine hole H You may.
  • the upper opening O DU and the lower opening O D of small holes H is a schematic diagram illustrating an observation by the camera 34 in the middle position O H which position in the Z direction is different (an example of a second position).
  • the work W is shown in cross section.
  • the dot-hatched portion shown in FIG. 13 is an optical path of the observation light in the middle position O H incident on the camera 34, the image I 0H shown in FIG. 13, the middle position O H observed by the camera 34 It is an image (Z direction view).
  • the middle position of the fine hole H It is effective to observe.
  • a method of selecting a region with high contrast (in focus) in the image, measurement by the white interference method, etc. are performed. It can be used.
  • FIG. 14 shows a state in which the small hole H of the work W is not within the shooting range of the camera 34.
  • the observation control unit 58 shows how the moving arm 24 is horizontal linear motion mechanism in a position P A where the fine hole H to enter the field of view of the camera 34.
  • the observation control unit 58 observes an upper opening O U and the lower opening O D of small holes H by the camera 34.
  • the position inclined calculating unit 60 stores the position P A of the arm 24.
  • the observation control unit 58 shows how the moving arm 24 is horizontal linear motion mechanism in a position P B where small hole H to enter the field of view of the camera 34.
  • observation control unit 58 observes an upper opening O U and the lower opening O D of small holes H by the camera 34.
  • the position inclined calculator 60 can calculate the position and inclination of the small hole H of the workpiece W relative to the axis of rotation a R of the rotary body 14.
  • Figure 15 is a diagram showing a trajectory T U of the center coordinates of the upper opening O U of small holes H in the imaging range R of the camera 34 at the time of rotating the rotating body 14.
  • the calculation can be performed without rotating the rotating body 14 by 180 °, so that the alignment can be speeded up.
  • the center of rotation since there is a lot of information that can be used when finding the center of rotation, it is possible to calculate the moving target coordinates with high accuracy.
  • FIG. 16 is a diagram showing an optical path of observation light of the lower opening of the narrow hole of the work incident on the camera.
  • 216A of FIG. 16 shows the optical path of the observation light lower opening O D of small holes H of the workpiece W that enters the camera 34.
  • the work W is shown in cross section.
  • the optical path can be used for observation of the lower opening O D is the amount of light is small. That is, the observation of lower opening O D, when compared with observations upper opening O U, sometimes insufficient light amount in difficulty. Thus, for during observation of the upper opening O U, it may have a mechanism to increase the amount of light during observation of the lower opening O D.
  • 216B of FIG. 16 shows a state where the light source was disposed 70 for irradiating fine hole H on the lower opening O D side.
  • the work W is shown in cross section.
  • Light source 70 illuminates the small hole H from the lower opening O D (an example of the linear motion tilting stage side opening).
  • the light source 70 preferably has low coherence in order to reduce speckle noise.
  • an LED Light Emitting Diode
  • an ASE (Amplified Spontaneous Emission) light source can be used. More preferably the center of the light source 70 coincides with the rotational axis A R of the rotary body 14.
  • FIG. 17 is a diagram showing a state of a lower opening O D observations small hole H of the workpiece W by the camera 34.
  • the work W is shown in cross section.
  • Workpiece W shown in FIG. 17, other portions of the workpiece W are arranged asymmetrically with respect to the center of the lower opening O D in the lower opening O D side of the small hole H. Therefore, as shown in 217A in FIG. 17, the lower opening O D of the workpiece W varies the amount of reflected light depending on the position, it is difficult to observe the lower opening O D.
  • the workpiece W shown in FIG. 17, a narrow lower opening O D side of the space of the small hole H. Therefore, as shown in 217B of FIG. 17, has insufficient space to insert a light source 70, it is impossible to arrange the lower opening O D side light source 70.
  • Figure 18 is a diagram showing the insertion of a sponge-like reflector 80 to the lower opening O D side of the small hole H of the workpiece W.
  • the work W is shown in cross section. 218A of FIG. 18 shows before the insertion of the sponge-like reflector 80, and 218B of FIG. 18 shows after insertion.
  • the sponge-like reflector 80 is a light reflecting member having elasticity and flexibility. Spongy reflector 80 is reflected in the fine hole H at the upper opening O U of small holes H lower opening O D side light incident from (an example of a camera-side opening) (an example of the linear motion tilting stage side) Let me. It is desirable that the sponge-like reflector 80 has a color such as white, which has high light reflectance. Since the sponge-like reflector 80 has flexibility, it can be inserted into the narrow space under the opening O D side.
  • FIG. 19 is a diagram showing the insertion of a clay-like reflector 82 to the lower opening O D side of the small hole H of the workpiece W.
  • the work W is shown in cross section. 219A of FIG. 19 shows before the insertion of the clay-like reflector 82, and 219B of FIG. 19 shows after the insertion.
  • the clay-like reflector 82 is a light reflecting member having plasticity and flexibility.
  • Clay-like reflector 82 in the small hole H of the upper opening O U lower opening the light incident from O D (camera side of an example of an opening) (an example of an opening of the linear tilting stage side) to the small hole H Reflect. It is desirable that the clay-like reflector 82 has a color such as white, which has high light reflectance. Since clay-like reflector 82 has flexibility, it can be inserted into the narrow space under the opening O D side.
  • clayey reflector 82 By inserting such clayey reflector 82 to the lower opening O D side, it is possible to increase the amount of light during observation of the lower opening O D, it is easy to observe the lower opening O D , More accurate alignment is possible. Moreover, clay-like reflector 82 to deform along the shape of the lower opening O D side of the workpiece W, it is unnecessary to exact shape molding and positioning, there is an effect that a low cost. Further, since the clay-like reflector 82 has flexibility, there is an effect that there is no concern of damaging the work W.
  • FIG. 20 is a diagram showing the insertion of the scattering body 84 to the lower opening O D side of the small hole H of the workpiece W.
  • the work W is shown in cross section. 220A in FIG. 20 shows before the insertion of the scatterer 84, and 220B in FIG. 20 shows after insertion.
  • the scatterer 84 is a sponge of an open cell structure having elasticity and flexibility. Scatterer 84 is disposed below the opening O D side of the small hole H (an example of a side opposite to the camera). Because the scatterer 84 has flexibility, it can be inserted into the narrow space under the opening O D side.
  • a light source 70 is attached to the scatterer 84. The light source 70 causes light to enter the scatterer 84. Light incident on the scatterer 84 from the light source 70, the inside of the scattering medium 84 and multiple scattering is incident on the lower opening O D.
  • Such scatterer 84 by arranging the lower opening O D side, it is possible scatterers 84 to form a surface light source due to multiple scattering. Therefore, it is possible to increase the amount of light during observation of the lower opening O D, it is easy to observe the lower opening O D, thereby enabling more accurate alignment. Also, the scatterer 84 to deform along the shape of the lower opening O D side of the workpiece W, it is unnecessary to exact shape molding and positioning, there is an effect that a low cost. Further, since the scatterer 84 has flexibility, there is no concern that the work W will be damaged.
  • FIG. 21 is a flowchart showing a process of an alignment method of an inner surface shape measuring machine according to another embodiment of the present invention.
  • the position of the rotation axis A R of the rotary body 14 with a reference workpiece W R registers the measurement (step S100).
  • step S200 the work W, which is the object to be measured, is aligned (step S200), and the work W is measured (step S300). Then, steps S200 to S300 are repeated until the measurement of all the work W is completed (step S400).
  • step S100 the step of registering the position of the rotation center coordinates
  • reference work W R is fine hole like the workpiece W that is the measuring object (e.g., circular) has a shape (an example of a hole-shaped pattern) corresponding to a pre-shaped (e.g., outer diameter It is a work whose dimensions, hole dimensions, etc.) have been accurately measured and known.
  • the reference work W R for example, the same material as the workpiece W which is a measurement object, and can be used substantially the same shape as.
  • step S106 the measurement control unit 52 drives the motor (not shown) of the arm 24 to move the camera 34 above the Z direction of the reference workpiece W R.
  • the measurement control unit 52 (an example of a first position) by driving the motor (not shown) of the camera 34 is moved in the Z direction, the upper opening O U of small holes H a focal position of the camera 34 of the carriage 22 To match.
  • step S108 an example of first observation control step
  • step S110 the measurement control unit 52 drives the motor (not shown) of the carriage 22 to move the camera 34 in the Z-direction, Z is the upper opening O DU focal position small hole H of the camera 34 direction positions tailored to different lower opening O D (an example of a second position).
  • step S112 an example of first observation control step
  • the measurement control unit 52 drives the motor (not shown) of the carriage 22 to move the camera 34 in the Z direction, focus position of the camera 34 to the upper opening O U.
  • step S118 an example of first observation control step
  • step S120 the measurement control unit 52 drives the motor (not shown) of the carriage 22 to move the camera 34 in the Z direction, focus position of the camera 34 to the lower opening O D of the fine hole H ..
  • step S122 an example of first observation control step
  • step S202 the work W, which is the object to be measured, is installed on the work installation jig 18.
  • step S204 the measurement control unit 52 drives a motor (not shown) of the arm 24 to move the camera 34 upward in the Z direction of the work W.
  • the measurement control unit 52 drives the motor (not shown) of the carriage 22 to move the camera 34 in the Z direction (an example of a third position) upper opening O U focal position small hole H of the camera 34 To match.
  • step S206 an example of a second observation control step
  • the observation control unit 58 viewing the upper opening O U of small holes H by the camera 34 (imaging) to. Furthermore, the position inclined calculating unit 60, the center coordinates (x, y) of the upper opening O U of the fine hole H to calculate the U.
  • step S208 the measurement control unit 52 drives the motor (not shown) of the carriage 22 to move the camera 34 in the Z-direction, Z is the upper opening O DU focal position small hole H of the camera 34 direction positions tailored to different lower opening O D (an example of a fourth position).
  • step S210 an example of a second observation control step
  • the observation control unit 58 observes the lower opening O D of small holes H by the camera 34. Furthermore, the position inclined calculating unit 60, the center coordinates (x, y) of the lower opening O D of the fine hole H to calculate the D.
  • Step S212 (an example of a position inclined calculating step) First, the position inclined calculating unit 60, the center coordinates (x, y) of the upper opening O U of small hole H calculated at steps S206 and S210 U and the lower opening O D center coordinates (x, y) from D, and calculates the position and inclination of the central axis a H of the small hole H of the workpiece W. Then, the position inclined calculator 60 reads from the storage of the control device 50 the position of the rotation axis A R (rotation center coordinates) of the rotating body 14 calculated in step S124 of FIG.
  • the rotational axis A of the rotator 14 to calculate the position and inclination of the central axis a H of the small hole H of the reference workpiece W R relative to the position of R (rotation center coordinates).
  • the position inclination calculation unit 60 functions as a rotation center coordinate calculation unit.
  • the position inclined calculator 60 determines whether the deviation between the position and inclination of the central axis A H of the small hole H of the workpiece W with the rotational axis A R is within the target value. If the deviation is larger than the target value, the control device 50 performs the process of step S216. If the deviation is within the target value, the processing of this flowchart is terminated.
  • step S216 the position inclination calculation unit 60 calculates the amount of movement of the linear motion inclination stage 16.
  • step S218 (an example of the stage control process), the stage control unit 62 drives a motor (not shown) of the linear motion tilt stage 16 based on the movement amount calculated in step S13, and sets the linear motion tilt stage 16 at a target position. Move to.
  • the process proceeds to step S204, and the control device 50 performs the same process.
  • the inner surface shape measuring machine 10 the deviation between the center axis A H of the small hole H of the workpiece W with the rotational axis A R of the rotary body 14 within the target value.
  • the deviation thrust operation to within a target value of the rotation axis A R of the central axis A H and the rotating body 14 of the small hole H of the workpiece W requires several iterations ( Figure 4 and (See FIG. 23). Then, the higher the alignment target accuracy (the smaller the deviation target value), the more the number of repetitions tends to increase.
  • the hole of the work W which is the object to be measured, is not limited to a circular shape, but may be a distorted circular shape such as an ellipse, or a shape having protrusions inside.
  • calculating the rotation center coordinates in the captured image based on the shape of the small hole of the work W, which is the object to be measured it is difficult to calculate the rotation center with high accuracy due to the influence of the shape of the small hole of the work W. May become.
  • Figure 24 is a plan view showing an example of a calculation of the rotation center coordinates when small hole H of the workpiece W shape with a projection on the inside
  • FIG. 25 the calculation of the rotation center coordinates using the reference workpiece W R It is a top view which shows the example of.
  • reference work W R In another embodiment of the above, as a reference work W R, was used having a three-dimensional shape having the same small hole and the workpiece W that is the measuring object, the present invention is not limited thereto.
  • the reference work W R may be used as a planar shape.
  • the reference work W R of the planar shape (an example of a hole-shaped pattern) circular pattern of black within which corresponding to the fine hole may be formed. In this case, it becomes possible to share the program for searching and calculating the position of the small hole with the above-described embodiment.
  • the reference work W R of the planar shape (an example of a reticle.
  • Hole-shaped pattern printing pattern for positioning may be printed (e.g., see reference work W R1 of the planar shape of FIG. 26).
  • the printing pattern for positioning may be formed with a pattern indicating the center position of the fine hole. In this case, it becomes possible to calculate the coordinates of the center of rotation and the like with high accuracy.
  • planar reference work when used, it can be used in combination with a mechanism for moving the reference work up and down in the Z direction.
  • a mechanism for moving the reference work up and down in the Z direction As shown in FIG. 26, by raising or lowering the reference work W R1 planar shape in the Z direction, to calculate the rotation center coordinates based on the center C R1 of the reticle for each position in the Z direction (Pattern Pa) ..
  • the inclination of the rotation axis can be calculated and registered in advance, so that more accurate alignment can be realized.
  • the position of the fine hole calculation You can share the program to do. Further, by registering the rotation center for each of the upper opening and the lower opening, the inclination of the rotation axis can be calculated and registered in advance.
  • the work W R it can also be used an object having a workpiece W or workpiece W similar shape that is the measuring object made with high accuracy. In this case, it is possible to divert the gripping mechanism of the workpiece W that is the measuring object for the gripping of the reference workpiece W R.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

穴の位置を適切にアライメントする内面形状測定機、及び内面形状測定機のアライメント方法を提供する。回転体の第1の回転角度における直動傾斜ステージに固定されて回転体とともに回転するワークの細穴の第1の位置及び第1の位置とは異なる第2の位置と、回転体の第1の回転角度とは異なる第2の回転角度におけるワークの細穴の第1の位置及び第2の位置とをカメラにより観察し、観察した各位置のそれぞれの座標から細穴の位置及び傾斜を計算し、細穴の位置及び傾斜を含む細穴情報を出力する。

Description

内面形状測定機、及び内面形状測定機のアライメント方法
 本発明は、ワークに形成された細穴の内面形状を測定するための技術に関する。
 接触式又は非接触式のプローブとワークとを相対移動させることでワークの形状を測定する形状測定装置において、回転軸を中心にワークを回転させてワークの真円度を測定する内面形状測定機が知られている。内面形状測定機で真円度を測定するためには、回転軸とワークの軸心とを一致させる必要がある。
 特許文献1には、回転テーブル上に載置されたワークの孔の内周部に検出器の接触子を当接させて孔の真円度を測定する技術が開示されている。特許文献1に記載の技術では、事前に検出器の接触子をワークの外周面に当接させ、回転テーブルを回転させながら低倍率でワークの振れを見て、振れが小さくなるようにワークの載置位置を調整している。
特開2006-145344号公報
 内面形状測定機を用いて細穴の内面形状を測定する場合、細穴のアライメントが課題となる。即ち、プローブを細穴に挿入してワークを回転させると、プローブと穴壁とが衝突するという課題があった。
 これに対し、特許文献1に記載の技術のように、穴と同軸形状部分を利用してアライメントする場合は、測定可能な測定対象物の形状に制限があった。
 また、作業者が観察顕微鏡で確認しながら挿入する場合には、作業者の熟練が必要となる。この場合、自動化が困難であり、操作ミスによってプローブと穴壁とが衝突する可能性があった。
 本発明はこのような事情に鑑みてなされたもので、穴の位置を適切にアライメントする内面形状測定機、及び内面形状測定機のアライメント方法を提供することを目的とする。
 上記目的を達成するための内面形状測定機の一の態様は、第1の方向に平行な回転軸を中心に回転する回転体と、回転体に支持される直動傾斜ステージであって、回転体に対する第1の方向に直交する平面内の位置及び平面に対する傾斜を変更可能な直動傾斜ステージと、第1の方向に平行に延びる接触式又は非接触式のプローブであって、第1の直動機構によって第1の方向に移動可能なプローブにより、直動傾斜ステージに固定されて回転体とともに回転するワークの細穴の内側面の変位を検出する変位検出器と、第1の方向に平行な光軸を有するカメラと、回転体の第1の回転角度におけるワークの細穴の第1の位置及び第1の位置とは第1の方向の位置が異なる第2の位置と、回転体の第1の回転角度とは異なる第2の回転角度におけるワークの細穴の第1の位置及び第2の位置とをカメラにより観察する観察制御部と、観察した回転体の第1の回転角度における細穴の第1の位置及び第2の位置と、回転体の第2の回転角度における細穴の第1の位置及び第2の位置と、のそれぞれの座標から、細穴の位置及び傾斜を計算する位置傾斜計算部と、計算した細穴の位置及び傾斜を含む細穴情報を出力する出力部と、を備える内面形状測定機である。
 細穴情報に基づいて直動傾斜ステージを制御し、細穴の中心軸と回転軸とのずれを目標値以内にするステージ制御部を備えることが好ましい。これにより、穴の位置を自動的にアライメントすることができる。
 カメラは、第1の直動機構により第1の方向に移動可能であり、観察制御部は、第1の直動機構によりカメラの焦点位置を細穴の第1の位置及び第2の位置に移動させることが好ましい。これにより、細穴の第1の位置及び第2の位置にカメラを適切に合焦させることができるので、カメラによって細穴を適切に観察することができる。
 上記目的を達成するための内面形状測定機の一の態様は、第1の方向に平行な回転軸を中心に回転する回転体と、回転体に支持される直動傾斜ステージであって、回転体に対する第1の方向に直交する平面内の位置及び平面に対する傾斜を変更可能な直動傾斜ステージと、第1の方向に平行に延びる接触式又は非接触式のプローブであって、第1の直動機構によって第1の方向に移動可能なプローブにより、直動傾斜ステージに固定されて回転体とともに回転するワークの細穴の内側面の変位を検出する変位検出器と、第1の方向に平行な光軸を有するカメラと、直動傾斜ステージに固定された、穴状パターンが形成された、形状が既知の基準ワークについて、回転体の第1の回転角度における基準ワークの穴状パターンの第1の位置及び第1の位置とは第1の方向の位置が異なる第2の位置と、回転体の第1の回転角度とは異なる第2の回転角度における基準ワークの穴状パターンの第1の位置及び第2の位置とをカメラにより観察する第1の観察制御部と、観察した回転体の第1の回転角度における細穴の第1の位置及び第2の位置と、回転体の第2の回転角度における細穴の第1の位置及び第2の位置と、のそれぞれの座標から、回転体の回転中心座標を計算する回転中心座標計算部と、直動傾斜ステージに固定された測定対象のワークについて、測定対象のワークの細穴の第3の位置及び第3の位置とは第1の方向の位置が異なる第4の位置を第1の方向に平行な光軸を有するカメラにより観察する第2の観察制御部と、回転体の回転中心座標と、回転体の細穴の第3の位置及び第4の位置から、細穴の位置及び傾斜を計算する位置傾斜計算部と、を備える内面形状測定機である。
 上記の各態様によれば、細穴情報に基づいて穴の位置を適切にアライメントすることができる。内径が500μm以下の極小径穴である場合に特に有効である。
 細穴の位置及び傾斜を含む細穴情報に基づいて直動傾斜ステージを制御し、細穴の中心軸と回転軸とのずれを目標値以内にするステージ制御部を備えることが好ましい。これにより、穴の位置を自動的にアライメントすることができる。
 カメラは、第1の直動機構により第1の方向に移動可能であり、第2の観察制御部は、第1の直動機構によりカメラの焦点位置を細穴の第3の位置及び第4の位置に移動させることが好ましい。これにより、細穴の第3の位置及び第4の位置にカメラを適切に合焦させることができるので、カメラによって細穴を適切に観察することができる。
 第1の回転角度と第2の回転角度とは互いに180°異なる角度であることが好ましい。これにより、細穴の位置及び傾斜を精度よく計算することができる。
 カメラの光軸と同軸の光を出射する同軸照明光学系を備えることが好ましい。これにより、ワークの細穴を適切に照射することができるので、カメラによって細穴を適切に観察することができる。
 スポンジ状又は粘土状の反射体を備え、反射体は、カメラと直動傾斜ステージとの間に配置されるワークの細穴のカメラ側の開口から入射した光を直動傾斜ステージ側の開口において細穴に反射させることが好ましい。これにより、ワークの細穴のカメラ側の開口から入射した光を、ワークを傷つけずに直動傾斜ステージ側の開口において細穴に反射させることができる。
 柔軟性を有する連続気泡構造体と、連続気泡構造体に光を入射させる光源と、を備え、連続気泡構造体は、カメラと直動傾斜ステージとの間に配置されるワークの細穴の直動傾斜ステージ側の開口から光源からの光を入射させることが好ましい。これにより、ワークの細穴の直動傾斜ステージ側の開口から適切に光を入射させることができる。
 上記目的を達成するための内面形状測定機のアライメント方法は、第1の方向に平行な回転軸を中心に回転する回転体と、回転体に支持される直動傾斜ステージであって、回転体に対する第1の方向に直交する平面内の位置及び平面に対する傾斜を変更可能な直動傾斜ステージと、第1の方向に平行に延びる接触式又は非接触式のプローブであって、第1の直動機構によって第1の方向に移動可能なプローブにより、直動傾斜ステージに固定されて回転体とともに回転するワークの細穴の内側面の変位を検出する変位検出器と、を備える内面形状測定機のアライメント方法であって、回転体の第1の回転角度におけるワークの細穴の第1の位置及び第1の位置とは第1の方向の位置が異なる第2の位置と、回転体の第1の回転角度とは異なる第2の回転角度におけるワークの細穴の第1の位置及び第2の位置とを第1の方向に平行な光軸を有するカメラにより観察する観察制御工程と、観察した回転体の第1の回転角度における細穴の第1の位置及び第2の位置と、回転体の第2の回転角度における細穴の第1の位置及び第2の位置と、のそれぞれの座標から、細穴の位置及び傾斜を計算する位置傾斜計算工程と、計算した細穴の位置及び傾斜を含む細穴情報を出力する出力工程と、を備える内面形状測定機のアライメント方法である。
 上記目的を達成するための内面形状測定機のアライメント方法は、第1の方向に平行な回転軸を中心に回転する回転体と、回転体に支持される直動傾斜ステージであって、回転体に対する第1の方向に直交する平面内の位置及び平面に対する傾斜を変更可能な直動傾斜ステージと、第1の方向に平行に延びる接触式又は非接触式のプローブであって、第1の直動機構によって第1の方向に移動可能なプローブにより、直動傾斜ステージに固定されて回転体とともに回転する測定対象のワークの細穴の内側面の変位を検出する変位検出器と、を備える内面形状測定機のアライメント方法であって、穴状パターンが形成された、形状が既知の基準ワークを直動傾斜ステージに固定し、回転体の第1の回転角度における基準ワークの穴状パターンの第1の位置及び第1の位置とは第1の方向の位置が異なる第2の位置と、回転体の第1の回転角度とは異なる第2の回転角度における基準ワークの穴状パターンの第1の位置及び第2の位置とを、第1の方向に平行な光軸を有するカメラにより観察する第1の観察制御工程と、観察した回転体の第1の回転角度における細穴の第1の位置及び第2の位置と、回転体の第2の回転角度における細穴の第1の位置及び第2の位置と、のそれぞれの座標から、回転体の回転中心座標を計算する回転中心座標計算工程と、測定対象のワークを直動傾斜ステージに固定し、測定対象のワークの細穴の第3の位置及び第3の位置とは第1の方向の位置が異なる第4の位置を第1の方向に平行な光軸を有するカメラにより観察する第2の観察制御工程と、回転体の回転中心座標と、回転体の細穴の第3の位置及び第4の位置から、細穴の位置及び傾斜を計算する位置傾斜計算工程と、を備える内面形状測定機のアライメント方法である。
 本態様によれば、細穴情報に基づいて穴の位置を適切にアライメントすることができる。内径が500μm以下の極小径穴である場合に特に有効である。
 本発明によれば、穴の位置を適切にアライメントすることができる。
図1は、内面形状測定機の構成を示す概略図である。 図2は、非接触式及び接触式のプローブの一例を示す概略図である。 図3は、内面形状測定機の電気的構成を示すブロック図である。 図4は、内面形状測定機のアライメント方法の処理の一例を示すフローチャートである。 図5は、カメラによる細穴の上側開口の観察を示す概略図である。 図6は、回転体の回転軸と、回転体の設定角度θ=0°における上側開口と、カメラの撮影範囲における上側開口の画像との位置関係を示す図である。 図7は、カメラによる細穴の下側開口の観察を示す概略図である。 図8は、回転体の回転軸と、回転体の設定角度θ=0°における下側開口と、カメラの撮影範囲における下側開口の画像との位置関係を示す図である。 図9は、回転体の回転軸と、回転体の設定角度θ=180°における上側開口と、カメラの撮影範囲における上側開口の画像との位置関係を示す図である。 図10は、回転体の回転軸と、回転体の設定角度θ=180°における下側開口と、カメラの撮影範囲における下側開口の画像との位置関係を示す図である。 図11は、上側開口の移動目標座標及び下側開口の移動目標座標を説明するための図である。 図12は、カメラとワーク設置治具によるワークの細穴との関係を示す図である。 図13は、カメラによる細穴の途中位置の観察を示す概略図である。 図14は、ワークの細穴の位置が回転軸から大きくずれている場合の、カメラによる細穴の観察を示す概略図である。 図15は、回転体を回転させた際のカメラの撮影範囲における細穴の上側開口の中心座標の軌跡を示す図である。 図16は、カメラに入射するワークの細穴の下側開口の観察光の光路を示す図である。 図17は、カメラによるワークの細穴の下側開口の観察の様子を示す図である。 図18は、ワークの細穴の下側開口側へのスポンジ状の反射体の挿入を示す図である。 図19は、ワークの細穴の下側開口側への粘土状の反射体の挿入を示す図である。 図20は、ワークの細穴の下側開口側への散乱体の挿入を示す図である。 図21は、本発明の別の実施形態に係る内面形状測定機のアライメント方法の処理を示すフローチャートである。 図22は、回転中心座標の位置を登録する工程を示すフローチャートである。 図23は、測定対象物であるワークのアライメント工程を示すフローチャートである。 図24は、ワークの細穴が内部に突起を持つ形状の場合の回転中心座標の算出の例を示す平面図である。 図25は、基準ワークを用いた回転中心座標の算出の例を示す平面図である。 図26は、平面形状の基準ワークの例を示す図である。
 以下、添付図面に従って本発明の好ましい実施形態について詳説する。
 <内面形状測定機の構成>
 図1は、本実施形態に係る内面形状測定機10の構成を示す概略図である。内面形状測定機10は、ワークWに形成された細穴Hの内面形状(真円度等)を測定する装置である。本例において、細穴Hは、ワークWの中心軸に沿って形成された細穴である。細穴Hの内径は、極小径(例えば内径が500μm以下)のものである。図1において、X方向、Y方向、及びZ方向は互いに直交する方向であり、X方向は水平方向、Y方向はX方向に直交する水平方向、Z方向は鉛直方向である。
 図1に示すように、内面形状測定機10は、本体ベース12、回転体14、直動傾斜ステージ16、ワーク設置治具18、コラム20、キャリッジ22、アーム24、変位検出器28、及びカメラ34を備える。
 回転体14は、本体ベース12上に固定される。本体ベース12の内部には、回転体14に連結される不図示のモータ、不図示のエンコーダ、及び不図示の高精度回転機構が備えられている。回転体14は、モータの駆動によってZ方向(第1の方向の一例)に平行な回転軸Aを中心に高精度に回転する。また、回転体14は、エンコーダから出力される回転角信号によって回転体14の回転角度が検出される。
 直動傾斜ステージ16(直動傾斜ステージの一例)は、回転体14に対して相対移動可能に回転体14に支持される。直動傾斜ステージ16は、不図示のモータの駆動によりX方向及びY方向に平行移動し、直動傾斜ステージ16に固定されたワークWのZ方向に直行する平面内(XY平面内)の位置を変更可能である。また、直動傾斜ステージ16は、不図示のモータの駆動によりX方向及びY方向に対して傾斜動作し、直動傾斜ステージ16に固定されたワークWのXY平面に対する傾斜を変更可能である。
 ワーク設置治具18は、直動傾斜ステージ16に載置される。ワーク設置治具18には、ワークWが設置される。即ち、直動傾斜ステージ16には、ワーク設置治具18を介してワークWが固定される。ワークWは、極小径の細穴Hを有する。細穴Hは、ワークWの内部を上側開口O(図5参照)から下側開口O(図7参照)までを直進して貫通している。
 内面形状測定機10においてワークWの細穴Hの真円度等の内面形状を測定するには、ワークWの細穴Hの中心軸Aが回転体14の回転軸Aと同軸上となるようにワークWをアライメントする必要がある。このワークWのアライメントについては後述する。図1は、ワークWのアライメント前の様子を示している。アライメントされたワークWは、回転体14とともに回転軸Aを中心に回転する。
 また、本体ベース12上には、Z方向に平行に延びるコラム(支柱)20が立設される。コラム20は、下端部が本体ベース12の上面に固定される。
 キャリッジ22は、Z方向に移動可能にコラム20に支持される。キャリッジ22は、不図示のモータの駆動によりZ方向に移動する。キャリッジ22は、変位検出器28及びカメラ34をZ方向に移動させるための垂直直動機構(第1の直動機構の一例)に相当する。
 アーム24は、X方向(第1の方向に直行する方向の一例)に移動可能にキャリッジ22に支持される。アーム24は、不図示のモータの駆動によりX方向に移動する。アーム24は、変位検出器28及びカメラ34をX方向に移動させるための水平直動機構に相当する。
 変位検出器28は、アーム24に支持される。変位検出器28は、非接触式又は接触式のプローブ30を備えている。
 図2は、プローブ30の一例を示す概略図である。図2の202Aは、非接触式のプローブ30を示している。非接触式のプローブ30を備える変位検出器28(図1参照)は、検出光を出射する不図示の発光素子と、発光素子から出射される検出光の反射光を受光する不図示の受光素子とを備える。非接触式のプローブ30は、光ファイバ38及び反射ミラー40を備える。変位検出器28(図1参照)の不図示の発光素子から出射された光は、光ファイバ38によって反射ミラー40に導かれ、反射ミラー40の反射面で反射してワークWに入射する。ワークWで反射した反射光は、反射ミラー40に入射し、反射ミラー40の反射面で反射して光ファイバ38に導かれる。光ファイバ38に導かれた反射光は、変位検出器28の不図示の受光素子に入力される。変位検出器28は、受光素子において受光される反射光に基づいてワークWの変位を検出する。
 非接触式の変位検出器28の方式として、レーザー干渉計、白色干渉計、SD-OCT(Spectral Domain-Optical Coherence Tomography)、SS-OCT(Swept Source-Optical Coherence Tomography)等の既知の手法を適用することができる。
 なお、変位検出器28は、接触式でワークWの変位を検出してもよい。図2の202Bは、接触式のプローブ30を示している。接触式のプローブ30は、先端にワークWに向けて付勢される接触子42を備える。接触子42がワークWに接触すると、ワークWの形状に応じて接触子42が変位する。接触子42の変位は、プローブ30を介して変位検出器28に伝達される。変位検出器28は、接触子42の変位に基づいてワークWの変位を検出する。
 接触式の変位検出器28の変位検出機構としては、LVDT(Linear Variable Differential Transformer)、干渉計、光三角測量方式、薄膜歪み測定等の既知の機構を適用することができる。更に、変位検出器28として、共振周波数で接触子42を加振しておき、接触によって共振点が変化することを利用する方式を適用してもよい。
 図1の説明に戻り、内面形状測定機10においてワークWの細穴Hの真円度を測定する際には、プローブ30はキャリッジ22により変位検出器28とともにZ方向に移動され、ワークWの細穴Hに挿入される。変位検出器28は、プローブ30により細穴Hの穴壁(内側面)の変位を検出する。
 カメラ34は、光軸A(図12参照)をZ方向に平行かつ下向きにして、アーム24に支持される。
 カメラ34は、同軸落射照明光学系35(図3参照、同軸照明光学系の一例)と、被観察物を拡大投影する不図示の拡大光学系(顕微鏡)と、を含む。同軸落射照明光学系35は、不図示の照明光源と、照明光源からの光をカメラ34の光軸Aと同軸の照明光として出射する不図示のハーフミラーと、を備える。カメラ34は、カメラの光軸Aと同軸で照明光を被観察物に照射し、被観察物の拡大画像を撮影することができる。ここでは同軸落射照明を用いているが、斜光照明を用いてもよい。
 このように構成された内面形状測定機10において、ワークWをアライメントし、プローブ30をワークWの細穴Hに挿入し、回転体14を回転させてワークWとプローブ30とを相対的に移動させ、変位検出器28において細穴Hの穴壁の変位を検出することで、細穴Hの真円度を測定することができる。
 <内面形状測定機の電気的構成>
 図3は、内面形状測定機10の電気的構成を示すブロック図である。内面形状測定機10は、制御装置50を備える。
 制御装置50は、例えばパーソナルコンピュータやマイクロコンピュータ等の汎用のコンピュータによって実現されるものである。制御装置50は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及び入出力インターフェース等を備えている。制御装置50では、ROMに記憶されている制御プログラム等の各種プログラムがRAMに展開され、RAMに展開されたプログラムがCPUによって実行されることにより、内面形状測定機10内の各部の機能が実現され、入出力インターフェースを介して各種の演算処理や制御処理が実行される。
 図3に示すように、制御装置50は、測定制御部52、変位取得部54、真円度計算部56、観察制御部58、位置傾斜計算部60、ステージ制御部62、及び出力部63を含む。
 測定制御部52は、キャリッジ22、アーム24、及び回転体14にそれぞれ連結される不図示のモータを制御し、変位検出器28のプローブ30とワークWの細穴Hとの相対位置を制御する。
 変位取得部54は、変位検出器28を制御し、変位検出器28が検出した細穴Hの穴壁の変位を取得する。
 真円度計算部56は、測定制御部52から取得したプローブ30とワークWとの相対位置、及び変位検出器28が検出した変位から、細穴Hの真円度を計算する。
 観察制御部(第1及び第2の観察制御部)58は、カメラ34を制御し、カメラ34が撮影した画像を取得する。位置傾斜計算部60は、観察制御部58が取得した画像からワークWの細穴Hの位置及び傾斜を計算する。ステージ制御部62は、位置傾斜計算部60が計算した細穴Hの位置及び傾斜に基づいて、直動傾斜ステージ16を駆動する不図示のモータを制御し、直動傾斜ステージ16の位置及び傾斜を変更する。出力部63は、位置傾斜計算部60から取得した細穴Hの位置及び傾斜を含む細穴情報を不図示の出力インターフェースに出力する。
 <アライメント方法>
 前述したように、ワークWの細穴Hの真円度等の内面形状を測定するためには、細穴Hの中心軸Aを回転体14の回転軸Aに一致させるアライメントが必要である。アライメントには、XY平面内の位置を調整するセンタリングと、XY平面に対する傾斜を調整するチルチングとがある。内面形状測定機10は、直動傾斜ステージ16によってセンタリングとチルチングとが可能である。
 図4は、内面形状測定機10のアライメント方法の処理の一例を示すフローチャートである。ここでは、細穴Hを有するワークWが予めワーク設置治具18に設置されているものとする。ワーク設置治具18は、ワークWの細穴Hの下側開口O(図7参照)に隙間を設けて(下側開口Oを塞がずに)ワークWを固定している。
 ステップS1では、測定制御部52は、回転体14の不図示のエンコーダの検出結果に応じて不図示のモータを駆動し、回転体14を回転角度が設定角度θ=0°(第1の回転角度の一例)の位置へ移動(回転)させる。
 ステップS2では、測定制御部52は、アーム24の不図示のモータを駆動してカメラ34をワークWのZ方向の上方に移動させる。また、測定制御部52は、キャリッジ22の不図示のモータを駆動してカメラ34をZ方向に移動させ、カメラ34の焦点位置を細穴Hの上側開口O(第1の位置の一例)に合わせる。
 続くステップS3(観察制御工程の一例)では、観察制御部58は、カメラ34によって細穴Hの上側開口Oを観察(撮影)する。さらに、位置傾斜計算部60は、設定角度θ=0°における細穴Hの上側開口Oの中心座標(x,y)0Uを計算する。
 図5は、カメラ34による細穴Hの上側開口Oの観察を示す概略図である。図5では、ワークWを断面で示している。図5に示す焦点面Fは、カメラ34の光軸Aに直交し、かつカメラ34の焦点を含む面であり、ここでは細穴Hの上側開口Oの位置に合わせられている。また、図5に示したドットハッチング部分は、カメラ34に入射する上側開口Oの観察光の光路であり、図5に示した画像I0Uは、カメラ34によって観察される上側開口Oのエッジ部分の画像(Z方向視)である。
 図6は、回転体14の回転軸Aと、回転体14の設定角度θ=0°におけるワークWの細穴Hの上側開口Oと、カメラ34の撮影範囲Rと、撮影範囲RにおけるステップS3で観察された画像I0Uとの位置関係を示す図である。図6では、撮影範囲RはZ方向視で示しており、ワークWは断面をY方向視で示している。
 位置傾斜計算部60は、画像I0Uから設定角度θ=0°における細穴Hの上側開口Oの中心座標(x,y)0Uを計算する。
 次に、ステップS4では、測定制御部52は、キャリッジ22の不図示のモータを駆動してカメラ34をZ方向に移動させ、カメラ34の焦点位置を細穴Hの上側開口ODUとはZ方向の位置が異なる下側開口O(第2の位置の一例)に合わせる。
 続くステップS5(観察制御工程の一例)では、観察制御部58は、カメラ34によって細穴Hの下側開口Oを観察する。さらに、位置傾斜計算部60は、設定角度θ=0°における細穴Hの下側開口Oの中心座標(x,y)0Dを計算する。
 図7は、カメラ34による細穴Hの下側開口Oの観察を示す概略図である。図7では、ワークWを断面で示している。図7に示すように、焦点面Fは細穴Hの下側開口Oの位置に合わせられている。また、図7に示したドットハッチング部分は、カメラ34に入射する下側開口Oの観察光の光路であり、図7に示した画像I0Dは、カメラ34によって観察される下側開口Oのエッジ部分の画像(Z方向視)である。
 図8は、回転体14の回転軸Aと、回転体14の設定角度θ=0°におけるワークWの細穴Hの下側開口Oと、カメラ34の撮影範囲RにおけるステップS5で観察された画像I0Dとの位置関係を示す図である。図8では、撮影範囲RはZ方向視で示しており、ワークWは断面をY方向視で示している。
 位置傾斜計算部60は、画像I0Dから設定角度θ=0°における細穴Hの下側開口Oの中心座標(x,y)0Dを計算する。
 次に、ステップS6では、測定制御部52は、回転体14の不図示のエンコーダの検出結果に応じて不図示のモータを駆動し、回転体14を回転角度が設定角度θ=180°(第2の回転角度の一例)の位置へ移動させる。
 ステップS7では、測定制御部52は、キャリッジ22の不図示のモータを駆動してカメラ34をZ方向に移動させ、カメラ34の焦点位置を上側開口Oに合わせる。
 続くステップS8(観察制御工程の一例)では、観察制御部58は、カメラ34によって細穴Hの上側開口Oを観察する。さらに、位置傾斜計算部60は、画像I180Uから設定角度θ=180°における細穴Hの上側開口Oの中心座標(x,y)180Uを計算する。
 図9は、回転体14の回転軸Aと、回転体14の設定角度θ=180°におけるワークWの細穴Hの上側開口Oと、カメラ34の撮影範囲RにおけるステップS8で観察された画像I0Uとの位置関係を示す図である。図9では、撮影範囲RはZ方向視で示しており、ワークWは断面をY方向視で示している。
 位置傾斜計算部60は、画像I180Uから設定角度θ=180°における細穴Hの上側開口Oの中心座標(x,y)180Uを計算する。
 次に、ステップS9では、測定制御部52は、キャリッジ22の不図示のモータを駆動してカメラ34をZ方向に移動させ、カメラ34の焦点位置を細穴Hの下側開口Oに合わせる。
 続くステップS10(観察制御工程の一例)では、観察制御部58は、カメラ34によって細穴Hの下側開口Oを観察する。さらに、位置傾斜計算部60は、画像I180Dから設定角度θ=180°における細穴Hの下側開口Oの中心座標(x,y)180Dを計算する。
 図10は、回転体14の回転軸Aと、回転体14の設定角度θ=180°におけるワークWの細穴Hの下側開口Oと、カメラ34の撮影範囲RにおけるステップS10で観察された画像I0Dとの位置関係を示す図である。図10では、撮影範囲RはZ方向視で示しており、ワークWは断面をY方向視で示している。
 位置傾斜計算部60は、画像I180Dから設定角度θ=180°における細穴Hの下側開口Oの中心座標(x,y)180Dを計算する。
 ステップS11(位置傾斜計算工程の一例)では、位置傾斜計算部60は、設定角度θ=0°における細穴Hの上側開口Oの中心座標(x,y)0U及び下側開口Oの中心座標(x,y)0Dと、設定角度θ=180°における細穴Hの上側開口Oの中心座標(x,y)180U及び下側開口Oの中心座標(x,y)180Dとから、回転体14の回転軸Aに対するワークWの細穴Hの中心軸Aの位置及び傾斜を計算する。
 ステップS12では、位置傾斜計算部60は、ワークWの細穴Hの中心軸Aの位置及び傾斜と回転軸Aとのずれが目標値以内であるか否かを判定する。ずれが目標値より大きい場合は、制御装置50は、ステップS13の処理を行う。ずれが目標値以内である場合は、本フローチャートの処理を終了する。
 ステップS13では、位置傾斜計算部60は、直動傾斜ステージ16の移動量を計算する。図11は、上側開口Oの移動目標座標C(x,y)及び下側開口Oの移動目標座標C(x,y)を説明するための図である。図11では、設定角度θ=0°における細穴Hの上側開口Oの中心座標(x,y)0U及び下側開口Oの中心座標(x,y)0Dと、設定角度θ=180°における細穴Hの上側開口Oの中心座標(x,y)180U及び下側開口Oの中心座標(x,y)180Dと、上側開口Oの移動目標座標C(x,y)と、下側開口Oの移動目標座標C(x,y)と、の位置関係を示している。
 図11に示すように、上側開口Oの移動目標座標C(x,y)は、
 C(x,y)={(x,y)0U+(x,y)180U}/2 …(式1)
 と表すことができる。同様に、下側開口Oの移動目標座標C(x,y)は、
 C(x,y)={(x,y)0D+(x,y)180D}/2 …(式2)
と表すことができる。
 位置傾斜計算部60は、上側開口Oの移動目標座標C(x,y)及び下側開口Oの移動目標座標C(x,y)から、直動傾斜ステージ16の移動量を計算する。出力部63は、位置傾斜計算部60が計算した直動傾斜ステージ16の移動量(細穴情報の一例)を取得し、ステージ制御部62に出力する(出力工程の一例)。
 ステップS14(ステージ制御工程の一例)は、ステージ制御部62は、ステップS13で計算された移動量に基づいて直動傾斜ステージ16の不図示のモータを駆動し、直動傾斜ステージ16を目標位置へ移動させる。その後、ステップS1へ移行し、制御装置50は同様の処理を行う。この処理を繰り返すことで、内面形状測定機10は、ワークWの細穴Hの中心軸Aと回転体14の回転軸Aとのずれを目標値以内にする。
 このように、本実施形態に係るアライメント方法によれば、細穴Hの中心軸Aを回転体14の回転軸Aにアライメントすることができる。本実施形態によれば、カメラ34の光軸Aを回転体14の回転軸Aに一致させる必要がないため、簡易な構成でアライメントすることができる。本実施形態に係るアライメント方法は、細穴Hが、内径が500μm以下の極小径穴である場合に有効である。さらに、細穴Hの径が200μm以下であり、プローブ30の径が100μm以下である場合に、特に有効である。なお、径が500μmより大きい細穴Hであってもよい。
 ここでは、カメラ34で上側開口Oと下側開口Oとを観察する際の回転体14の回転角度の設定角度θを、互いに180°異なる角度であるθ=0°とθ=180°とに設定したため、ワークWの細穴Hの中心軸Aと回転軸Aとのずれを精度よく計算することができる。
 また、内面形状測定機10は、ワークWの円筒度を高精度に測定するため、コラム20は回転体14の回転軸Aと平行に立設されている。本実施形態では、細穴Hの上側開口Oと下側開口Oとの観察の切り替えの際に、キャリッジ22の垂直直動機構を利用してカメラ34の焦点位置を移動させた。したがって、カメラ34の焦点制御機構が不要となり、高精度アライメントが可能となった。例えば、焦点面内での回転軸位置が移動しないため、高倍率の光学系を採用することが可能である。
 また、出力部63は、位置傾斜計算部60から取得した直動傾斜ステージ16の移動量(細穴情報の一例)を、不図示の出力インターフェースなどに出力(出力工程の一例)してもよい。また出力部63は、ステップS11において計算した回転体14の回転軸Aに対するワークWの細穴Hの中心軸Aの位置及び傾斜を含む細穴情報を取得し、不図示の出力インターフェースなどに出力(出力工程の一例)してもよい。ユーザは、出力された情報に基づいて直動傾斜ステージ16を手動で動作させることで、ワークWの細穴Hの中心軸Aを回転体14の回転軸Aにアライメントすることができる。本実施形態では、出力部63は、取得した移動量をステージ制御部62に出力する。
 <ワーク設置治具>
 細穴Hの下側開口Oを観察するためには、ワークWをワーク設置治具18に設置した際に細穴Hの角度(傾斜)を一定範囲に収めることが必要となる。
 図12は、カメラとワーク設置治具によるワークの細穴との関係を示す図である。図12の212Aは、カメラ34の不図示の対物レンズに入射する観察光の光軸Aに対する最大角度を示している。212Aに示すように、カメラ34の対物レンズの開口数をNA、対物レンズに入射する観察光のカメラ34の光軸Aに対する最大角度θobj、観察光の光路の屈折率をn、とすると、
 NA=n×sinθobj …(式3)
 の関係を有する。したがって、観察光の光路の空気の屈折率nを1.0と仮定し、細穴Hの回転体14の回転軸Aに対する傾斜角をθworkとすると、
 θwork<asin(NA) …(式4)
 を満たすようにワークWを位置決め可能なワーク設置治具18が必要となる。
 図12の212Bは、θwork<θobjの関係を有する場合のカメラ34とワークWとの関係を示している。212Bでは、ワークWを断面で示している。212Bに示す光路Pは、カメラ34に入射する観察光の光路のうち、下側開口Oの観察に使用可能な光路である。このように、212Bに示す場合では、カメラ34で下側開口Oの観察を行うことが可能である。
 図12の212Cは、θwork>θobjの関係を有する場合のカメラ34とワークWとの関係を示している。212Cでは、ワークWを断面で示している。212Cに示す場合では、下側開口Oの観察光はカメラ34に到達せず、カメラ34で下側開口Oの観察を行うことができない。
 <細穴の観察する位置>
 上記の例では、細穴Hの上側開口ODU及び下側開口Oを観察する例を示したが、細穴Hを観察する位置は開口に限定されず、細穴Hの途中位置であってもよい。
 図13は、細穴Hの上側開口ODU及び下側開口OとはZ方向の位置が異なる途中位置O(第2の位置の一例)のカメラ34による観察を示す概略図である。図13では、ワークWを断面で示している。図13に示す細穴Hは、下側開口Oのエッジ部にRが付いている(下側開口OがR形状を有している)。このため、図13に示す例では、焦点面Fが細穴Hの途中位置Oに合わせられている。また、図13に示したドットハッチング部分は、カメラ34に入射する途中位置Oの観察光の光路であり、図13に示した画像I0Hは、カメラ34によって観察される途中位置Oの画像(Z方向視)である。
 このように、細穴Hの上側開口ODUや下側開口Oに面取りやRが付いており、細穴Hのエッジ形状を観察するのが困難な場合には、細穴Hの途中位置を観察することが有効である。細穴Hの途中位置を利用する場合、細穴Hの位置を検知するためには、画像内でコントラストの高い(焦点が合っている)領域を選択する手法や、白色干渉方式による計測等を利用することができる。
 <細穴の位置が回転軸から大きくずれている場合>
 上記の例では、回転体14を回転させた際に、細穴HがX方向に固定されたカメラ34の撮影範囲に常に入っていた。すなわち、カメラ34の撮影範囲に入る程度に回転体14の回転軸Aに近い位置に最初から細穴Hが配置されていた。しかしながら、回転体14の回転軸Aから大きくずれて細穴Hが配置されている場合であっても、水平直動機構を動作させることで同様の手法を適用することができる。
 図14は、回転体14の回転軸Aから大きくずれてワークWの細穴Hが配置されている場合の、カメラ34による細穴Hの観察を時系列で示す概略図である。
 図14の214Aは、ワークWの細穴Hが、カメラ34の撮影範囲に入っていない状態を示している。ここで、測定制御部52は、回転体14を回転角度が設定角度θ=θの位置へ移動させる。設定角度θ=θは、Z方向視でワークWの細穴Hとアーム24とが重なる角度である。設定角度θ=θの位置への移動は、冶具で位置決めをしてもよいし、アーム24の移動によるカメラ34の各位置において回転体14を移動させて、カメラ34で細穴Hを探索してもよい。
 図14の214Bは、観察制御部58が、細穴Hがカメラ34の視界に入る位置Pに水平直動機構であるアーム24を移動させる様子を示している。この位置Pにおいて、観察制御部58は、カメラ34によって細穴Hの上側開口O及び下側開口Oを観察する。また、位置傾斜計算部60は、設定角度θ=θにおける細穴Hの上側開口Oの中心座標(x,y)AU及び下側開口Oの中心座標(x,y)ADを計算する。さらに、位置傾斜計算部60は、アーム24の位置Pを記憶する。
 図14の214Cは、測定制御部52が、回転体14を回転角度が設定角度θ=θ+180°=θの位置へ移動させる様子を示している。
 図14の214Dは、観察制御部58が、細穴Hがカメラ34の視界に入る位置Pに水平直動機構であるアーム24を移動させる様子を示している。この位置Pにおいて、観察制御部58は、カメラ34によって細穴Hの上側開口O及び下側開口Oを観察する。また、位置傾斜計算部60は、設定角度θ=θにおける細穴Hの上側開口Oの中心座標(x,y)BU及び下側開口Oの中心座標(x,y)BDを計算する。さらに、位置傾斜計算部60は、アーム24の位置Pを記憶する。
 このように取得した、設定角度θ=θにおける細穴Hの上側開口Oの中心座標(x,y)AU、下側開口Oの中心座標(x,y)AD、及びアーム24の位置Pと、設定角度θ=θにおける細穴Hの上側開口Oの中心座標(x,y)BU、下側開口Oの中心座標(x,y)BD、及びアーム24の位置Pとから、位置傾斜計算部60は、回転体14の回転軸Aに対するワークWの細穴Hの位置及び傾斜を計算することができる。
 <細穴の位置及び傾斜の計算の他の例>
 上記の例では、2角度の回転角度で観察する例を示したが、回転体14の回転角度を3角度以上、又は連続的に設定してもよい。例えば、中心座標の軌跡から、細穴Hの位置及び傾斜を計算してもよい。
 図15は、回転体14を回転させた際のカメラ34の撮影範囲Rにおける細穴Hの上側開口Oの中心座標の軌跡Tを示す図である。ここでは、回転体14の回転角度を設定角度θ=0°から設定角度θ=90°まで回転させた場合の軌跡を示している。位置傾斜計算部60は、この軌跡Tから、設定角度θ=0°、15°、30°、45°、60°、75°、90°の中心座標(x,y)0U、(x,y)15U、(x,y)30U、(x,y)45U、(x,y)60U、(x,y)75U、(x,y)90Uをそれぞれ計算し、計算した中心座標から移動目標座標、すなわち回転軸Aの座標を計算する。
 このように、回転体14を180°回転させることなく計算が可能であるため、アライメントの高速化が可能となる。また、回転中心を求める際に利用可能な情報が多いため、移動目標座標を高精度で算出することが可能となる。
 <光量調整>
 図16は、カメラに入射するワークの細穴の下側開口の観察光の光路を示す図である。図16の216Aは、カメラ34に入射するワークWの細穴Hの下側開口Oの観察光の光路を示している。216Aでは、ワークWを断面で示している。216Aに示すように、下側開口Oの観察に使用できる光路は光量が小さい。すなわち、下側開口Oの観察は、上側開口Oの観察と比較すると、光量不足で困難な場合がある。したがって、上側開口Oの観察時に対して、下側開口Oの観察時に光量を増やす仕組みを有してもよい。
 図16の216Bは、下側開口O側に細穴Hを照射する光源70を配置した様子を示している。216Bでは、ワークWを断面で示している。光源70は、下側開口O(直動傾斜ステージ側の開口の一例)から細穴Hを照射する。光源70は、スペックルノイズ低減のため、低コヒーレンスなものが好ましい。光源70としては、例えばLED(Light Emitting Diode)、又はASE(Amplified Spontaneous Emission)光源を用いることができる。光源70の中心が回転体14の回転軸Aと一致しているとより好ましい。
 このように、下側開口O側に光源を配置することで、下側開口Oの形状エッジを強調することができるので、下側開口Oの観察が容易となり、より高精度なアライメントが可能となる。
 <反射体の挿入>
 ワークWの形状によっては、下側開口Oの観察が困難となる場合がある。図17は、カメラ34によるワークWの細穴Hの下側開口Oの観察の様子を示す図である。図17では、ワークWを断面で示している。図17に示すワークWは、細穴Hの下側開口O側にワークWの他の部分が下側開口Oの中心に対して非対称に配置されている。このため、図17の217Aに示すように、ワークWの下側開口Oは位置によって反射光量が異なり、下側開口Oの観察が困難である。
 また、図17に示すワークWは、細穴Hの下側開口O側の空間が狭い。このため、図17の217Bに示すように、光源70を挿入するスペースが不足しており、下側開口O側に光源70を配置することができない。
 また、図17の217Cに示すように、下側開口O側に反射体72を挿入することは可能である。しかしながら、下側開口O側の空間が狭いために精密な位置決めが必要となる。また、反射体72とワークWとが衝突し、ワークWを傷つけてしまう可能性がある。
 このような課題に対し、ワークWの細穴Hの下側開口O側に柔軟性を有する反射体を挿入することで、下側開口Oの観察時の光量を増やしてもよい。
 図18は、ワークWの細穴Hの下側開口O側へのスポンジ状の反射体80の挿入を示す図である。図18では、ワークWを断面で示している。図18の218Aはスポンジ状の反射体80の挿入前を示し、図18の218Bは挿入後を示している。
 スポンジ状の反射体80は、弾性及び柔軟性を有する光反射部材である。スポンジ状の反射体80は、細穴Hの上側開口O(カメラ側の開口の一例)から入射した光を下側開口O側(直動傾斜ステージ側の一例)において細穴Hに反射させる。スポンジ状の反射体80は、光の反射率の高い、白色等の色を有することが望ましい。スポンジ状の反射体80は柔軟性を有するので、下側開口O側の狭いスペースに挿入することができる。
 このようなスポンジ状の反射体80を下側開口O側へ挿入することで、下側開口Oの観察時の光量を増加させることができるので、下側開口Oの観察が容易となり、より高精度なアライメントが可能となる。また、スポンジ状の反射体80は、下側開口O側のワークWの形状に沿って変形するため、厳密な形状成形や位置決めが不要であり、低コストであるという効果がある。さらに、スポンジ状の反射体80は、柔軟性を有するためにワークWを傷つける懸念がないという効果がある。
 また、図19は、ワークWの細穴Hの下側開口O側への粘土状の反射体82の挿入を示す図である。図19では、ワークWを断面で示している。図19の219Aは粘土状の反射体82の挿入前を示し、図19の219Bは挿入後を示している。
 粘土状の反射体82は、可塑性及び柔軟性を有する光反射部材である。粘土状の反射体82は、細穴Hの上側開口O(カメラ側の開口の一例)から入射した光を下側開口O(直動傾斜ステージ側の開口の一例)において細穴Hに反射させる。粘土状の反射体82は、光の反射率の高い、白色等の色を有することが望ましい。粘土状の反射体82は柔軟性を有するので、下側開口O側の狭いスペースに挿入することができる。
 このような粘土状の反射体82を下側開口O側へ挿入することで、下側開口Oの観察時の光量を増加させることができるので、下側開口Oの観察が容易となり、より高精度なアライメントが可能となる。また、粘土状の反射体82は、下側開口O側のワークWの形状に沿って変形するため、厳密な形状成形や位置決めが不要であり、低コストであるという効果がある。さらに、粘土状の反射体82は、柔軟性を有するためにワークWを傷つける懸念がないという効果がある。
 さらに、図20は、ワークWの細穴Hの下側開口O側への散乱体84の挿入を示す図である。図20では、ワークWを断面で示している。図20の220Aは散乱体84の挿入前を示し、図20の220Bは挿入後を示している。
 散乱体84は、弾性及び柔軟性を有する連続気泡構造体のスポンジである。散乱体84は、細穴Hの下側開口O側(カメラ側とは反対側の一例)に配置される。散乱体84は柔軟性を有するので、下側開口O側の狭いスペースに挿入することができる。散乱体84には、光源70が取り付けられる。光源70は、散乱体84に光を入射させる。光源70から散乱体84に入射された光は、散乱体84の内部を多重散乱し、下側開口Oに入射される。
 このような散乱体84を下側開口O側に配置することで、散乱体84が多重散乱による面光源を形成することができる。したがって、下側開口Oの観察時の光量を増加させ
ることができ、下側開口Oの観察が容易となり、より高精度なアライメントが可能となる。また、散乱体84は、下側開口O側のワークWの形状に沿って変形するため、厳密な形状成形や位置決めが不要であり、低コストであるという効果がある。さらに、散乱体84は、柔軟性を有するためにワークWを傷つける懸念がないという効果がある。
 〈別の実施形態〉
 上記の実施形態では、ワークWの内面形状を測定する際に、細穴Hの位置及び傾斜を毎回計算する例について説明したが、回転体14の回転軸Aの位置(図15参照。以下、回転中心座標ともいう。)の位置をあらかじめ登録しておき、登録した回転中心座標を用いて、ワークWのアライメントを行うことも可能である。
 図21は、本発明の別の実施形態に係る内面形状測定機のアライメント方法の処理を示すフローチャートである。
 図21に示すように、本実施形態では、基準ワークWを用いて回転体14の回転軸Aの位置(回転中心座標)を測定して登録する(ステップS100)。
 次に、ステップS100で登録した回転中心座標を用いて、測定対象物であるワークWのアライメントを行い(ステップS200)、ワークWの測定を行う(ステップS300)。そして、すべてのワークWの測定が終了するまで、ステップS200からS300を繰り返す(ステップS400)。
 次に、本実施形態において、回転中心座標の位置を登録する工程(ステップS100)について、図22を参照して説明する。
 まず、ステップS102では、ワーク設置治具18に基準ワークWを設置する。ここで、基準ワークWは、測定対象物であるワークWと同様に細穴(例えば、円形)に相当する形状(穴状パターンの一例)を有しており、あらかじめ形状(例えば、外径寸法及び穴の寸法等)が正確に測定されて既知となっているワークである。基準ワークWとしては、例えば、測定対象物であるワークWと同一の材質で、かつ略同じ形状のものを用いることができる。
 次に、ステップS104では、測定制御部52は、回転体14の不図示のエンコーダの検出結果に応じて不図示のモータを駆動し、回転体14を回転角度が設定角度θ=0°(第1の回転角度の一例)の位置へ移動(回転)させる。
 ステップS106では、測定制御部52は、アーム24の不図示のモータを駆動してカメラ34を基準ワークWのZ方向の上方に移動させる。また、測定制御部52は、キャリッジ22の不図示のモータを駆動してカメラ34をZ方向に移動させ、カメラ34の焦点位置を細穴Hの上側開口O(第1の位置の一例)に合わせる。
 続くステップS108(第1の観察制御工程の一例)では、観察制御部58は、カメラ34によって細穴Hの上側開口Oを観察(撮影)する。さらに、位置傾斜計算部60は、設定角度θ=0°における細穴Hの上側開口Oの中心座標(x,y)0Uを計算する。
 次に、ステップS110では、測定制御部52は、キャリッジ22の不図示のモータを駆動してカメラ34をZ方向に移動させ、カメラ34の焦点位置を細穴Hの上側開口ODUとはZ方向の位置が異なる下側開口O(第2の位置の一例)に合わせる。
 続くステップS112(第1の観察制御工程の一例)では、観察制御部58は、カメラ34によって細穴Hの下側開口Oを観察する。さらに、位置傾斜計算部60は、設定角度θ=0°における細穴Hの下側開口Oの中心座標(x,y)0Dを計算する。
 次に、ステップS114では、測定制御部52は、回転体14の不図示のエンコーダの検出結果に応じて不図示のモータを駆動し、回転体14を回転角度が設定角度θ=180°(第2の回転角度の一例)の位置へ移動させる。
 ステップS116では、測定制御部52は、キャリッジ22の不図示のモータを駆動してカメラ34をZ方向に移動させ、カメラ34の焦点位置を上側開口Oに合わせる。
 続くステップS118(第1の観察制御工程の一例)では、観察制御部58は、カメラ34によって細穴Hの上側開口Oを観察する。さらに、位置傾斜計算部60は、画像I180Uから設定角度θ=180°における細穴Hの上側開口Oの中心座標(x,y)180Uを計算する。
 次に、ステップS120では、測定制御部52は、キャリッジ22の不図示のモータを駆動してカメラ34をZ方向に移動させ、カメラ34の焦点位置を細穴Hの下側開口Oに合わせる。
 続くステップS122(第1の観察制御工程の一例)では、観察制御部58は、カメラ34によって細穴Hの下側開口Oを観察する。さらに、位置傾斜計算部60は、画像I180Dから設定角度θ=180°における細穴Hの下側開口Oの中心座標(x,y)180Dを計算する。
 ステップS124(回転中心座標計算工程の一例)では、位置傾斜計算部60は、設定角度θ=0°における細穴Hの上側開口Oの中心座標(x,y)0U及び下側開口Oの中心座標(x,y)0Dと、設定角度θ=180°における細穴Hの上側開口Oの中心座標(x,y)180U及び下側開口Oの中心座標(x,y)180Dとから、回転体14の回転軸Aの位置(回転中心座標)を計算する。そして、ステップS126では、位置傾斜計算部60は、ステップS124で計算した回転中心座標を制御装置50のストレージに保存する。
 次に、測定対象物であるワークWのアライメント工程について、図23を参照して説明する。
 まず、ステップS202では、測定対象物であるワークWをワーク設置治具18に設置する。
 ステップS204では、測定制御部52は、アーム24の不図示のモータを駆動してカメラ34をワークWのZ方向の上方に移動させる。また、測定制御部52は、キャリッジ22の不図示のモータを駆動してカメラ34をZ方向に移動させ、カメラ34の焦点位置を細穴Hの上側開口O(第3の位置の一例)に合わせる。
 続くステップS206(第2の観察制御工程の一例)では、観察制御部58は、カメラ34によって細穴Hの上側開口Oを観察(撮影)する。さらに、位置傾斜計算部60は、細穴Hの上側開口Oの中心座標(x,y)を計算する。
 次に、ステップS208では、測定制御部52は、キャリッジ22の不図示のモータを駆動してカメラ34をZ方向に移動させ、カメラ34の焦点位置を細穴Hの上側開口ODUとはZ方向の位置が異なる下側開口O(第4の位置の一例)に合わせる。
 続くステップS210(第2の観察制御工程の一例)では、観察制御部58は、カメラ34によって細穴Hの下側開口Oを観察する。さらに、位置傾斜計算部60は、細穴Hの下側開口Oの中心座標(x,y)を計算する。
 ステップS212(位置傾斜計算工程の一例)では、まず、位置傾斜計算部60は、ステップS206及びS210でそれぞれ計算した細穴Hの上側開口Oの中心座標(x,y)及び下側開口Oの中心座標(x,y)から、ワークWの細穴Hの中心軸Aの位置及び傾斜を計算する。次に、位置傾斜計算部60は、図22のステップS124で計算した回転体14の回転軸Aの位置(回転中心座標)を制御装置50のストレージから読み出して、回転体14の回転軸Aの位置(回転中心座標)に対する基準ワークWの細穴Hの中心軸Aの位置及び傾斜を計算する。ここで、位置傾斜計算部60は、回転中心座標計算部として機能する。
 ステップS214では、位置傾斜計算部60は、ワークWの細穴Hの中心軸Aの位置及び傾斜と回転軸Aとのずれが目標値以内であるか否かを判定する。ずれが目標値より大きい場合は、制御装置50は、ステップS216の処理を行う。ずれが目標値以内である場合は、本フローチャートの処理を終了する。
 ステップS216では、位置傾斜計算部60は、直動傾斜ステージ16の移動量を計算する。
 ステップS218(ステージ制御工程の一例)は、ステージ制御部62は、ステップS13で計算された移動量に基づいて直動傾斜ステージ16の不図示のモータを駆動し、直動傾斜ステージ16を目標位置へ移動させる。その後、ステップS204へ移行し、制御装置50は同様の処理を行う。この処理を繰り返すことで、内面形状測定機10は、ワークWの細穴Hの中心軸Aと回転体14の回転軸Aとのずれを目標値以内にする。
 本実施形態によれば、測定対象物であるワークWのアライメントを行うごとに(図23参照)、回転体14を動作させる必要がない。したがって、ワークWのアライメントを短時間で完了することができる。
 一般的に、ワークWの細穴Hの中心軸Aと回転体14の回転軸Aとのずれを目標値以内にするための追い込み動作は複数回の繰り返しを必要とする(図4及び図23参照)。そして、アライメントの目標精度が高くなるほど(ずれの目標値が小さくなるほど)、繰り返し回数が増える傾向がある。
 本実施形態では、追い込み動作の中に回転体14の動作が含まれないため、大きく所要時間を低減することができる。
 具体例として、追い込み動作の繰り返し回数をNとし、一例でN=平均4回とする。また、1回の追い込み動作で回転体14の回転動作(θ=0°→θ=180°への回転動作)に要する時間をt1とする。回転体14の回転動作は、上側開口と下側開口でそれぞれ一例で30秒ずつかかるとした場合、t1=30秒×2=60秒となる。そして、カメラの焦点位置の上下の位置決めと撮影及び軸移動に要する時間をt2とし、一例でt2=30秒とする。この場合、追い込み動作の中に回転体14の動作が含まれる場合(図4)と、含まれない場合(図23)に、アライメントに要する時間をそれぞれT1及びT2は下記のようになる。
 T1=(t1+t2)×N=(60+30)×4=360秒
 T2=t2×N=30×4=120秒
 上記の具体例では、追い込み動作の中に回転体14の動作が含まれない場合には、含まれる場合と比較して、ワークWのアライメントの所用時間を1/3に劇的に短縮することが可能となる。
 さらに、本実施形態によれば、基準ワークWの形状及び寸法が既知であるため、高精度に回転中心座標を求めることができる。一般的に、測定対象物であるワークWの穴は円形状とは限らず、楕円などの歪な円形状、又は内部に突起を持つ形状等の場合も考えられる。測定対象物であるワークWの細穴の形状に基づいて撮影画像内の回転中心座標を計算する場合、ワークWの細穴の形状の影響により、回転中心を高精度に算出することが困難となる場合がある。
 図24は、ワークWの細穴Hが内部に突起を持つ形状の場合の回転中心座標の算出の例を示す平面図であり、図25は、基準ワークWを用いた回転中心座標の算出の例を示す平面図である。
 図24に示す例では、θ=0°の場合、細穴H1の突起部Pが明瞭に見えている。このため、細穴H1の中心位置が真の位置C1から突起部Pの反対側にずれた位置C1ERRとして検出される。一方、θ=180°の場合、細穴H1180の突起部P180が照明の影響等により潰れている。このため、細穴H1180の中心位置は円の中心と略一致する位置C2として検出される。したがって、この例では、回転中心座標が真の位置C0からずれた位置C0ERRとして検出されてしまう。
 一方、図25に示す例では、θ=0°とθ=180°のいずれの場合も、細穴HR0とHR180はいずれも既知の真円形状であるため、照明等の影響を受けることなく、細穴の形状を検出することができる。したがって、細穴HR0の中心CR1とHR180の中心CR2を正確に検出することができ、回転中心座標Cの計算精度の向上を実現することができる。また、基準ワークWの細穴の円直径等の形状情報をあらかじめ測定しておき、この形状情報を用いて細穴の検出及び中心座標の計算を行うことで、より高精度に回転中心座標Cの計算を行うことができる。
 (基準ワークWについて)
 なお、上記の別の実施形態では、基準ワークWとして、測定対象物であるワークWと同様の細穴を有する立体形状を有するものを用いたが、本発明はこれに限定されない。例えば、基準ワークWとして、平面形状のものを用いてもよい。平面形状の基準ワークWには、細穴に対応する中黒の円形状のパターン(穴状パターンの一例)が形成されていてもよい。この場合、細穴の位置を探索して計算するためのプログラムを上記の実施形態と共有することが可能になる。また、平面形状の基準ワークWには、位置決め用の印刷パターン(レチクル。穴状パターンの一例)が印刷されていてもよい(例えば、図26の平面形状の基準ワークWR1参照)。位置決め用の印刷パターンには、細穴の中心位置を示すパターンが形成されていてもよい。この場合、回転中心座標等の計算を高精度で行うことが可能になる。
 また、平面形状の基準ワークを用いる場合、基準ワークをZ方向に上下させる機構と併用することも可能である。この場合、図26に示すように、平面形状の基準ワークWR1をZ方向に上下させることにより、Z方向の位置ごとのレチクル(パターンPa)の中心CR1に基づいて回転中心座標を計算する。これにより、回転軸の傾斜をあらかじめ計算して登録することができるので、より高精度のアライメントを実現することができる。
 なお、基準ワークWとして、立体的な形状(穴形状)を有するものを用いる場合には、上記の通り、平面形状の基準ワークWを用いる場合と、細穴の位置を探索して計算するためのプログラムを共有することができる。更に、上側開口と下側開口のそれぞれについて回転中心を登録することで回転軸の傾斜もあらかじめ計算し登録することができる。
 また、基準ワークWとして、高精度に作られた測定対象物であるワークW又はワークW類似の形状を有する物体を使用することもできる。この場合、基準ワークWの把持のために測定対象物であるワークWの把持機構を流用することができる。
 <その他>
 本発明の技術的範囲は、上記の実施形態に記載の範囲には限定されない。各実施形態における構成等は、本発明の趣旨を逸脱しない範囲で、各実施形態間で適宜組み合わせることができる。
 10…内面形状測定機
 12…本体ベース
 14…回転体
 16…直動傾斜ステージ
 18…ワーク設置治具
 20…コラム
 22…キャリッジ
 24…アーム
 28…変位検出器
 30…プローブ
 34…カメラ
 35…同軸落射照明光学系
 38…光ファイバ
 40…反射ミラー
 42…接触子
 50…制御装置
 52…測定制御部
 54…変位取得部
 56…真円度計算部
 58…観察制御部
 60…位置傾斜計算部
 62…ステージ制御部
 63…出力部
 70…光源
 72…反射体
 80…スポンジ状の反射体
 82…粘土状の反射体
 84…散乱体
 A…中心軸
 A…回転軸
 F…焦点面
 F…焦点面
 H…細穴
 I0D…画像
 I0U…画像
 I180D…画像
 I180U…画像
 O…下側開口
 O…上側開口
 P…光路
 R…撮影範囲
 S1~S14…内面形状測定機のアライメント方法の処理の各ステップ
 T…上側開口の中心座標の軌跡
 W…ワーク
 W、WR1…基準ワーク

Claims (12)

  1.  第1の方向に平行な回転軸を中心に回転する回転体と、
     前記回転体に支持される直動傾斜ステージであって、前記回転体に対する前記第1の方向に直交する平面内の位置及び前記平面に対する傾斜を変更可能な直動傾斜ステージと、
     前記第1の方向に平行に延びる接触式又は非接触式のプローブであって、第1の直動機構によって前記第1の方向に移動可能なプローブにより、前記直動傾斜ステージに固定されて前記回転体とともに回転するワークの細穴の内側面の変位を検出する変位検出器と、
     前記第1の方向に平行な光軸を有するカメラと、
     前記回転体の第1の回転角度における前記ワークの前記細穴の第1の位置及び前記第1の位置とは前記第1の方向の位置が異なる第2の位置と、前記回転体の前記第1の回転角度とは異なる第2の回転角度における前記ワークの前記細穴の前記第1の位置及び前記第2の位置とを前記カメラにより観察する観察制御部と、
     前記観察した前記回転体の第1の回転角度における前記細穴の第1の位置及び前記第2の位置と、前記回転体の前記第2の回転角度における前記細穴の前記第1の位置及び前記第2の位置と、のそれぞれの座標から、前記細穴の位置及び傾斜を計算する位置傾斜計算部と、
     前記計算した前記細穴の位置及び傾斜を含む細穴情報を出力する出力部と、
     を備える内面形状測定機。
  2.  前記細穴情報に基づいて前記直動傾斜ステージを制御し、前記細穴の中心軸と前記回転軸とのずれを目標値以内にするステージ制御部を備える請求項1に記載の内面形状測定機。
  3.  前記カメラは、前記第1の直動機構により前記第1の方向に移動可能であり、
     前記観察制御部は、前記第1の直動機構により前記カメラの焦点位置を前記細穴の前記第1の位置及び前記第2の位置に移動させる請求項1又は2に記載の内面形状測定機。
  4.  第1の方向に平行な回転軸を中心に回転する回転体と、
     前記回転体に支持される直動傾斜ステージであって、前記回転体に対する前記第1の方向に直交する平面内の位置及び前記平面に対する傾斜を変更可能な直動傾斜ステージと、
     前記第1の方向に平行に延びる接触式又は非接触式のプローブであって、第1の直動機構によって前記第1の方向に移動可能なプローブにより、前記直動傾斜ステージに固定されて前記回転体とともに回転するワークの細穴の内側面の変位を検出する変位検出器と、
     前記第1の方向に平行な光軸を有するカメラと、
     前記直動傾斜ステージに固定された、穴状パターンが形成された、形状が既知の基準ワークについて、前記回転体の第1の回転角度における前記基準ワークの前記穴状パターンの第1の位置及び前記第1の位置とは前記第1の方向の位置が異なる第2の位置と、前記回転体の前記第1の回転角度とは異なる第2の回転角度における前記基準ワークの前記穴状パターンの前記第1の位置及び前記第2の位置とを前記カメラにより観察する第1の観察制御部と、
     前記観察した前記回転体の第1の回転角度における前記細穴の第1の位置及び前記第2の位置と、前記回転体の前記第2の回転角度における前記細穴の前記第1の位置及び前記第2の位置と、のそれぞれの座標から、前記回転体の回転中心座標を計算する回転中心座標計算部と、
     前記直動傾斜ステージに固定された測定対象の前記ワークについて、測定対象の前記ワークの前記細穴の第3の位置及び前記第3の位置とは前記第1の方向の位置が異なる第4の位置を第1の方向に平行な光軸を有するカメラにより観察する第2の観察制御部と、
     前記回転体の回転中心座標と、前記回転体の前記細穴の前記第3の位置及び前記第4の位置から、前記細穴の位置及び傾斜を計算する位置傾斜計算部と、
     を備える内面形状測定機。
  5.  前記細穴の位置及び傾斜を含む細穴情報に基づいて前記直動傾斜ステージを制御し、前記細穴の中心軸と前記回転軸とのずれを目標値以内にするステージ制御部を備える請求項4に記載の内面形状測定機。
  6.  前記カメラは、前記第1の直動機構により前記第1の方向に移動可能であり、
     前記第2の観察制御部は、前記第1の直動機構により前記カメラの焦点位置を前記細穴の前記第3の位置及び前記第4の位置に移動させる請求項4又は5に記載の内面形状測定機。
  7.  前記第1の回転角度と前記第2の回転角度とは互いに180°異なる角度である請求項1から6のいずれか1項に記載の内面形状測定機。
  8.  前記カメラの光軸と同軸の光を出射する同軸照明光学系を備える請求項1から7のいずれか1項に記載の内面形状測定機。
  9.  スポンジ状又は粘土状の反射体を備え、
     前記反射体は、前記カメラと前記直動傾斜ステージとの間に配置される前記ワークの前記細穴の前記カメラ側の開口から入射した光を前記直動傾斜ステージ側において前記細穴に反射させる請求項1から8のいずれか1項に記載の内面形状測定機。
  10.  柔軟性を有する連続気泡構造体と、
     前記連続気泡構造体に光を入射させる光源と、
     を備え、
     前記連続気泡構造体は、前記カメラと前記直動傾斜ステージとの間に配置される前記ワークの前記細穴の前記直動傾斜ステージ側の開口から前記光源からの光を入射させる請求項1から8のいずれか1項に記載の内面形状測定機。
  11.  第1の方向に平行な回転軸を中心に回転する回転体と、
     前記回転体に支持される直動傾斜ステージであって、前記回転体に対する前記第1の方向に直交する平面内の位置及び前記平面に対する傾斜を変更可能な直動傾斜ステージと、
     前記第1の方向に平行に延びる接触式又は非接触式のプローブであって、第1の直動機構によって前記第1の方向に移動可能なプローブにより、前記直動傾斜ステージに固定されて前記回転体とともに回転するワークの細穴の内側面の変位を検出する変位検出器と、
     を備える内面形状測定機のアライメント方法であって、
     前記回転体の第1の回転角度における前記ワークの前記細穴の第1の位置及び前記第1の位置とは前記第1の方向の位置が異なる第2の位置と、前記回転体の前記第1の回転角度とは異なる第2の回転角度における前記ワークの前記細穴の前記第1の位置及び前記第2の位置とを第1の方向に平行な光軸を有するカメラにより観察する観察制御工程と、
     前記観察した前記回転体の第1の回転角度における前記細穴の第1の位置及び前記第2の位置と、前記回転体の前記第2の回転角度における前記細穴の前記第1の位置及び前記第2の位置と、のそれぞれの座標から、前記細穴の位置及び傾斜を計算する位置傾斜計算工程と、
     前記計算した前記細穴の位置及び傾斜を含む細穴情報を出力する出力工程と、
     を備える内面形状測定機のアライメント方法。
  12.  第1の方向に平行な回転軸を中心に回転する回転体と、
     前記回転体に支持される直動傾斜ステージであって、前記回転体に対する前記第1の方向に直交する平面内の位置及び前記平面に対する傾斜を変更可能な直動傾斜ステージと、
     前記第1の方向に平行に延びる接触式又は非接触式のプローブであって、第1の直動機構によって前記第1の方向に移動可能なプローブにより、前記直動傾斜ステージに固定されて前記回転体とともに回転する測定対象のワークの細穴の内側面の変位を検出する変位検出器と、
     を備える内面形状測定機のアライメント方法であって、
     穴状パターンが形成された、形状が既知の基準ワークを前記直動傾斜ステージに固定し、前記回転体の第1の回転角度における前記基準ワークの前記穴状パターンの第1の位置及び前記第1の位置とは前記第1の方向の位置が異なる第2の位置と、前記回転体の前記第1の回転角度とは異なる第2の回転角度における前記基準ワークの前記穴状パターンの前記第1の位置及び前記第2の位置とを、第1の方向に平行な光軸を有するカメラにより観察する第1の観察制御工程と、
     前記観察した前記回転体の第1の回転角度における前記細穴の第1の位置及び前記第2の位置と、前記回転体の前記第2の回転角度における前記細穴の前記第1の位置及び前記第2の位置と、のそれぞれの座標から、前記回転体の回転中心座標を計算する回転中心座標計算工程と、
     測定対象の前記ワークを前記直動傾斜ステージに固定し、測定対象の前記ワークの前記細穴の第3の位置及び前記第3の位置とは前記第1の方向の位置が異なる第4の位置を第1の方向に平行な光軸を有するカメラにより観察する第2の観察制御工程と、
     前記回転体の回転中心座標と、前記回転体の前記細穴の前記第3の位置及び前記第4の位置から、前記細穴の位置及び傾斜を計算する位置傾斜計算工程と、
     を備える内面形状測定機のアライメント方法。
PCT/JP2021/008943 2020-03-17 2021-03-08 内面形状測定機、及び内面形状測定機のアライメント方法 WO2021187192A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112021001666.0T DE112021001666T5 (de) 2020-03-17 2021-03-08 Messvorrichtung für Innenflächenformen und Justierverfahren für Messvorrichtungen für Innenflächenformen
US17/939,226 US11740074B2 (en) 2020-03-17 2022-09-07 Inner surface shape measurement device, and alignment method for inner surface shape measurement device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020046503 2020-03-17
JP2020-046503 2020-03-17
JP2021003449A JP2021148769A (ja) 2020-03-17 2021-01-13 内面形状測定機、及び内面形状測定機のアライメント方法
JP2021-003449 2021-01-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/939,226 Continuation US11740074B2 (en) 2020-03-17 2022-09-07 Inner surface shape measurement device, and alignment method for inner surface shape measurement device

Publications (1)

Publication Number Publication Date
WO2021187192A1 true WO2021187192A1 (ja) 2021-09-23

Family

ID=77771226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008943 WO2021187192A1 (ja) 2020-03-17 2021-03-08 内面形状測定機、及び内面形状測定機のアライメント方法

Country Status (3)

Country Link
US (1) US11740074B2 (ja)
DE (1) DE112021001666T5 (ja)
WO (1) WO2021187192A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339623A (ja) * 1997-06-06 1998-12-22 Nissan Motor Co Ltd 穴径,穴位置測定方法及び装置
JP2011174779A (ja) * 2010-02-24 2011-09-08 Mitsutoyo Corp スタイラス観察装置
WO2016084638A1 (ja) * 2014-11-25 2016-06-02 並木精密宝石株式会社 光学式内面測定装置
JP2018084488A (ja) * 2016-11-24 2018-05-31 株式会社東京精密 三次元測定機の測定方法及び三次元測定機
JP2018163093A (ja) * 2017-03-27 2018-10-18 株式会社東京精密 検出器、表面性状測定機、及び真円度測定機

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134781A (en) 1991-01-14 1992-08-04 Baker Stephen H Geometric simulator for coordinate measuring machine
US6519860B1 (en) 2000-10-19 2003-02-18 Sandia Corporation Position feedback control system
JP4582446B2 (ja) 2004-11-18 2010-11-17 株式会社東京精密 測定装置
JP5015660B2 (ja) 2007-05-25 2012-08-29 日本特殊陶業株式会社 ワーク検査方法
US20170003113A1 (en) 2011-12-06 2017-01-05 Hexagon Technology Center Gmbh Coordinate measuring machine having a camera
US10393505B2 (en) * 2013-12-06 2019-08-27 Werth Messtechnik Gmbh Device and method for measuring workpieces
EP3230683B1 (de) * 2014-12-12 2019-10-02 Werth Messtechnik GmbH Koordinatenmessgerät und verfahren zur messung von merkmalen an werkstücken
DE102015205738A1 (de) 2015-03-30 2016-10-06 Carl Zeiss Industrielle Messtechnik Gmbh Bewegungsmesssystem einer Maschine und Verfahren zum Betreiben des Bewegungsmesssystems
WO2017116585A1 (en) * 2015-12-30 2017-07-06 Faro Technologies, Inc. Registration of three-dimensional coordinates measured on interior and exterior portions of an object
JP6434446B2 (ja) 2016-04-28 2018-12-05 ファナック株式会社 加工システム
DE102016118617B4 (de) 2016-09-30 2019-02-28 Carl Zeiss Industrielle Messtechnik Gmbh Messsystem

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339623A (ja) * 1997-06-06 1998-12-22 Nissan Motor Co Ltd 穴径,穴位置測定方法及び装置
JP2011174779A (ja) * 2010-02-24 2011-09-08 Mitsutoyo Corp スタイラス観察装置
WO2016084638A1 (ja) * 2014-11-25 2016-06-02 並木精密宝石株式会社 光学式内面測定装置
JP2018084488A (ja) * 2016-11-24 2018-05-31 株式会社東京精密 三次元測定機の測定方法及び三次元測定機
JP2018163093A (ja) * 2017-03-27 2018-10-18 株式会社東京精密 検出器、表面性状測定機、及び真円度測定機

Also Published As

Publication number Publication date
US11740074B2 (en) 2023-08-29
US20230028748A1 (en) 2023-01-26
DE112021001666T5 (de) 2022-12-29

Similar Documents

Publication Publication Date Title
JP4791118B2 (ja) 画像測定機のオフセット算出方法
WO2007018118A1 (ja) レンズにおける表裏面の光軸偏芯量の測定方法
EP2138803B1 (en) Jig for measuring an object shape and method for measuring a three-dimensional shape
CN110044293A (zh) 一种三维重构系统及三维重构方法
JP2007078593A (ja) 光波干渉装置
JP2011215016A (ja) 非球面形状測定装置
KR20160068675A (ko) 프로브 장치 및 프로브 방법
JP2011215018A (ja) 非球面形状測定装置
WO2021187192A1 (ja) 内面形状測定機、及び内面形状測定機のアライメント方法
JP2021148769A (ja) 内面形状測定機、及び内面形状測定機のアライメント方法
CN110702027A (zh) 一种基于复光束角度传感器的微型圆度测量仪及测量方法
JPH0262903A (ja) 孔内面測定装置
JP2021148498A (ja) 内面形状測定機、及び内面形状測定機のアライメント方法
WO2021187191A1 (ja) 内面形状測定機、内面形状測定機のアライメント方法及び倍率校正方法
JP3345149B2 (ja) 非球面レンズの偏心測定装置および心取り装置
JP2021148770A (ja) 内面形状測定機の倍率校正方法、及び内面形状測定機
JP5010964B2 (ja) 角度測定方法およびその装置
JP7372545B2 (ja) 内面形状測定機、及び内面形状測定機のアライメント方法
JP6980304B2 (ja) 非接触内面形状測定装置
US11635291B2 (en) Workpiece holder for utilization in metrology system for measuring workpiece in different orientations
JP2005055202A (ja) 偏芯測定装置、レンズ取付方法およびレンズ偏芯検査方法
JP4135133B2 (ja) 光軸補正装置及び光学機器システム
JPH11211611A (ja) 偏心測定装置
JP2021148771A (ja) 内面形状測定機、及び内面形状測定機のアライメント方法
JP2003004620A (ja) 走査型プローブ顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771291

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21771291

Country of ref document: EP

Kind code of ref document: A1