WO2021186980A1 - 水銀吸着剤及びその製造方法 - Google Patents

水銀吸着剤及びその製造方法 Download PDF

Info

Publication number
WO2021186980A1
WO2021186980A1 PCT/JP2021/005481 JP2021005481W WO2021186980A1 WO 2021186980 A1 WO2021186980 A1 WO 2021186980A1 JP 2021005481 W JP2021005481 W JP 2021005481W WO 2021186980 A1 WO2021186980 A1 WO 2021186980A1
Authority
WO
WIPO (PCT)
Prior art keywords
mercury
activated carbon
adsorbent
mineral acid
amount
Prior art date
Application number
PCT/JP2021/005481
Other languages
English (en)
French (fr)
Inventor
清人 大塚
石田 修一
岩崎 秀治
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to EP21771342.9A priority Critical patent/EP4122884A4/en
Priority to CN202180021833.4A priority patent/CN115209985B/zh
Priority to JP2021532352A priority patent/JP6999067B1/ja
Publication of WO2021186980A1 publication Critical patent/WO2021186980A1/ja
Priority to JP2021207241A priority patent/JP2022046600A/ja
Priority to US17/945,195 priority patent/US20230026065A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/372Coating; Grafting; Microencapsulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0288Halides of compounds other than those provided for in B01J20/046
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0292Phosphates of compounds other than those provided for in B01J20/048
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28076Pore volume, e.g. total pore volume, mesopore volume, micropore volume being more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G17/00Refining of hydrocarbon oils in the absence of hydrogen, with acids, acid-forming compounds or acid-containing liquids, e.g. acid sludge
    • C10G17/095Refining of hydrocarbon oils in the absence of hydrogen, with acids, acid-forming compounds or acid-containing liquids, e.g. acid sludge with "solid acids", e.g. phosphoric acid deposited on a carrier
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content

Definitions

  • the present invention relates to a mercury adsorbent used for adsorbing mercury and / or a mercury compound existing in a liquid hydrocarbon, and a method for producing the same.
  • a mercury adsorbent in which sulfur is supported on a porous adsorbent has been reported conventionally. It is known that such an adsorbent removes mercury by a reaction between mercury and sulfur.
  • a porous body such as activated carbon
  • liquid hydrocarbons are often treated as intermediates in petroleum products in the hydrogenation step, and if they contain sulfur or organic sulfur compounds, they poison the hydrogenation catalyst and must be removed, which is not preferable. ..
  • Patent Document 1 Patent No. 3537581 describes a mercury compound absorber in a liquid hydrocarbon obtained by carrying an acid on activated carbon having a pore radius of 8 ⁇ or less and a micropore volume of 80 ml / g or more. It is disclosed.
  • Patent Document 1 describes that the acid component has a characteristic that it hardly elutes into the liquid hydrocarbon, it does not mention the release of the acid component into the gas phase. When the acid component is released into the gas phase, it is necessary to consider the corrosion resistance of the treatment equipment when using the mercury adsorbent for a long period of time.
  • an object of the present invention is to be able to efficiently adsorb and remove trace amounts of mercury and / or mercury compounds contained in liquid hydrocarbons such as naphtha, and to have a corrosive effect even when used for a long period of time. It is to provide a mercury adsorbent capable of suppressing.
  • the inventors of the present invention have surprisingly found that the water contained in the mercury adsorbent carrying a mineral acid is corroded by the mercury adsorbent in the gas phase. It was found that it affects the action. Then, as a result of further research, the mineral acid was supported on the activated carbon having a specific specific surface area and a specific pore distribution, and the water content was adjusted to a specific range in the liquid hydrocarbon. We have found that mercury and / or mercury compounds can be efficiently adsorbed and removed, and that the corrosive ability of the mercury adsorbent in the gas phase can be suppressed, leading to the completion of the present invention.
  • the present invention can be configured in the following aspects.
  • Mineral acid is supported on activated carbon having a pore radius of 0.8 nm (8 ⁇ ) or less and a micropore volume of 80 cm 3 / g or more (preferably 90 cm 3 / g or more, more preferably 100 cm 3 / g or more).
  • the water content is 0.1 to 3% by weight (preferably 0.2 to 2.9% by weight, more preferably 0.2 to 2.8% by weight, still more preferably 0.3 to 2.5% by weight). %), A mercury adsorbent used to adsorb mercury and / or mercury compounds in liquid hydrocarbons.
  • the weight ratio (O / C) of the amount of oxygen to the amount of carbon of the activated carbon is 0.010 to 0.100 (preferably 0.015 to 0.080, more preferably 0.020 to 0.050, still more preferably.
  • At least one detection amount selected from the group consisting of chloride ion, bromide ion, phosphate ion, phosphite ion, sulfate ion and sulfite ion measured by the thermal decomposition ion chromatography method is 1000 to 5000 ppm
  • the specific surface area is 1000 m 2 / g or more (preferably 1000 to 2500 m 2 / g, more preferably 1200 to 2000 m 2 / g, still more preferably 1300 to 1700 m 2 / g, still more preferably 1400 to 1600 m 2 / g).
  • an aqueous mineral acid solution with activated carbon having a pore radius of 0.8 nm (8 ⁇ ) or less and a micropore volume of 80 cm 3 / g or more (preferably 90 cm 3 / g or more, more preferably 100 cm 3 / g or more).
  • the step of adsorbing and the water content of 0.1 to 3% by weight preferably 0.2 to 2.9% by weight, more preferably 0.2 to 2.8% by weight, still more preferably 0.3 to 2.5% by weight.
  • the weight ratio (O / C) of the amount of oxygen to the amount of carbon of the activated carbon is 0.010 to 0.100 (preferably 0.015 to 0.080, more preferably 0.020 to 0.050, still more preferably.
  • a method for using a mercury adsorbent wherein the mercury adsorbent according to any one of aspects 1 to 4 is brought into contact with mercury and / or a liquid hydrocarbon containing a mercury compound to adsorb mercury and / or the mercury compound.
  • mercury and / or mercury compound refers to any form of substance containing mercury atoms present in liquid mercury, such as metallic mercury as a simple substance, inorganic mercury (ionic mercury, etc.), and organic mercury. including.
  • mercury adsorbent means an adsorbent which adsorbs mercury and / or a mercury compound, and is synonymous with “mercury and / or a mercury compound adsorbent”.
  • the mercury adsorbent of the present invention can efficiently adsorb and remove mercury and / or mercury compounds in liquid hydrocarbons, and can suppress corrosive action even when used for a long period of time.
  • the carrier activated carbon used here has a specific surface area of 1000 m 2 / g or more.
  • the specific surface area of the activated carbon may be preferably 1000 to 2500 m 2 / g, more preferably 1200 to 2000 m 2 / g, still more preferably 1300 to 1700 m 2 / g, and even more preferably 1400 to 1600 m 2 / g. ..
  • the specific surface area of the activated carbon is the specific surface area measured by the BET method, and is a value measured by the method described in Examples described later.
  • the activated carbon used in the present invention has a pore volume of 80 cm 3 / g or more with a pore radius of 8 ⁇ or less from the viewpoint of improving mercury adsorption performance.
  • the pore volume of the activated carbon having a pore radius of 8 ⁇ or less may be preferably 90 cm 3 / g or more, more preferably 100 cm 3 / g or more.
  • the upper limit of the pore volume of the activated carbon having a pore radius of 8 ⁇ or less is not particularly limited , but may be, for example, 200 cm 3 / g or less.
  • the pore distribution and pore volume of activated carbon can be calculated from the nitrogen adsorption isotherm at the liquid nitrogen temperature (77K), and specifically, measured by the method described in Examples described later. NS.
  • the activated carbon used in the present invention may have a total pore volume of 100 to 1000 cm 3 / g, preferably 150 to 800 cm 3 / g, and more preferably 200, from the viewpoint of retaining water content and improving mercury adsorption performance. It may be up to 500 cm 3 / g.
  • the activated carbon used in the present invention preferably has a weight ratio O / C of oxygen content to carbon content of 0.010 to 0.100.
  • Oxygen contained in activated carbon not only enhances the hydrophilicity of the carbon material, which is basically hydrophobic, but also has a useful function of retaining the mineral acid component.
  • the weight ratio O / C of the oxygen content and the carbon content of the activated carbon is preferably 0.015 to 0.080, more preferably 0.020 to 0.050, and further preferably 0.030 to 0.045. May be good. If the weight ratio O / C is too high, the mechanical strength as a carrier is impaired, which tends to be industrially difficult to manufacture, and also tends to contain water easily, making it difficult to adjust the water content.
  • the activated carbon may not be able to retain a sufficient amount of water, it may not be able to maintain the mineral acid attached, and it may cause corrosion of the treatment equipment. be.
  • the amount of oxygen and the amount of carbon of the activated carbon are values measured with respect to the activated carbon before supporting the mineral acid by the method described in Examples described later. In the case of a mineral acid having no oxygen and carbon (for example, hydrochloric acid), this value is the same even when the activated carbon after carrying the mineral acid is measured, but the mineral acid having oxygen and / or carbon.
  • the content of atoms other than the oxygen atom and carbon atom (for example, nitrogen contained in nitrate) of the mineral acid, or the ore thereof, depends on the type of the mineral acid.
  • the oxygen content and carbon content of the activated carbon before carrying the mineral acid can be calculated. That is, the oxygen amount and carbon amount of the activated carbon before carrying the mineral acid is obtained by subtracting the oxygen amount and the carbon amount derived from the mineral acid from the element analysis results of the oxygen amount and the carbon amount of the activated carbon after carrying the mineral acid. Can be calculated.
  • the mineral acid is phosphoric acid or sulfuric acid
  • an automatic combustion / absorption device manufactured by Mitsubishi Chemical Analytech, “AQF-2100H”
  • an ion chromatograph manufactured by Thermo Fisher scientific, “ICS-2100”
  • Phosphoric acid content and sulfuric acid content are separately quantified, and the amount of oxygen derived from phosphoric acid and sulfuric acid is subtracted from the elemental analysis result of the oxygen content of the activated carbon after carrying the mineral acid. The amount of oxygen can be calculated.
  • the activated carbon used in the present invention may have an ash content (ignition residue) of 0.1 to 5% by weight, preferably 0.3 to 4% by weight, and more preferably 0.5 to 3% by weight. There may be.
  • the mineral acid carried on the activated charcoal is not particularly limited as long as it has mercury adsorption performance, and is hydrogen acid such as hydrochloric acid and hydrobromic acid, sulfuric acid, sulfite, nitrate, phosphoric acid, phosphite, boric acid and the like.
  • Oxo acids can be mentioned, and these mineral acids can be used alone or in combination of two or more. Those having high adsorptivity of mercury and / or mercury compounds and which are not likely to be desorbed and eluted in the liquid or chemically changed when contacted with liquid hydrocarbons are preferable. From these viewpoints, hydrochloric acid, At least one selected from the group consisting of sulfuric acid and phosphoric acid is preferable, and hydrochloric acid is more preferable.
  • mineral acids may be simply referred to as acids.
  • the mercury adsorbent of the present invention has a water content of 0.1 to 3% by weight.
  • the mechanism played by the water contained in the mercury adsorbent is not clear, but when a specific amount of water is contained in a specific activated carbon, a water film is formed on the surface of the activated carbon, and the mineral acid supported by the activated carbon. It is thought that it may promote the ionization of.
  • the mineral acid ionic species integrated with the water film reacts with the inorganic mercury and organic mercury present in the liquid hydrocarbon and adsorbs them.
  • the water content of the mercury adsorbent may be preferably 0.2 to 2.9% by weight, more preferably 0.2 to 2.8% by weight, still more preferably 0.3 to 2.5% by weight. ..
  • the water content of the mercury adsorbent indicates the ratio (% by weight) of the water content of the mercury adsorbent to the total weight of the mercury adsorbent, and is specifically measured by the method described in Examples described later. Value.
  • the mercury adsorbent of the present invention is at least one selected from the group consisting of chloride ion, bromide ion, phosphate ion, phosphite ion, sulfate ion and sulfite ion measured by a thermal decomposition ion chromatography method.
  • the detected amount of may be 1000 to 5000 ppm.
  • the amount of the ion detected is preferably 1200 to 4000 ppm, more preferably 1500 to 3500 ppm, still more preferably 2300 to 3500 ppm. If the amount of ions of the mercury adsorbent is too low, the reactivity with mercury or a mercury compound tends to be small, and the adsorption performance tends to be low. If it is too high, the mercury compound produced by the reaction does not adhere to the carrier activated carbon and becomes an inorganic mercury compound, which increases the risk of coagulation and precipitation in liquid hydrocarbons, which is not preferable.
  • the mineral acid component is usually firmly fixed to the carbon surface, and even if the mercury adsorbent is dispersed in ion-exchanged water, ions derived from the added mineral acid cannot be detected. rare. Although its existence form is not clear, it is firmly fixed to the ash content in the carrier activated carbon by some interaction, but as described above, it is ionized and detected by the combustion ion chromatography method, so that the ash content is detected. It is considered that no salt is formed by the reaction with.
  • the water content of the mercury adsorbent of the present invention preferably the water content and the amount of ions measured by the thermal decomposition ion chromatography method
  • the metal is not corroded at room temperature and the surface layer is not corroded. Since it does not cause the liberation of ions from mercury, there is no need to worry about corrosion of storage equipment due to water contamination, which is excellent for industrial use.
  • the method for producing a mercury adsorbent of the present invention includes a step of bringing activated carbon having a specific surface area of 1000 m 2 / g or more and a pore radius of 8 ⁇ or less and a micropore volume of 80 cm 3 / g or more into contact with an aqueous mineral acid solution. , At least a step of adjusting the water content to 0.1 to 3% by weight may be provided.
  • the method for producing activated carbon used as a carrier in the present invention is not particularly limited as long as it has the above-mentioned specific surface area and pore volume.
  • Examples thereof include gas activation that is activated by carbon dioxide at a high temperature, chemical activation that is activated by zinc chloride, phosphoric acid, concentrated sulfuric acid treatment, or the like.
  • a well-known raw material for activated charcoal can be used.
  • plant-based raw materials such as trunks, stems, leaves, and fruits of various plant materials (for example, coconut shells, coffee beans, tea leaves, Plant-derived materials such as straw, paddy husks, rice, wheat, sugar cane, corn, mandarin oranges, bananas, and wood; plant-derived materials such as fern plants, moss plants, and algae-derived materials; ), Mineral raw materials such as coal, coal pitch, petroleum pitch, synthetic resin raw materials such as phenol resin, acrylic resin, furan resin, and melamine resin.
  • These carbonaceous raw materials may be used alone or in combination of two or more. Considering the support of the mineral acid component, it is preferable to use coconut shells and wood.
  • the method for carbonizing the carbonaceous raw material is not particularly limited, but with an inert gas such as nitrogen, helium, argon, carbon monoxide, a mixed gas of these inert gases, or another gas containing these inert gases as a main component.
  • an inert gas such as nitrogen, helium, argon, carbon monoxide, a mixed gas of these inert gases, or another gas containing these inert gases.
  • a method of carbonizing at a temperature of about 400 to 800 ° C. can be mentioned.
  • the carbide of the carbonaceous raw material by gas activation at least under a gas containing water vapor.
  • a gas containing water vapor As the utilization gas, carbon dioxide, nitrogen, oxygen and the like can be used in addition to water vapor, and for example, the utilization gas containing water vapor and carbon dioxide may be used for activation.
  • the water vapor content of the utilized gas may be 40% by volume or less, preferably 35% by volume or less, and more preferably 30% by volume or less.
  • the lower limit of the water vapor content of the utilized gas is not particularly limited, but may be, for example, 1% by volume or more.
  • the composition of the utilized gas is carried out at a water vapor content of 40 to 60% by volume, and is often higher than that. This is because the activation rate of carbides of carbonaceous raw materials by water vapor is significantly faster than that of carbon dioxide, and the composition of the activation gas is set so that the partial pressure of water vapor is as high as possible.
  • the composition of the utilized gas can be activated under mild conditions in which the activation rate is significantly slower than that of the conventional method.
  • the activation conditions can be appropriately adjusted according to the composition of the activation gas, the desired specific surface area, the pore distribution, and the like.
  • the activation temperature may be 600 to 1200 ° C. It may be preferably 700 to 1100 ° C., more preferably 750 to 1000 ° C.
  • the activation time may be 0.1 to 10 hours, preferably 0.5 to 7 hours, and more preferably 1 to 5 hours.
  • the gas may be cooled to 300 ° C. or lower (preferably 200 ° C. or lower) in a gas having the same composition as that at the time of activation, and then taken out of the system to further adjust the specific surface area and pore distribution.
  • the heat treatment may be performed under the active gas.
  • the so-called baking effect in which the carbonaceous structure is baked by the heat treatment, makes it possible to reduce the pore size of the activated carbon.
  • the heat treatment temperature may be 500 to 1000 ° C, preferably 500 to 950 ° C, and more preferably 500 to 900 ° C.
  • the heat treatment time varies depending on the heat treatment temperature, but for example, at 500 ° C., it is preferably about 20 to 180 minutes, and at 800 ° C., it is preferably about 5 to 60 minutes.
  • the specific surface area is obtained by activating the carbide of the carbonaceous raw material by a conventional method and then performing the heat treatment as described above. And the pore distribution can be adjusted.
  • activated carbon obtained by a conventional method is further heat-treated at a temperature of 500 ° C. or higher under a gas substantially free of oxygen and / or water vapor, and cooled to a temperature of 300 ° C. or lower under the same gas.
  • a specific activated carbon having an adjusted specific surface area and pore distribution may be produced.
  • the gas that does not substantially contain oxygen and / or water vapor nitrogen, carbon dioxide, or a mixed gas thereof can be used, and the atmosphere may be such that oxygen atoms bonded to the surface of the activated carbon do not exist.
  • the water vapor may be in a state of 1 to 2% by volume or less.
  • the baking compaction effect can be obtained under the above-mentioned heat treatment temperature and heat treatment time conditions, and the heat treatment in an atmosphere having a specific composition prevents weight loss due to oxidation of the carbonaceous surface and reduces the pore size. Obtainable.
  • the "activated carbon obtained by a conventional method” is a conventional activated carbon that is activated under an activated gas having a water vapor content of more than 40% by volume, taken out of the activation furnace after activation, and brought into contact with air before being sufficiently cooled. It means activated carbon obtained by the manufacturing method.
  • the activated carbon obtained under the above-mentioned conditions has a structure in which the pores in a region having a large specific surface area and a small pore radius are highly developed, and has a pore volume in such a minute region. It is considered that having a specific amount exhibits high mercury adsorption performance.
  • the ratio of water vapor in the activating gas is set to 15% by volume or less, and the degree of activation is further suppressed while suppressing the decrease in the pore volume ratio having a pore radius of 8 ⁇ or less. Conditions that increase the temperature are preferable.
  • any of crushed charcoal, granulated charcoal or granulated charcoal is effective, but granular charcoal or granulated charcoal is preferable from the viewpoint of pressure loss, adsorption capacity, replacement and handling. ..
  • granulated charcoal can be prepared by adding 30 to 60 parts of petroleum pitch, coal tar, polymer or the like as a binder to 100 parts of carbon material according to a conventional method, and activating after mixing and molding.
  • the obtained activated carbon has a specific surface area of 1000 m 2 / g or more and a volume of micropores having a pore radius of 8 ⁇ or less is 80 cm 3 / g or more, but the volume of micropores having a specific surface area and pore radius of 8 ⁇ or less is , Each may be adjusted to the above-mentioned preferable range.
  • activated carbon having a weight ratio O / C of the amount of oxygen and the amount of carbon of 0.010 to 0.100 can be used from the viewpoint of adjusting to a specific water content. It may be preferably 0.015 to 0.080, even more preferably 0.020 to 0.050, and even more preferably 0.030 to 0.045.
  • a method of supporting (impregnating) mineral acid a method of bringing an aqueous solution of mineral acid into contact with activated carbon can be used.
  • a method of bringing the mineral acid aqueous solution into contact with the activated charcoal a method of immersing and impregnating the activated charcoal in the mineral acid aqueous solution, a method of sprinkling the mineral acid aqueous solution on the activated charcoal in a shower form, a method of spraying the mineral acid aqueous solution, or the like can be used.
  • a method of impregnating an aqueous solution of mineral acid with an aqueous solution of mineral acid is preferable in order to support the mineral acid.
  • the activated carbon is impregnated with activated carbon in an aqueous solution of mineral acid to adsorb the mineral acid in the pores of the activated carbon, and then the excess mineral acid is washed with water or an organic solvent to remove the activated carbon so that the activated carbon is supported by the mineral acid.
  • mineral acid various mineral acids described above can be used, but it is preferable to use at least one selected from the group consisting of hydrochloric acid, sulfuric acid, and phosphoric acid.
  • the concentration of the aqueous mineral acid solution is not particularly limited, but 0.1 to 3N (specified) is appropriate.
  • the temperature at which the mineral acid is impregnated is not particularly limited, and may be carried out in the range of 5 to 80 ° C.
  • the temperature of the mineral acid aqueous solution is preferably in the range of 20 to 80 ° C. If the temperature is too low, the diffusion of water into the pores of the activated carbon is slow, which is advantageous for the adsorption of mineral acids, but it is not preferable because there is a possibility of a difference in homogeneity. Further, if the temperature is too high, the diffusion of water into the pores of the activated carbon becomes fast, but it is not preferable because the amount of mineral acid attached to the surface may decrease due to the increase in the vapor pressure of water.
  • the time for impregnating the mineral acid by a method such as immersion is not particularly limited because it is affected by the concentration of the aqueous mineral acid solution and the temperature of the impregnation, but from the viewpoint of sufficient adsorption and fixation, from the viewpoint of sufficient adsorption and fixation. It may be in the range of 0.1 to 10 hours, preferably in the range of 0.2 to 6 hours, and more preferably in the range of 0.5 to 3 hours. If the immersion time is too long, it is economically difficult because the occupancy time of the device becomes long, and if it is too short, the diffusion of mineral acid into the pores tends to be insufficient.
  • the washing a method of washing the activated carbon by filtration with water and / or an organic solvent, a method of immersing the activated carbon in water and / or an organic solvent, and gently stirring can be used.
  • the solution used for washing may be washed until the pH reaches 5 to 7.
  • organic solvent examples include hydrocarbons such as hexane, heptane, octane, cyclohexane and toluene, alcohols such as methanol, ethanol, propanol, isopropanol and butanol, and cyclic ethers such as tetrahydrofuran, tetrahydropyran and 1,4-dioxane.
  • hydrocarbons such as hexane, heptane, octane, cyclohexane and toluene
  • alcohols such as methanol, ethanol, propanol, isopropanol and butanol
  • cyclic ethers such as tetrahydrofuran, tetrahydropyran and 1,4-dioxane.
  • Classes, lactones such as butyrolactone and pyron, dimethylsulfonide, sulforane, petroleum ether, petroleum naph
  • washing may be performed in multiple stages from the viewpoint of controlling the amount of water.
  • the first washing may be carried out with water
  • the second washing may be carried out with an organic solvent.
  • the above-mentioned mineral acid can be added as an aqueous solution to adjust the water content at the time of drying, or the water content can be adjusted by adding a predetermined amount of water after drying.
  • the method of drying is not particularly limited, and it can be dried by heating, dried by reduced pressure, or a combination of these can be dried.
  • the drying temperature varies depending on the form of the activated carbon and the like, but may be in the range of 80 to 200 ° C., more preferably 100 to 160 ° C., still more preferably 120 in consideration of the condensation of the mineral acid that volatilizes at the same time. It may be in the range of ⁇ 150 ° C.
  • the pressure may be in the range of 14 Torr to atmospheric pressure (760 Torr), more preferably 140 Torr to atmospheric pressure, and even more preferably 200 Torr to atmospheric pressure.
  • the drying time in the present invention cannot be unconditionally specified because it is affected by conditions such as the drying temperature, but for example, when drying under atmospheric pressure, it may be in the range of 1 to 60 hours, which is economical and the product. From the viewpoint of suppressing variation, the range may be 3 to 40 hours, more preferably 5 to 20 hours.
  • drying may be performed in multiple stages from the viewpoint of controlling the amount of water.
  • the drying temperature in the first drying may be 115 to 200 ° C, preferably 120 to 160 ° C.
  • the drying temperature in the second drying can be adjusted according to the type of cleaning liquid used for the cleaning after the first drying, but may be, for example, 80 to 105 ° C., preferably 80 to 105 ° C. It may be 100 ° C.
  • the atmosphere for carrying out mineral acid impregnation and drying is not particularly limited, and can be carried out in the atmosphere, and can be carried out under an inert gas such as nitrogen or argon.
  • the mercury adsorbent thus obtained is not particularly limited in terms of storage method, and is preferably stored in a humidity-controlled environment. However, since it is not particularly hygroscopic, it is stored in a normal environment. You can also do it.
  • the mercury adsorbent of the present invention can be used in various forms as long as it can be used for liquid hydrocarbons, but in order to remove mercury and mercury compounds contained in the liquid hydrocarbons, Further, in the case of adsorption on a medium having a large difference in specific gravity, it is preferable to use the method as a fixed bed filled with a mercury adsorbent in the adsorption tower in order to avoid crushing the activated charcoal by stirring.
  • the particle size of the mercury adsorbent of the present invention can be appropriately adjusted according to the mode of use, but when it is used as a fixed bed filled in an adsorption tower, it is preferably 4.75 to 0.15 mm, more preferably 1. It may be .70 to 0.50 mm.
  • the particle size of the mercury adsorbent indicates the particle size obtained by sieving.
  • the mercury adsorbent of the present invention can be used in a method for removing mercury and / or a mercury compound contained in a liquid hydrocarbon.
  • the removal method is a method of adsorbing and removing mercury and / or the mercury compound by bringing the liquid hydrocarbon containing mercury and / or the mercury compound into contact with the mercury adsorbent of the present invention in the liquid phase. May be good.
  • the liquid hydrocarbon refers to a wide range of hydrocarbon compounds used for removing mercury and / or mercury compounds by a solid-liquid contact step with a solid mercury adsorbent, mainly petroleum chemistry or petroleum. In many cases, product intermediates are the target.
  • the present invention in addition to naphtha and other various petrochemical or petroleum product intermediates, which are liquid components at room temperature consisting of hydrocarbons having about 6 to 15 carbon atoms, the present invention also applies to liquefied petroleum-based and coal-based hydrocarbon compounds.
  • the mercury removal method of is applicable.
  • the method for removing mercury of the present invention can be applied to a hydrocarbon which is a gas at normal temperature and pressure and is mainly composed of a hydrocarbon having 5 or less carbon atoms such as natural gas, ethylene or propylene in a pressurized and liquefied state.
  • the method for removing hydrocarbons of the present invention can be applied to hydrocarbon compounds that are solid at room temperature and that are liquefied when heated to a liquid state.
  • liquefied natural gas LNG
  • LPG liquefied petroleum gas
  • ethylene liquefied propylene
  • olefins with 5 or less carbon atoms and naphtha are in liquid form. Since mercury and / or mercury compounds can be removed, it is highly industrially usable.
  • the hydrocarbon to be treated in the present invention may be a single component or a mixture of a plurality of components.
  • the mercury removal method of the present invention can be applied even when the chemical component of mercury contained in these liquid hydrocarbons exists as any substance containing mercury atoms such as elemental mercury, inorganic mercury, and organic mercury. can.
  • the mercury concentration in the mercury compound to be removed in the present invention is not particularly limited, and even for a mercury compound containing a large amount of mercury and / or a mercury compound, a very small amount of mercury and / or mercury.
  • the content of mercury and / or mercury compounds in petroleum-based liquid hydrocarbons such as naphtha, which is mainly the target of treatment, is very small and is often about 0.002 to 10 mg / kg, but the mercury removal method of the present invention adsorbs. Since it is a method, it is suitable for removing impurities having a minute concentration.
  • the mercury adsorbent of the present invention may have a mercury adsorption amount of 0.75 mg / g or more when contacted with light naphtha containing mercury and / or a mercury compound having a mercury concentration of 100 ⁇ g / kg, for example. , It may be preferably 0.80 mg / g or more, and more preferably 0.90 mg / g or more.
  • the amount of mercury adsorbed is a value measured by the method described in Examples described later.
  • the activated carbon before carrying the acid was subjected to elemental analysis based on the inert gas dissolution method using an oxygen / nitrogen / hydrogen analyzer "EMGA-930" manufactured by HORIBA, Ltd.
  • the detection method of the device is oxygen: Inert gas melting-non-dispersion infrared absorption method (NDIR), calibration is performed with Ni capsule, SS-3 (oxygen standard sample), and pretreatment is 250 ° C., about 250 ° C. 20 mg dried in 10 minutes was taken in a Ni capsule, degassed in an analyzer for 30 seconds, and then measured. The test was analyzed with 3 samples, and the average value was used as the analysis value of oxygen content.
  • NDIR Inert gas melting-non-dispersion infrared absorption method
  • ⁇ Ion content> The adsorbent sample was burned with a trace chlorine sulfur analyzer "TOX-10 ⁇ ” manufactured by Mitsubishi Chemical Corporation, and the generated gas was absorbed by ion-exchanged water to prepare an analytical sample. Using an ion chromatograph device "DX-120" manufactured by Dionex Co., Ltd., the chloride ion and phosphate ion contents (ppm) were measured using a sodium carbonate / sodium hydrogen carbonate aqueous solution as an eluent.
  • the adsorbent sample was brought into contact with light naphtha (hydrocarbons of C6 to C9) containing mercury and a mercury compound, and the amount of mercury adsorbed by the adsorbent was measured. Specifically, 10 g of the adsorbent was immersed in light naphtha having a mercury concentration of 100 ⁇ g / kg, and after 2 hours with gentle stirring, the mercury concentration in light naphtha was measured.
  • Amount of mercury adsorbed (mg / g) (Amount of mercury in light naphtha before adsorption-Amount of mercury in light naphtha after adsorption) / Amount of adsorbent used ... (1)
  • the mercury adsorption performance of the adsorbent was evaluated according to the following criteria. ⁇ : 1 mg / g or more ⁇ : 0.75 mg / g or more ⁇ : 0.25 mg / g or more ⁇ : less than 0.25 mg / g
  • ⁇ Corrosive appearance test> Take 20 g of the adsorbent sample in a glass petri dish, bury a 20 mm ⁇ 20 mm ⁇ 2 mm SS300 test piece in the adsorbent sample, leave it at room temperature for 7 days with the lid covered with glass, and take it out after 7 days. The appearance of the test piece was evaluated according to the following criteria. ⁇ : No change ⁇ : Slightly cloudy ⁇ : Cloudy on the entire surface ⁇ : Corrosion marks on points
  • Carbides obtained by carbonizing coconut shells were sized into 4 to 10 mesh (particle size 1.7 mm or more and 4.75 mm or less) and used as a raw material for granular activated carbon.
  • This raw material carbide was activated with propane combustion gas (gas composition (volume%): nitrogen gas 70%, oxygen gas 0.2%, carbon dioxide gas 19.8%, water vapor 10%) at 870 ° C. for 2 hours, and then activated. It was cooled to 200 ° C. or lower in a gas having the same composition.
  • the activated carbon thus obtained was crushed to obtain granular activated carbon having a particle size of 10 to 32 mesh (particle size 0.5 mm or more and 1.7 mm or less).
  • the ash content (residue on ignition) of the obtained activated carbon was 2.5% by weight.
  • the specific surface area of the obtained activated carbon is 1490 m 2 / g, the total pore volume is 279 cm 3 / g, the pore volume with a pore radius of 8 ⁇ or less is 120 cm 3 / g, the oxygen content is 3.2 wt%, and the carbon content is carbon.
  • the specific surface area of the obtained activated carbon is 1490 m 2 / g
  • the total pore volume is 279 cm 3 / g
  • the pore volume with a pore radius of 8 ⁇ or less is 120 cm 3 / g
  • the oxygen content is 3.2 wt%
  • the carbon content is carbon.
  • Granular activated carbon was obtained in the same manner as in Reference Example 1 except that the gas composition used for activating the raw material carbide was changed to 50% nitrogen gas, 0.2% oxygen gas, 19.8% carbon dioxide gas, and 30% water vapor.
  • the specific surface area of the resulting activated carbon 1570m 2 / g, total pore volume 291cm 3 / g, pore radius 8 ⁇ following pore volume of 107cm 3 / g, oxygen content 2.94wt%, an amount of carbon 94 It was .7 wt%.
  • Granular activated carbon was obtained in the same manner as in Reference Example 1 except that the gas composition used for activating the raw material carbide was changed to 25% nitrogen gas, 0.2% oxygen gas, 19.8% carbon dioxide gas, and 55% water vapor.
  • the specific surface area of the obtained activated carbon is 1610 m 2 / g
  • the total pore volume is 302 cm 3 / g
  • the pore volume with a pore radius of 8 ⁇ or less is 48 cm 3 / g
  • the oxygen content is 2.56 wt%
  • the carbon content is 94. It was 9.9 wt%.
  • Example 1 100 g of activated carbon obtained in Reference Example 1 is immersed in 1 L of 1 N hydrochloric acid at 25 ° C. for 1.5 hours to adsorb hydrochloric acid, and then washed with 5 L of distilled water by filtration until the pH of the washing water reaches 6. Then, it was dried in the air at 120 ° C. for 10 hours. Further, the mixture was washed with 1 L of light naphtha (hydrocarbon of C6 to C9) and dried again in the air at 90 ° C. for 10 hours to obtain an adsorbent. Table 2 shows the results of measuring the water content and chlorine content of the obtained adsorbent, as well as the results of the mercury adsorption amount evaluation and the corrosive appearance test.
  • Example 2 An adsorbent was prepared by the same method as in Example 1 except that the activated carbon of Reference Example 2 was used. Table 2 shows the results of various evaluations.
  • Example 3 An adsorbent was prepared by the same method as in Example 1 except that hydrochloric acid was changed to phosphoric acid as the supporting acid. Table 2 shows the results of various evaluations.
  • Example 4 An adsorbent was prepared by the same method as in Example 1 except that the drying time during drying after washing with distilled water and before washing with light naphtha was changed to 4 hours. Table 2 shows the results of various evaluations.
  • Example 1 An adsorbent was prepared by the same method as in Example 1 except that the activated carbon of Reference Example 3 was used. Table 2 shows the results of various evaluations.
  • Example 2 An adsorbent was prepared by the same method as in Example 1 except that the drying temperature at the time of drying after washing with distilled water and before washing with light naphtha was changed to 110 ° C. and the drying time was changed to 12 hours. Table 2 shows the results of various evaluations.
  • the adsorbents of Examples 1, 2 and 4 carry hydrochloric acid on activated carbon having a specific surface area and a pore volume of 8 ⁇ or less in a pore radius within a specific range, and have a specific water content. Because it is adjusted, the adsorptivity of trace amounts of mercury and mercury compounds contained in light naphtha is very excellent, and the corrosiveness of steel materials can be suppressed, and the stability of long-term use is excellent. ing. In addition, it can be seen that no organic mercury was detected in the light naphtha after the adsorption test, and all of it was adsorbed by the adsorbent.
  • the mineral acid supported on the activated charcoal is phosphoric acid, but as in Example 1 in which hydrochloric acid is supported, the adsorptivity of mercury and the mercury compound is very excellent, and the long-term is long-term. Excellent stability in use.
  • Comparative Examples 1 and 4 since activated carbon having a pore radius of 8 ⁇ or less and a small pore volume is used, the adsorptivity of mercury and the mercury compound is inferior to that of the adsorbents of Examples 1, 2 and 4. .. Further, the adsorbent of Comparative Example 4 is not suitable for actual use because the amount of oxygen is relatively small and water cannot be retained, or the steel material is corroded.
  • Comparative Example 2 Although the adsorbent of Comparative Example 2 is excellent in the adsorptivity of mercury and mercury compounds, the water content cannot be adjusted to a specific range, so that the corrosion of steel materials cannot be suppressed. It cannot be said that it is sufficient when considering long-term use.
  • the mercury adsorbent of the present invention is useful for removing mercury and / or mercury compounds in hydrocarbons such as naphtha and other various petrochemical or petroleum product intermediates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

液体炭化水素中に含まれる水銀及び/又は水銀化合物を効率良く吸着・除去することができるとともに、長期的に使用する場合であっても腐食作用を抑制できる水銀吸着剤を提供する。前記水銀吸着剤は、比表面積が1000m2/g以上であり、細孔半径が8Å以下のミクロポアの容積が80cm3/g以上である活性炭に鉱酸が担持されており、水分量が0.1~3重量%である。

Description

水銀吸着剤及びその製造方法 関連出願
 本願は、日本国で2020年3月17日に出願した特願2020-046208の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。
 本発明は、液体炭化水素中に存在する水銀及び/又は水銀化合物を吸着するために用いられる水銀吸着剤、並びにその製造方法に関する。
 従来からナフサ等の液体炭化水素を水素添加等によって改質する場合には、パラジウムを担持させたアルミナ系の触媒等が使用されている。この際、液体炭化水素中に不純物として水銀や水銀化合物が存在すると、触媒が被毒するため水素添加反応が阻害される。また、水銀は多くの金属と容易にアマルガムを形成する性質があるため、例えば、液体炭化水素の処理装置にアルミニウムをベースにした合金を使用した場合、水銀はアマルガムを形成して処理装置の腐食を誘発する危険性がある。これらのことから、液体炭化水素中の水銀や水銀化合物を除去することが要望されている。
 水銀や水銀化合物を除去する方法として、活性炭、ゼオライト、アルミナ等の多孔質吸着剤を使用し、物理吸着によって液体炭化水素中の無機水銀を除去する方法があるが、この方法には、水銀の除去率が低いこと、及び水銀の濃度が10ppb以下と低い場合には吸着能力が極端に低下するという問題点があった。
 また、従来から多孔質吸着剤に硫黄を担持させた水銀吸着剤が報告されている。このような吸着剤は、水銀と硫黄との反応によって水銀が除去されることが知られている。従来、活性炭等の多孔体に硫黄を担持させる方法としては、硫黄単体を担持させるか、或いはチオフェン等の有機硫黄化合物を担持させることが一般的であった。しかしながら、液体炭化水素は、石油製品中間体として水素添加工程で処理されることが多く、硫黄や有機硫黄化合物が含まれていると、水素添加触媒を被毒させるため除去する必要があり好ましくない。
 このような問題点に鑑みて、多孔質吸着剤に酸を担持させた水銀吸着剤が報告されている。例えば、特許文献1(特許第3537581号公報)には、細孔半径が8Å以下のミクロポアの容積が80ml/g以上である活性炭に酸を担持せしめてなる液体炭化水素中の水銀化合物吸収剤が開示されている。
特許第3537581号公報
 しかしながら、特許文献1には、酸成分が液体炭化水素中にほとんど溶出しない特徴を有していることが記載されているものの、気相中への酸成分の放出については言及されていない。酸成分が気相中に放出される場合、水銀吸着剤を長期的に使用するに当たり、処理設備の耐食性を考慮する必要がある。
 したがって、本発明の目的は、ナフサ等の液体炭化水素中に含まれる微量の水銀及び/又は水銀化合物を効率良く吸着・除去することができるとともに、長期的に使用する場合であっても腐食作用を抑制できる水銀吸着剤を提供することである。
 本発明の発明者らは、上記目的を達成するために鋭意検討した結果、意外なことに、鉱酸を担持させた水銀吸着剤に含まれる水が、水銀吸着剤が気相中で引き起こす腐食作用に影響していることを見出した。そして、さらに研究を行った結果、特定の比表面積及び特定の細孔分布を有する活性炭に対して鉱酸を担持させ、かつ、水分量を特定の範囲に調整することにより、液体炭化水素中の水銀及び/又は水銀化合物を効率良く吸着・除去することができるとともに、気相中で水銀吸着剤が有する腐食能を抑制できることを見出し、本発明の完成に至った。
 すなわち、本発明は、以下の態様で構成されうる。
〔態様1〕
 比表面積が1000m2/g以上(好ましくは1000~2500m2/g、より好ましくは1200~2000m2/g、更に好ましくは1300~1700m2/g、更により好ましくは1400~1600m2/g)であり、細孔半径が0.8nm(8Å)以下のミクロポアの容積が80cm3/g以上(好ましくは90cm3/g以上、より好ましくは100cm3/g以上)である活性炭に鉱酸が担持されており、水分量が0.1~3重量%(好ましくは0.2~2.9重量%、より好ましくは0.2~2.8重量%、更に好ましくは0.3~2.5重量%)である、液体炭化水素中の水銀及び/又は水銀化合物を吸着するために用いられる水銀吸着剤。
〔態様2〕
 前記活性炭の酸素量と炭素量との重量比(O/C)が0.010~0.100(好ましくは0.015~0.080、より好ましくは0.020~0.050、更に好ましくは0.030~0.045)である、態様1に記載の水銀吸着剤。
〔態様3〕
 熱分解イオンクロマトグラフィー法にて計測される、塩化物イオン、臭化物イオン、リン酸イオン、亜リン酸イオン、硫酸イオン及び亜硫酸イオンからなる群より選択される少なくとも一種の検出量が1000~5000ppm(好ましくは1200~4000ppm、より好ましくは1500~3500ppm、更に好ましくは2300~3500ppm)である、態様1又は2に記載の水銀吸着剤。
〔態様4〕
 前記鉱酸が塩酸、硫酸及びリン酸からなる群より選択される少なくとも1種である、態様1~3のいずれか一態様に記載の水銀吸着剤。
〔態様5〕
 比表面積が1000m2/g以上(好ましくは1000~2500m2/g、より好ましくは1200~2000m2/g、更に好ましくは1300~1700m2/g、更により好ましくは1400~1600m2/g)であり、細孔半径が0.8nm(8Å)以下のミクロポアの容積が80cm3/g以上(好ましくは90cm3/g以上、より好ましくは100cm3/g以上)である活性炭に鉱酸水溶液を接触させる工程と、水分量を0.1~3重量%(好ましくは0.2~2.9重量%、より好ましくは0.2~2.8重量%、更に好ましくは0.3~2.5重量%)に調整する工程と、を少なくとも備える、態様1~4のいずれか一態様に記載の水銀吸着剤の製造方法。
〔態様6〕
 前記活性炭の酸素量と炭素量との重量比(O/C)が0.010~0.100(好ましくは0.015~0.080、より好ましくは0.020~0.050、更に好ましくは0.030~0.045)である、態様5に記載の水銀吸着剤の製造方法。
〔態様7〕
 態様1~4のいずれか一態様に記載の水銀吸着剤を、水銀及び/又は水銀化合物を含む液体炭化水素と接触させて水銀及び/又は水銀化合物を吸着させる、水銀吸着剤の使用方法。
 本明細書において、「水銀及び/又は水銀化合物」は、単体としての金属水銀や、無機水銀(イオン状水銀等)、有機水銀等、液体炭化水素中に存在する水銀原子を含むあらゆる形態の物質を含む。なお、本明細書において、「水銀吸着剤」とは、水銀及び/又は水銀化合物を吸着する吸着剤を意味し、「水銀及び/又は水銀化合物吸着剤」と同義である。
 なお、請求の範囲及び/又は明細書に開示された少なくとも2つの構成要素のどのような組み合わせも、本発明に含まれる。特に、請求の範囲に記載された請求項の2つ以上のどのような組み合わせも本発明に含まれる。
 本発明の水銀吸着剤は、液体炭化水素中の水銀及び/又は水銀化合物を効率良く吸着・除去することができるとともに、長期的に使用する場合であっても腐食作用を抑制できる。
[水銀吸着剤]
 本発明の水銀吸着剤は、活性炭に鉱酸が担持されている。ここで使用する担体の活性炭は、比表面積が1000m2/g以上である。特定の大きい比表面積を有する活性炭を用いることにより、鉱酸の担持に有用であるだけでなく、水分量を保持させることが可能となる。活性炭の比表面積は、好ましくは1000~2500m2/g、より好ましくは1200~2000m2/g、更に好ましくは1300~1700m2/g、更により好ましくは1400~1600m2/gであってもよい。なお、活性炭の比表面積は、BET法により測定した比表面積であり、後述の実施例に記載した方法により測定される値である。
 本発明に用いられる活性炭は、水銀吸着性能を向上する観点から、細孔半径8Å以下の細孔容積が80cm3/g以上である。活性炭の細孔半径8Å以下の細孔容積は、好ましくは90cm3/g以上、より好ましくは100cm3/g以上であってもよい。また、活性炭の細孔半径8Å以下の細孔容積の上限は特に限定されないが、例えば、200cm3/g以下であってもよい。本発明において、活性炭の細孔分布及び細孔容積は、液体窒素温度(77K)での窒素吸着等温線より算出することができ、具体的には、後述の実施例に記載した方法により測定される。
 本発明に用いられる活性炭は、水分量保持及び水銀吸着性能向上の観点から、全細孔容積が100~1000cm3/gであってもよく、好ましくは150~800cm3/g、より好ましくは200~500cm3/gであってもよい。
 本発明に用いられる活性炭は、酸素量と炭素量との重量比O/Cが0.010~0.100であることが好ましい。活性炭に含まれる酸素は、基本的には疎水性である炭素材質の親水性を高めるだけでなく、鉱酸成分を保持する有用な機能を有する。活性炭の酸素量と炭素量との重量比O/Cは、好ましくは0.015~0.080、より好ましくは0.020~0.050、さらに好ましくは0.030~0.045であってもよい。重量比O/Cが高すぎる場合、担体としての機械強度が損なわれ、工業的に製造が難しい傾向にあることに加え、含水しやすくなり、水分量の調整が難しくなる傾向にある。重量比O/Cが低すぎる場合、十分に親水性を示さない場合があり、活性炭が十分な水分量を保持できず、添着した鉱酸を維持できず、処理装置の腐食を引き起こす可能性がある。
 活性炭(鉱酸担持前の活性炭)の酸素量及び炭素量は、後述の実施例に記載した方法により鉱酸を担持する前の活性炭に対して測定される値である。この値は、酸素及び炭素を有しない鉱酸(例えば塩酸)の場合は、鉱酸担持後の活性炭を測定しても、同じ値であるが、酸素及び/又は炭素を有している鉱酸を担持した活性炭を測定対象とする場合、その鉱酸の種類に応じて、その鉱酸が有する酸素原子及び炭素原子以外の原子(例えば、硝酸に含まれる窒素等)の含有量、又はその鉱酸自体の含有量を別途測定することにより、鉱酸担持前の活性炭の酸素量及び炭素量を算出することができる。すなわち、鉱酸担持前の活性炭の酸素量及び炭素量は、鉱酸担持後の活性炭の酸素量及び炭素量の元素分析結果から、その鉱酸に由来する酸素量及び炭素量をそれぞれ差し引くことにより算出することができる。例えば、鉱酸がリン酸、硫酸である場合、自動燃焼・吸収装置(三菱ケミカルアナリテック製、「AQF-2100H」)及びイオンクロマトグラフ(Thermo Fisher scientific製、「ICS-2100」)を用いて、含有されているリン酸分、硫酸分を別途定量し、鉱酸担持後の活性炭の酸素量の元素分析結果から、リン酸、硫酸に由来する酸素量を差し引くことにより鉱酸担持前の活性炭の酸素量を算出することができる。
 本発明に用いられる活性炭は、灰分(強熱残分)が0.1~5重量%であってもよく、好ましくは0.3~4重量%、より好ましくは0.5~3重量%であってもよい。
 本発明において、活性炭に担持させる鉱酸は、水銀吸着性能を有する限り特に限定されず、塩酸、臭化水素酸等の水素酸、硫酸、亜硫酸、硝酸、リン酸、亜リン酸、ホウ酸等のオキソ酸が挙げられ、これらの鉱酸はそれぞれ単独で、或いは2種以上を組み合わせて用いることができる。水銀及び/又は水銀化合物の吸着性が高く、液体炭化水素と接触させた場合に脱着して液に溶出したり、或いは化学変化したりするおそれがないものが好ましく、これらの観点から、塩酸、硫酸、及びリン酸からなる群より選択される少なくとも1種が好ましく、塩酸がより好ましい。本明細書において、鉱酸を単に酸と称する場合がある。
 本発明の水銀吸着剤は、水分量が0.1~3重量%である。水銀吸着剤に含まれている水分により奏されるメカニズムは定かではないが、特定の活性炭に所定量の水が含まれると活性炭表面に水膜を形成して、活性炭に担持されている鉱酸の電離を促すのではないかと考えられる。水膜と一体化した鉱酸のイオン種は、液体炭化水素中に存在する無機水銀、有機水銀と反応して、これらを吸着させる。その一方で、水膜とともに活性炭と強固に固着された鉱酸のイオン種は、液体炭化水素中に溶出、又は気化で外部へ放出することなく、水銀吸着剤中にとどまることになる。その結果、水銀や水銀化合物の吸着性能を向上させることができるだけでなく、水銀吸着剤中の鉱酸イオンに由来する機器や処理設備の腐食を抑制することができると考えられる。水銀吸着剤の水分量は、好ましくは0.2~2.9重量%、より好ましくは0.2~2.8重量%、更に好ましくは0.3~2.5重量%であってもよい。なお、水銀吸着剤の水分量は、水銀吸着剤の全重量に対する水銀吸着剤に含まれる水分重量の割合(重量%)を示し、具体的には、後述の実施例に記載した方法により測定される値である。
 本発明の水銀吸着剤は、熱分解イオンクロマトグラフィー法にて計測される、塩化物イオン、臭化物イオン、リン酸イオン、亜リン酸イオン、硫酸イオン及び亜硫酸イオンからなる群より選択される少なくとも一種の検出量が1000~5000ppmであってもよい。上記イオンの検出量としては、1200~4000ppmが好ましく、1500~3500ppmがより好ましく、2300~3500ppmが更に好ましい。水銀吸着剤のイオン量が低すぎる場合、水銀や水銀化合物との反応性が小さく、吸着性能が低くなる傾向がある。高すぎる場合、反応により生成した水銀化合物が、担体活性炭に固着されずに無機水銀化合物として、液体炭化水素中で凝集析出する危険性が高くなるため好ましくない。
 本発明の水銀吸着剤において、鉱酸成分は、通常強固に炭素表面に固着されており、水銀吸着剤をイオン交換水中に分散させても、添加した鉱酸に由来するイオンを検出することはほとんどない。その存在形態については定かではないが、担体活性炭中の灰分と何らかの相互作用により強固に固着している一方で、上述のように燃焼イオンクロマトグラフィー法では、イオン化されて検出されることから、灰分との反応により塩を形成していることはないと考えられる。
 本発明の水銀吸着剤の水分量(好ましくは、水分量及び熱分解イオンクロマトグラフィー法にて計測されるイオン量)を上記範囲に収めれば、室温下で金属を腐食することもなく、表層からイオンの遊離を起こすことがないため、水の混入による保管設備の腐食を懸念する必要がなく、工業的に使用するうえで優れている。
[水銀吸着剤の製造方法]
 本発明の水銀吸着剤の製造方法は、比表面積が1000m2/g以上であり、細孔半径が8Å以下のミクロポアの容積が80cm3/g以上である活性炭を鉱酸水溶液に接触させる工程と、水分量を0.1~3重量%に調整する工程と、を少なくとも備えていてもよい。
 本発明で担体として使用される活性炭は、上述の比表面積及び細孔容積を有する限り、その製造方法は特に限定されず、例えば、活性炭の原料となる炭素質原料の炭化物に対して、水蒸気或いは二酸化炭素により高温で賦活するガス賦活や、塩化亜鉛、リン酸、或いは濃硫酸処理等で賦活する薬品賦活等が挙げられる。
 炭素質原料は、活性炭の原料として周知のものを用いることができ、例えば、各種植物材料の幹、茎部、葉部、果実部等の植物系原料(例えば、ヤシ殻、珈琲豆、茶葉、藁、籾殻、イネ、ムギ、サトウキビ、トウモロコシ、みかん、バナナ、木材等の植物由来材料;シダ植物、コケ植物、藻類由来材料;セルロース、リグニン、リグノセルロース等の植物材料加工品等の植物系原料)、石炭、石炭ピッチ、石油ピッチ等の鉱物系原料、フェノール樹脂、アクリル樹脂、フラン樹脂、メラミン樹脂等の合成樹脂系原料等を挙げることができる。これらの炭素質原料を、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。鉱酸成分の担持を考慮すると、ヤシ殻、木材を用いることが好ましい。
 炭素質原料の炭化方法としては特に限定されないが、窒素、ヘリウム、アルゴン、一酸化炭素等の不活性ガス、これら不活性ガスの混合ガス、又はこれら不活性ガスを主成分とする他のガスとの混合ガスの雰囲気下、例えば、400~800℃程度の温度で乾留する方法が挙げられる。
 炭素質原料の炭化物の賦活は、活性炭表層の酸素量の制御や経済性を考慮すると、少なくとも水蒸気を含有したガス下でガス賦活により行うことが好ましい。賦活用ガスには、水蒸気の他にも二酸化炭素、窒素、酸素等を使用することができ、例えば、水蒸気及び二酸化炭素を含有する賦活用ガスで賦活してもよい。賦活用ガスの水蒸気含有率は40体積%以下であってもよく、好ましくは35体積%以下、より好ましくは30体積%以下であってもよい。賦活用ガスの水蒸気含有率の下限は特に限定されないが、例えば、1体積%以上であってもよい。常法では、賦活用ガスの組成は、水蒸気含有率40~60体積%で行われ、それより高い場合も多い。それは、水蒸気による炭素質原料の炭化物の賦活速度が二酸化炭素より著しく速いため、賦活ガスの組成は水蒸気分圧がなるべく高くなる様に設定されているからである。上記賦活用ガスの組成は、常法に比べて著しく賦活速度を遅くしたマイルドな条件で賦活することが可能である。
 また、賦活の条件としては、賦活ガスの組成や、所望の比表面積、細孔分布等によって適宜調整することが可能であるが、例えば、賦活温度は、600~1200℃であってもよく、好ましくは700~1100℃、より好ましくは750~1000℃であってもよい。賦活時間は、0.1~10時間であってもよく、好ましくは0.5~7時間、より好ましくは1~5時間であってもよい。
 賦活後も賦活時と同様の組成のガス中で300℃以下(好ましくは200℃以下)迄冷却した後、系外に取り出してさらに比表面積や細孔分布を調整してもよく、例えば、不活性ガス下で熱処理してもよい。熱処理によって炭素質組織が焼締められるいわゆる焼締効果により、活性炭の細孔径を小さくすることが可能となる。そのような焼締効果を発揮させるために、熱処理温度としては、500~1000℃であってもよく、好ましくは500~950℃、より好ましくは500~900℃であってもよい。また、熱処理時間は熱処理温度によって異なるが、例えば、500℃の場合、20~180分程度が好ましく、800℃の場合、5~60分程度が好ましい。
 また、賦活ガスの水蒸気含有率を低くして比表面積及び細孔分布を調整する方法以外にも、炭素質原料の炭化物を常法で賦活した後、上述のような熱処理を施すことにより比表面積や細孔分布を調整することが可能である。例えば、常法により得られた活性炭を、さらに実質的に酸素及び/又は水蒸気を含まないガス下で500℃以上の温度で熱処理し、同様のガス下で300℃以下の温度迄冷却することにより比表面積及び細孔分布を調整した特定の活性炭を製造してもよい。実質的に酸素及び/又は水蒸気を含まないガスとしては、窒素、二酸化炭素又はこれらの混合ガスを用いることができ、活性炭表面に結合した酸素原子が存在しないような雰囲気であればよく、酸素及び水蒸気が1~2体積%以下の状態であってもよい。上述のような熱処理温度、熱処理時間の条件により、焼締効果を得ることができ、また、特定の組成の雰囲気で熱処理することにより、炭素質表面の酸化による減量を防ぎ、細孔径減少効果を得ることができる。ここで、「常法により得られた活性炭」とは、水蒸気含有率40体積%より高い賦活ガス下で賦活し、賦活後充分に冷却する以前に賦活炉から取り出して、空気に接触させる従来の製法で得られた活性炭を意味する。
 上述のような条件下で得られた活性炭は、比表面積が大きく、細孔半径が小さい領域の細孔が高度に発達した構造を有するものであり、この様な微小な領域の細孔容積を特定量有することにより、高い水銀の吸着性能を示すものと考えられる。細孔半径8Å以下の細孔容積を更に高めるためには、賦活ガス中の水蒸気の比率を15体積%以下にして、細孔半径8Å以下の細孔容積比率の低下を抑えながら、更に賦活度を高める条件が好ましい。
 また、活性炭の形状は、破砕炭、造粒炭或いは顆粒炭(粒状炭)の何れでも効果は認められるが、圧損失及び吸着容量、入替等取扱上の点から粒状炭又は造粒炭が好ましい。例えば、造粒炭は、常法に従って炭素材料100部に30~60部の石油ピッチ、コールタール或いはポリマー等をバインダーとして加え、混和成型後賦活して調製することができる。
 得られる活性炭は、比表面積が1000m2/g以上であり、細孔半径が8Å以下のミクロポアの容積が80cm3/g以上であるが、比表面積及び細孔半径が8Å以下のミクロポアの容積は、それぞれ上述の好ましい範囲に調整されたものであってもよい。
 また、本発明の水銀吸着剤の製造方法では、特定の水分量に調整する観点から、酸素量と炭素量との重量比O/Cが0.010~0.100である活性炭を用いることが好ましく、より好ましくは0.015~0.080、さらに好ましくは0.020~0.050、さらにより好ましくは0.030~0.045であってもよい。
 本発明において、鉱酸を担持(添着)させる方法として、活性炭に鉱酸水溶液を接触させる方法を用いることができる。活性炭に鉱酸水溶液を接触させる方法として、活性炭を鉱酸水溶液へ浸漬・含浸させる方法の他、鉱酸水溶液を活性炭にシャワー状で振り掛ける方法又は噴霧状で吹き付ける方法等を用いることができるが、鉱酸を担持するために、鉱酸水溶液に含浸させる方法が好ましい。例えば、鉱酸水溶液中に活性炭を含浸して活性炭の細孔に鉱酸を吸着させた後、過剰の鉱酸を水或いは有機溶媒で洗浄して除去することにより、活性炭に鉱酸を担持させることができる。鉱酸としては、上述した種々の鉱酸を用いることができるが、塩酸、硫酸、及びリン酸からなる群より選択される少なくとも1種を用いることが好ましい。鉱酸水溶液の濃度は、特に限定されないが、0.1~3N(規定)が適当である。鉱酸を水溶液として使用することにより、後述の乾燥時に水銀吸着剤の水分量を調整することが可能となる。
 本発明において、鉱酸を添着する温度としては、特に限定されるものではなく、5~80℃の範囲で実施されてもよい。鉱酸を水溶液として使用する場合、鉱酸水溶液の温度は、20~80℃の範囲が好ましい。温度が低すぎる場合、活性炭細孔中への水の拡散が遅く、鉱酸の吸着には有利であるものの、均質性に差が生じるおそれがあるため好ましくない。また、温度が高すぎる場合、活性炭細孔中への水の拡散は速くなるものの、水の蒸気圧の上昇によって、鉱酸の表面添着量が低下するおそれがあるため好ましくない。
 本発明において、浸漬等の方法により、鉱酸を添着する時間は、鉱酸水溶液の濃度や添着の温度の影響を受けるため、特に限定されるものではないが、十分に吸着固定させる観点から、0.1~10時間の範囲であってもよく、好ましくは0.2~6時間、より好ましくは0.5~3時間の範囲であってもよい。浸漬時間が長すぎる場合、装置の占有時間が長くなるため経済的に難しく、短すぎる場合、細孔内への鉱酸の拡散が十分でない傾向にある。
 鉱酸を担持させた活性炭は、水及び/又は有機溶媒で洗浄することにより、未吸着の過剰な鉱酸を除去することが好ましい。未吸着の鉱酸が存在すると、液体炭化水素中に鉱酸が溶出してしまい、以後の石油化学工程等における触媒の被毒やアマルガム生成による腐食のおそれがあるため好ましくない。洗浄は、活性炭を水及び/又は有機溶媒でろ過により洗浄する方法や、活性炭を水及び/又は有機溶媒中に浸漬して、緩やかに撹拌する方法等を用いることができる。担持させる鉱酸の種類によって異なるが、例えば、洗浄に供した液のpHが5~7になるまで洗浄してもよい。また、有機溶媒としては、ヘキサン、ヘプタン、オクタン、シクロヘキサン、トルエンなどの炭化水素類、メタノール、エタノール、プロパノール、イソプロパノール、ブタノールなどのアルコール類、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサンなどの環状エーテル類、ブチロラクトン、ピロンなどのラクトン類、ジメチルスルホキシド、スルホラン、石油エーテル、石油ナフサ(軽質、重質)等が挙げられる。
 本発明において、水分量の制御の観点から、洗浄は多段で行ってもよい。例えば、洗浄を二段で行う場合、第一の洗浄を水で行い、乾燥した後に、第二の洗浄を有機溶媒で行ってもよい。第二の洗浄を有機溶媒で行うことによって、乾燥では除去しきれなかった余分な水分を除去し、活性炭の水分量を0.1~3重量%に調整しやすくなる。
 活性炭を特定の水分量に調整する方法としては、上述の鉱酸を水溶液として添加し、乾燥時に水分量を調整することもできるし、乾燥後に、水を所定量添加することで水分量を調整することもできるが、均一な乾燥状態が得られる観点からは、鉱酸水溶液を含浸した後、脱液、乾燥して、水分量を0.1~3重量%に調整することが好ましい。乾燥の方法は特に限定されるものではなく、加熱により乾燥することも、減圧により乾燥することもでき、これらを組み合わせて乾燥することもできる。乾燥温度としては、活性炭の形態等によって条件は異なるが、同時に揮発する鉱酸の凝縮を勘案し、80~200℃の範囲であってもよく、より好ましくは100~160℃、更に好ましくは120~150℃の範囲であってもよい。圧力としては、14Torr~大気圧(760Torr)の範囲、より好ましくは140Torr~大気圧、更に好ましくは200Torr~大気圧の範囲であってもよい。
 本発明における乾燥時間は、乾燥温度等の条件により影響をうけるため一概に規定できないが、例えば、大気圧下で乾燥する場合、1~60時間の範囲であってもよく、経済性と製品のばらつき抑制の観点から3~40時間、より好ましくは5~20時間の範囲であってもよい。
 本発明において、水分量の制御の観点から、乾燥は多段で行ってもよい。例えば、乾燥を二段で行う場合、第一の乾燥後、上述のような洗浄を再度行い、その後、第二の乾燥を行ってもよい。この場合、第一の乾燥における乾燥温度は115~200℃であってもよく、好ましくは120~160℃であってもよい。また、第二の乾燥における乾燥温度は、第一の乾燥後の洗浄に用いた洗浄液の種類に応じて調整することができるが、例えば、80~105℃であってもよく、好ましくは80~100℃であってもよい。
 鉱酸添着、乾燥を実施する雰囲気としては、特に限定されることは無く、大気下で実施することができ、また、窒素、アルゴン等の不活性ガス下で実施することができる。
 このようにして得られた水銀吸着剤は、保存方法に関して特に限定されるものではなく、調湿された環境に保管することが好ましいが、特に吸湿性が高くないため、通常の環境下に保管することもできる。
[水銀吸着剤の使用方法/水銀及び/又は水銀化合物の除去方法]
 本発明の水銀吸着剤の使用形態としては、液体炭化水素に対して使用できる限り種々の形態として使用することができるが、液体炭化水素中に含まれている水銀や水銀化合物を除去するため、また、比重差の大きい媒体での吸着では撹拌により活性炭の破砕を避けるため、水銀吸着剤を吸着塔に充填した固定床として使用する方法が好ましい。
 本発明の水銀吸着剤の粒径は、使用形態に応じて適宜調整することができるが、吸着塔に充填した固定床として使用する場合、好ましくは4.75~0.15mm、より好ましくは1.70~0.50mmであってもよい。本発明において、水銀吸着剤の粒径は、ふるい分けによる粒径を示す。
 本発明の水銀吸着剤は、液体炭化水素中に含まれる水銀及び/又は水銀化合物を除去する方法に使用することができる。具体的には、除去方法は、水銀及び/又は水銀化合物を含む液体炭化水素と、液相で本発明の水銀吸着剤を接触させることにより水銀及び/又は水銀化合物を吸着除去する方法であってもよい。ここで、液体炭化水素とは、固形物である水銀吸着剤と固-液接触工程によって水銀及び/又は水銀化合物を除去するために使用される広範囲な炭化水素化合物をいい、主として石油化学或いは石油製品の中間体がその対象となる場合が多い。例えば、ナフサ、その他各種石油化学或いは石油製品中間体等で炭素数が凡そ6~15の炭化水素からなる常温で液状の成分の他、液化した石油系及び石炭系炭化水素化合物等にも本発明の水銀除去方法を適用することが出来る。
 更に、天然ガス、エチレン又はプロピレン等の主として炭素数5以下の炭化水素からなる常温常圧で気体である炭化水素は、加圧して液化した状態で本発明の水銀除去方法を適用することができ、常温では固体の炭化水素化合物は、加温して液体状態となるものは液化した状態で本発明の水銀除去方法を適用することができる。
 特に液化天然ガス(LNG)、液化石油ガス(LPG)及び液化エチレン、液化プロピレン等の炭素数5以下の液化オレフィン及びナフサ等は液状であるため、そのまま本発明の水銀吸着剤と接触させることにより水銀及び/又は水銀化合物を除去できるので、工業的な利用性が高い。本発明の処理の対象となる炭化水素は単一成分でも良いし、複数成分の混合物でも良い。
 これらの液体炭化水素中に含まれる水銀の化学的成分は単体水銀、無機水銀、有機水銀等水銀原子を含むいかなる物質として存在している場合にも、本発明の水銀除去方法を適用することができる。本発明で除去の対象となる炭化水素化合物中の水銀濃度は特に限定せず、多量の水銀及び/又は水銀化合物を含有する炭化水素化合物に対しても、また、ごく微量の水銀及び/又は水銀化合物を含有する炭化水素化合物に対しても、本発明の水銀除去方法を適用することにより、許容範囲である極めて微小な濃度にまで水銀及び/又は水銀化合物を除去することができる。主として処理の対象となるナフサ等石油系の液体炭化水素中の水銀及び/又は水銀化合物含有量は微量で、0.002~10mg/kg程度の場合が多いが、本発明の水銀除去方法は吸着法であるから、微小な濃度の不純物の除去には好適である。水銀及び/又は水銀化合物を除去する際、要すれば液体炭化水素中のスラッジ等を、予め濾過膜やフィルター等で濾過し、スラッジとともに濾別される水銀を除去しておくことが好ましい。
 本発明の水銀吸着剤は、例えば、水銀濃度が100μg/kgである水銀及び/又は水銀化合物を含むライトナフサに接触させた場合の水銀吸着量が、0.75mg/g以上であってもよく、好ましくは0.80mg/g以上、より好ましくは0.90mg/g以上であってもよい。なお、水銀吸着量は、後述の実施例に記載した方法により測定される値である。
 以下、実施例により本発明をより詳細に説明するが、本発明は本実施例により何等限定されるものではない。なお、以下の実施例において、各種物性は下記の方法により測定したものを示す。
<比表面積>
 酸担持前の活性炭を真空脱気した後、マイクロトラック・ベル社製窒素吸着量測定装置「BELSORP-MAX」を使用し、77Kでの窒素吸着等温線を測定し、得られた吸着等温線からBET法により比表面積(m2/g)を求めた。
<細孔容積>
 酸担持前の活性炭を真空脱気した後、マイクロトラック・ベル社製窒素吸着量測定装置「BELSORP-MAX」を使用し、相対圧P/P0(P:吸着平衡にある吸着質の気体の圧力、P0:吸着温度における吸着質の飽和蒸気圧)が0.93までの窒素吸着量を測定して得られた77Kでの窒素吸着等温線に対してNL-DFT法を適用することにより細孔分布を算出し、全細孔容積(cm3/g)及び細孔半径8Å以下の細孔容積(cm3/g)を求めた。
<元素分析:炭素量>
 酸担持前の活性炭について、パーキンエルマー社製2400II型CHNS元素分析装置を用いて元素分析を行った。1800℃下、純酸素中で完全燃焼し、フロンタルクロマトグラフィーにより測定した。試験は3検体で分析し、その平均値を炭素量の分析値とした。
<元素分析:酸素量>
 酸担持前の活性炭について、株式会社堀場製作所製、酸素・窒素・水素分析装置「EMGA-930」を用いて、不活性ガス溶解法に基づいて元素分析を行った。当該装置の検出方法は、酸素:不活性ガス融解-非分散型赤外線吸収法(NDIR)であり、校正は、Niカプセル、SS-3(酸素標準試料)で行い、前処理として250℃、約10分で乾燥した20mgをNiカプセルに取り、分析装置内で30秒脱ガスした後に測定した。試験は3検体で分析し、その平均値を酸素量の分析値とした。
<水分量>
 吸着剤試料1gについて、三菱化学アナリテック社製カールフィッシャー水分計CA-310を使用し、250℃に加熱し、窒素気流下で電量滴定法に基づいて水分量(重量%)を測定した。
<イオン含有量>
 吸着剤試料を三菱化学製微量塩素硫黄分析計「TOX-10Σ」で燃焼させ、発生ガスをイオン交換水に吸収させて分析試料を作製した。ダイオネクス社製イオンクロマトグラフ装置「DX-120」を使用し、炭酸ナトリウム/炭酸水素ナトリウム水溶液を溶離液として、塩化物イオン、リン酸イオン含有量(ppm)を測定した。
<水銀吸着量評価>
 吸着剤試料を、水銀及び水銀化合物を含むライトナフサ(C6~C9の炭化水素)と接触させ、吸着剤の水銀吸着量を測定した。具体的には、水銀濃度が100μg/kgのライトナフサ中に吸着剤10gを浸漬して、緩やかに撹拌しながら2時間経過後、ライトナフサ中の水銀濃度を測定した。ライトナフサ中の水銀濃度は、日本インスツルメンツ社製還元気化原子吸光光度計「RA3420」で測定し、下記の式(1)から吸着剤による水銀吸着量を算出した。
 水銀吸着量(mg/g)=(吸着前のライトナフサ中の水銀量-吸着後のライトナフサ中の水銀量)/使用吸着剤量・・・(1)
 そして、吸着剤の水銀吸着性能を以下の判断基準で評価を行った。
 ◎:1mg/g以上
 ○:0.75mg/g以上
 △:0.25mg/g以上
 ×:0.25mg/g未満
<腐食性外観試験>
 吸着剤試料20gをガラスシャーレに取り、20mm×20mm×2mmのSS300製テストピースを吸着剤試料中に埋没してガラスにて蓋をした状態で7日間室温下に放置し、7日後取り出して、以下の判定基準でテストピースの外観評価を行った。
 ◎:変化なし
 〇:わずかに曇りあり
 △:全面に曇りあり
 ×:点上の腐食痕あり
[参考例1]
 ヤシ殻を乾留した炭化物を4~10メッシュ(粒径1.7mm以上、4.75mm以下)に整粒して粒状活性炭の原料とした。この原料炭化物をプロパン燃焼ガス(ガス組成(体積%):窒素ガス70%、酸素ガス0.2%、炭酸ガス19.8%、水蒸気10%)を用いて870℃で2時間賦活した後、同一組成のガス中で200℃以下迄冷却した。この様にして得られた活性炭を破砕し10~32メッシュ(粒径0.5mm以上、1.7mm以下)の粒状活性炭を得た。得られた活性炭の灰分(強熱残分)は2.5重量%であった。また、得られた活性炭の比表面積は1490m2/g、全細孔容積は279cm3/g、細孔半径8Å以下の細孔容積は120cm3/g、酸素量は3.2wt%、炭素量は94.1wt%であった。
[参考例2]
 原料炭化物の賦活で用いたガス組成を窒素ガス50%、酸素ガス0.2%、炭酸ガス19.8%、水蒸気30%に変更した以外は参考例1と同様に粒状活性炭を得た。得られた活性炭の比表面積は1570m2/g、全細孔容積は291cm3/g、細孔半径8Å以下の細孔容積は107cm3/g、酸素量は2.94wt%、炭素量は94.7wt%であった。
[参考例3]
 原料炭化物の賦活で用いたガス組成を窒素ガス25%、酸素ガス0.2%、炭酸ガス19.8%、水蒸気55%に変更した以外は参考例1と同様に粒状活性炭を得た。得られた活性炭の比表面積は1610m2/g、全細孔容積は302cm3/g、細孔半径8Å以下の細孔容積は48cm3/g、酸素量は2.56wt%、炭素量は94.9wt%であった。
[参考例4]
 参考例1で得られた粒状活性炭を窒素下、800℃、1.5時間で再加熱を行い、粒状活性炭を得た。得られた活性炭の比表面積は1350m2/g、全細孔容積は244cm3/g、細孔半径8Å以下の細孔容積は72cm3/g、酸素量は1.69wt%、炭素量は93.8wt%であった。
Figure JPOXMLDOC01-appb-T000001
[実施例1]
 参考例1で得た活性炭100gを25℃で1Nの塩酸1Lに1.5時間浸漬して塩酸を吸着させた後、ろ過により蒸留水5Lで洗浄し、洗浄水のpHが6になるまで洗浄し、大気下、120℃で10時間乾燥した。更にライトナフサ(C6~C9の炭化水素)1Lで洗浄し、再び大気下、90℃で10時間乾燥し、吸着剤を得た。得られた吸着剤の水分量、及び塩素量を測定した結果、並びに水銀吸着量評価及び腐食性外観試験の結果を表2に示す。
[実施例2]
 参考例2の活性炭を用いた以外は、実施例1と同様の方法により吸着剤を作製した。各種評価結果を表2に示す。
[実施例3]
 担持する酸として塩酸をリン酸に変更した以外は、実施例1と同様の方法により吸着剤を作製した。各種評価結果を表2に示す。
[実施例4]
 蒸留水での洗浄後、ライトナフサでの洗浄前の乾燥時の乾燥時間を4時間に変更した以外は、実施例1と同様の方法により吸着剤を作製した。各種評価結果を表2に示す。
[比較例1]
 参考例3の活性炭を用いた以外は、実施例1と同様の方法により吸着剤を作製した。各種評価結果を表2に示す。
[比較例2]
 蒸留水での洗浄後、ライトナフサでの洗浄前の乾燥時の乾燥温度を110℃、乾燥時間を12時間に変更した以外は、実施例1と同様の方法により吸着剤を作製した。各種評価結果を表2に示す。
[比較例3]
 酸を添着しなかった以外は、実施例1と同様の方法により吸着剤を作製した。各種評価結果を表2に示す。
[比較例4]
 参考例4の活性炭を用いた以外は、実施例1と同様の方法により吸着剤を作製した。各種評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1、2及び4の吸着剤は、比表面積及び細孔半径8Å以下の細孔容積が特定の範囲にある活性炭に塩酸を担持するとともに、特定の水分量に調整されているため、ライトナフサ中に含まれる微量の水銀及び水銀化合物の吸着性が非常に優れており、さらに、鋼材の腐食性を抑制することができており、長期使用の安定性に優れている。また、吸着試験後のライトナフサ中には有機水銀は検出されず、すべて吸着剤に吸着されていることが分かる。
 また、実施例3の吸着剤は、活性炭に担持した鉱酸がリン酸であるが、塩酸を担持させた実施例1と同様に、水銀及び水銀化合物の吸着性が非常に優れており、長期使用の安定性に優れている。
 一方、比較例1及び4では、細孔半径8Å以下の細孔容積が小さい活性炭を使用しているため、実施例1、2及び4の吸着剤より水銀及び水銀化合物の吸着性に劣っている。また、比較例4の吸着剤は、酸素量が比較的少なく、水を保持できないためか、鋼材が腐食してしまい、実使用に適したものとはいえない。
 比較例2の吸着剤は、水銀及び水銀化合物の吸着性に優れているものの、水分量を特定の範囲に調整することができていないため、鋼材の腐食を抑制することができておらず、長期使用を考慮した場合には十分とはいえない。
 比較例3の吸着剤は、酸を担持させていないため、水銀及び水銀化合物の吸着性が十分でない。
 本発明の水銀吸着剤は、ナフサ、その他各種石油化学或いは石油製品中間体等の炭化水素中の水銀及び/又は水銀化合物の除去に有用である。
 以上のとおり、本発明の好適な実施態様を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更及び修正を容易に想定するであろう。したがって、そのような変更及び修正は、請求の範囲から定まる発明の範囲内のものと解釈される。

Claims (7)

  1.  比表面積が1000m2/g以上であり、細孔半径が0.8nm以下のミクロポアの容積が80cm3/g以上である活性炭に鉱酸が担持されており、水分量が0.1~3重量%である、液体炭化水素中の水銀及び/又は水銀化合物を吸着するために用いられる水銀吸着剤。
  2.  前記活性炭の酸素量と炭素量との重量比(O/C)が0.010~0.100である、請求項1に記載の水銀吸着剤。
  3.  熱分解イオンクロマトグラフィー法にて計測される、塩化物イオン、臭化物イオン、リン酸イオン、亜リン酸イオン、硫酸イオン及び亜硫酸イオンからなる群より選択される少なくとも一種の検出量が1000~5000ppmである、請求項1又は2に記載の水銀吸着剤。
  4.  前記鉱酸が塩酸、硫酸及びリン酸からなる群より選択される少なくとも1種である、請求項1~3のいずれか一項に記載の水銀吸着剤。
  5.  比表面積が1000m2/g以上であり、細孔半径が0.8nm以下のミクロポアの容積が80cm3/g以上である活性炭に鉱酸水溶液を接触させる工程と、水分量を0.1~3重量%に調整する工程と、を少なくとも備える、請求項1~4のいずれか一項に記載の水銀吸着剤の製造方法。
  6.  前記活性炭の酸素量と炭素量との重量比(O/C)が0.010~0.100である、請求項5に記載の水銀吸着剤の製造方法。
  7.  請求項1~4のいずれか一項に記載の水銀吸着剤を、水銀及び/又は水銀化合物を含む液体炭化水素と接触させて水銀及び/又は水銀化合物を吸着させる、水銀吸着剤の使用方法。
PCT/JP2021/005481 2020-03-17 2021-02-15 水銀吸着剤及びその製造方法 WO2021186980A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21771342.9A EP4122884A4 (en) 2020-03-17 2021-02-15 MERCURY ADSORBENT AND PRODUCTION METHOD THEREFOR
CN202180021833.4A CN115209985B (zh) 2020-03-17 2021-02-15 汞吸附剂和其制造方法
JP2021532352A JP6999067B1 (ja) 2020-03-17 2021-02-15 水銀吸着剤及びその製造方法
JP2021207241A JP2022046600A (ja) 2020-03-17 2021-12-21 水銀吸着剤及びその製造方法
US17/945,195 US20230026065A1 (en) 2020-03-17 2022-09-15 Mercury adsorbent and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-046208 2020-03-17
JP2020046208 2020-03-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/945,195 Continuation US20230026065A1 (en) 2020-03-17 2022-09-15 Mercury adsorbent and method for producing same

Publications (1)

Publication Number Publication Date
WO2021186980A1 true WO2021186980A1 (ja) 2021-09-23

Family

ID=77768066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005481 WO2021186980A1 (ja) 2020-03-17 2021-02-15 水銀吸着剤及びその製造方法

Country Status (5)

Country Link
US (1) US20230026065A1 (ja)
EP (1) EP4122884A4 (ja)
JP (2) JP6999067B1 (ja)
CN (1) CN115209985B (ja)
WO (1) WO2021186980A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459365B1 (ja) 2023-11-29 2024-04-01 大阪ガスケミカル株式会社 炭素質材料及びその製造方法、並びにパラジウム錯体の吸着方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210078585A (ko) * 2019-12-18 2021-06-29 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 알파올레핀의 정제방법 및 이를 위한 알파올레핀 정제용 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537581B1 (ja) 1970-02-24 1978-03-18
JPS63247639A (ja) * 1987-04-03 1988-10-14 Gastec:Kk 半導体製造用ガスの分析用捕集材
JPH0940971A (ja) * 1995-07-27 1997-02-10 Taiyo Sekiyu Kk 液体炭化水素中の水銀除去方法
JPH09239265A (ja) * 1996-03-04 1997-09-16 Kuraray Chem Corp 水銀吸着剤
JP2011143359A (ja) * 2010-01-15 2011-07-28 Kuraray Chemical Co Ltd 複合ガス吸着材、複合ガス吸着材組成物、およびそれを用いた吸着フィルター
JP2013539413A (ja) * 2010-08-30 2013-10-24 アルベマール・コーポレーシヨン 燃料燃焼時に生成される排出物から水銀を除去するための改良された吸着剤

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202003A (ja) * 1997-01-26 1998-08-04 Taiyo Eng Kk 水銀吸着剤およびそれを用いる炭化水素油中の水銀の除去方法
MX353962B (es) * 2006-08-23 2018-02-06 Carbon Solutions Inc Star Carbono activado impregnado con acido y metodos para formar y utilizar el mismo.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537581B1 (ja) 1970-02-24 1978-03-18
JPS63247639A (ja) * 1987-04-03 1988-10-14 Gastec:Kk 半導体製造用ガスの分析用捕集材
JPH0940971A (ja) * 1995-07-27 1997-02-10 Taiyo Sekiyu Kk 液体炭化水素中の水銀除去方法
JPH09239265A (ja) * 1996-03-04 1997-09-16 Kuraray Chem Corp 水銀吸着剤
JP2011143359A (ja) * 2010-01-15 2011-07-28 Kuraray Chemical Co Ltd 複合ガス吸着材、複合ガス吸着材組成物、およびそれを用いた吸着フィルター
JP2013539413A (ja) * 2010-08-30 2013-10-24 アルベマール・コーポレーシヨン 燃料燃焼時に生成される排出物から水銀を除去するための改良された吸着剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4122884A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459365B1 (ja) 2023-11-29 2024-04-01 大阪ガスケミカル株式会社 炭素質材料及びその製造方法、並びにパラジウム錯体の吸着方法

Also Published As

Publication number Publication date
CN115209985A (zh) 2022-10-18
US20230026065A1 (en) 2023-01-26
JPWO2021186980A1 (ja) 2021-09-23
EP4122884A1 (en) 2023-01-25
CN115209985B (zh) 2024-02-09
EP4122884A4 (en) 2024-05-29
JP2022046600A (ja) 2022-03-23
JP6999067B1 (ja) 2022-01-18

Similar Documents

Publication Publication Date Title
JP3537581B2 (ja) 水銀吸着剤
JP2649024B2 (ja) 液体炭化水素中の水銀除去方法
US20230026065A1 (en) Mercury adsorbent and method for producing same
Joshi et al. Preparation and characterization of activated carbon from lapsi (Choerospondias axillaris) seed stone by chemical activation with potassium hydroxide
US6514907B2 (en) Bromine-impregnated activated carbon and process for preparing the same
US5098880A (en) Modified carbon molecular sieves for gas separation
Maes et al. Extracting organic contaminants from water using the metal–organic framework Cr III (OH)·{O 2 C–C 6 H 4–CO 2}
CN106040174B (zh) 用于吸附病毒和/或细菌的吸附剂、碳/聚合物复合物以及吸附板
EP0481218B1 (en) A process for making modified carbon molecular sieve adsorbents
US20100113266A1 (en) Mercury adsorbent and process for production thereof
JPS5946130A (ja) 元素硫黄を含浸させた炭素含有吸着剤の製造方法
US20120028796A1 (en) Nicotine adsorbent, quinoline adsorbent, benzopyrene adsorbent, toluidine adsorbent, and carcinogen adsorbent
KR870002124B1 (ko) 탄소 분자체의 제조방법
Kobayashi et al. Rice hull charcoal for adsorption of cesium and strontium in aqueous solution
JP2001170482A (ja) 活性炭及びその製造方法並びにそれを使用した水の浄化処理装置
JP7004611B2 (ja) 二酸化炭素吸着材およびその製造方法
JP2022126217A (ja) 食品廃棄物のリサイクル方法
JP7450464B2 (ja) 水銀吸着材及びその製造方法
JPH08281099A (ja) 有機塩素系化合物用吸着材
US5151402A (en) Silylation of charcoal to increase its hydrophobicity
Tochetto et al. Highly efficient biosorbent produced from Syagrus romanzoffiana to be applied in water treatment
Bagreev et al. Heterogeneity of sewage sludge derived materials as a factor governing their performance as adsorbents of acidic gases
Polyakov et al. The hydrophobization of active carbons
WO2007066674A1 (ja) 炭の製造方法
JPH10202003A (ja) 水銀吸着剤およびそれを用いる炭化水素油中の水銀の除去方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021532352

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021771342

Country of ref document: EP

Effective date: 20221017