WO2021187115A1 - 柱梁接合部用の角形鋼管及びこれを用いた柱梁接合構造体、並びに角形鋼管の製造方法 - Google Patents

柱梁接合部用の角形鋼管及びこれを用いた柱梁接合構造体、並びに角形鋼管の製造方法 Download PDF

Info

Publication number
WO2021187115A1
WO2021187115A1 PCT/JP2021/008226 JP2021008226W WO2021187115A1 WO 2021187115 A1 WO2021187115 A1 WO 2021187115A1 JP 2021008226 W JP2021008226 W JP 2021008226W WO 2021187115 A1 WO2021187115 A1 WO 2021187115A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
square
square steel
roll
column joint
Prior art date
Application number
PCT/JP2021/008226
Other languages
English (en)
French (fr)
Inventor
俊輔 佐々木
敏弘 梅田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020227031044A priority Critical patent/KR20220131390A/ko
Priority to CN202180020308.0A priority patent/CN115298399A/zh
Priority to JP2021521865A priority patent/JP6935857B1/ja
Publication of WO2021187115A1 publication Critical patent/WO2021187115A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements

Definitions

  • the present invention relates to a square steel pipe used for a beam-column joint, a beam-column joint structure using the square steel pipe, and a method for manufacturing a square steel pipe.
  • a diaphragm method and a non-diaphragm method as a method of joining a steel beam such as an H-shaped steel beam to a square steel pipe to form a beam-column joint.
  • the diaphragm method guarantees the strength of the structure after it is integrated by mounting the diaphragm inside or outside the square steel pipe and mounting the flange of the steel beam so as to match the mounting position.
  • the diaphragm method requires welding of the diaphragm to the inside and outside of the steel pipe. Further, the required performance cannot be obtained unless the flange position and the diaphragm position of the steel beam whose mounting position changes variously are accurately matched. Therefore, many joints are required to attach the diaphragm, and a great deal of work time and cost are required for accurate attachment.
  • non-diaphragm construction methods that do not require diaphragms is increasing due to the problems of diaphragm construction methods.
  • this non-diaphragm method by making the wall thickness appropriately thicker than the side length of the flat part of the cross section of the square steel pipe, it is possible to withstand the stress applied by the steel beam joined to the square steel pipe without a diaphragm. Work time and cost can be reduced by reduction.
  • the square steel pipe used for the non-diaphragm method requires an appropriately thick wall thickness and a side length of the flat part for joining the steel beams with respect to the side length of the flat part.
  • square steel pipes used in the non-diaphragm method are supplied by several manufacturing methods.
  • the casting method is a method of producing a square steel pipe by pouring molten steel into a mold having an appropriate shape (Patent Document 1).
  • Patent Document 2 a method of obtaining a square steel pipe by integrating L-shaped or groove-shaped shaped steels having an appropriate wall thickness by welding is known.
  • Patent Document 3 a method of obtaining a square steel pipe by hot rolling with a square hole roll using a seamless steel pipe whose wall thickness can be increased with respect to the outer peripheral length is also known.
  • the casting method is basically one-piece manufacturing, and if the shape changes, it is necessary to remanufacture the mold. Therefore, there is a problem that mass production is difficult and the cost is high.
  • the method of welding L-shaped and channel steel has the advantage that it is possible to use standard shaped steel of various sizes, which is available in large quantities at low cost, as the base material, but welding is essential to integrate it as a square steel pipe. If the outer circumference is small and the inner surface needs to be welded to ensure strength, it is necessary to cut the square steel pipe into round slices to a length that allows the inner surface to be welded. For this reason, there are problems that the joining quality at the welding start position deteriorates and the cost increases due to a large amount of labor. Further, in order to join the steel beam to the square steel pipe, it is necessary to flatten the swelling of the welded portion, which has led to an increase in the workload at the construction site.
  • the method of obtaining a square steel pipe by hot rolling using a seamless steel pipe as a base material enables mass production of the seamless steel pipe, which is the base material, for various outer circumference lengths and wall thickness sizes.
  • a hot standard rolling line using a square hole roll for square formation can be directly connected to a seamless steel pipe production line for the base material, and various square steel pipe shapes can be manufactured only by changing the roll shape and roll gap.
  • a seamless steel pipe is hotly formed into a square shape, a circular steel pipe is pushed into a square hole roll, but basically the bending deformation of the pipe along the hole roll shape is used.
  • a square shape with a closed cross section is formed by rolling only from the outer surface.
  • the square-formed type of seamless steel pipe has a hole-shaped corner. It is difficult for the material to flow in, and the radius of curvature of the corners becomes large. In particular, when forming a square-shaped steel pipe having a wall thickness (L / t ⁇ 10.5), it is extremely difficult to reduce the radius of curvature of the corner portion.
  • the steel beam may be joined to the square steel pipe near the corner of the square steel pipe.
  • the strength of the If a large raw pipe is pushed into the hole roll to reduce the radius of curvature of the corner, it will not bite into the rolling mill.
  • the flat part of the square steel pipe will warp and the steel to the flat part will be warped. Problems with beam welding. That is, the application is limited because there is a problem in the radius of curvature of the corner portion and the shape of the flat portion.
  • the present invention relates to a square steel pipe for a column-beam joint having an outer peripheral length and a wall thickness that can be used by joining a square steel pipe column with a steel beam, the radius of curvature of the corner portion is small, and the cross section is flat. It is an object of the present invention to provide a square steel pipe for a beam-column joint in which warpage is suppressed in the portion, and a beam-column joint structure using the square steel pipe.
  • a square steel pipe for a beam-column joint which has a small radius of curvature at a corner, suppresses warpage in a flat portion of a cross section, and does not have a raised portion due to welding on the outer peripheral portion of the square steel pipe, is inexpensive.
  • An object of the present invention is to provide a method for manufacturing a square steel pipe that can be mass-produced.
  • the present invention employs the following means in order to solve the above problems.
  • a square steel pipe for a beam-column joint between a square steel pipe column and a steel beam has a side length L (mm) and a wall thickness t (mm) of four flat portions having a cross section perpendicular to the pipe axis direction. Satisfies the relationship of L / t ⁇ 10.5, and the radius of curvature C of one or more of the four corners of the cross section is C / t ⁇ 0.8 with respect to the wall thickness t of the flat portion.
  • Square steel pipe for beam-column joints characterized by satisfying relationships.
  • a beam-column joint structure characterized in that the square steel pipe for the beam-column joint according to any one of (1) to (6) is used for the beam-column joint.
  • is an angle formed by the surface extending from the hole bottom of the square hole type roll toward the flange portion at the center position of the roll axis with respect to the surface forming the flange portion.
  • steel beams of various sizes can be joined according to the design of the structure, which is suitable as a square steel pipe for a column-beam joint. Can be used for. Further, since the occurrence of warpage in the flat portion of the square steel pipe is suppressed, there is no problem in joining the steel beam to the square steel pipe.
  • a square steel pipe for a beam-column joint having a small radius of curvature at a corner and having no raised portion due to a welded portion on the outer periphery of the column and having excellent bondability with a steel beam can be obtained. It can be mass-produced inexpensively and stably.
  • FIG. 1 is a schematic view of a cross section of a square steel pipe according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a joint form of a square steel pipe and a steel beam according to an embodiment of the present invention.
  • FIG. 3 is a schematic view showing a rolled roll shape, a material to be rolled, and a pass line according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing a rolled roll shape, a material to be rolled, and a pass line according to another embodiment of the present invention.
  • the square steel pipe 1 for the column-beam joint of the embodiment of the present invention (hereinafter referred to as “the present embodiment”) is a column beam of a square steel pipe column and steel beams 2 and 3. Used as a square steel pipe column at a joint.
  • the square steel pipe 1 assuming that the flat portions 11 on the four sides of the cross section perpendicular to the pipe axis direction have side lengths L (mm), the flat portions 11 have a wall thickness t (mm) and a warp amount R (1 / 2L position). mm). Further, the four corners 12 of the cross section of the square steel pipe 1 have a radius of curvature C (mm).
  • the material of the square steel pipe 1 for the beam-column joint of the present embodiment a general structural steel material or carbon steel is mainly used. However, this is not the case when the square steel pipe 1 is used for applications that require strength or special applications that require corrosion resistance, and among the steel materials that can be hot-rolled, the application and cost are taken into consideration. You just have to select the material.
  • the outer surfaces of the flat portions 11 on the four sides and the four corner portions 12 are provided so as not to cause any trouble when joining the steel beams 2 and 3 to the square steel pipe 1.
  • the base steel pipe before the square hot forming may have a welded or mechanical joint. That is, a welded pipe or an electrosewn steel pipe having a raised portion due to welding after forming the pipe shape can also be used as the base steel pipe. This is because the base steel pipe is heated to the hot working temperature range, so that the materials of the joint and other parts are homogenized.
  • a seamless steel pipe having no joint as a base steel pipe. This is because when the seamless steel pipe is used as the base steel pipe, it is easy to make a thick base steel pipe with respect to the outer peripheral length, and it is easy to secure the strength required for the square steel pipe 1 for the beam-column joint. Further, since the seamless steel pipe is manufactured in the hot working temperature range, it is easy to continuously perform the subsequent hot rolling with a square hole type roll, and the manufacturability is excellent.
  • the square steel pipe 1 of the present embodiment is a flat portion on four sides having a cross section perpendicular to the pipe axis direction in consideration of being used as a square steel pipe column at a column-beam joint between a square steel pipe column and steel beams 2 and 3.
  • the side length L and the wall thickness t of 11 satisfy the relationship of L / t ⁇ 10.5.
  • steel beams 2 and 3 having a width W equal to or less than the side length L of the flat portion 11 are joined to the flat portion 11 of the square steel pipe 1.
  • the steel beams 2 and 3 may be joined so that the center thereof is aligned with the center position 1 / 2L of the side length L of the flat portion 11 (steel beam 3), or the corner portions 12 on both sides of the flat portion 11. In some cases, the joints are biased to either side (steel beam 2). In both joining types, stresses and moments associated with beam-column joining are applied to the square steel pipe 1, but it is important for the beam-column joining structure to have sufficient proof stress against these external forces.
  • the flat portion 11 of the square steel pipe 1 for the beam-column joint of the present embodiment is a steel joined to the square steel pipe 1 so that it can be used as the square steel pipe 1 for the beam-column joint without reinforcement such as a diaphragm method.
  • it has a side length L that can secure an appropriate joint surface length and a wall thickness t that can secure an appropriate joint strength.
  • the present inventors have focused on the fact that in the hot manufacturing process of the square steel pipe 1, the wall thickness t of the flat portion 11 becomes thinner than the wall thickness of the square portion 12 in the process of forming the steel pipe into a square shape.
  • the square steel pipe 1 has a wall thickness t and a side length L of the thin flat portion 11 satisfying the relationship of L / t ⁇ 10.5
  • the steel beams 2 and 3 of various sizes that can be joined to the square steel pipe 1 . It has been found that a beam-column joint structure having sufficient proof stress against external force can be obtained after joining the steel beams 2 and 3.
  • the L / t value is preferably 8.33 or less.
  • the value of L / t is 6.66. The above is preferable.
  • the radius of curvature C of the corner portion 12 it is also important to make the radius of curvature C of the corner portion 12 an appropriate size so that it can be used as the square steel pipe 1 for the beam-column joint.
  • the steel beams 2 and 3 having the width W are joined to the flat portion 11 having the side length L, when joining the steel beams 3 having a large width W or
  • the present inventors have made the radius of curvature C of the corner portion 12 of the cross section perpendicular to the pipe axis direction of the square steel pipe 1 flat. If the square steel pipe 1 satisfies the relationship of C / t ⁇ 0.8 with respect to the wall thickness t of the portion 11, the column-beam joint portion in which the surface step D between the square steel pipe 1 and the steel beams 2 and 3 is small. was found to be obtained.
  • the radius of curvature C of the square portion 12 is formed by hot rolling with a square hole type roll while satisfying the relationship of C / t ⁇ 0.8, and the outer peripheral portion is raised by welding or the like.
  • the idea was to make it possible to use it as a square steel pipe 1 for a beam-column joint by making it absent.
  • the side length L of the flat portion 11 capable of joining the steel beams 2 and 3 can be secured long, so that the C / t value is preferably 0.55 or less. Further, it is difficult to set the C / t value to 0 by hot rolling, and for example, machining is required in the final process, which increases the cost. Therefore, the C / t value is preferably 0.25 or more from the viewpoint of achieving both workability and cost.
  • one or more of the four corners 12 should satisfy the relationship of C / t ⁇ 0.8, or all 12 of the four corners satisfy the relationship of C / t ⁇ 0.8. Whether it is necessary depends on the number and position of the steel beams 2 and 3 attached to the beam-column joint in the structure to be constructed. For example, when one steel beam 2 is attached close to one corner portion 12, one corner portion 12 may satisfy the above relationship. In the present embodiment, the radius of curvature C of one or more of the four corners 12 satisfies the relationship of C / t ⁇ 0.8 according to the construction conditions.
  • the warp amount R of the flat portion 11 at the joint surface of the steel beams 2 and 3 of the square steel pipe 1 is appropriately controlled.
  • the control range of the warp amount R of the flat portion 11 is determined according to the side length L of the flat portion 11 of the square steel pipe 1 to which the steel beams 2 and 3 are attached, and if the relationship of R / L ⁇ 0.008 is satisfied, the square steel pipe When joining the steel beams 2 and 3 to 1, the construction can be done without any problem.
  • the warp amount R and the side length L of the flat portion 11 satisfy the relationship of R / L ⁇ 0.008 on one or more of the four sides, or the flat portion 11 is R / on all four sides. Whether it is necessary to satisfy the relationship of L ⁇ 0.008 depends on the number and position of the steel beams 2 and 3 attached to the beam-column joint in the structure to be constructed. Therefore, in the present embodiment, the warp amount R of one or more of the four sides of the flat portion 11 satisfies the relationship of R / L ⁇ 0.008 according to the construction conditions.
  • the manufacturing method of the square steel pipe of the present embodiment will be described with reference to FIG.
  • the wall thickness t of the flat portion 11 of the square steel pipe 1 is the same as the base material.
  • a base steel pipe 10 having an outer peripheral length equal to or greater than the outer peripheral length of the square steel pipe 1 can be used.
  • the corner part of the square steel pipe is formed by using the corner part of the hole bottom of the square hole type roll. That is, the corner portion is formed by bending and deforming the base steel pipe having a circular cross section along the hole bottom of the square hole type roll.
  • the radius of curvature C is always generated in the bent portion as in the bending process of the plate, and it is difficult to reduce the radius of curvature. This is because, due to the principle of the method using bending deformation, the material does not completely flow into the corners of the hole bottom of the square hole roll, and the corner shape of the hole bottom of the square hole roll is completely transferred to the square steel pipe.
  • the present inventors changed the idea and conceived that the square portion 12 of the square steel pipe 1 is formed by the flange portion 5f instead of the hole bottom of the square hole type roll 5.
  • the outer circumference of the base steel pipe 10 and the surface of the square hole roll 5 are brought into contact with each other on the roll rolling inlet side. Then, the base steel pipe 10 and the square hole roll 5 are fixed by the frictional force generated at the point where the two start contact (hereinafter referred to as “contact start point”; see the contact start point 5a in FIG. 3).
  • LC when forming the corner portion 12 of the square steel pipe 1, the surface of the square hole-shaped roll 5 starts contact with the outer periphery of the base steel pipe 10 so as to sandwich the portion to be the corner portion 12. It is the length of the outer circumference of the base steel pipe 10 between the contact start points 5a (see the AA cross section of FIG. 3). Further, LR (mm) is the length from the contact start point 5a to the flange portion 5f on the surface of the square hole type roll 5 (see the BB cross section of FIG. 3).
  • the contact start point 5a on the outer circumference of the base steel pipe 10 coincides with the contact start point 5a on the surface of the square hole type roll.
  • G (mm) is a roll gap of the square hole roll 5, that is, a gap of the flange portion 5f at the roll axis center position where the roll interval of the square hole roll 5 is the smallest. That is, the roll gap G has a relationship of RD> G with respect to the gap RD (mm) of the flange portion 5f on the rolling entry side.
  • is an angle formed by the surface of the square hole roll 5 extending from the hole bottom of the square hole roll 5 to the flange portion 5f at the center position of the roll axis with respect to the surface forming the flange portion 5f.
  • the contact start point 5a is always formed on the roll rolling entry side, and the contact start point 5a between the base steel pipe 10 and the square hole type roll 5 is fixed by the rolling reaction force. From the entry side to the exit side, the length of the outer circumference of the base steel pipe 10 between the two contact start points 5a remains unchanged at LC.
  • the length of the surface of the square hole roll 5 for rolling the portion of the outer circumference of the base steel pipe 10 between the two contact start points 5a is the gap between the LR and the flange portion 5f. Consists of.
  • the gap RD of the flange portion 5f on the rolling entry side is larger than the gap of the flange portion 5f at the center position of the roll axis (RD> G), and the gap of the flange portion 5f becomes smaller as the rolling progresses.
  • the surface length of the square hole type roll 5 that rolls the portion between the two contact start points 5a of the outer circumference of the base steel pipe 10 is 2LR + G / It becomes sin ⁇ (see the cross-sectional view taken along the line BB in FIG. 3).
  • the present invention has been made by paying attention to the above points.
  • the square hole type roll 5 can be used.
  • the relationship of C / t ⁇ 0.8 is stably satisfied with respect to the radius of curvature C of the corner portion 12 of the square steel pipe 1. Therefore, the relationship of L / t ⁇ 10.5 required for the square steel pipe 1 for the beam-column joint can be stably satisfied.
  • the above-mentioned effect is exhibited at the corner portion 12 satisfying the relationship of the above formula (1) among the four corner portions 12. Therefore, depending on the application of the square steel pipe 1, the radius of curvature C of the corner portion 12 needs to satisfy the relationship of C / t ⁇ 0.8 so that the relationship of the above equation (1) is satisfied. Just do it. Further, as long as the relationship of the equation (1) is satisfied, there is no limitation on the form of the rolling mill. That is, as shown in FIG. 3, when a pair of square hole type rolls 5 are used, since there are two pairs of flange portions 5f for forming the corner portions 12, of the four corner portions 12 of the square steel pipe 1.
  • the manufacturing conditions satisfying the relationship of the above formula (1) can be applied only to the two corner portions 12 located in the diagonal direction of the cross section. Further, when the manufacturing conditions satisfying the relationship of the above formula (1) are applied to all the four corner portions 12 of the square steel pipe 1, the steel pipe is rotated by 90 ° and rolled again, or another pair.
  • the square hole type roll 5 may be rolled by arranging the flange portions 5f in different directions by 90 °.
  • the square steel pipe 1 of the present invention can be obtained by the same action by satisfying the relationship of the above formula (1) as in the case where the number of square hole rolls is two.
  • the hot working temperature range is 800 ° C. or higher at which the steel material undergoes austenite transformation.
  • a base steel pipe 10 made of 0.15% C steel is hot-rolled with a square hole roll 5 and formed to obtain a square steel pipe 1.
  • a manufacturing test is conducted to obtain the effect of the method for manufacturing a square steel pipe according to the present invention. Verified.
  • Table 1 shows the manufacturing conditions of each test example of this manufacturing test and the cross-sectional shape of the manufactured square steel pipe 1.
  • the length L of the flat portion 11 of the square steel pipe 1 is 150, 200, 250, 350 mm according to the width W of the H-shaped steel beam 2 welded to the square steel pipe 1 for the column-beam joint. It was set to 4 types. Further, the ratio L / t of the side length L of the flat portion 11 of the square steel pipe 1 to the wall thickness t is set to 10.5 or less so as to satisfy the condition of the wall thickness t required for the square steel pipe 1 for the beam-column joint.
  • the molding was carried out by hot rolling under the manufacturing conditions to be carried out. The molding temperature was set in the range of 800 ° C. to 940 ° C.
  • the length L of the flat portion 11 is 150, 200, 250, 350 mm.
  • the relationship of C / t ⁇ 0.8 was not satisfied, and it was not possible to form a cross-sectional shape suitable for a square steel pipe for a beam-column joint.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

角形鋼管柱と鋼梁との柱梁接合部用の角形鋼管において、鋼梁との接合に利用可能な肉厚を確保しながら、角部の曲率半径を小さくし、角形鋼管の断面の平坦部における反りの発生を抑制する。 角形鋼管の管軸方向と垂直な断面の4辺の平坦部の辺長L及び肉厚tがL/t≦10.5の関係を満たすとともに、前記断面の4つの角部のうちの1つ以上の曲率半径Cが前記平坦部の肉厚tに対してC/t≦0.8の関係を満たすようにする。

Description

柱梁接合部用の角形鋼管及びこれを用いた柱梁接合構造体、並びに角形鋼管の製造方法
 本発明は、柱梁接合部に用いる角形鋼管及びこれを用いた柱梁接合構造体、並びに角形鋼管の製造方法に関する。
 角形鋼管にH型鋼梁等の鋼梁を接合して柱梁接合部を形成する方法として、ダイアフラム工法及びノンダイアフラム工法がある。ダイアフラム工法は角形の鋼管内部、または外部へダイアフラムを取り付け、その取付位置に一致させるように鋼梁のフランジを取り付けることで一体化した後の構造体の強度を保証している。ダイアフラム工法は鋼管内外部へのダイアフラムの溶接が必要となる。また、様々に取付位置が変化する鋼梁のフランジ位置とダイアフラム位置とを精度良く一致させなければ必要な性能を得られない。そのため、ダイアフラムの取り付けに必要な接合部が多く、また、精度良く取り付けるために多大なる作業時間とコストが必要となる。
 一方で、近年ではダイアフラム工法の課題に対してダイアフラムが不要なノンダイアフラム工法の利用が増えている。このノンダイアフラム工法では、角形鋼管の断面の平坦部の辺長に対し適切に厚い肉厚とすることで、角形鋼管に接合した鋼梁により加わる応力にダイアフラム無しに耐えることができ、接合個所の低減による作業時間とコストの低減が図れる。ノンダイアフラム工法に利用する角形鋼管は、その平坦部の辺長に対し、適切に厚い肉厚と、鋼梁を接合するための平坦部の辺長が必要である。現在、ノンダイアフラム工法で利用される角形鋼管はいくつかの製造方法で供給されている。
 鋳造法は、適切な形状の鋳型に溶鋼を流し込み角形鋼管を製造する方法である(特許文献1)。
 また、適切な肉厚を有するL型、または溝型の形鋼を溶接で一体化させて角形鋼管を得る方法が公知である(特許文献2)。
 さらに、外周長に対し、肉厚を厚くすることができる継目無鋼管を母材とし、角形の孔型ロールによる熱間圧延で角形鋼管を得る方法も公知である(特許文献3)。
 また、特許文献4には、断面角部に曲率を有する角形鋼管とH形鋼のフランジを溶接した接合構造に使用する角形鋼管について、「角形鋼管10の断面角部16の曲率半径Rとしては、例えばR=0.2t~3.5t程度(tは板厚)の角形鋼管を使用することができる。」(段落[0033])と記載されている。
特公昭49-17451号公報 特許第4968679号公報 特許第3308848号公報 特開2016-160678号公報
 しかしながら、従来技術である鋳造法や、L型、溝型鋼を溶接する方法、継目無鋼管を母材として熱間角形成形する方法にはいくつか課題があった。
 まず、鋳造法は基本的に1個単位の製造であり、また、形状が変化する場合には鋳型を製造し直す必要がある。そのため、大量生産が難しくコストが高いという課題があった。
 L型、溝形鋼を溶接する方法は、安価かつ大量に手に入る様々なサイズの規格品の形鋼を母材とできる利点があるが、角形鋼管として一体化するには溶接が必須であり、さらに外周長が小さなサイズで、強度確保のために内面に溶接が必要な場合は、角形鋼管を内面溶接が可能な長さに輪切り切断して溶接する必要がある。このため、溶接開始位置の接合品質悪化や、多大な作業労力にともないコストが増加するという課題があった。また、角形鋼管に鋼梁を接合するために溶接部の盛り上がりを平らにする必要があり、施工現場での作業負荷増加にもつながっていた。
 継目無鋼管を母材として熱間圧延により角形鋼管を得る方法は、母材である継目無鋼管が様々な外周長、肉厚サイズについて大量生産が可能である。また、角形成形用の角形孔型ロールを用いた熱間定型圧延ラインを母材の継目無鋼管製造ラインと直結できることと、さらにロール形状やロールギャップの変更のみで様々な角形鋼管形状を製造できる利点を持つ。一方で、継目無鋼管を熱間で角形成形する場合は、角形の孔型ロールに円形の鋼管を押し込み成形するが、基本的には孔型ロール形状に沿った管の曲げ変形を利用し、外面からのみの圧延で閉断面角形形状の成形を行う。このため、形状自由度が高い鋳造法や、L型や溝形鋼を溶接して減肉圧延により孔型ロールに充満させる方法に比べて、継目無鋼管の角形成形は孔型角部への材料の流入が難しく、角部の曲率半径は大きくなってしまう。特に、肉厚(L/t≦10.5)の鋼管を角形成形する際に、角部の曲率半径を小さくすることは極めて難しかった。
 柱梁接合部に利用する角形鋼管では、角形鋼管への鋼梁の接合を角形鋼管の角部付近へ行う場合があり、角形鋼管の角部の曲率が大きくなると、構造物の設計や接合後の強度に問題が生じる。角部の曲率半径を小さくするために孔型ロールに対して大きめの素管を押し込むと圧延機に噛み込まない製造トラブルに加え、角形鋼管の平坦部に反りが発生し、平坦部への鋼梁の溶接に問題が生じる。つまり、角部の曲率半径と平坦部形状に課題があるため用途が限定されていた。
 本発明は、上記課題に鑑み、角形鋼管柱に鋼梁と接合して利用可能な外周長と肉厚を有する柱梁接合部用の角形鋼管について、角部の曲率半径が小さく、断面の平坦部に反りの発生が抑制された柱梁接合部用の角形鋼管、及びこれを用いた柱梁接合構造体を提供することを目的とする。また、角部の曲率半径が小さく、断面の平坦部に反りの発生が抑制され、さらに、角形鋼管の外周部に溶接による盛り上がり部を有さない柱梁接合部用の角形鋼管を、安価かつ大量に生産可能な角形鋼管の製造方法を提供することを目的とする。
 そこで、本発明は、上記課題を解決するために以下の手段を採用する。
 (1) 角形鋼管柱と鋼梁との柱梁接合部用の角形鋼管であって、管軸方向と垂直な断面の4辺の平坦部の辺長L(mm)及び肉厚t(mm)がL/t≦10.5の関係を満たすとともに、前記断面の4つの角部のうちの1つ以上の曲率半径Cが前記平坦部の肉厚tに対してC/t≦0.8の関係を満たすことを特徴とする柱梁接合部用の角形鋼管。
 (2)前記4辺のうちの1辺以上で、前記平坦部の反り量R(mm)及び前記辺長LがR/L≦0.008の関係を満たすことを特徴とする(1)に記載の柱梁接合部用の角形鋼管。
 (3)前記4辺のうちのすべてで、前記平坦部の前記反り量R及び前記辺長LがR/L≦0.008の関係を満たすことを特徴とする(2)に記載の柱梁接合部用の角形鋼管。
 (4)4つの前記角部のすべての前記曲率半径Cが前記平坦部の前記肉厚tに対してC/t≦0.8の関係を満たすことを特徴とする(1)乃至(3)のいずれかに記載の柱梁接合部用の角形鋼管。
 (5)前記角形鋼管の母材が継目無鋼管であることを特徴とする(1)乃至(4)のいずれかに記載の柱梁接合部用の角形鋼管。
 (6)前記角形鋼管が角形熱間成形鋼管であることを特徴とする(1)乃至(5)のいずれかに記載の柱梁接合部用の角形鋼管。
 (7)(1)乃至(6)のいずれかに記載の柱梁接合部用の角形鋼管が柱梁接合部に用いられていることを特徴とする柱梁接合構造体。
 (8) 母材鋼管を角形孔型ロールにより熱間で角形に成形することにより(1)乃至(6)のいずれかに記載の柱梁接合部用の角形鋼管を製造する、角形鋼管の製造方法であって、
 前記角形孔型ロールのフランジ部により前記角形鋼管の前記角部を成形する際に、該角部となる部分を挟むようにして前記角形孔型ロールの表面が前記母材鋼管の外周との接触を開始する2つの接触開始点の間の前記外周の長さLC(mm)と、前記角形孔型ロールの前記表面における前記接触開始点から前記フランジ部までの長さLR(mm)と、前記角形孔型ロールのロール間隔が最も小さくなるロール軸中心位置における前記フランジ部の隙間であるロールギャップG(mm)とが、下記式(1)の関係を満たすように圧延することを特徴とする角形鋼管の製造方法。
   1.25LC≧2LR+G/sinθ   (1)
 ただし、θは、前記ロール軸中心位置において前記角形孔型ロールの孔底から前記フランジ部側に延びる前記表面が、前記フランジ部を形成する面に対して成す角度である。
 (9)前記角形鋼管の4つの前記角部のすべてを、前記式(1)の関係を満たす1回以上の圧延により成形することを特徴とする(8)に記載の角形鋼管の製造方法。
 本発明によれば、大きな肉厚を確保しながら、角部の曲率半径が小さいため、構造体の設計に応じて種々のサイズの鋼梁を接合でき、柱梁接合部用の角形鋼管として好適に使用できる。また、角形鋼管の平坦部における反りの発生が抑制されるため、角形鋼管に鋼梁を接合する際に支障を生じない。
 また、本発明の製造方法によれば、角部の曲率半径が小さく、さらに柱外周部に溶接部による盛り上がり部が無い、鋼梁との接合性に優れた柱梁接合部用の角形鋼管を安価かつ安定して大量に生産できる。
図1は、本発明の一実施形態の角形鋼管の断面の模式図である。 図2は、本発明の一実施形態の角形鋼管と鋼梁との接合形態の断面の模式図である。 図3は、本発明の一実施形態における圧延ロール形状と被圧延材、パスラインを示す模式図である。 図4は、本発明の他の実施形態における圧延ロール形状と被圧延材、パスラインを示す模式図である。
 以下、図面を参照して、本発明の実施形態を説明する。
 図1及び図2に示すとおり、本発明の実施形態(以下、「本実施形態」という。)の柱梁接合部用の角形鋼管1は、角形鋼管柱と鋼梁2、3との柱梁接合部における角形鋼管柱として用いられる。角形鋼管1は、管軸方向と垂直な断面の4辺の平坦部11を辺長L(mm)とすると、この平坦部11は1/2L位置において肉厚t(mm)及び反り量R(mm)を有している。また、角形鋼管1の断面の4つの角部12が、曲率半径C(mm)を有している。
 本実施形態の柱梁接合部用の角形鋼管1の素材には、主として一般構造用鋼材や炭素鋼が用いられる。ただし、角形鋼管1が、強度が必要な用途や、耐食性能が必要な特殊な用途に用いられる場合はこの限りではなく、熱間圧延を実施できる鋼材のうちから、用途とコストを勘案して素材を選択すればよい。
 本実施形態の角形鋼管1では、角形鋼管1に鋼梁2、3を接合する際に支障を生じないように、4辺の平坦部11及び4つの角部12のいずれの外表面にも、溶接や機械的接合による盛り上がり部が無い。ここで、角形熱間成型前の母材鋼管に溶接や機械的接合部があっても構わない。つまり、管形状成形後に溶接に伴う盛り上がり部を有する溶接管や電縫鋼管も、母材鋼管として利用できる。これは、母材鋼管は熱間加工温度域まで加熱されるので、接合部とその他の部分の材質が均質化されるためである。また、孔型熱間圧延により外表面に対し角形圧延を行うと、接合に伴う盛り上がり部は孔型ロール形状に沿って滑らかに変形するので、柱梁接合部用の角形鋼管1として利用するときに有害な外表面の盛り上がり部が無くなるためである。
 本実施形態においては、接合部がない継目無鋼管を母材鋼管として利用すると、より好ましい。継目無鋼管を母材鋼管として利用すると、外周長に対し厚肉の母材鋼管を造りやすく、柱梁接合部用の角形鋼管1に必要な強度を確保しやすいからである。また、継目無鋼管の製造は熱間加工温度域で行われるため、その後の角形孔型ロールによる熱間圧延との連続化が容易であり、製造性に優れるためである。
 本実施形態の角形鋼管1は、角形鋼管柱と鋼梁2、3との柱梁接合部における角形鋼管柱として用いられることを考慮して、管軸方向と垂直な断面の4辺の平坦部11の辺長L及び肉厚tがL/t≦10.5の関係を満たしている。図2に示すように、角形鋼管1の平坦部11には、平坦部11の辺長L以下の幅Wを有する鋼梁2、3が接合される。鋼梁2、3は、その中央を、平坦部11の辺長Lの中央位置1/2Lに合わせて接合される場合(鋼梁3)もあれば、平坦部11の両側の角部12のいずれかに偏って接合される場合(鋼梁2)もある。どちらの接合形式においても、角形鋼管1には柱梁接合にともなう応力やモーメントが加わるが、これらの外力に対して十分な耐力を有するようにすることが柱梁接合構造体にとって重要である。
 本実施形態の柱梁接合部用の角形鋼管1の平坦部11は、ダイアフラム工法等の補強が施されない柱梁接合部用の角形鋼管1として使用できるように、角形鋼管1に接合される鋼梁2、3に応じて、適切な接合面長を確保できる辺長Lと、適切な接合強度を確保できる肉厚tとを有している。
 本発明者らは、かかる角形鋼管1の熱間製造プロセスでは、鋼管を角形に成形する過程で平坦部11の肉厚tが角部12の肉厚に比べて薄くなることに着目し、この薄い平坦部11の肉厚t及び辺長LがL/t≦10.5の関係を満たすような角形鋼管1とすれば、角形鋼管1に接合可能な種々のサイズの鋼梁2、3について、鋼梁2、3の接合後に外力に対して十分な耐力を有する柱梁接合部構造体とできることを見出した。
 なお、平坦部11の肉厚tが厚い方が構造体としての強度はより高まるから、十分な強度を得る観点から、L/tの値は8.33以下とすることが好ましい。また、平坦部11の肉厚tが増加すると、角形鋼管1の重量が増加し、高い変形荷重に耐える生産設備を必要とするから、生産コストを勘案し、L/tの値は6.66以上とすることが好ましい。
 本実施形態の角形鋼管1においては、角部12の曲率半径Cを適切な大きさにすることも、柱梁接合部用の角形鋼管1として使用できるようにする上で重要である。図2に示すように、柱梁接合部では、辺長Lを有する平坦部11に幅Wを有する鋼梁2、3が接合されるから、幅Wの大きな鋼梁3を接合する場合や、角形鋼管1の角部12側に偏りを持たせて鋼梁2を接合する場合には、角形鋼管1と鋼梁2、3との面段差Dを小さくする必要がある。
 本発明者らは、上記の柱梁接合部に必要な角部12の曲率半径Cを鋭意検討した結果、角形鋼管1の管軸方向と垂直な断面の角部12の曲率半径Cが、平坦部11の肉厚tに対して、C/t≦0.8の関係を満たすような角形鋼管1とすれば、角形鋼管1と鋼梁2、3との面段差Dが小さい柱梁接合部が得られることを見出した。具体的には、角部12の曲率半径Cについて、C/t≦0.8の関係を満たしつつ、角形孔型ロールによる熱間圧延で成形する手法を用い、外周部に溶接等による盛り上がりが無い状態とすることで、柱梁接合部用の角形鋼管1として好適に利用できるようにすることを着想した。
 C/tの値は可能な限り小さい方が、鋼梁2、3を接合できる平坦部11の辺長Lを長く確保できるため、C/tの値は0.55以下であることが好ましい。また、熱間圧延でC/tの値を0にすることは難しく、例えば最終工程に機械加工が必要になりコストが増加する。そのため、施工性とコストを両立する観点で、C/tの値は0.25以上であることが好ましい。
 なお、4つの角部12のうちの1つ以上でC/t≦0.8の関係を満たせばよいのか、又は4つの角部の12のすべてでC/t≦0.8の関係を満たす必要があるのかは、施工する構造体において柱梁接合部に取り付けられる鋼梁2、3の数や位置に応じて変わる。例えば、1本の鋼梁2が1つの角部12に寄せて取り付けられる場合は、1つの角部12が上記の関係を満たせばよい。本実施形態では、施工条件に応じて4つの角部12のうちの1つ以上の曲率半径Cが、C/t≦0.8の関係を満たすようにしている。
 本実施形態においては、さらに角形鋼管1の鋼梁2、3の接合面における平坦部11の反り量Rが適切に管理されることが好ましい。
 平坦部11の反り量Rが大きくなると、鋼梁2、3の接合面の接合強度が低下したり、接合後の角形鋼管1と鋼梁2、3との間の直角の接合形態が取りづらくなったりして、施工コストや工期の増加につながる。平坦部11の反り量Rの管理範囲は、鋼梁2、3を取り付ける角形鋼管1の平坦部11の辺長Lに応じて決まり、R/L≦0.008の関係を満たせば、角形鋼管1に鋼梁2、3を接合する際に問題なく施工が行える。平坦部11の反り量Rは小さいほど施工上好ましいから、R/Lの値は0.005以下に管理することが好ましい。また、熱間圧延で平坦部11の反り量Rを0にすることは難しく、例えば最終工程で機械加工が必要になりコストが増加する。そのため、施工性とコストを両立する観点で、R/Lの値は0.003以上に管理することが好ましい。
 なお、4辺のうちの1辺以上で平坦部11の反り量R及び辺長LがR/L≦0.008の関係を満たせばよいのか、又は4辺のすべてで平坦部11がR/L≦0.008の関係を満たす必要があるのかは、施工する構造体において柱梁接合部に取り付けられる鋼梁2、3の数や位置に応じて変わる。そのため、本実施形態では、施工条件に応じて4辺のうちの1つ以上の平坦部11の反り量Rが、R/L≦0.008の関係を満たすようにしている。
 本実施形態の角形鋼管の製造方法について、図3を参照して説明する。L/t≦10.5及びC/t≦0.8の関係を満たす角形鋼管1を安定的に製造するには、母材として、角形鋼管1の平坦部11の肉厚tと同じ肉厚を有し、角形鋼管1の外周長さ以上の外周長さとを有する母材鋼管10を利用することができる。この母材鋼管10に対して、角形孔型ロール5による熱間外径圧延で角形成形を行う際に、以下の式(1)の関係を満たす条件で成形することで、L/t≦10.5及びC/t≦0.8の関係を満たしつつ、周方向に溶接等に起因する盛り上がり部や材質の不均一が発生しない角形鋼管1を得ることができる。
   1.25LC≧2LR+G/sinθ   (1)
 本発明者らは、これまでの角形孔型ロールによる熱間成形において、柱梁接合部用の角形鋼管に必要となる、L/t及びC/tの値の範囲を安定的に満たすことを難しくしている成形メカニズムを突き止め、その知見に基づき、本発明に係る角形鋼管の製造方法を着想した。
 従来の角形孔型ロールによる成形では、角形孔型ロールの孔底の角部を利用して角形鋼管の角部を成形している。つまり、断面が円形である母材鋼管に対して、角形孔型ロールの孔底に沿うように曲げ変形を与えることにより、角部を成形している。しかし、このように曲げ変形を利用する製造方法では、板の曲げ加工と同様に、曲げ部分には必ず曲率半径Cが生じ、この曲率半径を小さくすることが難しい。これは、曲げ変形を利用する方法の原理上、角形孔型ロールの孔底の角部に材料が完全に流入せず、角形孔型ロールの孔底の角部形状が角形鋼管に完全に転写されないためである。また、柱梁接合部用の角形鋼管1に必要となるL/tの値を得るために肉厚tを厚くすると、角形鋼管の角部の曲率半径Cが増大してしまう。したがって、従来の角形孔型ロールによる成型では、柱梁接合部用の角形鋼管に必要となるL/t及びC/tの値の範囲を安定的に満たすことは難しかった。
 そこで、本発明者らは発想を転換し、角形鋼管1の角部12を、角形孔型ロール5の孔底ではなくフランジ部5fで成形することを着想した。本発明では、角形孔型ロールの孔底で鋼管を曲げ変形させるこれまでの製造方法とは異なり、母材鋼管10の外周と角形孔型ロール5の表面とを、ロール圧延入側で接触させて、両者が接触を開始する点(以下、「接触開始点」という。図3の接触開始点5a参照)で発生する摩擦力により母材鋼管10と角形孔型ロール5とを固着させる。
 上記式(1)中の各幾何学的パラメータの定義を説明する。LC(mm)は、角形鋼管1の角部12を成形する際に、角部12となる部分を挟むようにして角形孔型ロール5の表面が母材鋼管10の外周との接触を開始する2つの接触開始点5aの間の、母材鋼管10の外周の長さである(図3のA-A断面参照)。また、LR(mm)は、角形孔型ロール5の表面における、接触開始点5aからフランジ部5fまでの長さである(図3のB-B断面参照)。ここで、母材鋼管10の外周上の接触開始点5aは、角形孔型ロールの表面における接触開始点5aと一致している。
 また、G(mm)は、角形孔型ロール5のロールギャップ、すなわち、角形孔型ロール5のロール間隔が最も小さくなるロール軸中心位置におけるフランジ部5fの隙間である。すなわち、ロールギャップGは、圧延入側でのフランジ部5fの隙間RD(mm)に対して、RD>Gの関係にある。θは、ロール軸中心位置において角形孔型ロール5の孔底からフランジ部5fに延びる角形孔型ロール5の表面が、フランジ部5fを形成する面に対して成す角度である。
 本実施形態の製造方法においては、接触開始点5aが必ずロール圧延入側で形成され、母材鋼管10と角形孔型ロール5との接触開始点5aが圧延反力により固着されるから、圧延入側から出側にかけて、2つの接触開始点5aの間の母材鋼管10の外周の長さは、LCのまま変わらない。
 これに対して、母材鋼管10の外周のうち2つの接触開始点5aの間の部分を圧延する、角形孔型ロール5の表面の長さは、上記LRとフランジ部5fの間の隙間とから構成される。ここで、圧延入側におけるフランジ部5fの隙間RDは、ロール軸中心位置におけるフランジ部5fの隙間よりも大きく(RD>G)、圧延の進行とともにフランジ部5fの隙間は小さくなる。そして、ロール間隔が最も小さくなるロール軸中心位置において、母材鋼管10の外周のうち2つの接触開始点5aの間の部分を圧延する、角形孔型ロール5の表面の長さは、2LR+G/sinθとなる(図3のB-B断面図参照)。
 本発明は、以上の点に着目してなされたものである。
 すなわち、上記式(1)は、角形孔型ロール5のロール間隔が最も小さくなるロール軸中心位置において、母材鋼管10の外周のうち2つの接触開始点5aの間の部分の長さLCの1.25倍が、母材鋼管10のこの部分を圧延する角形孔型ロール5の表面の長さに相当する2LR+G/sinθの値以上であることを規定している。そして、上記式(1)の関係を満たすようにすれば、母材鋼管10側で圧延に供される外周の長さLCが、この部分の母材鋼管10を圧延する角形孔型ロール5の表面の長さに相当する2LR+G/sinθの0.8倍以上となり、角形孔型ロール5のフランジ部5fの隙間に母材鋼管10の外周が80%以上押し込まれて角形鋼管1の角部12が形成される。よって、角形鋼管1の角部12の曲率半径Cが、角形鋼管1の平坦部11の肉厚tに対して、C/t≦0.8の関係を安定的に満たすようにすることができる。
 つまり、本発明では、従来の製造方法のように曲げ変形を利用しないので、母材鋼管10の肉厚や外径に関わらず、式(1)の関係さえ満たせば、角形孔型ロール5のフランジ部5fの隙間に母材鋼管10の外周が押し込まれて流入することにより、角形鋼管1の角部12の曲率半径Cについて、C/t≦0.8の関係を安定的に満たすようにすることができるため、柱梁接合部用の角形鋼管1に必要なL/t≦10.5の関係も安定的に満たすことが可能になる。
 さらに、曲げ変形を利用する従来の製造方法では、孔型ロールに対して大きな素管を押し込み、材料を孔型に沿って変形させる原理であるため、平坦部11に強い周方向圧縮変形が起こり、平坦部11の反り量Rが大きくなりやすく、安定してR/L≦0.008を満たすことができなかった。本発明では、式(1)の関係さえ満たせば母材となる素管の形状に制限は無い。つまり、平坦部11への過大な周方向圧縮変形を避けることができ、安定してR/L≦0.008を満たすことが可能となる。
 本実施形態の角形鋼管1では、4つの角部12のうち、上記式(1)の関係を満たす角部12で、上述の効果が発揮される。そのため、角形鋼管1の用途に応じて、角部12の曲率半径CがC/t≦0.8の関係を満たす必要がある角部12について、上記式(1)の関係を満たすようにすればよい。また、式(1)の関係を満たせば、圧延機の形態に制限は無い。つまり、図3に示すように、一対の角形孔型ロール5を用いる場合は、角部12を成形するフランジ部5fの対は2つであるため、角形鋼管1の4つの角部12のうち、断面の対角線方向に位置する2つの角部12のみに、上記式(1)の関係を満たす製造条件を適用できる。また、角形鋼管1の4つの角部12のすべてに対して、上記式(1)の関係を満たす製造条件を適用する場合は、鋼管を90°回転させて再度圧延するか、またはもう一対の角形孔型ロール5を、フランジ部5fが90°異なる向きとなるように配置して圧延すればよい。
 また、角形鋼管1の4つの角部12のすべてに対して、上記式(1)の関係を満たす製造条件を適用するには、角形孔型ロールの数を増やすことも有効である。例えば、図4に示す変形例のように、4つのロール6を用いてもよい。この場合も、角形孔型ロールの数が2つの場合と同様に、上記式(1)の関係を満たすようにすることで、同様の作用により本発明の角形鋼管1を得ることができる。
 ロール5、6による角形鋼管1の成形温度は、一般的な熱間加工温度範囲であれば、上述の角形鋼管1の断面形状の要件を満たすことができ、外表面に溶接等による盛り上がり部を有しない、施工性に優れた柱梁接合部用の角形鋼管1を製造できる。一般的な熱間加工温度範囲とは、鉄鋼材料がオーステナイト変態する800℃以上が目安となる。なお、加工温度が高い分には問題にならないが、あまりに加工温度が高いとスケールの発生や光熱費が高くなるため、成形温度は800℃から1000℃の範囲内とすることが好ましい。
 0.15%C鋼からなる母材鋼管10を角形孔型ロール5により熱間圧延して成形し、角形鋼管1を得る製造試験を行って、本発明に係る角形鋼管の製造方法の効果を検証した。この製造試験の各試験例の製造条件および製造された角形鋼管1の断面形状を表1に示す。
 本製造試験では、角形鋼管1の平坦部11の長さLを、柱梁接合部用の角形鋼管1に溶接されるH型鋼梁2の幅Wに応じて、150、200、250、350mmの4種類に設定した。また、柱梁接合部用の角形鋼管1に必要な肉厚tの条件を満たすように、角形鋼管1の平坦部11の辺長Lの肉厚tに対する比L/tを10.5以下とする製造条件で、熱間圧延による成形を行った。成形温度は800℃から940℃の範囲で設定した。
 造管後は、角形鋼管1の角部12の曲率半径C及び平坦部11の反り量Rを測定し、それぞれについてC/t及びR/Lの値を算出し、柱梁接合部用の角形鋼管1としての利用に適する断面形状になっているかどうかを確認した。熱間圧延に用いた角形孔型ロール5は2個で一対のもの(図3相当)を使用し、ロール形状と入側の母材鋼管10の形状を、表1に示すとおり変化させた。表1では、上記式(1)の関係を満たす試験例(発明例)を〇、満たさない試験例(比較例)を×で示している。
Figure JPOXMLDOC01-appb-T000001
 上述のとおり製造試験を行った結果、1.25LC≧2LR+G/sinθの関係を満たす発明例(No.1~3、5~7、10~12、14~16)では、平坦部11の長さLを150、200、250、350mmとしたいずれの試験例についても、L/t≦10.5の関係及びC/t≦0.8の関係が安定的に満たされており、柱梁接合部用の角形鋼管1として好適な断面形状に成形されていることが確認された。また、発明例のすべてで、R/L≦0.008の関係も安定的に満たされており、H型鋼梁2、3の溶接作業が行いやすい良好な品質の角形鋼管1が安定的に得られることが確認された。
 これに対して、1.25LC≧2LR+G/sinθの関係を満たさない比較例(No.4、8、9、13、17)では、平坦部11の長さLを150、200、250、350mmとしたいずれの試験例についても、C/t≦0.8の関係が満たされておらず、柱梁接合部用の角形鋼管として好適な断面形状に成形できなかった。
 1  角形鋼管
 11  平坦部
 12  角部
 2  鋼梁
 5  角形孔型ロール
 6  ロール
 5a、6a  接触開始点
 5f、6f  フランジ部
 10  母材鋼管
 L  平坦部の辺長
 t  平坦部の肉厚
 C1、C2  角部の曲率半径
 R  平坦部の反り量
 W  鋼梁の幅
 D  角形鋼管と鋼梁の面段差
 A-A  母材鋼管とロールの接触開始点における断面
 B-B  ロール間隔が最も小さくなる点における断面
 LC  鋼管側の接触開始点間の鋼管外周部の長さ
 LR  ロール側の接触開始点からフランジ部までの角形孔型ロール内周の長さ
 RD  圧延入側でのフランジ部の隙間
 G  ロールギャップ(ロール間隔が最も小さくなる点におけるフランジ部の隙間)
 θ  ロール軸中心位置において角形孔型ロールの孔底からフランジ部側に延びる角形孔型ロールの表面が、フランジ部を形成する面に対して成す角度

Claims (9)

  1.  角形鋼管柱と鋼梁との柱梁接合部用の角形鋼管であって、管軸方向と垂直な断面の4辺の平坦部の辺長L(mm)及び肉厚t(mm)がL/t≦10.5の関係を満たすとともに、前記断面の4つの角部のうちの1つ以上の曲率半径C(mm)が前記平坦部の肉厚tに対してC/t≦0.8の関係を満たすことを特徴とする柱梁接合部用の角形鋼管。
  2.  前記4辺のうちの1辺以上で、前記平坦部の反り量R(mm)及び前記辺長LがR/L≦0.008の関係を満たすことを特徴とする請求項1に記載の柱梁接合部用の角形鋼管。
  3.  前記4辺のすべてで、前記平坦部の前記反り量R及び前記辺長LがR/L≦0.008の関係を満たすことを特徴とする請求項2に記載の柱梁接合部用の角形鋼管。
  4.  4つの前記角部のすべての前記曲率半径Cが前記平坦部の前記肉厚tに対してC/t≦0.8の関係を満たすことを特徴とする請求項1乃至3のいずれか一項に記載の柱梁接合部用の角形鋼管。
  5.  前記角形鋼管の母材が継目無鋼管であることを特徴とする請求項1乃至4のいずれか一項に記載の柱梁接合部用の角形鋼管。
  6.  前記角形鋼管が角形熱間成形鋼管であることを特徴とする請求項1乃至5のいずれか一項に記載の柱梁接合部用の角形鋼管。
  7.  請求項1乃至6のいずれか一項に記載の柱梁接合部用の角形鋼管が柱梁接合部に用いられていることを特徴とする柱梁接合構造体。
  8.  母材鋼管を角形孔型ロールにより熱間で角形に成形することにより請求項1乃至6のいずれか一項に記載の柱梁接合部用の角形鋼管を製造する、角形鋼管の製造方法であって、
     前記角形孔型ロールのフランジ部により前記角形鋼管の前記角部を成形する際に、該角部となる部分を挟むようにして前記角形孔型ロールの表面が前記母材鋼管の外周との接触を開始する2つの接触開始点の間の前記外周の長さLC(mm)と、前記角形孔型ロールの前記表面における前記接触開始点から前記フランジ部までの長さLR(mm)と、前記角形孔型ロールのロール間隔が最も小さくなるロール軸中心位置における前記フランジ部の隙間であるロールギャップG(mm)とが、下記式(1)の関係を満たすように圧延することを特徴とする角形鋼管の製造方法。
       1.25LC≧2LR+G/sinθ   (1)
     ただし、θは、前記ロール軸中心位置において前記角形孔型ロールの孔底から前記フランジ部側に延びる前記表面が、前記フランジ部を形成する面に対して成す角度である。
  9.  前記角形鋼管の4つの前記角部のすべてを、前記式(1)の関係を満たす1回以上の圧延により成形することを特徴とする請求項8に記載の角形鋼管の製造方法。
PCT/JP2021/008226 2020-03-16 2021-03-03 柱梁接合部用の角形鋼管及びこれを用いた柱梁接合構造体、並びに角形鋼管の製造方法 WO2021187115A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227031044A KR20220131390A (ko) 2020-03-16 2021-03-03 기둥 들보 접합부용의 각형 강관 및 이를 이용한 기둥 들보 접합 구조체, 그리고 각형 강관의 제조 방법
CN202180020308.0A CN115298399A (zh) 2020-03-16 2021-03-03 柱梁接合部用的方形钢管及使用该方形钢管的柱梁接合结构体、以及方形钢管的制造方法
JP2021521865A JP6935857B1 (ja) 2020-03-16 2021-03-03 柱梁接合部用の角形鋼管及びこれを用いた柱梁接合構造体、並びに角形鋼管の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-045308 2020-03-16
JP2020045308 2020-03-16

Publications (1)

Publication Number Publication Date
WO2021187115A1 true WO2021187115A1 (ja) 2021-09-23

Family

ID=77770894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008226 WO2021187115A1 (ja) 2020-03-16 2021-03-03 柱梁接合部用の角形鋼管及びこれを用いた柱梁接合構造体、並びに角形鋼管の製造方法

Country Status (2)

Country Link
TW (1) TWI770872B (ja)
WO (1) WO2021187115A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355286A (ja) * 2000-06-14 2001-12-26 Nippon Steel Corp 角型鋼管
JP2007303107A (ja) * 2006-05-10 2007-11-22 Nakajima Steel Pipe Co Ltd 角形鋼管および角形鋼管使用の鉄骨構造物
JP2011132745A (ja) * 2009-12-25 2011-07-07 Nakajima Steel Pipe Co Ltd 鉄骨構造物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1066075C (zh) * 1995-07-28 2001-05-23 中岛钢管株式会社 方形钢管的制造方法
JPH11104711A (ja) * 1997-10-03 1999-04-20 Yoshitomi Onoda 継目無角形鋼管の製造方法
CN203408983U (zh) * 2013-06-24 2014-01-29 衡阳华菱钢管有限公司 方管定方机
WO2019176979A1 (ja) * 2018-03-16 2019-09-19 Jfeスチール株式会社 角鋼管の製造方法および角鋼管

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355286A (ja) * 2000-06-14 2001-12-26 Nippon Steel Corp 角型鋼管
JP2007303107A (ja) * 2006-05-10 2007-11-22 Nakajima Steel Pipe Co Ltd 角形鋼管および角形鋼管使用の鉄骨構造物
JP2011132745A (ja) * 2009-12-25 2011-07-07 Nakajima Steel Pipe Co Ltd 鉄骨構造物

Also Published As

Publication number Publication date
TW202146130A (zh) 2021-12-16
TWI770872B (zh) 2022-07-11

Similar Documents

Publication Publication Date Title
US7490631B2 (en) Integrally formed flanged metal pipe and method of manufacturing thereof
AU2018246660B2 (en) Method for manufacturing clad steel pipe
US20200164419A1 (en) Door beam
JP6816827B2 (ja) 角鋼管の製造方法および角鋼管
CN105710156A (zh) 一种轧制波纹结合面金属复合管工艺
JP2006289439A (ja) Uoe鋼管の拡管方法および装置
WO2021187115A1 (ja) 柱梁接合部用の角形鋼管及びこれを用いた柱梁接合構造体、並びに角形鋼管の製造方法
JP6935857B1 (ja) 柱梁接合部用の角形鋼管及びこれを用いた柱梁接合構造体、並びに角形鋼管の製造方法
JP4841252B2 (ja) 組立てh形鋼及びその製造方法
JP2007239537A (ja) 排気管フランジ継手構造
JP2017115336A (ja) リップh形鋼
JP7198969B2 (ja) 差厚断面を有する冷間ロール成形軽量形鋼
JP6574924B2 (ja) リップ溝形鋼
WO2024053169A1 (ja) 角形鋼管およびその製造方法並びに角形鋼管を用いた建築構造物
WO2020184515A1 (ja) 溶接組立h形鋼および溶接組立h形鋼の製造方法
JP3119771U (ja) 角形鋼管用形状仕上げリング
JP2024053558A (ja) 鋼管の連結構造および鋼管継手用の鋼管製造方法
JP2004249360A (ja) 疲労強度に優れた鋼管結合体及び加工方法
JP2023149855A (ja) 補強板、及び、補強板接合構造体
JPH09164477A (ja) アルミニウム製円筒パネル及びその製造方法
JPH081234A (ja) 高ヤング率鋼を用いたスパイラル溶接鋼管,帯状鋼板およびその製造方法
KR101419272B1 (ko) 금속관 성형장치
GB2380210A (en) Stiffening member for masonry panels
JPH0280103A (ja) 二重管の成形方法
JPS6313863A (ja) 1次衝突対策ステアリングシヤフト

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021521865

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227031044

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21772307

Country of ref document: EP

Kind code of ref document: A1