WO2021186279A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2021186279A1
WO2021186279A1 PCT/IB2021/051788 IB2021051788W WO2021186279A1 WO 2021186279 A1 WO2021186279 A1 WO 2021186279A1 IB 2021051788 W IB2021051788 W IB 2021051788W WO 2021186279 A1 WO2021186279 A1 WO 2021186279A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
semiconductor device
insulator
circuit unit
conductor
Prior art date
Application number
PCT/IB2021/051788
Other languages
English (en)
French (fr)
Inventor
岡本佑樹
大貫達也
上妻宗広
松嵜隆徳
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2022508602A priority Critical patent/JPWO2021186279A1/ja
Priority to KR1020227035369A priority patent/KR20220155329A/ko
Priority to US17/802,281 priority patent/US20230099168A1/en
Priority to CN202180022121.4A priority patent/CN115298824A/zh
Publication of WO2021186279A1 publication Critical patent/WO2021186279A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • G11C7/1096Write circuits, e.g. I/O line write drivers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored program computers
    • G06F15/80Architectures of general purpose stored program computers comprising an array of processing units with common control, e.g. single instruction multiple data processors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • G11C11/405Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with three charge-transfer gates, e.g. MOS transistors, per cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • G11C5/025Geometric lay-out considerations of storage- and peripheral-blocks in a semiconductor storage device
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1006Data managing, e.g. manipulating data before writing or reading out, data bus switches or control circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/12Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, equalising circuits, for bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/08Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/50Peripheral circuit region structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4097Bit-line organisation, e.g. bit-line layout, folded bit lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1207Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • One aspect of the present invention relates to a semiconductor device.
  • One aspect of the present invention is not limited to the above technical fields.
  • the technical field of the invention disclosed in the present specification and the like relates to a product, a method, or a manufacturing method.
  • one aspect of the invention relates to a process, machine, manufacture, or composition of matter.
  • a semiconductor device As an example of the technical field of one aspect of the present invention disclosed in the present specification and the like, a semiconductor device, a display device, a liquid crystal display device, a light emitting device, a power storage device, an image pickup device, a storage device, a signal processing device, a processor, an electronic device, and the like.
  • Systems, their driving methods, their manufacturing methods, their inspection methods, etc. can be mentioned.
  • Typical architectures include Binary Neural Network (BNN) and Ternary Neural Network (TNN), which are particularly effective for circuit scale reduction and power consumption reduction (see, for example, Patent Document 1).
  • BNN Binary Neural Network
  • TNN Ternary Neural Network
  • the problems of one aspect of the present invention are not limited to the problems listed above.
  • the issues listed above do not preclude the existence of other issues.
  • Other issues are issues not mentioned in this item, which are described below. Issues not mentioned in this item can be derived from descriptions in the description, drawings, etc. by those skilled in the art, and can be appropriately extracted from these descriptions.
  • one aspect of the present invention solves at least one of the above-listed problems and other problems. It should be noted that one aspect of the present invention does not need to solve all of the above-listed problems and other problems.
  • the calculation block may include a first drive circuit, a second drive circuit, and a third drive circuit.
  • the first drive circuit, the second drive circuit, and the third drive circuit are electrically connected to the storage circuit unit, and the arithmetic circuit unit, the first drive circuit, the second drive circuit, and the third drive circuit are the first.
  • the storage circuit unit is provided on the second layer. The first layer and the second layer have regions that overlap each other.
  • the first drive circuit may have a function of supplying data to the storage circuit unit.
  • the second drive circuit may have a function of controlling the operation of writing data to the storage circuit unit.
  • the third drive circuit may have a function of controlling the operation of reading data from the storage circuit unit.
  • the arithmetic circuit unit has a function of performing a product-sum operation, and the storage circuit unit has a function of holding data.
  • the data held by the storage circuit unit is, for example, weight data.
  • the first transistor is preferably a transistor in which silicon is contained in the semiconductor on which the channel is formed.
  • the second transistor is preferably a transistor in which an oxide semiconductor is included in the semiconductor on which the channel is formed.
  • Another aspect of the present invention is to provide a plurality of arithmetic blocks provided in a matrix of M rows and N columns (M and N are two or more natural numbers, respectively) and N first drive circuits.
  • Each of the N first drive circuits is arranged in each row, and each of the plurality of arithmetic blocks has an arithmetic circuit unit and a storage circuit unit, and the arithmetic circuit unit includes an arithmetic circuit unit and a storage circuit unit.
  • the storage circuit unit is electrically connected to the storage circuit unit, the arithmetic circuit unit and the storage circuit unit have an overlapping region, and the storage circuit unit arranged in the e-th column (e is a natural number of 1 or more and N or less) is e.
  • It is a semiconductor device that is electrically connected to the first drive circuit arranged in a row.
  • the second drive circuit may be provided so as to extend in the row direction.
  • each of the plurality of arithmetic blocks has a third drive circuit.
  • the storage circuit unit preferably has a plurality of memory cells, and the memory cells preferably include a transistor containing an oxide semiconductor in the semiconductor on which the channel is formed.
  • a semiconductor device having a reduced occupied area it is possible to provide a semiconductor device with reduced power consumption. Alternatively, it is possible to provide a semiconductor device in which the arithmetic processing speed is improved. Alternatively, a new semiconductor device can be provided.
  • FIG. 1 is a top view showing the configuration of a semiconductor device.
  • 2A and 2B are perspective views showing the configuration of a semiconductor device.
  • FIG. 3 is a perspective view showing the configuration of the semiconductor device.
  • FIG. 4A is a diagram illustrating the configuration of the calculation block.
  • 4B and 4C are diagrams showing an example of a circuit configuration of a memory cell.
  • 5A to 5C are diagrams showing an example of a circuit configuration of a memory cell.
  • 6A and 6B are diagrams showing a circuit configuration example of the arithmetic circuit.
  • FIG. 7 is a block diagram showing a configuration example of an arithmetic processing system.
  • FIG. 8A is a block diagram illustrating a sequence of arithmetic processing.
  • FIG. 8B is a diagram illustrating a data flow in arithmetic processing.
  • FIG. 9A is a block diagram illustrating a sequence of arithmetic processing.
  • FIG. 9B is a diagram illustrating a data flow in arithmetic processing.
  • FIG. 10A is a block diagram illustrating a sequence of arithmetic processing.
  • FIG. 10B is a diagram illustrating a data flow in arithmetic processing.
  • FIG. 11 is a diagram showing a modified example of the semiconductor device.
  • FIG. 12 is a diagram showing a modified example of the semiconductor device.
  • FIG. 13 is a diagram showing a modified example of the semiconductor device.
  • FIG. 14 is a diagram showing a modified example of the semiconductor device.
  • FIG. 15 is a diagram showing a modified example of the semiconductor device.
  • FIG. 16 is a diagram showing a modified example of the semiconductor device.
  • FIG. 17 is a diagram showing a modified example of the semiconductor device.
  • FIG. 18 is a diagram illustrating an operation example of the arithmetic processing system.
  • FIG. 19 is a diagram showing a configuration example of a CPU.
  • 20A and 20B are diagrams showing a circuit configuration example of a flip-flop circuit.
  • FIG. 21 is a timing chart illustrating an operation example of the CPU.
  • FIG. 22 is a diagram showing a structural example of the semiconductor device.
  • 23A and 23B are diagrams showing a configuration example of a transistor.
  • 24A and 24B are diagrams showing a configuration example of an integrated circuit.
  • 25A and 25B are diagrams showing application examples of integrated circuits.
  • 26A and 26B are diagrams showing application examples of integrated circuits.
  • 27A to 27C are diagrams illustrating an application example of an integrated circuit.
  • FIG. 28 is a diagram showing an application example of an integrated circuit.
  • the semiconductor device is a device utilizing semiconductor characteristics, and refers to a circuit including a semiconductor element (transistor, diode, photodiode, etc.), a device having the same circuit, and the like. It also refers to all devices that can function by utilizing semiconductor characteristics. For example, an integrated circuit, a chip having an integrated circuit, and an electronic component in which the chip is housed in a package are examples of semiconductor devices. Further, the storage device, the display device, the light emitting device, the lighting device, the electronic device, and the like are themselves semiconductor devices, and may have the semiconductor device.
  • an element for example, a switch, a transistor, a capacitive element, an inductor, a resistance element, a diode, a display
  • One or more devices, light emitting devices, loads, etc. can be connected between X and Y.
  • the switch is controlled in an on state and an off state. That is, the switch is in a conducting state (on state) or a non-conducting state (off state), and has a function of controlling whether or not a current flows.
  • X and Y are electrically connected, it means that X and Y are electrically connected (that is, another element between X and Y). Or when they are connected with another circuit in between) and when X and Y are directly connected (that is, they are connected without another element or another circuit between X and Y). If there is) and.
  • circuit diagram shows that independent components are electrically connected to each other, one component has the functions of a plurality of components.
  • one component has the functions of a plurality of components.
  • the term "electrically connected” as used herein includes the case where one conductive film has the functions of a plurality of components in combination.
  • the resistance value can be, for example, preferably 1 m ⁇ or more and 10 ⁇ or less, more preferably 5 m ⁇ or more and 5 ⁇ or less, and further preferably 10 m ⁇ or more and 1 ⁇ or less. Further, for example, it may be 1 ⁇ or more and 1 ⁇ 10 9 ⁇ or less.
  • the “capacitance element” means, for example, a circuit element having a capacitance value higher than 0F, a wiring region having a capacitance value higher than 0F, a parasitic capacitance, and a transistor. It can be the gate capacitance of. Therefore, in the present specification and the like, the “capacitive element” is not only a circuit element containing a pair of electrodes and a dielectric contained between the electrodes, but also a parasitic element generated between the wirings. It shall include capacitance, gate capacitance generated between one of the source or drain of the transistor and the gate, and the like.
  • the transistor has three terminals called a gate, a source, and a drain.
  • the gate is a control terminal that controls the conduction state of the transistor.
  • the two terminals that function as sources or drains are the input and output terminals of the transistor.
  • One of the two input / output terminals becomes a source and the other becomes a drain depending on the high and low potentials given to the conductive type (n-channel type, p-channel type) of the transistor and the three terminals of the transistor. Therefore, in the present specification and the like, the terms source and drain can be paraphrased with each other.
  • each gate may be referred to as a first gate, a second gate, a third gate, or the like in the present specification and the like.
  • the "on state” of the transistor means a state in which the source and drain of the transistor can be regarded as being electrically short-circuited (also referred to as “conduction state”).
  • the “off state” of the transistor means a state in which the source and drain of the transistor can be regarded as being electrically cut off (also referred to as a “non-conducting state”).
  • the “on current” may mean a current flowing between the source and the drain when the transistor is in the on state.
  • the “off current” may mean a current flowing between the source and the drain when the transistor is in the off state.
  • a node can be paraphrased as a terminal, a wiring, an electrode, a conductive layer, a conductor, an impurity region, or the like, depending on a circuit configuration, a device structure, or the like.
  • terminals, wiring, etc. can be paraphrased as nodes.
  • ground potential ground potential
  • the potentials are relative, and when the reference potential changes, the potential given to the wiring, the potential applied to the circuit or the like, the potential output from the circuit or the like also changes.
  • the "current” is a charge transfer phenomenon (electrical conduction).
  • the description “electrical conduction of a positively charged body is occurring” means “electrical conduction of a negatively charged body in the opposite direction”. Is happening. " Therefore, in the present specification and the like, “current” refers to a charge transfer phenomenon (electrical conduction) accompanying the movement of carriers, unless otherwise specified.
  • the carrier here include electrons, holes, anions, cations, complex ions, and the like, and the carriers differ depending on the system in which the current flows (for example, semiconductor, metal, electrolyte, vacuum, etc.).
  • the "current direction” in the wiring or the like shall be the direction in which the positive carrier moves, and shall be described as a positive current amount.
  • the ordinal numbers “first”, “second”, and “third” are added to avoid confusion of the components. Therefore, the number of components is not limited. Moreover, the order of the components is not limited. For example, the component referred to in “first” in one of the embodiments of the present specification and the like may be the component referred to in “second” in another embodiment or in the claims. There can also be. Further, for example, the component mentioned in “first” in one of the embodiments of the present specification and the like may be omitted in another embodiment or in the claims.
  • the terms “upper” and “lower” do not limit the positional relationship of the components to be directly above or directly below and to be in direct contact with each other.
  • the terms “electrode B on the insulating layer A” it is not necessary that the electrode B is formed in direct contact with the insulating layer A, and another configuration is formed between the insulating layer A and the electrode B. Do not exclude those that contain elements.
  • the positional relationship of the constituent elements changes as appropriate according to the direction in which each configuration is depicted. Therefore, it is not limited to the words and phrases explained in the specification and the like, and can be appropriately paraphrased according to the situation.
  • terms indicating the arrangement such as “above” and “below” may be used for convenience in order to explain the positional relationship of the components with reference to the drawings. Therefore, in the expression of "insulator located on the upper surface of the conductor”, it can be rephrased as “insulator located on the lower surface of the conductor” by rotating the direction of the drawing shown by 180 degrees. Further, in the expression of "insulator located on the upper surface of the conductor”, it can be paraphrased as "insulator located on the left side (or right side) of the conductor” by rotating the direction of the drawing shown by 90 degrees. can.
  • electrode B overlapping the insulating layer A is not limited to the state of "the electrode B is formed on the insulating layer A", but “the electrode B is formed under the insulating layer A”. It does not exclude the state of "being” or the state of "the electrode B is formed on the right side (or left side) of the insulating layer A”.
  • the terms “adjacent” and “proximity” do not limit that the components are in direct contact with each other.
  • electrode B adjacent to the insulating layer A it is not necessary that the insulating layer A and the electrode B are formed in direct contact with each other, and another component is formed between the insulating layer A and the electrode B. Do not exclude those that include.
  • membrane and layer can be interchanged with each other depending on the situation.
  • the terms “insulating layer” and “insulating film” may be changed to the term "insulator”.
  • Electrode may be used as part of a “wiring” and vice versa.
  • the terms “electrode” and “wiring” include the case where a plurality of “electrodes” and “wiring” are integrally formed.
  • a “terminal” may be used as part of a “wiring” or “electrode” and vice versa.
  • the term “terminal” includes a case where a plurality of "electrodes", “wiring”, “terminals” and the like are integrally formed.
  • terms such as “wiring”, “signal line”, and “power supply line” can be interchanged with each other in some cases or depending on the situation.
  • the reverse is also true, and it may be possible to change terms such as “signal line” and “power supply line” to the term “wiring”.
  • a term such as “power line” may be changed to a term such as "signal line”.
  • terms such as “signal line” may be changed to terms such as "power line”.
  • the term “potential” applied to the wiring may be changed to a term such as “signal” in some cases or depending on the situation.
  • the reverse is also true, and terms such as “signal” may be changed to the term “potential”.
  • the switch means a switch that is in a conductive state (on state) or a non-conducting state (off state) and has a function of controlling whether or not a current flows.
  • the switch means a switch having a function of selecting and switching a path through which a current flows.
  • an electric switch, a mechanical switch, or the like can be used. That is, the switch is not limited to a specific switch as long as it can control the current.
  • Examples of electrical switches include transistors (for example, bipolar transistors, MOS transistors, etc.), diodes (for example, PN diodes, PIN diodes, Schottky diodes, MIM (Metal Insulator Metal) diodes, and MIS (Metal Insulator Semiconductor) diodes. , Diode-connected transistors, etc.), or logic circuits that combine these.
  • transistors for example, bipolar transistors, MOS transistors, etc.
  • diodes for example, PN diodes, PIN diodes, Schottky diodes, MIM (Metal Insulator Metal) diodes, and MIS (Metal Insulator Semiconductor) diodes. , Diode-connected transistors, etc.
  • the "conducting state" of the transistor means a state in which the source electrode and the drain electrode of the transistor can be regarded as being electrically short-circuited.
  • the "non-conducting state" of the transistor means a state in which the source electrode and the drain electrode of the transistor can be regarded as being electrically cut off.
  • the polarity (conductive type) of the transistor is not particularly limited.
  • a mechanical switch is a switch using MEMS (Micro Electro Mechanical Systems) technology.
  • the switch has an electrode that can be moved mechanically, and the movement of the electrode controls conduction and non-conduction.
  • parallel means a state in which two straight lines are arranged at an angle of ⁇ 10 ° or more and 10 ° or less. Therefore, the case of ⁇ 5 ° or more and 5 ° or less is also included.
  • substantially parallel or approximately parallel means a state in which two straight lines are arranged at an angle of ⁇ 30 ° or more and 30 ° or less.
  • vertical means a state in which two straight lines are arranged at an angle of 80 ° or more and 100 ° or less. Therefore, the case of 85 ° or more and 95 ° or less is also included.
  • substantially vertical or “approximately vertical” means a state in which two straight lines are arranged at an angle of 60 ° or more and 120 ° or less.
  • a metal oxide is a metal oxide in a broad sense. Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), oxide semiconductors (also referred to as Oxide Semiconductor or simply OS) and the like. For example, when a metal oxide is used in the active layer of a transistor, the metal oxide may be referred to as an oxide semiconductor. That is, when a metal oxide can form a channel forming region of a transistor having at least one of an amplification action, a rectifying action, and a switching action, the metal oxide is referred to as a metal oxide semiconductor. be able to. Further, when describing as an OS transistor, it can be paraphrased as a transistor having a metal oxide or an oxide semiconductor.
  • a metal oxide having nitrogen may also be collectively referred to as a metal oxide. Further, a metal oxide having nitrogen may be referred to as a metal oxynitride.
  • the configuration shown in each embodiment can be appropriately combined with the configuration shown in other embodiments to form one aspect of the present invention. Further, when a plurality of configuration examples are shown in one embodiment, the configuration examples can be appropriately combined with each other.
  • the content (may be a part of the content) described in one embodiment is the other content (may be a part of the content) described in the embodiment and one or more other implementations. It is possible to apply, combine, or replace at least one content with the content described in the form of (may be a part of the content).
  • figure (which may be a part) described in one embodiment is different from another part of the figure, another figure (which may be a part) described in the embodiment, and one or more other figures.
  • the figure (which may be a part) described in the embodiment is different from another part of the figure, another figure (which may be a part) described in the embodiment, and one or more other figures.
  • more figures can be formed.
  • the components are classified according to their functions and shown as blocks independent of each other.
  • it is difficult to separate the components for each function and there may be a case where a plurality of functions are involved in one circuit or a case where one function is involved in a plurality of circuits. Therefore, the blocks in the block diagram are not limited to the components described in the specification, and can be appropriately paraphrased according to the situation.
  • the size, layer thickness, or area may be exaggerated for clarity. Therefore, it is not necessarily limited to its size and aspect ratio.
  • the drawings schematically show ideal examples, and are not limited to the shapes or values shown in the drawings. For example, it is possible to include variations in the signal, voltage, or current due to noise, or variations in the signal, voltage, or current due to timing lag.
  • the semiconductor device 100 will be described with reference to the drawings.
  • arrows indicating the X direction, the Y direction, and the Z direction may be added.
  • the X, Y, and Z directions are directions that intersect each other. More specifically, the X, Y, and Z directions are directions that are orthogonal to each other.
  • one of the X direction, the Y direction, and the Z direction may be referred to as a "first direction” or a "first direction”.
  • the other one may be referred to as a "second direction” or a "second direction”.
  • the remaining one may be referred to as a "third direction” or a "third direction”.
  • the semiconductor device 100 has a plurality of arithmetic blocks 200 arranged in a matrix of M rows and N columns (M and N are two or more natural numbers, respectively).
  • M and N are two or more natural numbers, respectively.
  • the calculation block 200 in the first row and second column is shown as a calculation block 200 [1, 2]
  • the calculation block 200 in the M row and Nth column is shown as a calculation block 200 [M, N].
  • FIG. 2B shows a perspective view of the calculation block 200.
  • the calculation block 200 includes a calculation circuit unit 210, a write bit line drive circuit 220, a write word line drive circuit 240, a read word line drive circuit 230, and a storage circuit unit 310.
  • the arithmetic block 200 is configured by using a plurality of transistors.
  • the semiconductor of the transistor included in the arithmetic block 200 a single crystal semiconductor, a polycrystalline semiconductor, a microcrystal semiconductor, an amorphous semiconductor, or the like can be used alone or in combination.
  • the semiconductor material for example, silicon, germanium, or the like can be used.
  • compound semiconductors such as silicon germanium, silicon carbide, gallium arsenide, oxide semiconductors, and nitride semiconductors may be used.
  • the semiconductor used for the transistor may be a laminate of semiconductors.
  • semiconductors having different crystal states may be laminated, or different semiconductor materials may be laminated.
  • the semiconductor material used for the semiconductor in which the transistor channel is formed is appropriately used according to the purpose and / or the application.
  • an OS transistor in combination with a Si transistor or other transistor depending on the purpose and / or application.
  • the layer 110 includes, for example, a Si transistor
  • the layer 120 includes, for example, an OS transistor.
  • the arithmetic circuit unit 210, the write bit line drive circuit 220, the write word line drive circuit 240, and the read word line drive circuit 230 which are required to have an operation speed faster than that of the storage circuit, are provided on the layer 110.
  • the layer 120 is provided with the storage circuit unit 310, which is required to have a smaller off current than the operating speed.
  • the layer 110 includes an arithmetic circuit unit 210 having M rows and N columns. Therefore, the layer 110 may be referred to as an "arithmetic circuit array”. Further, the layer 120 includes a storage circuit unit 310 of M rows and N columns. Therefore, the layer 120 may be referred to as a "memory array”. Further, the storage circuit unit 310 may be referred to as a "memory sub-array".
  • the semiconductor device 100 can be downsized. That is, since the arithmetic circuit unit 210 and the storage circuit unit 310 have a region where they overlap each other, the semiconductor device 100 can be miniaturized. Moreover, the occupied area of the semiconductor device 100 can be reduced.
  • FIG. 4A is a diagram illustrating the configuration of the calculation block 200.
  • the storage circuit unit 310 has a plurality of memory cells 320 arranged in a matrix of P rows and Q columns (P and Q are two or more natural numbers, respectively). Therefore, the memory array includes M ⁇ N ⁇ P ⁇ Q memory cells 320.
  • the memory cell 320 in the first row and the second column is shown as the memory cell 320 [1, 2]
  • the memory cell 320 in the P row and Q column is shown as the memory cell 320 [P, Q].
  • the i-th (i is a natural number of 1 or more and P or less) wiring WWL and the i-th wiring RWL are electrically connected to the Q memory cells 320 arranged in the i-th row.
  • the j-th wiring WBL (j is a natural number of 1 or more and Q or less) and the j-th wiring RBL are electrically connected to P memory cells 320 arranged in the j-th row.
  • the memory cell 320 is electrically connected to the arithmetic circuit unit 210 via the wiring RBL. Further, the memory cell 320 is electrically connected to the write bit line drive circuit 220 via the wiring WBL. Further, the memory cell 320 is electrically connected to the read word line drive circuit 230 via the wiring RWL. Further, the memory cell 320 is electrically connected to the write word line drive circuit 240 via the wiring WWL.
  • FIG. 4B shows an example of a circuit configuration that can be used for the memory cell 320.
  • the memory cell 320 illustrated in FIG. 4B has a transistor 321 and a transistor 322, and a transistor 323.
  • the gate of the transistor 321 is electrically connected to the wiring WWL.
  • One of the source or drain of transistor 321 is electrically connected to the wiring WBL and the other is electrically connected to the gate of transistor 322.
  • One of the source or drain of transistor 322 is electrically connected to a wire that provides a fixed potential, eg, ground potential, and the other is electrically connected to one of the source or drain of transistor 323.
  • the other of the source or drain of the transistor 323 is electrically connected to the wiring RBL.
  • the gate of the transistor 323 is electrically connected to the wiring RWL.
  • a node that electrically connects the other of the source or drain of the transistor 321 to the gate of the transistor 322 functions as a node SN.
  • the node SN may be provided with a capacity of 324.
  • One electrode constituting the capacitance 324 is electrically connected to the gate (node SN) of the transistor 322, and the other electrode is electrically connected to a wiring that gives a fixed potential, for example, a ground potential.
  • the oxide semiconductor has a band gap of 2 eV or more, the OS transistor has a significantly small off current. Therefore, the electric charge supplied to the node SN can be retained for a long period of time. Further, the capacity 324 can be reduced or omitted. In addition, the power consumption of the semiconductor device 100 can be reduced.
  • the transistor 321 When an OS transistor is used as the transistor 321 and a transistor other than the OS transistor is used for the transistor 322 and the transistor 323, the transistor 321 may be provided on the layer 120, and the transistor 322 and the transistor 323 may be provided on the layer 110.
  • an OS transistor may be used for the transistor 321 and the transistor 322, and the transistor 323.
  • the off-current of the OS transistor hardly increases even in a high temperature environment. Specifically, the off-current hardly increases even at an ambient temperature of room temperature or higher and 200 ° C. or lower. Further, the OS transistor has a high dielectric strength between the source and the drain. By using an OS transistor, it is possible to realize a semiconductor device having stable operation even in a high temperature environment and having good reliability.
  • a memory including an OS transistor is also referred to as an "OS memory".
  • the storage circuit unit 310 can be stacked directly above the arithmetic circuit unit 210.
  • NOSRAM Nonvolatile Oxide Semiconductor RAM
  • 2T 2-transistor type
  • 3T 3-transistor type
  • OS OS transistor
  • the NOSRAM can function as a non-volatile memory by holding the charge corresponding to the data in the memory circuit (node SN) by using the characteristic that the off current of the OS transistor is extremely small. Further, since the NO SRAM can read the held data without destroying it (non-destructive reading), it is suitable for parallel processing of the product-sum operation of a neural network in which the data reading operation is repeated many times, for example.
  • the data that can be held in the memory cell 320 is not limited to 1-bit data.
  • the memory cell 320 can hold a plurality of bits of data (multi-valued data) or analog data.
  • the circuit configuration that can be used for the memory cell 320 is not limited to the circuit configuration shown in FIGS. 4B and 4C.
  • it may be a circuit corresponding to the DOSRAM shown in FIG. 5A.
  • DOSRAM is a RAM having a 1T1C type memory cell including an OS transistor, and is an abbreviation for "Dynamic Oxide Semiconductor RAM”. Therefore, DOSRAM is a kind of OS memory.
  • a flash memory an MRAM (Magnetoresistive RAM), a PRAM (Phase change RAM), a ReRAM (Resistive RAM), a FeRAM (Ferroelectric RAM), or the like may be used.
  • MRAM Magneticoresistive RAM
  • PRAM Phase change RAM
  • ReRAM Resistive RAM
  • FeRAM Feroelectric RAM
  • the memory cell 320A shown in FIG. 5A has a transistor 321 and a capacitance 324.
  • the transistor 321 shown in FIG. 5A is an OS transistor having a back gate.
  • the memory cell 320A is electrically connected to the wiring BL, the wiring WWL, and the wiring BGL.
  • the wiring BGL is electrically connected to the back gate of the transistor 321.
  • the wiring BL may function as a wiring WBL or as a wiring RBL.
  • the circuit configuration that can be used for the memory cell 320 may be a circuit corresponding to the 2T type NO SRAM shown in FIG. 5B.
  • FIG. 5B illustrates a memory cell 320B having a transistor 321 and a transistor 322 and a capacitance 324.
  • the transistor 321 and the transistor 322 shown in FIG. 5B are OS transistors.
  • the transistor 321 and the transistor 322 may be an OS transistor in which both semiconductor layers are arranged in different layers, or an OS transistor in which both semiconductor layers are arranged in the same layer.
  • the memory cell 320B is electrically connected to the wiring WBL, the wiring RBL, the wiring WWL, the wiring RWL, the wiring SL, and the wiring BGL.
  • the wiring BGL is electrically connected to the back gate of the transistor 321.
  • one electrode constituting the capacitance 324 is electrically connected to the gate of the transistor 322, and the other electrode is electrically connected to the wiring RWL.
  • one of the source or drain of the transistor 322 is electrically connected to the wiring RBL, and the other is electrically connected to the wiring SL.
  • the circuit configuration applicable to the memory cell 320 may be a circuit in which the 3T type NO SRAM shown in FIG. 5C is combined.
  • FIG. 5C illustrates a memory cell 320C having a memory cell 320P capable of holding data having different logics and a memory cell 320N.
  • Each transistor included in the memory cell 320C is an OS transistor.
  • the memory cell 320P is electrically connected to the wiring WBL_P, the wiring RBL_P, the wiring WWL, and the wiring RWL.
  • the memory cell 320N is electrically connected to the wiring WBL_N, the wiring RBL_N, the wiring WWL, and the wiring RWL.
  • the memory cell 320P has a transistor 321P, a transistor 322P, a transistor 323P, and a capacitance 324P, and can hold information (charge) supplied to the node SNP for a long period of time.
  • the memory cell 320N has a transistor 321N, a transistor 322N, a transistor 323N, and a capacity 324N, and can hold the information (charge) supplied to the node SNN for a long period of time.
  • the semiconductor layers of the transistors included in the memory cell 320C may be arranged in different layers, or all of them may be arranged in the same layer. Further, a plurality of semiconductor layers may be arranged on the same layer.
  • the memory cell 320C can hold data having different logics in the node SNP and the node SNN. Further, the retained data can be read out via the wiring RBL_P and the wiring RBL_N.
  • an exclusive OR circuit so that the data corresponding to the multiplication of the data held in the memory cell 320P and the memory cell 320N is output to the wiring RBL (not shown in FIG. 5C).
  • RBL not shown in FIG. 5C
  • An arithmetic circuit for performing various arithmetic processing such as product-sum arithmetic processing, pooling arithmetic processing, normalization processing, and activation arithmetic processing can be applied to the arithmetic circuit unit 210.
  • a plurality of arithmetic circuits can be provided in the arithmetic circuit unit 210. Further, the arithmetic circuit unit 210 can be provided with a plurality of types of arithmetic circuits.
  • FIG. 6A shows a circuit configuration example of the arithmetic circuit 211 applicable to the arithmetic circuit unit 210.
  • FIG. 6A shows an example of a circuit configuration capable of performing a product-sum operation of 8-bit weight data W and 8-bit input data A.
  • the arithmetic circuit 211 shown in FIG. 6A has a multiplication circuit 24, an addition circuit 25, and a register 26.
  • the input data A IN and the selected weight data W SEL is converted is multiplied by the multiplication circuit 24 into 16-bit data D M, is input to the adder circuit 25.
  • the adder circuit 25, data D R, which is held in the data D M in the register 26 are added, held in the register 26 as new data D R. At this time, there are cases where the number of digits of the new data D R becomes 17 bits. Each time the above multiplication and addition are repeated, the number of digits of the new data D R may increase. Therefore, in FIG.
  • FIG. 6A a circuit configuration for performing arithmetic processing using 8-bit data has been described.
  • the arithmetic circuit 211 shown in FIG. 6A can also be applied to arithmetic processing performed using 1-bit data.
  • the circuit configuration is shown in FIG. 6B in the same manner as in FIG. 6A. If the weight data W SEL and the input data A IN is 1-bit data, the data D M generated by the multiplying circuit 24 becomes one bit data. Since other arithmetic processes are the same as those described above, further description thereof will be omitted.
  • the weight data W used in the product-sum calculation process is held in the storage circuit unit 310 provided so as to overlap the calculation circuit unit 210. Therefore, since the wiring RBL used for reading the weight data W can be shortened, the wiring resistance and the parasitic capacitance can be reduced, and high-speed reading of the weight data W can be realized. Further, the power consumption required for reading the weight data W can be reduced.
  • the semiconductor device 100 since the semiconductor device 100 according to one aspect of the present invention has a read word line drive circuit 230 for each calculation block 200, it is possible to realize a higher speed read of the weight data W.
  • the semiconductor device 100 since the semiconductor device 100 according to one aspect of the present invention has a write bit line drive circuit 220 and a write word line drive circuit 240 for each calculation block 200, high-speed writing of weight data W can be realized.
  • FIG. 7 shows a block diagram of an arithmetic processing system 1000 including a semiconductor device 100 that functions as an AI accelerator.
  • the arithmetic processing system 1000 shown in FIG. 7 includes a semiconductor device 100, a CPU 400, a bus 410, a control device 150, and a storage device 160. Further, it may have a main storage device 420, an auxiliary storage device 430, an input / output device 440, and the like.
  • the control device 150, the main storage device 420, the auxiliary storage device 430, the input / output device 440, and the like are electrically connected to the CPU 400 via the bus 410.
  • the CPU 400 has a CPU core 401 and a backup circuit 402. As described above, the semiconductor device 100 has a plurality of arithmetic blocks 200, but FIG. 7 shows one arithmetic block 200.
  • the CPU 400 has a function of performing general-purpose processing such as execution of an operating system, data control, various operations, and program execution.
  • the CPU 400 has a CPU core 401.
  • the CPU core 401 corresponds to one or more CPU cores.
  • the CPU 400 has a backup circuit 402 that can hold the data in the CPU core 401 even if the supply of the power supply voltage is stopped.
  • the supply of the power supply voltage can be controlled by electrical disconnection from the power supply domain (power domain) by a power switch or the like.
  • the power supply voltage may be referred to as a drive voltage.
  • the backup circuit 402 for example, it is preferable to use an OS memory having an OS transistor.
  • the backup circuit 402 composed of the OS transistor can be provided so as to be stacked with the CPU core 401 that can be composed of the Si transistor. Since the area of the backup circuit 402 is smaller than the area of the CPU core 401, the backup circuit 402 can be arranged on the CPU core 401 without increasing the circuit area.
  • the backup circuit 402 has a function of holding the register data of the CPU core 401.
  • the backup circuit 402 is also referred to as a data holding circuit. The details of the configuration of the CPU 400 including the backup circuit 402 having the OS transistor will be described in the third embodiment.
  • the control device 150 has a function of controlling the operation of the semiconductor device 100 that functions as an AI accelerator.
  • the control device 150 has a function of supplying a signal for controlling the writing and reading of the weight data W to the semiconductor device 100.
  • the control device 150 has a function of giving input data A to the semiconductor device 100 and causing the semiconductor device 100 to execute a product-sum calculation of a neural network or the like.
  • the control device 150 is electrically connected to the CPU 400 via the bus 410. Therefore, the semiconductor device 100 is electrically connected to the CPU 400 via the bus 410.
  • the storage device 160 has a function of holding output data obtained by the semiconductor device 100, such as the product-sum calculation result of the neural network.
  • a DRAM Dynamic Random Access Memory
  • SRAM Static Random Access Memory
  • OS memory OS memory
  • the main storage device 420 has a function of storing programs and parameters related to the operation of the arithmetic processing system 1000, and it is preferable that at least a part of the main storage device 420 is a rewritable memory.
  • the main storage device 420 can include a volatile memory such as a RAM (Random Access Memory) and a non-volatile memory such as a ROM (Read Only Memory).
  • An OS memory may be used for the main storage device 420.
  • the auxiliary storage device 430 is a storage device for storing an operating system, an application program, various data, and the like. In addition, various parameters used in the CPU 400 and the semiconductor device 100 may be stored.
  • auxiliary storage device 430 for example, a storage device to which a non-volatile storage element such as a flash memory, MRAM, PRAM, ReRAM, or FeRAM is applied, or a volatile storage element such as DRAM and / or SRAM is applied.
  • a storage device or the like may be used.
  • a recording media drive such as a hard disk drive (Hard Disk Drive: HDD) and / or a solid state drive (Solid State Drive: SSD) may be used.
  • auxiliary storage device 430 a storage device such as an HDD or SSD that can be attached and detached via the input / output device 440 may be used.
  • a media drive of a recording medium such as a flash memory, a Blu-ray disc, or a DVD can also be used as the auxiliary storage device 430.
  • the input / output device 440 has a function of controlling the input / output of signals between the external device and the arithmetic processing system 1000. Further, as an external port included in the input / output device 440, an HDMI (registered trademark) terminal, a USB terminal, a LAN (Local Area Network) connection terminal, or the like may be used. Further, the input / output device 440 may have a transmission / reception function for optical communication using infrared rays, visible light, ultraviolet rays, or the like.
  • FIG. 8A is a block diagram illustrating a sequence of arithmetic processing.
  • FIG. 8B is a diagram illustrating a data flow (flow of input data A and weight data W) of the sequence shown in FIG. 8A.
  • FIG. 8B shows a data flow between the storage circuit unit 310, the arithmetic circuit unit 210, and the storage device 160.
  • FIG. 8A shows an input layer 90A, an intermediate layer (also referred to as a hidden layer) 90B, and an output layer 90C.
  • the input layer 90A shows an input process 92 (shown as “Input”) of input data.
  • the convolution operation processing 93, the convolution operation process 94, the convolution operation process 96 (shown as “Conv.1”, “Conv.2”, “Conv.3”), the pooling operation process 95, and the pooling operation process 97 (shown as "Pool.1” and "Pool.2”) is shown.
  • the output layer 90C shows a fully coupled arithmetic process 98 (shown as “Full”).
  • the weight data initialization process 91 (shown as “W-Ini.” In the figure) is performed. Weighting data initialization process 91, a main storage device 420 or the auxiliary storage device 430 weight data W 1 to the weight data W 4 is held in, via the control unit 150 writes the storage circuit section 310 of the operation block 200.
  • the input process 92 is performed.
  • the data A 0 held in the main storage device 420 or the auxiliary storage device 430 is processed, and the data A 1 for performing the convolution calculation process 93 is generated.
  • the data A 1 is stored in the storage device 160. It is also possible to use the data held in the storage device 160 as the data A 0.
  • the convolution calculation process 93 is performed.
  • the product-sum calculation process (MAC) is performed using the weight data W 1 and the data A 1 to generate the data A 2.
  • the data A 1 is read from the storage device 160, the data A 1 is input to the calculation block 200 in which the weight data W 1 is written, and the product-sum calculation process is performed in the calculation block 200.
  • the obtained data A 2 is stored in the storage device 160.
  • the convolution calculation process 94 is performed.
  • the product-sum calculation process is performed using the weight data W 2 and the data A 2 , and the data A 3 is generated. Similar to the convolution calculation process 93, the data A 2 is read from the storage device 160, the data A 2 is input to the calculation block 200 in which the weight data W 2 is written, and the product-sum calculation process is performed in the calculation block 200. Data A 3 obtained is held in the storage device 160.
  • the pooling calculation process 95 is performed.
  • the data A 3 obtained by the convolution operation processing 94, not via the storage device 160 may be directly pooling processing.
  • the pooling operation processing 95 compresses the data A 3 obtained in the convolution process, deforms more manageable data (down sampling).
  • the pooling operation processing may be performed by the maximum pooling. Further, as the pooling calculation process, average pooling, Lp pooling, or the like may be used. Generating data A 4 by pooling operation processing 95. Data A 4 obtained is held in the storage device 160.
  • the convolution calculation process 96 is performed.
  • the product-sum calculation process is performed using the weight data W 3 and the data A 4 , and the data A 5 is generated. Similar to the convolution calculation process 94, the data A 4 is read from the storage device 160, the data A 4 is input to the calculation block 200 in which the weight data W 3 is written, and the product-sum calculation process is performed in the calculation block 200. The resulting data A 5 are held in the storage device 160.
  • the pooling calculation process 97 is performed.
  • the data A 5 obtained by the convolution operation processing 96, not via the storage device 160 may be directly pooling processing.
  • Performs pooling operation processing on the data A 5 In pooling operation processing 97 generates the data A 6.
  • the resulting data A 6 is held in the storage device 160.
  • the generated data A 6 is data from which the features of the data A 0 have been extracted.
  • the fully combined calculation process 98 is performed. Since the data A 6 is the data obtained by extracting the features of the data A 0 , it cannot be classified or identified as it is.
  • the product-sum calculation process is performed using the weight data W 4 and the data A 6 , and the data A 7 is generated. For example, by using the softmax function, it can be converted to probability of correctly classifying the data A 7 in the respective classifications.
  • the flow of arithmetic processing in the input layer 90A, the intermediate layer 90B, and the output layer 90C is an example, and in the actual arithmetic processing of the convolutional neural network, other arithmetic processing may be performed.
  • the arithmetic processing system 1000 including the semiconductor device 100 it is not necessary to perform the weight data initialization processing 91 again when performing the arithmetic processing of the convolutional neural network from the second time onward. Therefore, the power consumption and processing time required for the weight data initialization processing 91 can be reduced.
  • the semiconductor device 100 can write and hold all the weight data W used in the arithmetic processing of the convolutional neural network in the memory array (storage circuit unit 310). Since the semiconductor device 100 according to one aspect of the present invention does not need to write the weight data W every time the product-sum calculation process (convolution calculation process, etc.) is performed, the calculation process can be speeded up.
  • the semiconductor device 100 When a large weight data is supplied to the arithmetic circuit array (arithmetic circuit unit 210) via the bus 410, it is necessary to increase the bandwidth of the bus 410. Assuming that the connection via the bus 410 is a one-dimensional connection, the semiconductor device 100 according to one aspect of the present invention is provided with the arithmetic circuit unit 21 and the storage circuit unit 310 in an overlapping manner, so that a two-dimensional connection can be realized. .. That is, the semiconductor device 100 according to one aspect of the present invention can easily increase the bandwidth. Further, in the semiconductor device 100 according to one aspect of the present invention, it is easy to increase the number of parallel arithmetic circuits.
  • the semiconductor device 100 according to one aspect of the present invention has a high writing speed of weight data W. Therefore, even with the arithmetic processing as shown in FIGS. 9A and 9B, high-speed arithmetic processing can be realized.
  • the weight data initialization process 99 may be completed before the start of the fully combined operation 98.
  • 10A and 10B show a sequence and a data flow when the weight data initialization process 99 is performed during the execution of the pooling operation process 97.
  • the sequences shown in FIGS. 9 and 10 are effective when the total capacity of the weight data W (in the present embodiment, the sum of the weight data W 1 to the weight data W 4 ) is larger than the storage capacity of the memory array.
  • the semiconductor device 100 can perform various arithmetic processes, not limited to the arithmetic processing of the convolutional neural network.
  • FIG. 11 shows a top view of the semiconductor device 100A.
  • the semiconductor device 100A is a modification of the semiconductor device 100. In order to reduce duplication of description, the differences between the semiconductor device 100A and the semiconductor device 100 will be mainly described.
  • the semiconductor device 100A has a plurality of arithmetic blocks 200A arranged in a matrix of M rows and N columns (M and N are two or more natural numbers, respectively).
  • the write word line drive circuit 240 and the read word line drive circuit 230 may be arranged so as to face each other with the storage circuit unit 310 in between.
  • FIG. 12 shows a top view of the semiconductor device 100B.
  • the semiconductor device 100B is a modification of the semiconductor device 100. In order to reduce duplication of description, the differences between the semiconductor device 100B and the semiconductor device 100 will be mainly described.
  • the semiconductor device 100B includes an arithmetic block array 290 including a plurality of arithmetic blocks 200B arranged in a matrix of M rows and N columns (M and N are natural numbers of 2 or more each), a write word line drive circuit 240A, and N elements.
  • the calculation block 200B includes a calculation circuit unit 210, a read word line drive circuit 230, and a storage circuit unit 310.
  • the calculation block 200B has a configuration in which the write bit line drive circuit 220A and the write word line drive circuit 240 are removed from the calculation block 200.
  • the storage circuit unit 310 has a memory cell 320 having P rows and Q columns. Therefore, the memory array of the semiconductor device 100B includes the memory cells 320 in the R rows and S columns. In FIG. 12, the memory cell 320 in the R row and S column is shown as the memory cell 320 [R, S]. The memory cells 320 [R, S] correspond to the memory cells [P, Q] in the calculation block 200B [M, N].
  • the write word line drive circuit 240A is provided outside the arithmetic block array 290.
  • the writing word line drive circuit 240A extends in the column direction and is electrically connected to the R wiring WWL extending in the row direction (Y direction).
  • the g-th (g is a natural number of 1 or more and R or less) wiring WWL is electrically connected to S memory cells 320 arranged in the g-th row.
  • the write word line drive circuit 240A has a function of controlling the write operation of all the arithmetic blocks 200B included in the semiconductor device 100B. For example, it has a function of controlling the operation of writing the weight data W to the storage circuit unit 310 in the calculation block 200B.
  • By providing the write word line drive circuit 240A it is possible to reduce the number of M ⁇ N write word line drive circuits 240 included in the semiconductor device 100.
  • the semiconductor device 100B can further reduce the occupied area as compared with the semiconductor device 100.
  • N write bit line drive circuits 220A are provided outside the arithmetic block array 290.
  • Each of the write bit line drive circuits 220A extends in the row direction (X direction). Further, the N write bit line drive circuits 220A are arranged in a row in the row direction. Further, each of the write bit line drive circuits 220A is arranged in each column of the calculation block 200B.
  • the write bit line drive circuit 220A arranged in the first (first column) is referred to as “write bit line drive circuit 220A [1]”, and the write is arranged in the Nth (Nth column).
  • the bit line drive circuit 220A is referred to as a "write bit line drive circuit 220A [N]”.
  • the write bit line drive circuit 220A arranged in the e-th (e-th column) (e is a natural number of 1 or more and N or less) is indicated as “write bit line drive circuit 220A [e]”.
  • calculation block 200B in the first row and e column is referred to as “calculation block 200B [1, e]”
  • the calculation block 200B in the M row and e column is referred to as “calculation block 200B [M, e]”. Shown.
  • the write bit line drive circuit 220A [e] is electrically connected to the arithmetic block 200B arranged in the e-th column via the Q wiring WBL extending in the column direction (Y direction).
  • the write bit line drive circuit 220A [e] is electrically connected to the storage circuit unit 310 of each of the arithmetic blocks 200B arranged in the e-th column.
  • the jth wiring WBL is a memory possessed by each of the arithmetic blocks 200B arranged in the e-th column. It is electrically connected to the memory cell 320 in the j-th row included in the circuit unit 310.
  • the j-th wiring WBL that is electrically connected to the write bit line drive circuit 220A [e] is included in each of the calculation block 200B [1, e] to the calculation block 200B [M, e], and is included in the memory cell 320. It is electrically connected to [1, j] to the memory cell 320 [P, j].
  • the write bit line drive circuit 220A [e] has a function of supplying data to all the calculation blocks 200B arranged in the e-th column. For example, it has a function of supplying weight data W to all the storage circuit units 310 arranged in the e-th column.
  • the write bit line drive circuit 220A it is possible to reduce the number of M ⁇ N write bit line drive circuits 220 included in the semiconductor device 100.
  • the semiconductor device 100B can further reduce the occupied area as compared with the semiconductor device 100.
  • the semiconductor device 100B can reduce the occupied area as compared with the semiconductor device 100.
  • the writing time of the weight data W is longer than that of the semiconductor device 100.
  • the total calculation time is increased. It may occupy a small proportion. In such a case, it is preferable to use the configuration of the semiconductor device 100B.
  • the writing word line drive circuit 240A When the writing word line drive circuit 240A is provided inside the arithmetic block array 290, it is preferably provided at the center or near the center of the arithmetic block 200B having N rows. For example, when N is an even number, it is preferable to provide it between the calculation block 200B in the N / 2nd column and the calculation block 200B in the (N / 2) + 1st column. When N is an odd number, it is preferable to provide it between the calculation block 200B in the (N / 2) -0.5th column and the calculation block 200B in the (N / 2) +0.5th column. Alternatively, it is preferable that the writing word line drive circuit 240A is provided adjacent to the calculation block 200B in the range of N ⁇ 0.4th column or more and N ⁇ 0.6th column or less.
  • the write bit line drive circuit 220A When the write bit line drive circuit 220A is provided inside the arithmetic block array 290, it is preferably provided at the center or near the center of the arithmetic block 200B having M rows. For example, when M is an even number, it is preferable to provide it between the calculation block 200B on the M / 2nd line and the calculation block 200B on the (M / 2) + 1st line. When M is an odd number, it is preferable to provide it between the calculation block 200B on the (M / 2) -0.5 line and the calculation block 200B on the (M / 2) +0.5 line. Alternatively, it is preferable that the write bit line drive circuit 220A is provided adjacent to the calculation block 200B in the range of M ⁇ 0.4th line or more and M ⁇ 0.6th line or less.
  • the maximum connection distance between the write bit wire drive circuit 220A and the arithmetic block 200B is shortened. Therefore, the maximum connection distance between the write bit line drive circuit 220A and the memory cell 320 is shortened. By shortening the maximum connection distance, effects such as reduction of power consumption, improvement of operating speed, reduction of variation, and improvement of reliability can be obtained.
  • the semiconductor device 100E includes an arithmetic block array 290 including a plurality of arithmetic blocks 200C arranged in a matrix of M rows and N columns (M and N are natural numbers of 2 or more each), a write word line drive circuit 240A, and a read word. It has a line drive circuit 230A and N write bit line drive circuits 220A. Further, similarly to the semiconductor device 100B, in the semiconductor device 100E, the memory array includes memory cells 320 arranged in a matrix of R rows and S columns.
  • the arithmetic block 200C has an arithmetic circuit unit 210 and a storage circuit unit 310.
  • the arithmetic block 200C has a configuration in which the read word line drive circuit 230 is removed from the arithmetic block 200B.
  • the read word line drive circuit 230A is provided outside the arithmetic block array 290, like the write word line drive circuit 240A.
  • the readout word line drive circuit 230A extends in the column direction and is electrically connected to the R wiring RWL extending in the row direction.
  • the g-th wiring RWL is electrically connected to the S memory cells 320 arranged in the g-th row.
  • FIG. 16 shows a top view of the semiconductor device 100F.
  • the semiconductor device 100F is a modification of the semiconductor device 100E.
  • the write word line drive circuit 240A and the read word line drive circuit 230A may be provided so as to face each other with the arithmetic block array 290 interposed therebetween.
  • FIG. 17 shows a top view of the semiconductor device 100G.
  • the semiconductor device 100G is a modification of the semiconductor device 100E.
  • the write word line drive circuit 240A and the read word line drive circuit 230A may be provided inside the arithmetic block array 290.
  • the write word line drive circuit 240A and the read word line drive circuit 230A are provided inside the arithmetic block array 290, it is preferable to provide them in the center or near the center of the arithmetic block 200C having N rows. For example, when N is an even number, it is preferable to provide it between the calculation block 200C in the N / 2nd column and the calculation block 200C in the (N / 2) + 1st column. When N is an odd number, it is preferable to provide it between the calculation block 200C in the (N / 2) -0.5th column and the calculation block 200C in the (N / 2) +0.5th column. Alternatively, it is preferable that the writing word line drive circuit 240A is provided adjacent to the calculation block 200C in the range of N ⁇ 0.4th column or more and N ⁇ 0.6th column or less.
  • the maximum between the write word line drive circuit 240A and the read word line drive circuit 230A and the arithmetic block 200C The connection distance becomes shorter. Therefore, the maximum connection distance between the write word line drive circuit 240A and the read word line drive circuit 230A and the memory cell 320 is shortened. By shortening the maximum connection distance, effects such as reduction of power consumption, improvement of operating speed, reduction of variation, and improvement of reliability can be obtained.
  • FIG. 18 is a diagram illustrating an example of operation when a part of the calculation of the program executed by the CPU is executed by the accelerator (semiconductor device 100).
  • step S1 the host program is executed by the CPU (host program execution: step S1).
  • step S2 When the CPU confirms an instruction to allocate the data area required for performing the calculation using the accelerator in the memory circuit unit (storage circuit unit 310) (memory allocation instruction: step S2), the data. An area for use is secured in the memory circuit section (memory allocation: step S3).
  • the CPU transmits weight data, which is input data, from the main memory or the external storage device to the memory circuit unit (data transmission: step S4).
  • the memory circuit unit receives the weight data and stores the weight data in the area secured in step S2 (data reception: step S5).
  • the CPU may be switched from the state of performing arithmetic to the PG (power gating) state (PG state transition: step S8). In that case, immediately before the accelerator finishes executing the kernel program, the CPU is switched from the PG state to the state of performing the calculation (PG state stop: step S9).
  • PG state transition step S8
  • step S9 state of performing the calculation
  • step S10 When the accelerator finishes executing the kernel program, the output data is stored in the storage unit that holds the calculation result in the accelerator (completion of calculation: step S10).
  • the semiconductor device of one aspect of the present invention has a non-Von Neumann architecture, and can perform arithmetic processing with extremely low power consumption as compared with the von Neumann architecture in which power consumption increases as the processing speed increases. ..
  • FIG. 19 shows a configuration example of the CPU 400.
  • the CPU 400 includes a CPU core (CPU Core) 401, an L1 (level 1) cache memory device (L1 Cache) 403, an L2 cache memory device (L2 Cache) 404, a bus interface unit (Bus I / F) 405, and a power switch 491 ⁇ . It has 493, a level shifter 494 (LS).
  • the CPU core 401 has a flip-flop 480.
  • the CPU core 401, the L1 cache memory device 403, and the L2 cache memory device 404 are connected to each other by the bus interface unit 405.
  • the PMU193 generates a clock signal GCLK1 and various PG (power gating) control signals (PG control signals) in response to signals such as interrupt signals (Interrupts) input from the outside and signal SLEEP1 issued by the CPU 400.
  • the clock signals GCLK1 and PG control signals are input to the CPU 400.
  • the PG control signal controls the power switches 491 to 493 and the flip-flop 480.
  • the power switches 491 and 492 control the supply of the voltages VDDD and VDD1 to the virtual power supply line V_VDD (hereinafter referred to as V_ VDD line), respectively.
  • the power switch 493 controls the supply of the voltage VDDH to the level shifter 494.
  • the voltage VSSS is input to the CPU 400 and the PMU 193 without going through the power switch.
  • the voltage VDDD is input to the PMU 193 without going through the power switch.
  • the voltages VDDD and VDD1 are drive voltages for CMOS circuits.
  • the voltage VDD1 is lower than the voltage VDDD and is a driving voltage in the sleep state.
  • the voltage VDDH is a drive voltage for the OS transistor and is higher than the voltage VDDD.
  • Each of the L1 cache memory device 403, the L2 cache memory device 404, and the bus interface unit 405 has at least one power gating capable power domain.
  • a power domain capable of power gating is provided with one or more power switches. These power switches are controlled by a PG control signal.
  • the flip-flop 480 is used as a register.
  • the flip-flop 480 is provided with a backup circuit.
  • the flip-flop 480 will be described.
  • FIG. 20A shows an example of a circuit configuration of a flip-flop 480 (Flip-flop).
  • the flip-flop 480 has a scan flip-flop (Scan Flip-flop) 481 and a backup circuit (Backup Circuit) 402.
  • FIG. 20B is a perspective view showing a circuit configuration example of the flip-flop 480.
  • the scan flip-flop 481 has nodes D1, Q1, SD, SE, RT, CK, and a clock buffer circuit 481A.
  • Node D1 is a data (data) input node
  • node Q1 is a data output node
  • node SD is a scan test data input node.
  • the node SE is an input node of the signal SCE.
  • the node CK is an input node for the clock signal GCLK1.
  • the clock signal GCLK1 is input to the clock buffer circuit 481A.
  • the analog switch of the scan flip-flop 481 is connected to the nodes CK1 and CKB1 of the clock buffer circuit 481A.
  • the node RT is an input node for a reset signal.
  • the signal SCE is a scan enable signal and is generated by the PMU193.
  • PMU193 generates signals BK and RC.
  • the level shifter 494 level-shifts the signals BK and RC to generate the signals BKH and RCH.
  • the signal BK is a backup signal
  • the signal RC is a recovery signal.
  • the circuit configuration of the scan flip-flop 481 is not limited to FIG. Flip-flops provided in standard circuit libraries can be applied.
  • the backup circuit 402 includes nodes SD_IN, SN11, transistors M11 to M13, and a capacitive element C11.
  • the node SD_IN is an input node for scan test data and is connected to node Q1 of the scan flip-flop 481.
  • the node SN11 is a holding node of the backup circuit 402.
  • the capacitance element C11 is a holding capacitance for holding the voltage of the node SN11.
  • the transistor M11 controls the conduction state between the node Q1 and the node SN11.
  • the transistor M12 controls the conduction state between the node SN11 and the node SD.
  • the transistor M13 controls the conduction state between the node SD_IN and the node SD.
  • the on / off of the transistors M11 and M13 is controlled by the signal BKH, and the on / off of the transistors M12 is controlled by the signal RCH.
  • the transistors M11 to M13 are OS transistors, like the transistors 321 to 323 of the memory cell 320 described above. Transistors M11 to M13 show a configuration having a back gate. The back gates of the transistors M11 to M13 are connected to a power supply line that supplies the voltage VBG1.
  • the backup circuit 402 has a non-volatile characteristic because it can suppress a drop in the voltage of the node SN11 due to the feature of the OS transistor that the off-current is extremely small and consumes almost no power for holding data. Since the data is rewritten by charging / discharging the capacitive element C11, the backup circuit 402 is not limited in the number of rewrites in principle, and data can be written and read with low energy.
  • the backup circuit 402 can be laminated on the scan flip-flop 481 composed of the silicon CMOS circuit.
  • the backup circuit 402 Since the backup circuit 402 has a very small number of elements as compared with the scan flip-flop 481, it is not necessary to change the circuit configuration and layout of the scan flip-flop 481 in order to stack the backup circuits 402. That is, the backup circuit 402 is a highly versatile backup circuit. Further, since the backup circuit 402 can be provided in the region where the scan flip-flop 481 is formed, the area overhead of the flip-flop 480 can be reduced to zero even if the backup circuit 402 is incorporated. Therefore, by providing the backup circuit 402 on the flip-flop 480, power gating of the CPU core 401 becomes possible. Since the energy required for power gating is small, it is possible to power gate the CPU core 401 with high efficiency.
  • the backup circuit 402 By providing the backup circuit 402, the parasitic capacitance due to the transistor M11 is added to the node Q1, but since it is smaller than the parasitic capacitance due to the logic circuit connected to the node Q1, the scan flip-flop 481 operates. There is no effect. That is, even if the backup circuit 402 is provided, the performance of the flip-flop 480 does not substantially deteriorate.
  • the PMU193 when transitioning from a normal operating state to a hibernate state, the PMU193 performs voltage and / or frequency scaling. For example, when performing voltage scaling, the PMU 193 turns off the power switch 491 and turns on the power switch 492 in order to input the voltage VDD1 to the CPU core 401.
  • the voltage VDD1 is a voltage that does not cause the data of the scan flip-flop 481 to be lost.
  • PMU193 lowers the frequency of the clock signal GCLK1.
  • FIG. 21 is a timing chart illustrating an example of the power gating sequence of the CPU core 401.
  • t1 to t7 represent the time.
  • the signals PSE0 to PSE2 are control signals of the power switches 491 to 493 and are generated by the PMU193. When the signal PSE0 is “H” / “L”, the power switch 491 is on / off. The same applies to the signals PSE1 and PSE2.
  • the transistor M11 of the backup circuit 402 is turned on, and the data of the node Q1 of the scan flip-flop 481 is written to the node SN11 of the backup circuit 402. If the node Q1 of the scan flip-flop 481 is "L”, the node SN11 remains “L”, and if the node Q1 is "H”, the node SN11 becomes "H”.
  • the PMU193 sets the signals PSE2 and BK to “L” at time t2 and sets the signal PSE0 to “L” at time t3.
  • the state of the CPU core 401 shifts to the power gating state.
  • the signal PSE0 may be lowered at the timing of lowering.
  • the PMU 193 sets the signal PSE0 to “H” to shift from the power gating state to the recovery state.
  • the PMU193 sets the signals PSE2, RC, and SCE to “H” in a state where charging of the V_ VDD line is started and the voltage of the V_ VDD line becomes VDDD (time t5).
  • the transistor M12 is turned on, and the electric charge of the capacitive element C11 is distributed to the node SN 11 and the node SD. If the node SN11 is "H”, the voltage of the node SD rises. Since the node SE is “H”, the data of the node SD is written to the input side latch circuit of the scan flip-flop 481. When the clock signal GCLK1 is input to the node CK at time t6, the data of the input side latch circuit is written to the node Q1. That is, the data of the node SN11 is written to the node Q1.
  • PMU193 sets the signals PSE2, SCE, and RC to “L”, and the recovery operation ends.
  • the backup circuit 402 using the OS transistor is very suitable for normal off computing because it has low dynamic and static low power consumption.
  • a CPU 400 including a CPU core 401 having a backup circuit 402 using an OS transistor can be referred to as a NonfCPU (registered trademark).
  • the Noff CPU has a non-volatile memory and can stop the power supply when the operation is not required. Even if the flip-flop 480 is mounted, the performance of the CPU core 401 can be reduced and the dynamic power can be hardly increased.
  • the CPU core 401 may have a plurality of power domains capable of power gating.
  • the plurality of power domains are provided with one or more power switches for controlling the voltage input.
  • the CPU core 401 may have one or more power domains in which power gating is not performed.
  • a power gating control circuit for controlling the flip-flop 480 and the power switches 491 to 493 may be provided in the power domain where power gating is not performed.
  • the application of the flip-flop 480 is not limited to the CPU 400.
  • the flip-flop 480 can be applied to a register provided in a power domain capable of power gating.
  • Embodiment 4 an example of a transistor configuration applicable to the CPU 400 and the semiconductor device 100 described in the above embodiment will be described.
  • a configuration in which transistors having different electrical characteristics are laminated and provided will be described. With this configuration, the degree of freedom in designing the semiconductor device can be increased. Further, by stacking transistors having different electrical characteristics, the degree of integration of the semiconductor device can be increased.
  • FIG. 22 A part of the cross-sectional structure of the semiconductor device is shown in FIG.
  • the semiconductor device shown in FIG. 22 includes a transistor 550, a transistor 500, and a capacitive element 600.
  • FIG. 23A is a cross-sectional view of the transistor 500 in the channel length direction
  • FIG. 23B is a cross-sectional view of the transistor 500 in the channel width direction.
  • the transistor 500 corresponds to an OS transistor included in the memory cell 320 shown in the above embodiment, that is, a transistor having an oxide semiconductor in a channel forming region.
  • the transistor 550 corresponds to a Si transistor included in the arithmetic circuit unit 210 shown in the above embodiment, that is, a transistor having silicon in the channel forming region.
  • the transistor 500 is an OS transistor.
  • the OS transistor has an extremely small off current. Therefore, it is possible to hold the data voltage or electric charge written to the storage node via the transistor 500 for a long period of time. That is, since the refresh operation frequency of the storage node is reduced or the refresh operation is not required, the power consumption of the semiconductor device can be reduced.
  • the transistor 500 is provided above the transistor 550, and the capacitive element 600 is provided above the transistor 550 and the transistor 500.
  • the transistor 550 is provided on the substrate 371.
  • the substrate 371 is, for example, a p-type silicon substrate.
  • the substrate 371 may be an n-type silicon substrate.
  • the oxide layer 374 is preferably an insulating layer (also referred to as a BOX layer) formed in the substrate 371 by buried oxidation, for example, silicon oxide.
  • the transistor 550 is provided on a single crystal silicon, a so-called SOI (Silicon On Insulator) substrate, which is provided on the substrate 371 via an oxide layer 374.
  • SOI Silicon On Insulator
  • the substrate 371 of the SOI substrate is provided with an insulator 373 that functions as an element separation layer.
  • the substrate 371 also has a well region 372.
  • the well region 372 is a region to which n-type or p-type conductivity is imparted depending on the conductivity type of the transistor 550.
  • the single crystal silicon in the SOI substrate is provided with a semiconductor region 375, a low resistance region 376a that functions as a source region or a drain region, and a low resistance region 376b. Further, a low resistance region 376c is provided on the well region 372.
  • the transistor 550 can be provided so as to be superposed on the well region 372 to which the impurity element that imparts conductivity is added.
  • the well region 372 can function as a bottom gate electrode of the transistor 550 by independently changing the potential via the low resistance region 376c. Therefore, the threshold voltage of the transistor 550 can be controlled.
  • the threshold voltage of the transistor 550 can be made larger and the off-current can be reduced. Therefore, by applying a negative potential to the well region 372, the drain current when the potential applied to the gate electrode of the Si transistor is 0 V can be reduced.
  • the power consumption based on the through current or the like in the arithmetic circuit unit 210 having the transistor 550 can be reduced, and the arithmetic efficiency can be improved.
  • the transistor 550 is preferably of the so-called Fin type, in which the upper surface of the semiconductor layer and the side surface in the channel width direction are covered with the conductor 378 via the insulator 377.
  • the on-characteristics of the transistor 550 can be improved by increasing the effective channel width. Further, since the contribution of the electric field of the gate electrode can be increased, the off characteristic of the transistor 550 can be improved.
  • the transistor 550 may be either a p-channel type transistor or an n-channel type transistor.
  • the conductor 378 may function as a first gate (also referred to as a top gate) electrode. Further, the well region 372 may function as a second gate (also referred to as a bottom gate) electrode. In that case, the potential applied to the well region 372 can be controlled via the low resistance region 376c.
  • the region 376c or the like preferably contains a semiconductor such as a silicon-based semiconductor, and preferably contains single crystal silicon. Alternatively, it may be formed of a material having Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), or the like. A configuration using silicon in which the effective mass is controlled by applying stress to the crystal lattice and changing the lattice spacing may be used. Alternatively, the transistor 550 may be a HEMT by using GaAs, GaAlAs, or the like.
  • the well region 372, the low resistance region 376a, the low resistance region 376b, and the low resistance region 376c are elements that impart n-type conductivity such as arsenic and phosphorus, or boron, in addition to the semiconductor material applied to the semiconductor region 375. It contains an element that imparts p-type conductivity such as.
  • the conductor 378 that functions as a gate electrode is a semiconductor material such as silicon, a metal material, or an alloy that contains an element that imparts n-type conductivity such as arsenic or phosphorus, or an element that imparts p-type conductivity such as boron.
  • a material or a conductive material such as a metal oxide material can be used.
  • a silicide such as nickel silicide may be used as the conductor 378.
  • the threshold voltage of the transistor can be adjusted by selecting the material of the conductor. Specifically, it is preferable to use a material such as titanium nitride or tantalum nitride for the conductor. Further, in order to achieve both conductivity and embedding property, it is preferable to use a metal material such as tungsten or aluminum as a laminate for the conductor, and it is particularly preferable to use tungsten in terms of heat resistance.
  • the low resistance region 376a, the low resistance region 376b, and the low resistance region 376c may be configured to be provided by laminating another conductor, for example, a silicide such as nickel silicide. With this configuration, the conductivity of the region that functions as an electrode can be enhanced. At this time, an insulator that functions as a side wall spacer (also referred to as a side wall insulating layer) may be provided on the side surface of the conductor 378 that functions as the gate electrode and the side surface of the insulator that functions as the gate insulating film. .. With this configuration, it is possible to prevent the conductor 378 and the low resistance region 376a and the low resistance region 376b from being in a conductive state.
  • a silicide such as nickel silicide
  • An insulator 379, an insulator 381, an insulator 383, and an insulator 385 are laminated in this order so as to cover the transistor 550.
  • the insulator 379, the insulator 381, the insulator 383, and the insulator 385 for example, silicon oxide, silicon oxide nitride, silicon nitride oxide, silicon nitride, aluminum oxide, aluminum oxide nitride, aluminum nitride, etc. are used. Just do it.
  • the oxidative nitride refers to a material having a higher oxygen content than nitrogen.
  • silicon oxide refers to a material whose composition contains oxygen, nitrogen, and silicon and has a higher oxygen content than nitrogen.
  • the nitride oxide refers to a material having a higher oxygen content than nitrogen.
  • aluminum nitride refers to a material whose composition contains oxygen, nitrogen, and aluminum and has a higher nitrogen content than oxygen.
  • the insulator 381 may have a function as a flattening film for flattening a step generated by a transistor 550 or the like provided below the insulator 381.
  • the upper surface of the insulator 381 may be flattened by a flattening treatment using a chemical mechanical polishing (CMP) method or the like in order to improve the flatness.
  • CMP chemical mechanical polishing
  • the insulator 383 it is preferable to use a film having a barrier property so that hydrogen and impurities do not diffuse in the region where the transistor 500 is provided from the substrate 371 or the transistor 550.
  • a film having a barrier property against hydrogen for example, silicon nitride formed by the CVD method can be used.
  • hydrogen may diffuse into a semiconductor element having an oxide semiconductor such as a transistor 500, so that the characteristics of the semiconductor element may deteriorate. Therefore, it is preferable to use a film that suppresses the diffusion of hydrogen between the transistor 500 and the transistor 550.
  • the membrane that suppresses the diffusion of hydrogen is a membrane that desorbs a small amount of hydrogen.
  • the amount of hydrogen desorbed can be analyzed using, for example, a heated desorption gas analysis method (TDS).
  • TDS heated desorption gas analysis method
  • the amount of hydrogen desorbed from the insulator 383 is such that the amount desorbed in terms of hydrogen atoms is converted per area of the insulator 383 when the surface temperature of the film is in the range of 50 ° C. to 500 ° C. It may be 10 ⁇ 10 15 atoms / cm 2 or less, preferably 5 ⁇ 10 15 atoms / cm 2 or less.
  • the insulator 385 preferably has a lower dielectric constant than the insulator 383.
  • the relative permittivity of the insulator 385 is preferably less than 4, more preferably less than 3.
  • the relative permittivity of the insulator 385 is preferably 0.7 times or less, more preferably 0.6 times or less, the relative permittivity of the insulator 383.
  • the insulator 379, the insulator 381, the insulator 383, and the insulator 385 are embedded with a capacitance element 600, a conductor 328 connected to the transistor 500, a conductor 330, and the like.
  • the conductor 328 and the conductor 330 have a function as a plug or a wiring.
  • the conductor having a function as a plug or a wiring may collectively give a plurality of configurations and give the same reference numeral.
  • the wiring and the plug connected to the wiring may be integrated. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.
  • each plug and wiring As the material of each plug and wiring (conductor 328, conductor 330, etc.), a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material is used as a single layer or laminated. be able to. It is preferable to use a refractory material such as tungsten and / or molybdenum that has both heat resistance and conductivity, and it is preferable to use tungsten. Alternatively, it is preferably formed of a low resistance conductive material such as aluminum and / or copper. Wiring resistance can be reduced by using a low resistance conductive material.
  • a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material is used as a single layer or laminated. be able to. It is preferable to use a refractory material such as tungsten and / or molybdenum that has both heat resistance and conductivity, and it is preferable
  • a wiring layer may be provided on the insulator 385 and the conductor 330.
  • the insulator 350, the insulator 352, and the insulator 354 are laminated in this order.
  • a conductor 356 is formed on the insulator 350, the insulator 352, and the insulator 354.
  • the conductor 356 has a function as a plug or wiring for connecting to the transistor 550.
  • the conductor 356 can be provided by using the same materials as the conductor 328 and the conductor 330.
  • the insulator 350 it is preferable to use an insulator having a barrier property against hydrogen, similarly to the insulator 383.
  • the conductor 356 preferably contains a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in the opening of the insulator 350 having a barrier property against hydrogen.
  • the conductor having a barrier property against hydrogen for example, tantalum nitride or the like may be used. Further, by laminating tantalum nitride and tungsten having high conductivity, it is possible to suppress the diffusion of hydrogen from the transistor 550 while maintaining the conductivity as wiring. In this case, it is preferable that the tantalum nitride layer having a barrier property against hydrogen is in contact with the insulator 350 having a barrier property against hydrogen.
  • a wiring layer may be provided on the insulator 354 and the conductor 356.
  • the insulator 360, the insulator 362, and the insulator 364 are laminated in this order.
  • a conductor 366 is formed in the insulator 360, the insulator 362, and the insulator 364.
  • the conductor 366 has a function as a plug or wiring.
  • the conductor 366 can be provided by using the same materials as the conductor 328 and the conductor 330.
  • a wiring layer may be provided on the insulator 364 and the conductor 366.
  • the insulator 370, the insulator 369, and the insulator 368 are laminated in this order.
  • a conductor 376 is formed on the insulator 370, the insulator 369, and the insulator 368.
  • the conductor 376 has a function as a plug or wiring.
  • the conductor 376 can be provided by using the same materials as the conductor 328 and the conductor 330.
  • the insulator 370 it is preferable to use an insulator having a barrier property against hydrogen, similarly to the insulator 383.
  • the conductor 376 preferably contains a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in the opening of the insulator 370 having a barrier property against hydrogen.
  • a wiring layer may be provided on the insulator 368 and the conductor 376.
  • the insulator 380, the insulator 382, and the insulator 384 are laminated in this order.
  • a conductor 386 is formed on the insulator 380, the insulator 382, and the insulator 384.
  • the conductor 386 has a function as a plug or wiring.
  • the conductor 386 can be provided by using the same materials as the conductor 328 and the conductor 330.
  • the insulator 380 it is preferable to use an insulator having a barrier property against hydrogen, similarly to the insulator 383.
  • the conductor 386 preferably contains a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in the opening of the insulator 380 having a barrier property against hydrogen.
  • the semiconductor device according to the present embodiment has been described. It is not limited to this.
  • the number of wiring layers similar to the wiring layer containing the conductor 356 may be three or less, or the number of wiring layers similar to the wiring layer containing the conductor 356 may be five or more.
  • An insulator 510, an insulator 512, an insulator 514, and an insulator 516 are laminated in this order on the insulator 384.
  • any of the insulator 510, the insulator 512, the insulator 514, and the insulator 516 it is preferable to use a substance having a barrier property against oxygen and hydrogen.
  • the insulator 510 and the insulator 514 it is preferable to use a film having a barrier property against hydrogen and impurities in the region where the transistor 500 is provided, for example, from the region where the substrate 371 or the transistor 550 is provided. Therefore, the same material as the insulator 383 can be used.
  • silicon nitride formed by the CVD method can be used as an example of a film having a barrier property against hydrogen.
  • hydrogen may diffuse into a semiconductor element having an oxide semiconductor such as a transistor 500, so that the characteristics of the semiconductor element may deteriorate. Therefore, it is preferable to use a film that suppresses the diffusion of hydrogen between the transistor 500 and the transistor 550.
  • the film having a barrier property against hydrogen for example, it is preferable to use metal oxides such as aluminum oxide, hafnium oxide, and tantalum oxide for the insulator 510 and the insulator 514.
  • metal oxides such as aluminum oxide, hafnium oxide, and tantalum oxide for the insulator 510 and the insulator 514.
  • aluminum oxide has a high blocking effect that does not allow the membrane to permeate both oxygen and impurities such as hydrogen and water that cause fluctuations in the electrical characteristics of the transistor. Therefore, aluminum oxide can prevent impurities such as hydrogen and moisture from being mixed into the transistor 500 during and after the manufacturing process of the transistor. In addition, it is possible to suppress the release of oxygen from the oxides constituting the transistor 500. Therefore, it is suitable for use as a protective film for the transistor 500.
  • the same material as the insulator 379 can be used for the insulator 512 and the insulator 516. Further, by applying a material having a relatively low dielectric constant to these insulators, it is possible to reduce the parasitic capacitance generated between the wirings.
  • a silicon oxide film and / or a silicon nitride film can be used as the insulator 512 and the insulator 516.
  • the insulator 510, the insulator 512, the insulator 514, and the insulator 516 are embedded with a conductor 518, a conductor (for example, a conductor 503) constituting the transistor 500, and the like.
  • the conductor 518 has a function as a plug or wiring for connecting to the capacitance element 600 or the transistor 550.
  • the conductor 518 can be provided by using the same material as the conductor 328 and the conductor 330.
  • the conductor 510 and the conductor 518 in the region in contact with the insulator 514 are preferably conductors having a barrier property against oxygen, hydrogen, and water.
  • the transistor 550 and the transistor 500 can be separated by a layer having a barrier property against oxygen, hydrogen, and water, and the diffusion of hydrogen from the transistor 550 to the transistor 500 can be suppressed.
  • a transistor 500 is provided above the insulator 516.
  • the transistor 500 includes a conductor 503 arranged so as to be embedded in the insulator 514 and the insulator 516, and an insulator 520 arranged on the insulator 516 and the insulator 503.
  • the insulator 524 placed on the insulator 522, the oxide 530a placed on the insulator 524, and the oxide 530a.
  • the arranged oxide 530b, the conductors 542a and 542b arranged apart from each other on the oxide 530b, and the conductors 542a and 542b are arranged between the conductors 542a and 542b.
  • It has an insulator 580 on which an opening is formed by superimposing, an insulator 545 arranged on the bottom surface and side surfaces of the opening, and a conductor 560 arranged on the forming surface of the insulator 545.
  • the insulator 544 is arranged between the oxide 530a, the oxide 530b, the conductor 542a, and the conductor 542b and the insulator 580.
  • the conductor 560 includes a conductor 560a provided inside the insulator 545 and a conductor 560b provided so as to be embedded inside the conductor 560a. It is preferable to have.
  • the insulator 574 is arranged on the insulator 580, the conductor 560, and the insulator 545.
  • the transistor 500 shows a configuration in which two layers of oxide 530a and oxide 530b are laminated in a region where a channel is formed and in the vicinity thereof, but the present invention is not limited to this.
  • a single layer of the oxide 530b or a laminated structure of three or more layers may be provided.
  • the conductor 560 is shown as a two-layer laminated structure, but the present invention is not limited to this.
  • the conductor 560 may have a single-layer structure or a laminated structure of three or more layers.
  • the transistor 500 shown in FIGS. 22, 23A, and 23B is an example, and the transistor 500 is not limited to the configuration, and an appropriate transistor may be used depending on the circuit configuration and / or the driving method.
  • the conductor 560 functions as a gate electrode of the transistor, and the conductor 542a and the conductor 542b function as a source electrode or a drain electrode, respectively.
  • the conductor 560 is formed so as to be embedded in the opening of the insulator 580 and the region sandwiched between the conductor 542a and the conductor 542b.
  • the arrangement of the conductor 560, the conductor 542a and the conductor 542b is self-aligned with respect to the opening of the insulator 580. That is, in the transistor 500, the gate electrode can be arranged in a self-aligned manner between the source electrode and the drain electrode. Therefore, since the conductor 560 can be formed without providing the alignment margin, the occupied area of the transistor 500 can be reduced. As a result, the semiconductor device can be miniaturized and highly integrated.
  • the conductor 560 is formed in a region between the conductor 542a and the conductor 542b in a self-aligned manner, the conductor 560 does not have a region that overlaps with the conductor 542a or the conductor 542b. Thereby, the parasitic capacitance formed between the conductor 560 and the conductors 542a and 542b can be reduced. Therefore, the switching speed of the transistor 500 can be improved and a high frequency characteristic can be provided.
  • the conductor 560 may function as a first gate (also referred to as a top gate) electrode. Further, the conductor 503 may function as a second gate (also referred to as a bottom gate) electrode.
  • the threshold voltage of the transistor 500 can be controlled by changing the potential applied to the conductor 503 independently of the potential applied to the conductor 560 without interlocking with the potential applied to the conductor 560. In particular, by applying a negative potential to the conductor 503, the threshold voltage of the transistor 500 can be made larger and the off-current can be reduced. Therefore, when a negative potential is applied to the conductor 503, the drain current when the potential applied to the conductor 560 is 0 V can be made smaller than when it is not applied.
  • the conductor 503 is arranged so as to overlap the oxide 530 and the conductor 560. As a result, when a potential is applied to the conductor 560 and the conductor 503, the electric field generated from the conductor 560 and the electric field generated from the conductor 503 are connected to cover the channel forming region formed in the oxide 530. Can be done.
  • the configuration of the transistor that electrically surrounds the channel formation region by the electric field of the pair of gate electrodes is referred to as a curved channel (S-channel) configuration.
  • S-channel configuration disclosed in the present specification and the like is different from the Fin type configuration and the planar type configuration.
  • the conductor 503 has the same structure as the conductor 518, and the conductor 503a is formed in contact with the inner wall of the opening of the insulator 514 and the insulator 516, and the conductor 503b is further formed inside.
  • the transistor 500 shows a configuration in which the conductor 503a and the conductor 503b are laminated, the present invention is not limited to this.
  • the conductor 503 may be provided as a single layer or a laminated structure having three or more layers.
  • the conductor 503a it is preferable to use a conductive material having a function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, and copper atoms (the above impurities are difficult to permeate).
  • a conductive material having a function of suppressing the diffusion of oxygen for example, at least one oxygen atom, oxygen molecule, etc.
  • the function of suppressing the diffusion of impurities or oxygen is a function of suppressing the diffusion of any one or all of the above impurities or the above oxygen.
  • the conductor 503a since the conductor 503a has a function of suppressing the diffusion of oxygen, it is possible to prevent the conductor 503b from being oxidized and the conductivity from being lowered.
  • the insulator 520, the insulator 522, and the insulator 524 have a function as a second gate insulating film.
  • the insulator 524 in contact with the oxide 530 it is preferable to use an insulator containing more oxygen than oxygen satisfying the stoichiometric composition.
  • the oxygen is easily released from the membrane by heating.
  • oxygen released by heating may be referred to as "excess oxygen”. That is, it is preferable that the insulator 524 is formed with a region containing excess oxygen (also referred to as “excess oxygen region”).
  • the defective (hereinafter sometimes referred to as V O H) serves as a donor, sometimes electrons serving as carriers are generated.
  • a part of hydrogen may be combined with oxygen that is bonded to a metal atom to generate an electron as a carrier. Therefore, a transistor using an oxide semiconductor containing a large amount of hydrogen tends to have a normally-on characteristic. Further, since hydrogen in the oxide semiconductor easily moves due to stress such as heat and electric field, if the oxide semiconductor contains a large amount of hydrogen, the reliability of the transistor may deteriorate.
  • the V O H to obtain a sufficiently reduced oxide semiconductor, the moisture in the oxide semiconductor, to remove impurities such as hydrogen (also referred to as “dewatering” or “dehydrogenation process") It is important to supply oxygen to the oxide semiconductor to compensate for the oxygen deficiency (also referred to as “oxygenation treatment").
  • the V O H oxide semiconductor impurity is sufficiently reduced such by using a channel formation region of the transistor, it is possible to have stable electrical characteristics.
  • an oxide material in which a part of oxygen is desorbed by heating is 1.0 ⁇ 10 18 atoms / cm 3 or more, preferably 1 in TDS (Thermal Desorption Spectroscopy) analysis.
  • the surface temperature of the film during the TDS analysis is preferably in the range of 100 ° C. or higher and 700 ° C. or lower, or 100 ° C. or higher and 400 ° C. or lower.
  • the insulator having the excess oxygen region and the oxide 530 may be brought into contact with each other to perform one or more of heat treatment, microwave treatment, or RF treatment.
  • heat treatment microwave treatment, or RF treatment.
  • water or hydrogen in the oxide 530 can be removed.
  • reactions occur which bonds VoH is disconnected, when other words happening reaction of "V O H ⁇ Vo + H", it can be dehydrogenated.
  • the hydrogen generated as oxygen combines with H 2 O, it may be removed from the oxide 530 or oxide 530 near the insulator.
  • a part of hydrogen may be gettered to the conductor 542a and the conductor 542b.
  • the microwave processing for example, it is preferable to use an apparatus having a power source for generating high-density plasma or an apparatus having a power source for applying RF to the substrate side.
  • an apparatus having a power source for generating high-density plasma for example, by using a gas containing oxygen and using a high-density plasma, high-density oxygen radicals can be generated, and by applying RF to the substrate side, the oxygen radicals generated by the high-density plasma can be generated.
  • the pressure may be 133 Pa or more, preferably 200 Pa or more, and more preferably 400 Pa or more.
  • oxygen and argon are used as the gas to be introduced into the apparatus for performing microwave treatment, and the oxygen flow rate ratio (O 2 / (O 2 + Ar)) is 50% or less, preferably 10% or more and 30. It is better to do it at% or less.
  • the heat treatment may be performed, for example, at 100 ° C. or higher and 450 ° C. or lower, more preferably 350 ° C. or higher and 400 ° C. or lower.
  • the heat treatment is performed in an atmosphere of nitrogen gas or an inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • the heat treatment is preferably performed in an oxygen atmosphere.
  • oxygen can be supplied to the oxide 530 to reduce oxygen deficiency (VO ).
  • the heat treatment may be performed in a reduced pressure state.
  • the heat treatment may be carried out in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas in order to supplement the desorbed oxygen after the heat treatment in an atmosphere of nitrogen gas or an inert gas. good.
  • the heat treatment may be performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of the oxidizing gas, and then the heat treatment may be continuously performed in an atmosphere of nitrogen gas or an inert gas.
  • the insulator 524 has an excess oxygen region, it is preferable that the insulator 522 has a function of suppressing the diffusion of oxygen (for example, oxygen atom, oxygen molecule, etc.) (the oxygen is difficult to permeate).
  • oxygen for example, oxygen atom, oxygen molecule, etc.
  • the insulator 522 has a function of suppressing the diffusion of oxygen and impurities, the oxygen contained in the oxide 530 does not diffuse to the insulator 520 side, which is preferable. Further, it is possible to suppress the conductor 503 from reacting with the oxygen contained in the insulator 524 and / or the oxide 530.
  • the insulator 522 may be, for example, aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTIO 3 ), or It is preferable to use an insulator containing a so-called high-k material such as (Ba, Sr) TiO 3 (BST) in a single layer or in a laminated manner. As transistors become finer and more integrated, problems such as leakage current may occur due to the thinning of the gate insulating film. By using a high-k material for the insulator that functions as a gate insulating film, it is possible to reduce the gate potential during transistor operation while maintaining the physical film thickness.
  • a so-called high-k material such as (Ba, Sr) TiO 3 (BST)
  • an insulator containing an oxide of one or both of aluminum and hafnium which are insulating materials having a function of suppressing diffusion of impurities and oxygen (the above-mentioned oxygen is difficult to permeate).
  • the insulator containing one or both oxides of aluminum and hafnium it is preferable to use aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate) and the like.
  • the insulator 522 releases oxygen from the oxide 530 and / or mixes impurities such as hydrogen from the peripheral portion of the transistor 500 into the oxide 530. It functions as a suppressing layer.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, and zirconium oxide may be added to these insulators.
  • these insulators may be nitrided. Silicon oxide, silicon oxide nitride, or silicon nitride may be laminated on the above insulator.
  • the insulator 520, the insulator 522, and the insulator 524 are shown as the second gate insulating film having a three-layer laminated structure, but the second gate.
  • the insulating film may have a single layer, two layers, or a laminated structure of four or more layers. In that case, the laminated structure is not limited to the same material, and may be a laminated structure made of different materials.
  • the transistor 500 uses a metal oxide that functions as an oxide semiconductor for the oxide 530 containing the channel forming region.
  • oxide 530 In-M-Zn oxide (element M is aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lantern, cerium, neodymium).
  • Hafnium, tantalum, tungsten, gallium, etc. (one or more) and the like may be used.
  • the metal oxide that functions as an oxide semiconductor may be formed by a sputtering method or an ALD (Atomic Layer Deposition) method.
  • ALD Atomic Layer Deposition
  • the metal oxide that functions as a channel forming region in the oxide 530 it is preferable to use a metal oxide having a band gap of 2 eV or more, preferably 2.5 eV or more. In this way, by using a metal oxide having a large bandgap, the off-current of the transistor can be reduced.
  • the oxide 530 can suppress the diffusion of impurities into the oxide 530b from the composition formed below the oxide 530a.
  • the oxide 530 preferably has a laminated structure of a plurality of oxide layers having different atomic number ratios of each metal atom.
  • the atomic number ratio of the element M in the constituent elements is larger than the atomic number ratio of the element M in the constituent elements in the metal oxide used in the oxide 530b. Is preferable.
  • the atomic number ratio of the element M to In is preferably larger than the atomic number ratio of the element M to In in the metal oxide used for the oxide 530b.
  • the atomic number ratio of In to the element M is preferably larger than the atomic number ratio of In to the element M in the metal oxide used for the oxide 530a.
  • the energy at the lower end of the conduction band of the oxide 530a is higher than the energy at the lower end of the conduction band of the oxide 530b.
  • the electron affinity of the oxide 530a is smaller than the electron affinity of the oxide 530b.
  • the energy level at the lower end of the conduction band changes gently.
  • the energy level at the lower end of the conduction band at the junction of the oxide 530a and the oxide 530b is continuously changed or continuously bonded. In order to do so, it is preferable to reduce the defect level density of the mixed layer formed at the interface between the oxide 530a and the oxide 530b.
  • the oxide 530a and the oxide 530b have a common element (main component) other than oxygen, a mixed layer having a low defect level density can be formed.
  • the oxide 530b is an In-Ga-Zn oxide
  • a conductor 542a and a conductor 542b that function as a source electrode and a drain electrode are provided on the oxide 530b.
  • the conductors 542a and 542b include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, and ruthenium.
  • Iridium, strontium, lanthanum, or an alloy containing the above-mentioned metal element as a component, or an alloy in which the above-mentioned metal element is combined is preferably used.
  • tantalum nitride, titanium nitride, tungsten, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, oxides containing lanthanum and nickel, etc. are used. Is preferable.
  • tantalum nitride, titanium nitride, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, and oxides containing lanthanum and nickel are difficult to oxidize.
  • a metal nitride film such as tantalum nitride is preferable because it has a barrier property against hydrogen or oxygen.
  • the conductor 542a and the conductor 542b are shown as a single-layer structure, but a laminated structure of two or more layers may be used.
  • a tantalum nitride film and a tungsten film may be laminated.
  • the titanium film and the aluminum film may be laminated.
  • a two-layer structure in which an aluminum film is laminated on a tungsten film a two-layer structure in which a copper film is laminated on a copper-magnesium-aluminum alloy film, a two-layer structure in which a copper film is laminated on a titanium film, and a two-layer structure in which a copper film is laminated on a titanium film. It may have a two-layer structure in which copper films are laminated.
  • a transparent conductive material containing indium oxide, tin oxide or zinc oxide may be used.
  • a region 543a and a region 543b may be formed as low resistance regions at the interface of the oxide 530 with the conductor 542a (conductor 542b) and its vicinity.
  • the region 543a functions as one of the source region or the drain region
  • the region 543b functions as the other of the source region or the drain region.
  • a channel forming region is formed in a region sandwiched between the region 543a and the region 543b.
  • the oxygen concentration in the region 543a (region 543b) may be reduced. Further, in the region 543a (region 543b), a metal compound layer containing the metal contained in the conductor 542a (conductor 542b) and the component of the oxide 530 may be formed. In such a case, the carrier density of the region 543a (region 543b) increases, and the region 543a (region 543b) becomes a low resistance region.
  • the insulator 544 is provided so as to cover the conductor 542a and the conductor 542b, and suppresses the oxidation of the conductor 542a and the conductor 542b. At this time, the insulator 544 may be provided so as to cover the side surface of the oxide 530 and come into contact with the insulator 524.
  • insulator 544 a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, neodymium, lanthanum, magnesium, etc. Can be used. Further, as the insulator 544, silicon nitride oxide, silicon nitride or the like can also be used.
  • the insulator 544 it is preferable to use aluminum or an oxide containing one or both oxides of hafnium, such as aluminum oxide, hafnium oxide, aluminum, and an oxide containing hafnium (hafnium aluminate). ..
  • hafnium aluminate has higher heat resistance than the hafnium oxide film. Therefore, it is preferable because it is difficult to crystallize in the heat treatment in the subsequent step.
  • the conductors 542a and 542b are materials having oxidation resistance or materials whose conductivity does not significantly decrease even if oxygen is absorbed, the insulator 544 is not an essential configuration. It may be appropriately designed according to the desired transistor characteristics.
  • the insulator 544 By having the insulator 544, it is possible to prevent impurities such as water and hydrogen contained in the insulator 580 from diffusing into the oxide 530b. In addition, oxidation of the conductor 542a and / or the conductor 542b due to excess oxygen contained in the insulator 580 can be suppressed.
  • the insulator 545 functions as a first gate insulating film.
  • the insulator 545 is preferably formed by using an insulator that contains excess oxygen and releases oxygen by heating, similarly to the above-mentioned insulator 524.
  • silicon oxide with excess oxygen silicon oxide, silicon nitride, silicon nitride, silicon oxide with fluorine, silicon oxide with carbon, carbon, silicon oxide with nitrogen, and pores.
  • Silicon oxide having can be used.
  • silicon oxide and silicon nitride nitride are preferable because they are stable against heat.
  • the insulator containing excess oxygen as the insulator 545, oxygen can be effectively supplied from the insulator 545 to the channel forming region of the oxide 530b. Further, similarly to the insulator 524, it is preferable that the concentration of impurities such as water or hydrogen in the insulator 545 is reduced.
  • the film thickness of the insulator 545 is preferably 1 nm or more and 20 nm or less. Further, the above-mentioned microwave treatment may be performed before and / or after the formation of the insulator 545.
  • a metal oxide may be provided between the insulator 545 and the conductor 560.
  • the metal oxide preferably suppresses oxygen diffusion from the insulator 545 to the conductor 560.
  • the diffusion of excess oxygen from the insulator 545 to the conductor 560 is suppressed. That is, it is possible to suppress a decrease in the amount of excess oxygen supplied to the oxide 530.
  • oxidation of the conductor 560 due to excess oxygen can be suppressed.
  • a material that can be used for the insulator 544 may be used.
  • the insulator 545 may have a laminated structure as in the case of the second gate insulating film.
  • an insulator that functions as a gate insulating film is made of a high-k material and heat.
  • the conductor 560 functioning as the first gate electrode is shown as a two-layer structure in FIGS. 23A and 23B, it may have a single-layer structure or a laminated structure of three or more layers.
  • Conductor 560a is a hydrogen atom, a hydrogen molecule, a water molecule, a nitrogen atom, a nitrogen molecule, nitric oxide molecule (N 2 O, NO, etc. NO 2), conductive having a function of suppressing the diffusion of impurities such as copper atoms It is preferable to use a material. Alternatively, it is preferable to use a conductive material having a function of suppressing the diffusion of oxygen (for example, at least one oxygen atom, oxygen molecule, etc.). Since the conductor 560a has a function of suppressing the diffusion of oxygen, it is possible to prevent the conductor 560b from being oxidized by the oxygen contained in the insulator 545 to reduce the conductivity.
  • the conductive material having a function of suppressing the diffusion of oxygen for example, tantalum, tantalum nitride, ruthenium, ruthenium oxide and the like are preferably used.
  • an oxide semiconductor applicable to the oxide 530 can be used as the conductor 560a. In that case, by forming the conductor 560b into a film by a sputtering method, the electric resistance value of the conductor 560a can be lowered to form a conductor. This can be called an OC (Oxide Conductor) electrode.
  • the insulator 580 is provided on the conductor 542a and the conductor 542b via the insulator 544.
  • the insulator 580 preferably has an excess oxygen region.
  • silicon, resin, or the like silicon oxide and silicon oxide nitride are preferable because they are thermally stable.
  • silicon oxide and silicon oxide having pores are preferable because an excess oxygen region can be easily formed in a later step.
  • the insulator 580 preferably has an excess oxygen region. By providing the insulator 580 in which oxygen is released by heating, the oxygen in the insulator 580 can be efficiently supplied to the oxide 530. It is preferable that the concentration of impurities such as water and hydrogen in the insulator 580 is reduced.
  • the opening of the insulator 580 is formed so as to overlap the region between the conductor 542a and the conductor 542b.
  • the conductor 560 is formed so as to be embedded in the opening of the insulator 580 and the region sandwiched between the conductor 542a and the conductor 542b.
  • the conductor 560 may have a shape having a high aspect ratio.
  • the conductor 560 is provided so as to be embedded in the opening of the insulator 580, even if the conductor 560 has a shape having a high aspect ratio, the conductor 560 is formed without collapsing during the process. Can be done.
  • the insulator 574 is preferably provided in contact with the upper surface of the insulator 580, the upper surface of the conductor 560, and the upper surface of the insulator 545.
  • an excess oxygen region can be provided in the insulator 545 and the insulator 580. Thereby, oxygen can be supplied into the oxide 530 from the excess oxygen region.
  • the insulator 574 use one or more metal oxides selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, magnesium and the like. Can be done.
  • aluminum oxide has a high barrier property and can suppress the diffusion of hydrogen and nitrogen even in a thin film of 0.5 nm or more and 3.0 nm or less. Therefore, the aluminum oxide formed by the sputtering method can have a function as a barrier film for impurities such as hydrogen as well as an oxygen supply source.
  • the insulator 581 that functions as an interlayer film on the insulator 574.
  • the insulator 581 preferably has a reduced concentration of impurities such as water and hydrogen in the film.
  • the conductor 540a and the conductor 540b are arranged in the openings formed in the insulator 581, the insulator 574, the insulator 580, and the insulator 544.
  • the conductor 540a and the conductor 540b are provided so as to face each other with the conductor 560 interposed therebetween.
  • the conductor 540a and the conductor 540b have the same configuration as the conductor 546 and the conductor 548 described later.
  • An insulator 582 is provided on the insulator 581.
  • the insulator 582 it is preferable to use a substance having a barrier property against oxygen and hydrogen. Therefore, the same material as the insulator 514 can be used for the insulator 582.
  • a metal oxide such as aluminum oxide, hafnium oxide, and tantalum oxide for the insulator 582.
  • aluminum oxide has a high blocking effect that does not allow the membrane to permeate both oxygen and impurities such as hydrogen and water that cause fluctuations in the electrical characteristics of the transistor. Therefore, aluminum oxide can prevent impurities such as hydrogen and moisture from being mixed into the transistor 500 during and after the manufacturing process of the transistor. In addition, it is possible to suppress the release of oxygen from the oxides constituting the transistor 500. Therefore, it is suitable for use as a protective film for the transistor 500.
  • the insulator 520, the insulator 522, the insulator 524, the insulator 544, the insulator 580, the insulator 574, the insulator 581, the insulator 582, and the insulator 586 include the conductor 546 and the conductor 548. Is embedded.
  • the conductor 546 and the conductor 548 have a function as a plug or wiring for connecting to the capacitive element 600, the transistor 500, or the transistor 550.
  • the conductor 546 and the conductor 548 can be provided by using the same materials as the conductor 328 and the conductor 330.
  • an opening may be formed so as to surround the transistor 500, and an insulator having a high barrier property to hydrogen or water may be formed so as to cover the opening.
  • an insulator having a high barrier property to hydrogen or water
  • a plurality of transistors 500 may be put together and wrapped with an insulator having a high barrier property against hydrogen or water.
  • the conductor 612 may be provided on the conductor 546 and the conductor 548.
  • the conductor 612 has a function as a plug or wiring for connecting to the transistor 500.
  • the conductor 610 has a function as an electrode of the capacitive element 600.
  • the conductor 612 and the conductor 610 can be formed at the same time.
  • the conductor 612 and the conductor 610 include a metal film containing an element selected from molybdenum, titanium, tantalum, tungsten, aluminum, copper, chromium, neodymium, and scandium, or a metal nitride film containing the above-mentioned elements as components.
  • a metal nitride film, titanium nitride film, molybdenum nitride film, tungsten nitride film and the like can be used.
  • indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, and silicon oxide are added. It is also possible to apply a conductive material such as indium tin oxide.
  • the conductor 612 and the conductor 610 are shown in a single-layer configuration, but the configuration is not limited to this, and a laminated configuration of two or more layers may be used.
  • a conductor having a barrier property and a conductor having a high adhesion to a conductor having a high conductivity may be formed between a conductor having a barrier property and a conductor having a high conductivity.
  • the conductor 620 is provided so as to overlap the conductor 610 via the insulator 630.
  • a conductive material such as a metal material, an alloy material, or a metal oxide material can be used. It is preferable to use a refractory material such as tungsten and / or molybdenum which has both heat resistance and conductivity, and it is particularly preferable to use tungsten. When it is formed at the same time as other configurations such as a conductor, Cu (copper) and / or Al (aluminum), which are low resistance metal materials, may be used.
  • An insulator 640 is provided on the conductor 620 and the insulator 630.
  • the insulator 640 can be provided by using the same material as the insulator 379. Further, the insulator 640 may function as a flattening film that covers the uneven shape below the insulator 640.
  • FIG. 24A is an example of a schematic diagram for explaining an integrated circuit including each configuration included in the arithmetic processing system 1000.
  • the integrated circuit 390 illustrated in FIG. 24A can be made into one integrated circuit in which each circuit is integrated by forming a part of the circuit included in the accelerator described as the CPU 400 and the semiconductor device 100 with an OS transistor.
  • a control device 150 a storage device 160, and the like can be provided.
  • the storage device 160 in addition to SRAM and DRAM including Si transistors, NOSRAM and DOSRAM described in the above embodiment can be applied. Further, MRAM, PRAM, ReRAM, FeRAM and the like may be used as the storage device 160.
  • the memory density can be improved by stacking the layer having the OS transistor on the drive circuit provided in the layer having the Si transistor.
  • FIG. 24B shows an example of a semiconductor chip incorporating an integrated circuit 390.
  • the semiconductor chip 391 shown in FIG. 24B has a lead 392 and an integrated circuit 390.
  • the integrated circuit 390 is provided with various circuits shown in the above-described embodiment on one die.
  • the integrated circuit 390 has a laminated structure and is roughly classified into a layer having a Si transistor (Si transistor layer 393), a wiring layer 394, and a layer having an OS transistor (OS transistor layer 395). Since the OS transistor layer 395 can be provided by being laminated on the Si transistor layer 393, the semiconductor chip 391 can be easily miniaturized.
  • QFP Quad Flat Package
  • Other configuration examples include insert-mounted DIP (Dual In-line Package), PGA (Pin Grid Array), surface-mounted SOP (Small Outline Package), SSOP (Shrink Small Online Package), and SSOP (Shrink Small Online Package). Thin-Small Outline Package), LCC (Leaded Chip Carrier), QFN (Quad Flat Non-leaded package), BGA (Ball Grid Array), FBGA (Fine Grid Type), FBGA (Fine Grid), FBGA (Fine Grid) Structures such as Package) and QTP (Quad Type-carrier Package) can be appropriately used.
  • the arithmetic circuit and drive circuit having the Si transistor and the memory circuit having the OS transistor can all be formed in the Si transistor layer 393, the wiring layer 394, and the OS transistor layer 395. That is, the elements constituting the semiconductor device can be formed by the same manufacturing process. Therefore, in the semiconductor chip 391 shown in FIG. 24B, it is not necessary to increase the manufacturing process even if the number of constituent elements increases, and the semiconductor device can be incorporated at low cost.
  • FIG. 25A illustrates an external view of an automobile as an example of a moving body.
  • FIG. 25B is a diagram simplifying the exchange of data in the automobile.
  • the automobile 590 has a plurality of cameras 591 and the like. Further, the automobile 590 is equipped with various sensors (not shown) such as an infrared radar, a millimeter wave radar, and a laser radar.
  • the integrated circuit 390 (or the semiconductor chip 391 incorporating the integrated circuit 390) can be used in the camera 591 or the like.
  • the camera 591 processes a plurality of images obtained in a plurality of imaging directions 592 by the integrated circuit 390 described in the above embodiment, and the plurality of images are collected by the host controller 594 or the like via the bus 593 or the like. By analyzing this, it is possible to determine the surrounding traffic conditions such as the presence or absence of guard rails and / or pedestrians, and perform automatic driving. It can also be used in systems for road guidance, danger prediction, and the like.
  • the obtained image data is subjected to arithmetic processing such as a neural network to increase the resolution of the image, reduce image noise, face recognition (for crime prevention, etc.), and object recognition (for automatic driving).
  • arithmetic processing such as a neural network to increase the resolution of the image, reduce image noise, face recognition (for crime prevention, etc.), and object recognition (for automatic driving).
  • Etc. image compression, image correction (wide dynamic range), image restoration of lensless image sensor, positioning, character recognition, reduction of reflection reflection, etc. can be performed.
  • moving objects include trains, monorails, ships, flying objects (helicopters, unmanned aerial vehicles (drones), airplanes, rockets), etc.
  • computer of one aspect of the present invention is applied to these moving objects. Therefore, a system using artificial intelligence can be provided.
  • FIG. 26A is an external view showing an example of a portable electronic device.
  • FIG. 26B is a diagram simplifying the exchange of data in the portable electronic device.
  • the portable electronic device 595 includes a printed wiring board 596, a speaker 597, a camera 598, a microphone 599, and the like.
  • the integrated circuit 390 can be provided on the printed wiring board 596.
  • the portable electronic device 595 improves user convenience by processing and analyzing a plurality of data obtained by the speaker 597, the camera 598, the microphone 599, etc. by using the integrated circuit 390 described in the above embodiment. be able to. It can also be used in systems that perform voice guidance, image search, and the like.
  • the obtained image data is subjected to arithmetic processing such as a neural network to increase the resolution of the image, reduce image noise, face recognition (for crime prevention, etc.), and object recognition (for automatic driving).
  • arithmetic processing such as a neural network to increase the resolution of the image, reduce image noise, face recognition (for crime prevention, etc.), and object recognition (for automatic driving).
  • Etc. image compression, image correction (wide dynamic range), image restoration of lensless image sensor, positioning, character recognition, reduction of reflection reflection, etc. can be performed.
  • FIG. 27B is a USB connection type stick-type electronic device 1120.
  • the electronic device 1120 has a housing 1121, a cap 1122, a USB connector 1123, and a substrate 1124.
  • the board 1124 is housed in the housing 1121.
  • a memory chip 1125 and a controller chip 1126 are attached to the substrate 1124.
  • the integrated circuit 390 shown in the previous embodiment can be incorporated into the controller chip 1126 or the like of the substrate 1124.
  • FIG. 27C is a humanoid robot 1130.
  • the robot 1130 has sensors 2101 to 2106 and a control circuit 2110.
  • the integrated circuit 390 shown in the previous embodiment can be incorporated in the control circuit 2110.
  • the integrated circuit 390 described in the above embodiment can be used as a server that communicates with the electronic device instead of being built in the electronic device.
  • the computing system is composed of electronic devices and servers.
  • FIG. 28 shows a configuration example of the system 3000.
  • the system 3000 is composed of an electronic device 3001 and a server 3002. Communication between the electronic device 3001 and the server 3002 can be performed via the Internet line 3003.
  • the server 3002 has a plurality of racks 3004.
  • a plurality of substrates 3005 are provided in the plurality of racks, and the integrated circuit 390 described in the above embodiment can be mounted on the substrate 3005.
  • a neural network is configured on the server 3002.
  • the server 3002 can perform the calculation of the neural network by using the data input from the electronic device 3001 via the Internet line 3003.
  • the result of the calculation by the server 3002 can be transmitted to the electronic device 3001 via the Internet line 3003, if necessary. Thereby, the burden of calculation in the electronic device 3001 can be reduced.

Abstract

新規な構成の半導体装置を提供する。 演算回路部と記憶回路部を含む演算ブロックを複数有する。演算回路部と記憶回路部は電気的に接続する。演算回路部と記憶回路部は互いに重なる領域を有する。演算回路部は例えばSiトランジスタを含み、記憶回路部は例えばOSトランジスタを含む。演算回路部は積和演算を行う機能を有する。記憶回路部は重みデータを保持する機能を有する。第1の駆動回路は、記憶回路部に重みデータを書き込む機能を有する。第1の駆動回路を用いて、同一列中に含まれる全ての記憶回路部に重みデータを書き込む。

Description

半導体装置
本発明の一態様は、半導体装置に関する。
なお本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。
本明細書等で開示する本発明の一態様の技術分野の例として、半導体装置、表示装置、液晶表示装置、発光装置、蓄電装置、撮像装置、記憶装置、信号処理装置、プロセッサ、電子機器、システム、それらの駆動方法、それらの製造方法、またはそれらの検査方法などを挙げることができる。
CPU(Central Processing Unit)等を含む半導体装置を有する電子機器が普及している。このような電子機器では、大量のデータを高速に処理するため、半導体装置の性能向上に関する技術開発が活発である。高性能化を実現する技術としては、例えば、GPU(Graphics Processing Unit)等のアクセラレータとCPUとを密結合させた、所謂SoC(System on Chip)技術の適用がある。SoC化によって高性能化した半導体装置では、発熱、及び消費電力の増加が問題となってくる。
AI(Artificial Intelligence)技術では、計算量とパラメータ数が膨大になるため、演算量が増大する。演算量の増大は、発熱、および消費電力を増加させる要因となるため、演算量を低減するためのアーキテクチャが盛んに提案されている。代表的なアーキテクチャとして、Binary Neural Network(BNN)、およびTernary Neural Network(TNN)があり、回路規模縮小、および低消費電力化に対して特に有効となる(例えば特許文献1を参照)。
国際公開第2019/078924号
本発明の一態様は、占有面積が低減された半導体装置を提供することを課題の一とする。または、本発明の一態様は、消費電力が低減された半導体装置を提供することを課題の一とする。または、本発明の一態様は、演算処理速度の向上が図られた半導体装置を提供することを課題の一とする。または、新規な半導体装置を提供することを課題の一とする。
なお本発明の一態様の課題は、上記列挙した課題に限定されない。上記列挙した課題は、他の課題の存在を妨げるものではない。なお他の課題は、以下の記載で述べる、本項目で言及していない課題である。本項目で言及していない課題は、当業者であれば明細書または図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した課題、および他の課題のうち、少なくとも一つの課題を解決するものである。なお、本発明の一態様は、上記列挙した課題、および他の課題の全てを解決する必要はない。
(1)本発明の一態様は、複数の演算ブロックを有し、演算ブロックは、演算回路部と、記憶回路部と、を有し、演算回路部は、第1トランジスタを有し、記憶回路部は、第2トランジスタを有し、演算回路部は記憶回路部と電気的に接続され、演算回路部と記憶回路部は、互いに重なる領域を有する半導体装置である。
また、(1)において、演算ブロックは、第1駆動回路と、第2駆動回路と、第3駆動回路と、を有してもよい。第1駆動回路、第2駆動回路、および第3駆動回路は、記憶回路部と電気的に接続され、演算回路部、第1駆動回路、第2駆動回路、および第3駆動回路は、第1層に設ける。記憶回路部は第2層に設ける。第1層と第2層は互いに重なる領域を有する。
例えば、第1駆動回路は、記憶回路部にデータを供給する機能を有してもよい。第2駆動回路は、記憶回路部にデータを書き込む動作を制御する機能を有してもよい。第3駆動回路は、記憶回路部からデータを読み出す動作を制御する機能を有してもよい。演算回路部は、積和演算を行う機能を有し、記憶回路部は、データを保持する機能を有する。記憶回路部が保持するデータは、例えば重みデータである。
第1トランジスタは、チャネルが形成される半導体にシリコンを含むトランジスタが好ましい。第2トランジスタは、チャネルが形成される半導体に酸化物半導体を含むトランジスタが好ましい。
(2)本発明の別の一態様は、M行N列(M、Nはそれぞれ2以上の自然数)のマトリクス状に設けられた複数の演算ブロックと、N個の第1駆動回路と、を有する半導体装置であって、N個の第1駆動回路は、それぞれが各列に配置され、複数の演算ブロックのそれぞれは、演算回路部と、記憶回路部と、を有し、演算回路部は、記憶回路部と電気的に接続され、演算回路部と記憶回路部は、互いに重なる領域を有し、e列目(eは1以上N以下の自然数)に配置された記憶回路部は、e列目に配置された第1駆動回路と電気的に接続される半導体装置である。
(2)において、第2駆動回路を列方向に延在して設けてもよい。(2)において、複数の演算ブロックのそれぞれは、第3駆動回路を有することが好ましい。
記憶回路部は、複数のメモリセルを有し、メモリセルは、チャネルが形成される半導体に酸化物半導体を含むトランジスタを有することが好ましい。
本発明の一態様によって、占有面積が低減された半導体装置を提供することができる。または、消費電力が低減された半導体装置を提供することができる。または、演算処理速度の向上が図られた半導体装置を提供することができる。または、新規な半導体装置を提供することができる。
なお本発明の一態様の効果は、上記列挙した効果に限定されない。上記列挙した効果は、他の効果の存在を妨げるものではない。なお他の効果は、以下の記載で述べる、本項目で言及していない効果である。本項目で言及していない効果は、当業者であれば明細書または図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した効果、および他の効果のうち、少なくとも一つの効果を有するものである。従って本発明の一態様は、上記列挙した効果を有さない場合もある。
図1は、半導体装置の構成を示す上面図である。
図2図2Aおよび図2Bは、半導体装置の構成を示す斜視図である。
図3は、半導体装置の構成を示す斜視図である。
図4Aは、演算ブロックの構成を説明する図である。図4Bおよび図4Cは、メモリセルの回路構成例を示す図である。
図5A乃至図5Cは、メモリセルの回路構成例を示す図である。
図6Aおよび図6Bは、演算回路の回路構成例を示す図である。
図7は、演算処理システムの構成例を示すブロック図である。
図8Aは、演算処理のシーケンスを説明するブロック図である。図8Bは、演算処理におけるデータフローを説明する図である。
図9Aは、演算処理のシーケンスを説明するブロック図である。図9Bは、演算処理におけるデータフローを説明する図である。
図10Aは、演算処理のシーケンスを説明するブロック図である。図10Bは、演算処理におけるデータフローを説明する図である。
図11は、半導体装置の変形例を示す図である。
図12は、半導体装置の変形例を示す図である。
図13は、半導体装置の変形例を示す図である。
図14は、半導体装置の変形例を示す図である。
図15は、半導体装置の変形例を示す図である。
図16は、半導体装置の変形例を示す図である。
図17は、半導体装置の変形例を示す図である。
図18は、演算処理システムの動作例を説明する図である。
図19は、CPUの構成例を示す図である。
図20Aおよび図20Bは、フリップフロップ回路の回路構成例を示す図である。
図21は、CPUの動作例を説明するタイミングチャートである。
図22は、半導体装置の構造例を示す図である。
図23Aおよび図23Bは、トランジスタの構成例を示す図である。
図24Aおよび図24Bは、集積回路の構成例を示す図である。
図25Aおよび図25Bは、集積回路の適用例を示す図である。
図26Aおよび図26Bは、集積回路の適用例を示す図である。
図27A乃至図27Cは、集積回路の適用例を説明する図である。
図28は、集積回路の適用例を示す図である。
以下に、本発明の実施の形態を説明する。ただし、本発明の一形態は、以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。したがって、本発明の一形態は、以下に示す実施の形態の記載内容に限定して解釈されるものではない。
本明細書等において、半導体装置とは、半導体特性を利用した装置であり、半導体素子(トランジスタ、ダイオード、フォトダイオード等)を含む回路、同回路を有する装置等をいう。また、半導体特性を利用することで機能しうる装置全般をいう。例えば、集積回路、集積回路を備えたチップ、およびパッケージにチップを収納した電子部品は半導体装置の一例である。また、記憶装置、表示装置、発光装置、照明装置および電子機器等は、それ自体が半導体装置であり、半導体装置を有している場合がある。
また、本明細書等において、XとYとが接続されていると記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYが直接接続されている場合が、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に開示されているものとする。X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層など)であるとする。
XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示デバイス、発光デバイス、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、オン状態とオフ状態が制御される。つまり、スイッチは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。
XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(デジタルアナログ変換回路、アナログデジタル変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、切り替え回路、増幅回路(信号振幅または電流量などを大きく出来る回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。
なお、XとYとが電気的に接続されている、と明示的に記載する場合は、XとYとが電気的に接続されている場合(つまり、XとYとの間に別の素子または別の回路を挟んで接続されている場合)と、XとYとが直接接続されている場合(つまり、XとYとの間に別の素子または別の回路を挟まずに接続されている場合)とを含むものとする。
また、例えば、「XとYとトランジスタのソース(または第1の端子など)とドレイン(または第2の端子など)とは、互いに電気的に接続されており、X、トランジスタのソース(または第1の端子など)、トランジスタのドレイン(または第2の端子など)、Yの順序で電気的に接続されている。」と表現することができる。または、「トランジスタのソース(または第1の端子など)は、Xと電気的に接続され、トランジスタのドレイン(または第2の端子など)はYと電気的に接続され、X、トランジスタのソース(または第1の端子など)、トランジスタのドレイン(または第2の端子など)、Yは、この順序で電気的に接続されている」と表現することができる。または、「Xは、トランジスタのソース(または第1の端子など)とドレイン(または第2の端子など)とを介して、Yと電気的に接続され、X、トランジスタのソース(または第1の端子など)、トランジスタのドレイン(または第2の端子など)、Yは、この接続順序で設けられている」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続の順序について規定することにより、トランジスタのソース(または第1の端子など)と、ドレイン(または第2の端子など)とを、区別して、技術的範囲を決定することができる。なお、これらの表現方法は、一例であり、これらの表現方法に限定されない。ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
なお、回路図上は独立している構成要素同士が電気的に接続しているように図示されている場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もある。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、および電極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における電気的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場合も、その範疇に含める。
また、本明細書等において、「抵抗素子」とは、例えば、0Ωよりも高い抵抗値を有する回路素子、配線などとすることができる。そのため、本明細書等において、「抵抗素子」は、抵抗値を有する配線、ソース−ドレイン間に電流が流れるトランジスタ、ダイオード、コイルなどを含むものとする。そのため、「抵抗素子」という用語は、「抵抗」、「負荷」、「抵抗値を有する領域」などの用語に言い換えることができ、逆に「抵抗」、「負荷」、「抵抗値を有する領域」という用語は、「抵抗素子」などの用語に言い換えることができる。抵抗値としては、例えば、好ましくは1mΩ以上10Ω以下、より好ましくは5mΩ以上5Ω以下、更に好ましくは10mΩ以上1Ω以下とすることができる。また、例えば、1Ω以上1×10Ω以下としてもよい。
また、本明細書等において、「容量素子」とは、例えば、0Fよりも高い静電容量の値を有する回路素子、0Fよりも高い静電容量の値を有する配線の領域、寄生容量、トランジスタのゲート容量などとすることができる。そのため、本明細書等において、「容量素子」は、1対の電極と、当該電極の間に含まれている誘電体と、を含む回路素子だけでなく、配線と配線との間に生じる寄生容量、トランジスタのソースまたはドレインの一方とゲートとの間に生じるゲート容量などを含むものとする。また、「容量素子」、「寄生容量」、「ゲート容量」などという用語は、「容量」などの用語に言い換えることができ、逆に、「容量」という用語は、「容量素子」、「寄生容量」、「ゲート容量」などの用語に言い換えることができる。また、「容量」の「1対の電極」という用語は、「一対の導電体」、「一対の導電領域」、「一対の領域」などに言い換えることができる。なお、静電容量の値としては、例えば、0.05fF以上10pF以下とすることができる。また、例えば、1pF以上10μF以下としてもよい。
また、本明細書等において、トランジスタは、ゲート、ソース、およびドレインと呼ばれる3つの端子を有する。ゲートは、トランジスタの導通状態を制御する制御端子である。ソースまたはドレインとして機能する2つの端子は、トランジスタの入出力端子である。2つの入出力端子は、トランジスタの導電型(nチャネル型、pチャネル型)およびトランジスタの3つの端子に与えられる電位の高低によって、一方がソースとなり他方がドレインとなる。このため、本明細書等においては、ソース、ドレインの用語は、互いに言い換えることができるものとする。また、本明細書等では、トランジスタの接続関係を説明する際、「ソースまたはドレインの一方」(または第1電極、または第1端子)、「ソースまたはドレインの他方」(または第2電極、または第2端子)という表記を用いる。なお、トランジスタの構造によっては、上述した3つの端子に加えて、バックゲートを有する場合がある。この場合、本明細書等において、トランジスタのゲートまたはバックゲートの一方を第1ゲートと呼称し、トランジスタのゲートまたはバックゲートの他方を第2ゲートと呼称することがある。更に、同じトランジスタにおいて、「ゲート」と「バックゲート」の用語は互いに入れ換えることができる場合がある。また、トランジスタが、3つ以上のゲートを有する場合は、本明細書等においては、それぞれのゲートを第1ゲート、第2ゲート、第3ゲートなどと呼称することがある。
また、本明細書等において、トランジスタの「オン状態」とは、トランジスタのソースとドレインが電気的に短絡しているとみなせる状態(「導通状態」ともいう)をいう。また、トランジスタの「オフ状態」とは、トランジスタのソースとドレインが電気的に遮断しているとみなせる状態(「非導通状態」ともいう)をいう。
また、本明細書等において、「オン電流」とは、トランジスタがオン状態の時にソースとドレイン間に流れる電流をいう場合がある。また、「オフ電流」とは、トランジスタがオフ状態である時にソースとドレイン間に流れる電流をいう場合がある。
また、本明細書等において、ノードは、回路構成またはデバイス構造等に応じて、端子、配線、電極、導電層、導電体、不純物領域等と言い換えることが可能である。また、端子、配線等をノードと言い換えることが可能である。
また、本明細書等において、「電圧」と「電位」は、適宜言い換えることができる。「電圧」は、基準となる電位からの電位差のことであり、例えば基準となる電位をグラウンド電位(接地電位)とすると、「電圧」を「電位」に言い換えることができる。なお、グラウンド電位は必ずしも0Vを意味するとは限らない。また、電位は相対的なものであり、基準となる電位が変わることによって、配線に与えられる電位、回路などに印加される電位、回路などから出力される電位なども変化する。
「電流」とは、電荷の移動現象(電気伝導)のことであり、例えば、「正の荷電体の電気伝導が起きている」という記載は、「その逆向きに負の荷電体の電気伝導が起きている」と換言することができる。そのため、本明細書等において、「電流」とは、特に断らない限り、キャリアの移動に伴う電荷の移動現象(電気伝導)をいうものとする。ここでいうキャリアとは、電子、正孔、アニオン、カチオン、錯イオン等が挙げられ、電流の流れる系(例えば、半導体、金属、電解液、真空中など)によってキャリアが異なる。また、配線等における「電流の向き」は、正のキャリアが移動する方向とし、正の電流量で記載する。換言すると、負のキャリアが移動する方向は、電流の向きと逆の方向となり、負の電流量で表現される。そのため、本明細書等において、電流の正負(または電流の向き)について断りがない場合、「素子Aから素子Bに電流が流れる」等の記載は「素子Bから素子Aに電流が流れる」等に言い換えることができるものとする。また、「素子Aに電流が入力される」等の記載は「素子Aから電流が出力される」等に言い換えることができるものとする。
また、本明細書等において、「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものである。従って、構成要素の数を限定するものではない。また、構成要素の順序を限定するものではない。例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素が、他の実施の形態、あるいは特許請求の範囲において「第2」に言及された構成要素とすることもありうる。また例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素を、他の実施の形態、あるいは特許請求の範囲において省略することもありうる。
また、「上」、「下」の用語は、構成要素の位置関係が直上または直下で、かつ、直接接していることを限定するものではない。例えば、「絶縁層A上の電極B」の表現であれば、絶縁層Aの上に電極Bが直接接して形成されている必要はなく、絶縁層Aと電極Bとの間に他の構成要素を含むものを除外しない。
また、構成要素の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書等で説明した語句に限定されず、状況に応じて適切に言い換えることができる。例えば、本明細書等において、「上に」、「下に」などの配置を示す語句は、構成要素の位置関係を、図面を参照して説明するために、便宜上用いている場合がある。よって、「導電体の上面に位置する絶縁体」の表現では、示している図面の向きを180度回転することによって、「導電体の下面に位置する絶縁体」と言い換えることができる。また、「導電体の上面に位置する絶縁体」の表現では、示している図面の向きを90度回転することによって、「導電体の左面(もしくは右面)に位置する絶縁体」と言い換えることができる。
同様に、本明細書等において、「重なる」などの用語は、構成要素の積層順などの状態を限定するものではない。例えば、「絶縁層Aに重なる電極B」の表現であれば、「絶縁層Aの上に電極Bが形成されている」状態に限らず、「絶縁層Aの下に電極Bが形成されている」状態または「絶縁層Aの右側(もしくは左側)に電極Bが形成されている」状態などを除外しない。
また、本明細書等において、「隣接」、「近接」の用語は、構成要素が直接接していることを限定するものではない。例えば、「絶縁層Aに隣接する電極B」の表現であれば、絶縁層Aと電極Bが直接接して形成されている必要はなく、絶縁層Aと電極Bの間に他の構成要素を含むものを除外しない。
また、本明細書等において、「膜」、「層」などの語句は、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。または、場合によっては、または、状況に応じて、「膜」、「層」などの語句を使わずに、別の用語に入れ替えることが可能である。例えば、「導電層」または「導電膜」という用語を、「導電体」という用語に変更することが可能な場合がある。または、例えば、「絶縁層」、「絶縁膜」という用語を、「絶縁体」という用語に変更することが可能な場合がある。
また、本明細書等において「電極」、「配線」、「端子」などの用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」、「配線」の用語は、複数の「電極」、「配線」が一体となって形成されている場合なども含む。また、例えば、「端子」は「配線」または「電極」の一部として用いられることがあり、その逆もまた同様である。更に、「端子」の用語は、複数の「電極」、「配線」、「端子」などが一体となって形成されている場合なども含む。そのため、例えば、「電極」は「配線」または「端子」の一部とすることができ、また、例えば、「端子」は「配線」または「電極」の一部とすることができる。また、「電極」、「配線」、「端子」などの用語は、場合によって、「領域」などの用語に置き換える場合がある。
また、本明細書等において、「配線」、「信号線」、「電源線」などの用語は、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「配線」という用語を、「信号線」という用語に変更することが可能な場合がある。また、例えば、「配線」という用語を、「電源線」などの用語に変更することが可能な場合がある。また、その逆も同様で、「信号線」、「電源線」などの用語を、「配線」という用語に変更することが可能な場合がある。「電源線」などの用語は、「信号線」などの用語に変更することが可能な場合がある。また、その逆も同様で「信号線」などの用語は、「電源線」などの用語に変更することが可能な場合がある。また、配線に印加されている「電位」という用語を、場合によっては、または、状況に応じて、「信号」などという用語に変更することが可能な場合がある。また、その逆も同様で、「信号」などの用語は、「電位」という用語に変更することが可能な場合がある。
本明細書等において、半導体の不純物とは、例えば、半導体層を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物である。不純物が含まれることにより、例えば、半導体の欠陥準位密度が高くなること、キャリア移動度が低下すること、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、主成分以外の遷移金属などがあり、特に、例えば、水素(水にも含まれる)、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。具体的には、半導体がシリコンである場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。
本明細書等において、スイッチとは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有するものをいう。または、スイッチとは、電流を流す経路を選択して切り替える機能を有するものをいう。一例としては、電気的なスイッチ、機械的なスイッチなどを用いることができる。つまり、スイッチは、電流を制御できるものであればよく、特定のものに限定されない。
電気的なスイッチの一例としては、トランジスタ(例えば、バイポーラトランジスタ、MOSトランジスタなど)、ダイオード(例えば、PNダイオード、PINダイオード、ショットキーダイオード、MIM(Metal Insulator Metal)ダイオード、MIS(Metal Insulator Semiconductor)ダイオード、ダイオード接続のトランジスタなど)、またはこれらを組み合わせた論理回路などがある。なお、スイッチとしてトランジスタを用いる場合、トランジスタの「導通状態」とは、トランジスタのソース電極とドレイン電極が電気的に短絡されているとみなせる状態をいう。また、トランジスタの「非導通状態」とは、トランジスタのソース電極とドレイン電極が電気的に遮断されているとみなせる状態をいう。なおトランジスタを単なるスイッチとして動作させる場合には、トランジスタの極性(導電型)は特に限定されない。
機械的なスイッチの一例としては、MEMS(マイクロ・エレクトロ・メカニカル・システムズ)技術を用いたスイッチがある。そのスイッチは、機械的に動かすことが可能な電極を有し、その電極が動くことによって、導通と非導通とを制御して動作する。
本明細書において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。したがって、−5°以上5°以下の場合も含まれる。また、「略平行」または「概略平行」とは、二つの直線が−30°以上30°以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。したがって、85°以上95°以下の場合も含まれる。また、「略垂直」または「概略垂直」とは、二つの直線が60°以上120°以下の角度で配置されている状態をいう。
本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう)などに分類される。例えば、トランジスタの活性層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、金属酸化物が増幅作用、整流作用、およびスイッチング作用の少なくとも1つを有するトランジスタのチャネル形成領域を構成し得る場合、当該金属酸化物を、金属酸化物半導体(metal oxide semiconductor)と呼称することができる。また、OSトランジスタと記載する場合においては、金属酸化物または酸化物半導体を有するトランジスタと換言することができる。
また、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
また、本明細書等において、各実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて、本発明の一態様とすることができる。また、1つの実施の形態の中に、複数の構成例が示される場合は、互いに構成例を適宜組み合わせることが可能である。
なお、ある一つの実施の形態の中で述べる内容(一部の内容でもよい)は、その実施の形態で述べる別の内容(一部の内容でもよい)と、一つ若しくは複数の別の実施の形態で述べる内容(一部の内容でもよい)との少なくとも一つの内容に対して、適用、組み合わせ、または置き換えなどを行うことができる。
なお、実施の形態の中で述べる内容とは、各々の実施の形態において、様々な図を用いて述べる内容、または明細書に記載される文章を用いて述べる内容のことである。
なお、ある一つの実施の形態において述べる図(一部でもよい)は、その図の別の部分、その実施の形態において述べる別の図(一部でもよい)と、一つ若しくは複数の別の実施の形態において述べる図(一部でもよい)との少なくとも一つの図に対して、組み合わせることにより、さらに多くの図を構成させることができる。
本明細書に記載の実施の形態については、図面を参照しながら説明する。但し、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなく、その形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、実施の形態の記載内容に限定して解釈されるものではない。なお、実施の形態の発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、図面を理解しやすくするため、斜視図または上面図などにおいて、一部の構成要素の記載を省略している場合がある。
また本明細書等において、ブロック図では、構成要素を機能毎に分類し、互いに独立したブロックとして示している。しかしながら実際の回路等においては、構成要素を機能毎に切り分けることが難しく、一つの回路に複数の機能が係わる場合、または複数の回路にわたって一つの機能が関わる場合があり得る。そのため、ブロック図のブロックは、明細書で説明した構成要素に限定されず、状況に応じて適切に言い換えることができる。
また、本明細書の図面において、大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもその大きさ並びに縦横比などに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状または値などに限定されない。例えば、ノイズによる信号、電圧、若しくは電流のばらつき、または、タイミングのずれによる信号、電圧、若しくは電流のばらつきなどを含むことが可能である。
本明細書等において、複数の要素に同じ符号を用いる場合、特に、それらを区別する必要があるときには、符号に“A”、“b”、“_1”、“[n]”、“[m,n]”などの識別用の符号を付記して記載する場合がある。
(実施の形態1)
本発明の一形態に係る半導体装置100について図面を用いて説明する。なお、図面において、X方向、Y方向、およびZ方向を示す矢印を付す場合がある。X方向、Y方向、およびZ方向は、それぞれが互いに交差する方向である。より具体的には、X方向、Y方向、およびZ方向は、それぞれが互いに直交する方向である。本明細書などでは、X方向、Y方向、またはZ方向の1つを「第1方向」または「第1の方向」と呼ぶ場合がある。また、他の1つを「第2方向」または「第2の方向」と呼ぶ場合がある。また、残りの1つを「第3方向」または「第3の方向」と呼ぶ場合がある。
<半導体装置100>
図1に半導体装置100の上面図を示す。図2Aに半導体装置100の斜視図を示す。
半導体装置100は、アクセラレータとしての機能を有する。具体的には、ホストプログラムから呼び出されたプログラム(カーネル、またはカーネルプログラムとも呼ばれる)を実行する機能を有する。半導体装置100は、例えば、グラフィック処理における行列演算の並列処理、ニューラルネットワークの積和演算の並列処理、科学技術計算における浮動小数点演算の並列処理などを行うことができる。
<演算ブロック>
半導体装置100は、M行N列(M、Nはそれぞれ2以上の自然数)のマトリクス状に配置された複数の演算ブロック200を有する。図1では、1行2列目の演算ブロック200を演算ブロック200[1,2]と示し、M行N列目の演算ブロック200を演算ブロック200[M,N]と示している。
図2Bに演算ブロック200の斜視図を示す。演算ブロック200は、演算回路部210、書き込みビット線駆動回路220、書き込みワード線駆動回路240、読み出しワード線駆動回路230、および記憶回路部310を有する。
演算ブロック200は複数のトランジスタを用いて構成される。演算ブロック200が含むトランジスタの半導体として、単結晶半導体、多結晶半導体、微結晶半導体、または非晶質半導体などを、単体でまたは組み合わせて用いることができる。また、半導体材料としては、例えば、シリコン、またはゲルマニウムなどを用いることができる。また、シリコンゲルマニウム、炭化シリコン、ヒ化ガリウム、酸化物半導体、窒化物半導体などの化合物半導体を用いてもよい。
また、演算ブロック200に含まれるトランジスタとして高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)が適用可能であり、HEMTにはヒ化ガリウム、ヒ化アルミニウムガリウム、ヒ化インジウムガリウム、窒化ガリウム、リン化インジウム、シリコンゲルマニウムなどを用いてもよい。
トランジスタに用いる半導体は、半導体の積層であってもよい。半導体を積層する場合は、それぞれ異なる結晶状態を有する半導体を積層してもよいし、それぞれ異なる半導体材料を積層してもよい。
また、半導体装置100は、層110と層120を有する。図3に半導体装置100の構成を説明する斜視図を示す。層110および層120は、Z方向に重ねて設けられる。本実施の形態では層110上に層120を設ける例を示しているが、層120上に層110を設けてもよい。
酸化物半導体はバンドギャップが2eV以上であるため、チャネルが形成される半導体に酸化物半導体を含むトランジスタ(「OSトランジスタ」ともいう)は、オフ電流が著しく少ない。また、例えば、チャネルが形成される半導体にシリコンを含むトランジスタ(「Siトランジスタ」ともいう)、特に半導体に結晶性シリコンを含むSiトランジスタ(「結晶性Siトランジスタ」ともいう)は、OSトランジスタよりも比較的高い移動度を得やすい。一方で、結晶性Siトランジスタは、OSトランジスタのように極めて少ないオフ電流の実現が困難である。
よって、トランジスタのチャネルが形成される半導体に用いる半導体材料は、目的および/または用途に応じて適宜使い分けることが肝要である。例えば、目的および/または用途に応じて、OSトランジスタとSiトランジスタまたはその他のトランジスタを組み合わせて用いることが好ましい。
本発明の一形態に係る半導体装置100では、層110は例えばSiトランジスタを含み、層120は例えばOSトランジスタを含む。記憶回路よりも速い動作速度が求められる演算回路部210、書き込みビット線駆動回路220、書き込みワード線駆動回路240、および読み出しワード線駆動回路230を層110に設ける。また、動作速度よりもオフ電流の少なさが求められる記憶回路部310を層120に設ける。
目的および/または用途に応じてトランジスタの半導体に用いる半導体材料を変えることで、動作速度(演算処理速度)の向上と、消費電力の低減が実現できる。
層110は、M行N列の演算回路部210を含む。よって、層110を「演算回路アレイ」と呼ぶ場合がある。また、層120は、M行N列の記憶回路部310を含む。よって、層120を「メモリアレイ」と呼ぶ場合がある。また、記憶回路部310を「メモリサブアレイ」と呼ぶ場合がある。演算回路アレイとメモリアレイを重ねて設けることで、半導体装置100の小型化が実現できる。すなわち、演算回路部210と記憶回路部310が互いに重なる領域を有することで、半導体装置100の小型化が実現できる。また、半導体装置100の占有面積を低減できる。
図4Aは、演算ブロック200の構成を説明する図である。記憶回路部310は、P行Q列(P、Qはそれぞれ2以上の自然数)のマトリクス状に配置された複数のメモリセル320を有する。よって、メモリアレイには、M×N×P×Q個のメモリセル320が含まれる。ここで、R=M×P、S=N×Qとすると、メモリアレイはR行S列のマトリクス状に配置された複数のメモリセル320を有する、と言える。
図4Aでは、1行2列目のメモリセル320をメモリセル320[1,2]と示し、P行Q列目のメモリセル320をメモリセル320[P,Q]と示している。
また、図4Aに示す演算ブロック200は、行方向に延在するP本の配線WWLおよびP本の配線RWLと、列方向に延在するQ本の配線WBLおよびQ本の配線RBLと、を有する。
i本目(iは1以上P以下の自然数)の配線WWLおよびi本目の配線RWLは、i行目に配置されたQ個のメモリセル320と電気的に接続される。j本目(jは1以上Q以下の自然数)の配線WBLおよびj本目の配線RBLは、j列目に配置されたP個のメモリセル320と電気的に接続される。
メモリセル320は、配線RBLを介して演算回路部210と電気的に接続される。また、メモリセル320は、配線WBLを介して書き込みビット線駆動回路220と電気的に接続される。また、メモリセル320は、配線RWLを介して読み出しワード線駆動回路230と電気的に接続される。また、メモリセル320は、配線WWLを介して書き込みワード線駆動回路240と電気的に接続される。
なお、半導体装置100が有する全ての演算ブロック200において、演算回路部210と記憶回路部310を重ねて設ける必要はない。半導体装置100が有する複数の演算ブロック200の一部に、演算回路部210と記憶回路部310が重なっていない演算ブロック200が含まれてもよい。
〔メモリセル〕
図4Bに、メモリセル320に用いることができる回路構成例を示す。図4Bに例示するメモリセル320は、トランジスタ321、トランジスタ322、およびトランジスタ323を有する。トランジスタ321のゲートは配線WWLと電気的に接続される。トランジスタ321のソースまたはドレインの一方は配線WBLと電気的に接続され、他方はトランジスタ322のゲートと電気的に接続される。トランジスタ322のソースまたはドレインの一方は固定電位たとえばグラウンド電位を与える配線と電気的に接続され、他方はトランジスタ323のソースまたはドレインの一方と電気的に接続される。トランジスタ323のソースまたはドレインの他方は配線RBLと電気的に接続される。トランジスタ323のゲートは配線RWLと電気的に接続される。トランジスタ321のソースまたはドレインの他方と、トランジスタ322のゲートが電気的に接続する節点がノードSNとして機能する。
また、図4Cに示すように、ノードSNに容量324を設けてもよい。容量324を構成する一方の電極はトランジスタ322のゲート(ノードSN)と電気的に接続され、他方の電極は固定電位たとえばグラウンド電位を与える配線と電気的に接続される。
トランジスタ321としてOSトランジスタを用いることが好ましい。酸化物半導体はバンドギャップが2eV以上あるため、OSトランジスタはオフ電流が著しく少ない。よって、ノードSNに供給された電荷を長期間保持することができる。また、容量324を小さくする、または、省略することができる。また、半導体装置100の消費電力を低減できる。
また、トランジスタ321としてOSトランジスタを用い、トランジスタ322およびトランジスタ323にOSトランジスタ以外のトランジスタを用いる場合は、トランジスタ321を層120に設け、トランジスタ322およびトランジスタ323を層110に設けてもよい。
また、トランジスタ321、トランジスタ322、およびトランジスタ323にOSトランジスタを用いてもよい。OSトランジスタは高温環境下でもオフ電流がほとんど増加しない。具体的には室温以上200℃以下の環境温度下でもオフ電流がほとんど増加しない。また、OSトランジスタは、ソースとドレイン間の絶縁耐圧が高い。OSトランジスタを用いることで、高温環境下においても動作が安定し、信頼性の良好な半導体装置を実現できる。OSトランジスタを含むメモリを「OSメモリ」ともいう。
トランジスタ321、トランジスタ322、およびトランジスタ323にOSトランジスタを用いることで、記憶回路部310を演算回路部210の直上に積層することができる。
図4Bおよび図4Cに示した回路構成例は、NOSRAM(登録商標)の回路構成である。「NOSRAM」とは、「Nonvolatile Oxide Semiconductor RAM」の略称である。NOSRAMは、メモリセルが2トランジスタ型(2T)、または3トランジスタ型(3T)ゲインセルであり、アクセストランジスタがOSトランジスタである記憶素子のことをいう。よって、NOSRAMはOSメモリの一種である。
NOSRAMは、OSトランジスタのオフ電流が極めて小さい特性を用いてデータに応じた電荷をメモリ回路内(ノードSN)に保持することで、不揮発性メモリとして機能できる。また、NOSRAMは保持しているデータを破壊することなく読み出しすること(非破壊読み出し)が可能なため、例えば、データ読み出し動作を多数回繰り返すニューラルネットワークの積和演算の並列処理に適している。
メモリセル320に保持できるデータは、1ビットのデータに限らない。メモリセル320は、複数ビットのデータ(多値データ)、またはアナログデータを保持できる。
メモリセル320に用いることができる回路構成は、図4Bおよび図4Cに示した回路構成に限らない。例えば、図5Aに図示するDOSRAMに相当する回路でもよい。「DOSRAM」とは、OSトランジスタを含む1T1C型のメモリセルを有するRAMのことであり、「Dynamic Oxide Semiconductor RAM」の略称である。よって、DOSRAMはOSメモリの一種である。
また、メモリセル320として、フラッシュメモリ、MRAM(Magnetoresistive RAM)、PRAM(Phase change RAM)、ReRAM(Resistive RAM)、FeRAM(Ferroelectric RAM)などを用いてもよい。
図5Aに示すメモリセル320Aは、トランジスタ321および容量324を有する。図5Aに示すトランジスタ321は、バックゲートを有するOSトランジスタである。メモリセル320Aは、配線BL、配線WWLおよび配線BGLと電気的に接続される。配線BGLは、トランジスタ321のバックゲートと電気的に接続される。配線BLは、配線WBLとして機能する場合と、配線RBLとして機能する場合がある。
メモリセル320に用いることができる回路構成は、図5Bに示す2T型のNOSRAMに相当する回路でもよい。図5Bでは、トランジスタ321、トランジスタ322および容量324を有するメモリセル320Bを図示している。図5Bに示すトランジスタ321およびトランジスタ322は、OSトランジスタである。トランジスタ321およびトランジスタ322は、両者の半導体層がそれぞれ異なる層に配置されるOSトランジスタでもよいし、両者の半導体層が同じ層に配置されるOSトランジスタでもよい。
メモリセル320Bは、配線WBL、配線RBL、配線WWL、配線RWL、配線SLおよび配線BGLと電気的に接続される。配線BGLは、トランジスタ321のバックゲートと電気的に接続される。メモリセル320Bにおいて、容量324を構成する一方の電極はトランジスタ322のゲートと電気的に接続され、他方の電極は配線RWLと電気的に接続される。また、トランジスタ322のソースまたはドレインの一方は配線RBLと電気的に接続され、他方は配線SLと電気的に接続される。
メモリセル320に適用可能な回路構成は、図5Cに図示する3T型のNOSRAMを組み合わせた回路でもよい。図5Cでは、論理の異なるデータを保持できるメモリセル320Pと、メモリセル320Nと、を有するメモリセル320Cを図示している。メモリセル320Cが有する各トランジスタは、OSトランジスタである。
メモリセル320Pは、配線WBL_P、配線RBL_P、配線WWL、および配線RWLと電気的に接続される。メモリセル320Nは、配線WBL_N、配線RBL_N、配線WWL、および配線RWLと電気的に接続される。メモリセル320Pは、トランジスタ321P、トランジスタ322P、トランジスタ323P、容量324Pを有し、ノードSNPに供給された情報(電荷)を長期間保持することができる。メモリセル320Nは、トランジスタ321N、トランジスタ322N、トランジスタ323N、容量324Nを有し、ノードSNNに供給された情報(電荷)を長期間保持することができる。
また、メモリセル320Cが有する各トランジスタの半導体層は、それぞれが異なる層に配置されてもよいし、全てが同じ層に配置されてもよい。また、複数の半導体層が同じ層に配置されてもよい。
また、メモリセル320Cは、ノードSNPおよびノードSNNにそれぞれ論理の異なるデータを保持できる。また、保持しているデータを配線RBL_Pおよび配線RBL_Nを介して読み出すことができる。
なお、図5Cの構成において、メモリセル320Pとメモリセル320Nに保持するデータの乗算に相当するデータが配線RBL(図5Cに図示せず)に出力されるように排他的論理和回路(XOR回路)を設けてもよい。当該構成とすることで、演算回路部210における乗算に相当する演算を省略できる。よって、半導体装置の消費電力を低減できる。
〔演算回路〕
演算回路部210には、積和演算処理、プーリング演算処理、ノーマライズ処理、活性化演算処理などの様々な演算処理を行うための演算回路が適用可能である。演算回路部210には複数個の演算回路を設けることができる。また、演算回路部210には複数種類の演算回路を設けることができる。図6Aに、演算回路部210に適用できる演算回路211の回路構成例を示す。図6Aでは、8ビットの重みデータWと8ビットの入力データAの積和演算を行うことができる回路構成例を示している。
図6Aに示す演算回路211は、乗算回路24、加算回路25およびレジスタ26を有する。複数の重みデータWのうち、選択された重みデータWSELと入力データAINは、乗算回路24で乗算されて16ビットのデータDに変換されて、加算回路25に入力される。加算回路25では、データDにレジスタ26に保持されているデータDが加算され、新たなデータDとしてレジスタ26に保持される。この時、新たなデータDの桁数が17ビットになる場合がある。上記の乗算および加算が繰り返される度に、新たなデータDの桁数は増加する可能性がある。よって、図6Aでは加算回路25の出力にデータの桁数を示す「17+α」を記している。「α」は、乗算データを加算することで生じる桁上がりを示したものである。このようにして重みデータWSELと入力データAINとの積和演算に相当する出力データDMACを得ることができる。なお、レジスタ26は、クロック信号CLKおよびリセット信号reset_Bによって制御される。
図6Aでは、8ビットのデータを用いて演算処理を行う回路構成について説明した。図6Aに示す演算回路211は、1ビットのデータを用い行う演算処理にも適用できる。当該回路構成について図6Aと同様に図6Bに図示する。重みデータWSELと入力データAINが1ビットのデータの場合、乗算回路24で生成されるデータDは1ビットのデータになる。その他の演算処理については前述した内容と同じであるため、これ以上の説明は省略する。
また、本発明の一態様に係る半導体装置100は、積和演算処理で用いる重みデータWが、演算回路部210に重ねて設けられた記憶回路部310に保持される。よって、重みデータWの読み出しに用いる配線RBLを短くすることができるため、配線抵抗および寄生容量が小さくなり、重みデータWの高速読み出しが実現できる。また、重みデータWの読み出しに必要な消費電力が低減できる。
また、本発明の一態様に係る半導体装置100は、演算ブロック200毎に読み出しワード線駆動回路230を有するため、重みデータWのさらなる高速読み出しが実現できる。
また、本発明の一態様に係る半導体装置100は、演算ブロック200毎に、書き込みビット線駆動回路220および書き込みワード線駆動回路240を有するため、重みデータWの高速書き込みが実現できる。
<演算処理システム>
図7に、AIアクセラレータとして機能する半導体装置100を含む演算処理システム1000のブロック図を示す。
図7に示す演算処理システム1000は、半導体装置100、CPU400、バス410、制御装置150、および記憶装置160を含む。また、主記憶装置420、補助記憶装置430、入出力装置440などを有してもよい。制御装置150、主記憶装置420、補助記憶装置430、入出力装置440などは、バス410を介してCPU400と電気的に接続される。
CPU400は、CPUコア401およびバックアップ回路402を有する。前述したように、半導体装置100は複数の演算ブロック200を有するが、図7では1つの演算ブロック200を示している。
CPU400は、オペレーティングシステムの実行、データの制御、各種演算、プログラムの実行など、汎用の処理を行う機能を有する。CPU400は、CPUコア401を有する。CPUコア401は、1つまたは複数のCPUコアに相当する。またCPU400は、電源電圧の供給が停止してもCPUコア401内のデータを保持できるバックアップ回路402を有する。電源電圧の供給は、電源ドメイン(パワードメイン)からのパワースイッチなどによる電気的な切り離しによって制御することができる。なお電源電圧は、駆動電圧という場合がある。
バックアップ回路402として、例えば、OSトランジスタを有するOSメモリを用いることが好適である。OSトランジスタで構成されるバックアップ回路402は、Siトランジスタで構成することができるCPUコア401と積層して設けることができる。バックアップ回路402の面積はCPUコア401の面積より小さいため、回路面積の増加を招くことなく、CPUコア401上にバックアップ回路402を配置することができる。バックアップ回路402は、CPUコア401が有するレジスタのデータを保持する機能を有する。バックアップ回路402は、データ保持回路ともいう。なお、OSトランジスタを有するバックアップ回路402を備えたCPU400の構成の詳細については、実施の形態3で説明する。
制御装置150はAIアクセラレータとして機能する半導体装置100の動作を制御する機能を有する。例えば、制御装置150は、重みデータWの書き込みおよび読み出しを制御する信号を半導体装置100に供給する機能を有する。また制御装置150は、半導体装置100に入力データAを与えて、半導体装置100にニューラルネットワークの積和演算などを実行させる機能を有する。制御装置150はバス410を介してCPU400と電気的に接続される。よって、半導体装置100は、バス410を介してCPU400と電気的に接続される。
また記憶装置160は、ニューラルネットワークの積和演算結果などの半導体装置100で得られる出力データを保持する機能を有する。記憶装置160としては、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)、OSメモリなどを用いることができる。
主記憶装置420は、演算処理システム1000の動作にかかわるプログラムおよびパラメータを保存する機能を有し、少なくとも一部は書き換え可能なメモリであることが好ましい。例えば、主記憶装置420は、RAM(Random Access Memory)などの揮発性メモリ、ROM(Read Only Memory)などの不揮発性メモリを備えることができる。主記憶装置420にOSメモリを用いてもよい。
補助記憶装置430は、オペレーティングシステム、アプリケーションプログラム、各種のデータなどを保存するための記憶装置である。また、CPU400および半導体装置100で使用する各種パラメータなどが格納されている場合もある。
補助記憶装置430としては、例えば、フラッシュメモリ、MRAM、PRAM、ReRAM、FeRAMなどの不揮発性の記憶素子が適用された記憶装置、またはDRAMおよび/またはSRAMなどの揮発性の記憶素子が適用された記憶装置等を用いてもよい。また例えばハードディスクドライブ(Hard Disc Drive:HDD)および/または、ソリッドステートドライブ(Solid State Drive:SSD)などの記録メディアドライブを用いてもよい。
また、例えば、補助記憶装置430として、入出力装置440を介して脱着可能なHDDまたはSSDなどの記憶装置を用いてもよい。また、フラッシュメモリ、ブルーレイディスク、DVDなどの記録媒体のメディアドライブを補助記憶装置430として用いることもできる。
入出力装置440は、外部機器と演算処理システム1000間の、信号の入出力を制御する機能を有する。また、入出力装置440が有する外部ポートとして、HDMI(登録商標)端子、USB端子、LAN(Local Area Network)接続用端子などを用いてもよい。また、入出力装置440は、赤外線、可視光、紫外線などを用いた光通信用の送受信機能を有していてもよい。
〔演算処理の一例〕
図8Aおよび図8Bを用いて、畳み込みニューラルネットワークの演算処理の一例を示す。図8Aは、演算処理のシーケンスを説明するブロック図である。図8Bは、図8Aに示すシーケンスのデータフロー(入力データAおよび重みデータWの流れ)を説明する図である。図8Bでは、記憶回路部310、演算回路部210、および記憶装置160間のデータフローを示している。
図8Aでは、入力層90A、中間層(隠れ層ともいう)90B、出力層90Cを示している。入力層90Aでは、入力データの入力処理92(「Input」と図示)を示している。中間層90Bでは、畳み込み演算処理93、畳み込み演算処理94、畳み込み演算処理96(「Conv.1」、「Conv.2」、「Conv.3」と図示)、プーリング演算処理95、およびプーリング演算処理97(「Pool.1」、「Pool.2」と図示)を示している。出力層90Cでは、全結合演算処理98(「Full」と図示)を示している。
はじめに重みデータ初期化処理91(図中、「W−Ini.」と図示)を行う。重みデータ初期化処理91では、主記憶装置420または補助記憶装置430に保持されている重みデータW乃至重みデータWを、制御装置150を介して演算ブロック200の記憶回路部310に書き込む。
次に、入力処理92を行う。入力処理92では、主記憶装置420または補助記憶装置430に保持されているデータAを処理し、畳み込み演算処理93を行うためのデータAを生成する。データAは記憶装置160に保持される。なお、データAとして記憶装置160に保持されているデータを用いてもよい。
次に、畳み込み演算処理93を行う。畳み込み演算処理93では、重みデータWとデータAを用いて積和演算処理(MAC)を行い、データAを生成する。具体的には、記憶装置160からデータAを読み出し、重みデータWが書き込まれている演算ブロック200にデータAを入力し、当該演算ブロック200で積和演算処理を行う。得られたデータAは記憶装置160に保持される。
次に、畳み込み演算処理94を行う。畳み込み演算処理94では、重みデータWとデータAを用いて積和演算処理を行い、データAを生成する。畳み込み演算処理93と同様に、記憶装置160からデータAを読み出し、重みデータWが書き込まれている演算ブロック200にデータAを入力し、当該演算ブロック200で積和演算処理を行う。得られたデータAは記憶装置160に保持される。
次に、プーリング演算処理95を行う。なお、プーリング演算処理95を行う場合は、畳み込み演算処理94で得られたデータAを、記憶装置160を介さずに、直接プーリング演算処理してもよい。プーリング演算処理95では、畳み込み処理で得られたデータAを圧縮して、より扱いやすいデータに変形する(down sampling)。プーリング演算処理は、最大プーリングで行なえばよい。また、プーリング演算処理として、平均プーリング、Lpプーリングなどを用いてもよい。プーリング演算処理95によりデータAを生成する。得られたデータAは記憶装置160に保持される。
次に、畳み込み演算処理96を行う。畳み込み演算処理96では、重みデータWとデータAを用いて積和演算処理を行い、データAを生成する。畳み込み演算処理94と同様に、記憶装置160からデータAを読み出し、重みデータWが書き込まれている演算ブロック200にデータAを入力し、当該演算ブロック200で積和演算処理を行う。得られたデータAは記憶装置160に保持される。
次に、プーリング演算処理97を行う。なお、プーリング演算処理97を行う場合は、畳み込み演算処理96で得られたデータAを、記憶装置160を介さずに、直接プーリング演算処理してもよい。プーリング演算処理97ではデータAに対してプーリング演算処理を行い、データAを生成する。得られたデータAは記憶装置160に保持される。生成されたデータAは、データAの特徴量が抽出されたデータである。
次に、全結合演算処理98を行う。データAはデータAの特徴量が抽出されたデータであるため、そのままでは分類または識別ができない。全結合演算処理98では重みデータWとデータAを用いて積和演算処理を行い、データAを生成する。例えば、ソフトマックス関数を用いることで、データAをそれぞれの分類に正しく分類される確率に変換することができる。
入力層90A、中間層90B、出力層90Cにおける演算処理の流れは一例であり、実際の畳み込みニューラルネットワークの演算処理では、他の演算処理を行うことがあり得る。
また、半導体装置100を含む演算処理システム1000では、2回目以降の畳み込みニューラルネットワークの演算処理を行う際に、再度重みデータ初期化処理91を行う必要が無い。このため、重みデータ初期化処理91に必要な消費電力および処理時間が削減できる。
本発明の一態様に係る半導体装置100は、畳み込みニューラルネットワークの演算処理で用いる全ての重みデータWをメモリアレイ(記憶回路部310)に書き込み、かつ、保持することができる。本発明の一態様に係る半導体装置100は、積和演算処理(畳み込み演算処理など)を行う度に重みデータWを書き込む必要が無いため、演算処理の高速化が実現できる。
大きな重みデータを、バス410を介して演算回路アレイ(演算回路部210)に供給する場合、バス410のバンド幅を広げる必要がある。バス410を介した接続を一次元の接続とすると、本発明の一態様に係る半導体装置100は、演算回路部21と記憶回路部310を重ねて設けているため、二次元の接続が実現できる。すなわち、本発明の一態様に係る半導体装置100はバンド幅を広げることが容易である。また、本発明の一態様に係る半導体装置100は、演算回路の並列数を増やすことも容易である。
また、図9Aおよび図9Bに示すように、畳み込み演算処理96の実行中に重みデータ初期化処理99を行い、データWが書き込まれている記憶回路部310の内容をデータWに書き換えてもよい。前述した通り、本発明の一態様に係る半導体装置100は、重みデータWの書き込み速度が速い。よって、図9Aおよび図9Bに示すような演算処理であっても、高速な演算処理が実現できる。
また、データWは全結合演算処理98で使用するため、重みデータ初期化処理99は全結合演算処理98の開始前までに終了していればよい。図10Aおよび図10Bは、プーリング演算処理97の実行中に重みデータ初期化処理99を行う場合のシーケンスとデータフローを示している。
図9および図10に示すシーケンスは、重みデータW全体の容量(本実施の形態では、重みデータW乃至重みデータWの合計)がメモリアレイの記憶容量よりも大きい時に有効である。
本発明の一態様に係る半導体装置100は、畳み込みニューラルネットワークの演算処理に限らず、様々な演算処理を行うことができる。
<半導体装置の変形例1>
図11に半導体装置100Aの上面図を示す。半導体装置100Aは半導体装置100の変形例である。説明の重複を減らすため、半導体装置100Aの半導体装置100と異なる点について主に説明する。
半導体装置100Aは、M行N列(M、Nはそれぞれ2以上の自然数)のマトリクス状に配置された複数の演算ブロック200Aを有する。図11に示す演算ブロック200Aのように、書き込みワード線駆動回路240と読み出しワード線駆動回路230を、記憶回路部310を挟んで向かい合うように配置してもよい。
<半導体装置の変形例2>
図12に半導体装置100Bの上面図を示す。半導体装置100Bは半導体装置100の変形例である。説明の重複を減らすため、半導体装置100Bの半導体装置100と異なる点について主に説明する。
半導体装置100Bは、M行N列(M、Nはそれぞれ2以上の自然数)のマトリクス状に配置された複数の演算ブロック200Bを含む演算ブロックアレイ290と、書き込みワード線駆動回路240Aと、N個の書き込みビット線駆動回路220Aと、を有する。
演算ブロック200Bは、演算回路部210と、読み出しワード線駆動回路230と、記憶回路部310と、を有する。演算ブロック200Bは、演算ブロック200から、書き込みビット線駆動回路220Aおよび書き込みワード線駆動回路240を除いた構成を有する。
また、半導体装置100と同様に、記憶回路部310はP行Q列のメモリセル320を有する。よって、半導体装置100Bのメモリアレイは、R行S列のメモリセル320を含む。図12では、R行S列目のメモリセル320をメモリセル320[R,S]と示している。なお、メモリセル320[R,S]は、演算ブロック200B[M,N]においてメモリセル[P,Q]に相当する。
書き込みワード線駆動回路240Aは、演算ブロックアレイ290の外側に設けられている。書き込みワード線駆動回路240Aは列方向に延在し、行方向(Y方向)に延在するR本の配線WWLと電気的に接続する。g本目(gは1以上R以下の自然数)の配線WWLは、g行目に配置されているS個のメモリセル320と電気的に接続される。
書き込みワード線駆動回路240Aは、半導体装置100Bに含まれるすべての演算ブロック200Bの書き込み動作を制御する機能を有する。例えば、演算ブロック200B内の記憶回路部310に重みデータWを書き込む動作を制御する機能を有する。書き込みワード線駆動回路240Aを設けることで、半導体装置100が有するM×N個の書き込みワード線駆動回路240を削減できる。半導体装置100Bは、半導体装置100よりもさらに占有面積を低減できる。
図12において、N個の書き込みビット線駆動回路220Aは、演算ブロックアレイ290の外側に設けられている。書き込みビット線駆動回路220Aは、それぞれが行方向(X方向)に延在する。また、N個の書き込みビット線駆動回路220Aは、行方向に連なって配置されている。また、書き込みビット線駆動回路220Aは、それぞれが演算ブロック200Bの各列に配置されている。
図12では、1番目(1列目)に配置されている書き込みビット線駆動回路220Aを「書き込みビット線駆動回路220A[1]」と示し、N番目(N列目)に配置されている書き込みビット線駆動回路220Aを「書き込みビット線駆動回路220A[N]」と示している。また、e番目(e列目)(eは1以上N以下の自然数)に配置されている書き込みビット線駆動回路220Aを「書き込みビット線駆動回路220A[e]」と示している。
また、図12では、1行e列目の演算ブロック200Bを「演算ブロック200B[1,e]」と示し、M行e列目の演算ブロック200Bを「演算ブロック200B[M,e]」と示している。
書き込みビット線駆動回路220A[e]は、列方向(Y方向)に延在するQ本の配線WBLを介して、e列目に配置されている演算ブロック200Bの電気的に接続する。言い換えると、書き込みビット線駆動回路220A[e]は、e列目に配置されている演算ブロック200Bのそれぞれが有する記憶回路部310と電気的に接続する。より正確には、書き込みビット線駆動回路220A[e]と電気的に接続するQ本の配線WBLのうちj本目の配線WBLは、e列目に配置されている演算ブロック200Bのそれぞれが有する記憶回路部310に含まれる、j列目のメモリセル320と電気的に接続される。すなわち、書き込みビット線駆動回路220A[e]と電気的に接続するj本目の配線WBLは、演算ブロック200B[1,e]乃至演算ブロック200B[M,e]のそれぞれに含まれる、メモリセル320[1,j]乃至メモリセル320[P,j]と電気的に接続される。
書き込みビット線駆動回路220A[e]は、e列目に配置されている全ての演算ブロック200Bへデータを供給する機能を有する。例えば、e列目に配置されている全ての記憶回路部310に、重みデータWを供給する機能を有する。書き込みビット線駆動回路220Aを設けることで、半導体装置100が有するM×N個の書き込みビット線駆動回路220を削減できる。半導体装置100Bは、半導体装置100よりもさらに占有面積を低減できる。
半導体装置100Bは、半導体装置100よりも占有面積を低減できる。一方で、半導体装置100に比べて重みデータWの書き込み時間が長くなる。ただし、図8を用いて説明したように、重みデータWの書き込みが演算処理の始めに一度だけ行われる場合は、重みデータWの書き込みに必要な時間が多少長くても、全体の演算時間に占める割合がわずかである場合がある。このような場合は、半導体装置100Bの構成を用いることが好ましい。
<半導体装置の変形例3>
図13に半導体装置100Cの上面図を示す。半導体装置100Cは、半導体装置100Bの変形例である。半導体装置100Cのように、書き込みワード線駆動回路240Aを、演算ブロックアレイ290の内側に設けてもよい。
書き込みワード線駆動回路240Aを演算ブロックアレイ290の内側に設ける場合は、N列ある演算ブロック200Bの中央または中央近傍に設けることが好ましい。例えば、Nが偶数である場合、N/2列目の演算ブロック200Bと(N/2)+1列目の演算ブロック200Bの間に設けることが好ましい。Nが奇数である場合、(N/2)−0.5列目の演算ブロック200Bと(N/2)+0.5列目の演算ブロック200Bの間に設けることが好ましい。または、書き込みワード線駆動回路240Aを、N×0.4列目以上、N×0.6列目以下の範囲で演算ブロック200Bに隣接して設けることが好ましい。
書き込みワード線駆動回路240Aを、演算ブロックアレイ290の中央または中央近傍に設けることで、書き込みワード線駆動回路240Aと演算ブロック200B間の最大接続距離が短くなる。よって、書き込みワード線駆動回路240Aと、メモリセル320間の最大接続距離が短くなる。最大接続距離が短くなることで、消費電力の低減、動作速度の向上、ばらつきの低減、信頼性の向上などの効果が得られる。
<半導体装置の変形例4>
図14に半導体装置100Dの上面図を示す。半導体装置100Dは、半導体装置100Bの変形例である。半導体装置100Dのように、書き込みビット線駆動回路220Aを、演算ブロックアレイ290の内側に設けてもよい。
書き込みビット線駆動回路220Aを演算ブロックアレイ290の内側に設ける場合は、M行ある演算ブロック200Bの中央または中央近傍に設けることが好ましい。例えば、Mが偶数である場合、M/2行目の演算ブロック200Bと(M/2)+1行目の演算ブロック200Bの間に設けることが好ましい。Mが奇数である場合、(M/2)−0.5行目の演算ブロック200Bと(M/2)+0.5行目の演算ブロック200Bの間に設けることが好ましい。または、書き込みビット線駆動回路220Aを、M×0.4行目以上、M×0.6行目以下の範囲で、演算ブロック200Bに隣接して設けることが好ましい。
書き込みビット線駆動回路220Aを、演算ブロックアレイ290の中央または中央近傍に設けることで、書き込みビット線駆動回路220Aと演算ブロック200B間の最大接続距離が短くなる。よって、書き込みビット線駆動回路220Aと、メモリセル320間の最大接続距離が短くなる。最大接続距離が短くなることで、消費電力の低減、動作速度の向上、ばらつきの低減、信頼性の向上などの効果が得られる。
<半導体装置の変形例5>
図15に半導体装置100Eの上面図を示す。半導体装置100Eは、半導体装置100Bの変形例である。説明の重複を減らすため、半導体装置100Eの半導体装置100Bと異なる点について主に説明する。
半導体装置100Eは、M行N列(M、Nはそれぞれ2以上の自然数)のマトリクス状に配置された複数の演算ブロック200Cを含む演算ブロックアレイ290と、書き込みワード線駆動回路240Aと、読み出しワード線駆動回路230Aと、N個の書き込みビット線駆動回路220Aと、を有する。また、半導体装置100Bと同様に、半導体装置100Eにおいても、メモリアレイはR行S列のマトリクス状に配置されたメモリセル320を含む。
演算ブロック200Cは、演算回路部210および記憶回路部310を有する。演算ブロック200Cは、演算ブロック200Bから読み出しワード線駆動回路230を除いた構成を有する。
読み出しワード線駆動回路230Aは、書き込みワード線駆動回路240Aと同様に、演算ブロックアレイ290の外側に設けられている。読み出しワード線駆動回路230Aは列方向に延在し、行方向に延在するR本の配線RWLと電気的に接続する。g本目の配線RWLは、g行目に配置されているS個のメモリセル320と電気的に接続される。
読み出しワード線駆動回路230Aは、半導体装置100Eに含まれるすべての演算ブロック200Cの読み出し動作を制御する機能を有する。例えば、演算ブロック200C内の記憶回路部310から重みデータWを読み出す動作を制御する機能を有する。読み出しワード線駆動回路230Aを設けることで、半導体装置100Bが有するM×N個の読み出しワード線駆動回路230を削減できる。半導体装置100Eは、半導体装置100Bよりもさらに占有面積を低減できる。
<半導体装置の変形例6>
図16に半導体装置100Fの上面図を示す。半導体装置100Fは、半導体装置100Eの変形例である。図16に示す半導体装置100Fのように、書き込みワード線駆動回路240Aおよび読み出しワード線駆動回路230Aを、演算ブロックアレイ290を挟んで向かい合うように設けてもよい。
<半導体装置の変形例7>
図17に半導体装置100Gの上面図を示す。半導体装置100Gは、半導体装置100Eの変形例である。半導体装置100Gのように、書き込みワード線駆動回路240Aおよび読み出しワード線駆動回路230Aを、演算ブロックアレイ290の内側に設けてもよい。
書き込みワード線駆動回路240Aおよび読み出しワード線駆動回路230Aを演算ブロックアレイ290の内側に設ける場合は、N列ある演算ブロック200Cの中央または中央近傍に設けることが好ましい。例えば、Nが偶数である場合、N/2列目の演算ブロック200Cと(N/2)+1列目の演算ブロック200Cの間に設けることが好ましい。Nが奇数である場合、(N/2)−0.5列目の演算ブロック200Cと(N/2)+0.5列目の演算ブロック200Cの間に設けることが好ましい。または、書き込みワード線駆動回路240Aを、N×0.4列目以上、N×0.6列目以下の範囲で、演算ブロック200Cに隣接して設けることが好ましい。
書き込みワード線駆動回路240Aおよび読み出しワード線駆動回路230Aを、演算ブロックアレイ290の中央または中央近傍に設けることで、書き込みワード線駆動回路240Aおよび読み出しワード線駆動回路230Aと、演算ブロック200C間の最大接続距離が短くなる。よって、書き込みワード線駆動回路240Aおよび読み出しワード線駆動回路230Aと、メモリセル320間の最大接続距離が短くなる。最大接続距離が短くなることで、消費電力の低減、動作速度の向上、ばらつきの低減、信頼性の向上などの効果が得られる。
本実施の形態に示す構成、構造、方法などは、他の実施の形態などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、上記実施の形態で説明したCPU400で実行するプログラムの演算の一部をアクセラレータとして機能する半導体装置100で実行する場合の、動作の一例を説明する。
図18は、CPUで実行するプログラムの演算の一部をアクセラレータ(半導体装置100)で実行する場合の、動作の一例を説明する図である。
まず、CPUにて、ホストプログラムが実行される(ホストプログラム実行:ステップS1)。
CPUは、アクセラレータを用いて演算を行う際に必要とされるデータ用領域を、メモリ回路部(記憶回路部310)に確保するとの命令を確認した場合(メモリ確保命令:ステップS2)、該データ用領域を、メモリ回路部に確保する(メモリ確保:ステップS3)。
次に、CPUは、メインメモリあるいは外部記憶装置から上記メモリ回路部へ入力データである重みデータを送信する(データ送信:ステップS4)。上記メモリ回路部は該重みデータを受信し、該重みデータを、ステップS2で確保された領域に格納する(データ受信:ステップS5)。
CPUは、カーネルプログラムを起動するとの命令を確認した場合(カーネルプログラムの起動:ステップS6)、アクセラレータは、カーネルプログラムの実行を開始する(演算開始:ステップS7)。
アクセラレータがカーネルプログラムの実行を開始した直後、CPUを、演算を行う状態からPG(パワーゲーティング)状態へと切り替えてもよい(PG状態移行:ステップS8)。その場合、アクセラレータがカーネルプログラムの実行を終了する直前に、CPUは、PG状態から演算を行う状態へ切り替えられる(PG状態停止:ステップS9)。ステップS8からステップS9までの期間、CPUをPG状態にすることで、演算処理システム全体として消費電力および発熱を抑制することができる。
アクセラレータがカーネルプログラムの実行を終了すると、出力データがアクセラレータ内の演算結果を保持する記憶部に格納される(演算終了:ステップS10)。
カーネルプログラムの実行が終了した後、CPUは、記憶部に格納された出力データをメインメモリあるいは外部記憶装置へ送信するとの命令を確認した場合(データ送信リクエスト:ステップS11)、上記の出力データがメインメモリあるいは外部記憶装置へ送信され、メインメモリあるいは外部記憶装置に格納される(データ送信:ステップS12)。
以上のステップS1からステップS14までの動作を繰り返すことにより、CPUおよびアクセラレータの消費電力および発熱を抑制しつつ、CPUで実行する演算の一部をアクセラレータで実行することができる。本発明の一態様の半導体装置は、非ノイマン型アーキテクチャを有し、処理速度の増加に伴って消費電力が大きくなるノイマン型アーキテクチャと比較して、極めて少ない消費電力で演算処理を行うことができる。
本実施の形態に示す構成、構造、方法などは、他の実施の形態などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態3)
本実施の形態では、パワーゲーティングが可能なCPUコアを有するCPUの一例について説明する。
図19に、CPU400の構成例を示す。CPU400は、CPUコア(CPU Core)401、L1(レベル1)キャッシュメモリ装置(L1 Cache)403、L2キャッシュメモリ装置(L2 Cache)404、バスインターフェース部(Bus I/F)405、パワースイッチ491~493、レベルシフタ494(LS)を有する。CPUコア401はフリップフロップ480を有する。
バスインターフェース部405によって、CPUコア401、L1キャッシュメモリ装置403、L2キャッシュメモリ装置404が相互に接続される。
外部から入力される割り込み信号(Interrupts)、CPU400が発行する信号SLEEP1等の信号に応じて、PMU193はクロック信号GCLK1、各種のPG(パワーゲーティング)制御信号(PG control signals)の生成を行う。クロック信号GCLK1、PG制御信号はCPU400に入力される。PG制御信号は、パワースイッチ491~493、フリップフロップ480を制御する。
パワースイッチ491、492は、仮想電源線V_VDD(以下、V_VDD線と呼ぶ)への電圧VDDD、VDD1の供給をそれぞれ制御する。パワースイッチ493は、レベルシフタ494への電圧VDDHの供給を制御する。CPU400およびPMU193には、パワースイッチを介さずに電圧VSSSが入力される。PMU193には、パワースイッチを介さずに電圧VDDDが入力される。
電圧VDDD、VDD1はCMOS回路用の駆動電圧である。電圧VDD1は電圧VDDDよりも低く、スリープ状態での駆動電圧である。電圧VDDHはOSトランジスタ用の駆動電圧であり、電圧VDDDよりも高い。
L1キャッシュメモリ装置403、L2キャッシュメモリ装置404、バスインターフェース部405それぞれは、少なくとも1つパワーゲーティング可能なパワードメインを有する。パワーゲーティング可能なパワードメインには、1または複数のパワースイッチが設けられている。これらのパワースイッチは、PG制御信号によって制御される。
フリップフロップ480は、レジスタに用いられる。フリップフロップ480には、バックアップ回路が設けられている。以下、フリップフロップ480について説明する。
図20Aにフリップフロップ480(Flip−flop)の回路構成例を示す。フリップフロップ480はスキャンフリップフロップ(Scan Flip−flop)481、バックアップ回路(Backup Circuit)402を有する。図20Bはフリップフロップ480の回路構成例を示す斜視図である。
スキャンフリップフロップ481は、ノードD1、Q1、SD、SE、RT、CK、クロックバッファ回路481Aを有する。
ノードD1はデータ(data)入力ノードであり、ノードQ1はデータ出力ノードであり、ノードSDはスキャンテスト用データの入力ノードである。ノードSEは信号SCEの入力ノードである。ノードCKはクロック信号GCLK1の入力ノードである。クロック信号GCLK1はクロックバッファ回路481Aに入力される。スキャンフリップフロップ481のアナログスイッチは、クロックバッファ回路481AのノードCK1、CKB1に接続される。ノードRTはリセット信号(reset signal)の入力ノードである。
信号SCEは、スキャンイネーブル信号であり、PMU193で生成される。PMU193は信号BK、RCを生成する。レベルシフタ494は信号BK、RCをレベルシフトし、信号BKH、RCHを生成する。信号BKはバックアップ信号、信号RCはリカバリ信号である。
スキャンフリップフロップ481の回路構成は、図20に限定されない。標準的な回路ライブラリに用意されているフリップフロップを適用することができる。
バックアップ回路402は、ノードSD_IN、SN11、トランジスタM11~M13、容量素子C11を有する。
ノードSD_INは、スキャンテストデータの入力ノードであり、スキャンフリップフロップ481のノードQ1に接続される。ノードSN11は、バックアップ回路402の保持ノードである。容量素子C11はノードSN11の電圧を保持するための保持容量である。
トランジスタM11はノードQ1とノードSN11間の導通状態を制御する。トランジスタM12はノードSN11とノードSD間の導通状態を制御する。トランジスタM13はノードSD_INとノードSD間の導通状態を制御する。トランジスタM11、M13のオンオフは信号BKHで制御され、トランジスタM12のオンオフは信号RCHで制御される。
トランジスタM11~M13は、上述したメモリセル320が有するトランジスタ321乃至323と同様に、OSトランジスタである。トランジスタM11~M13はバックゲート有する構成を示している。トランジスタM11~M13のバックゲートは、電圧VBG1を供給する電源線に接続されている。
少なくともトランジスタM11、M12がOSトランジスタであることが好ましい。オフ電流が極めて小さいというOSトランジスタの特長によって、ノードSN11の電圧の低下を抑えることができること、データの保持に電力を殆んど消費しないことから、バックアップ回路402は不揮発性の特性をもつ。容量素子C11の充放電によってデータを書き換えるため、バックアップ回路402は原理的には書き換え回数に制約はなく、低エネルギーで、データの書き込みおよび読み出しが可能である。
バックアップ回路402の全てのトランジスタはOSトランジスタであることが非常に好ましい。図20Bに示すように、シリコンCMOS回路で構成されるスキャンフリップフロップ481上にバックアップ回路402を積層することができる。
バックアップ回路402は、スキャンフリップフロップ481と比較して素子数が非常に少ないので、バックアップ回路402を積層するためにスキャンフリップフロップ481の回路構成およびレイアウトの変更が必要ない。つまり、バックアップ回路402は、汎用性が非常に高いバックアップ回路である。また、スキャンフリップフロップ481が形成されている領域内にバックアップ回路402を設けることができるので、バックアップ回路402を組み込んでも、フリップフロップ480の面積オーバーヘッドはゼロにすることが可能である。よって、バックアップ回路402をフリップフロップ480に設けることで、CPUコア401のパワーゲーティングが可能となる。パワーゲーティングに必要なエネルギーが少ないため、CPUコア401を高効率にパワーゲーティングすることが可能である。
バックアップ回路402を設けることによって、トランジスタM11による寄生容量がノードQ1に付加されることになるが、ノードQ1に接続される論理回路による寄生容量と比較して小さいので、スキャンフリップフロップ481の動作に影響はない。つまり、バックアップ回路402を設けても、フリップフロップ480の性能は実質的に低下しない。
CPUコア401の低消費電力状態として、例えば、クロックゲーティング状態、パワーゲーティング状態、休止状態を設定することができる。PMU193は、割り込み信号、信号SLEEP1等に基づき、CPUコア401の低消費電力モードを選択する。例えば、通常動作状態からクロックゲーティング状態に移行する場合、PMU193はクロック信号GCLK1の生成を停止する。
例えば、通常動作状態から休止状態に移行する場合は、PMU193は、電圧および/または周波数スケーリングを行う。例えば、電圧スケーリングを行う場合、PMU193は、電圧VDD1をCPUコア401に入力するため、パワースイッチ491をオフにし、パワースイッチ492をオンにする。電圧VDD1は、スキャンフリップフロップ481のデータを消失させない電圧である。周波数スケーリングを行う場合、PMU193はクロック信号GCLK1の周波数を低下させる。
CPUコア401を通常動作状態からパワーゲーティング状態に移行する場合には、スキャンフリップフロップ481のデータをバックアップ回路402にバックアップする動作が行われる。CPUコア401をパワーゲーティング状態から通常動作状態に復帰する際には、バックアップ回路402のデータをスキャンフリップフロップ481にリカバリする動作が行われる。
図21は、CPUコア401のパワーゲーティングシーケンスの一例を説明するタイミングチャートである。なお、図21において、t1~t7は時刻を表している。信号PSE0~PSE2は、パワースイッチ491~493の制御信号であり、PMU193で生成される。信号PSE0が“H”/“L”のとき、パワースイッチ491はオン/オフである。信号PSE1、PSE2についても同様である。
時刻t1以前は、通常動作状態(Normal Operation)である。パワースイッチ491はオンであり、CPUコア401には電圧VDDDが入力される。スキャンフリップフロップ481は通常動作を行う。このとき、レベルシフタ494は動作させる必要がないため、パワースイッチ493はオフであり、信号SCE、BK、RCは“L”である。ノードSEが“L”であるため、スキャンフリップフロップ481はノードD1のデータを記憶する。なお、図21の例では、時刻t1において、バックアップ回路402のノードSN11は“L”である。
バックアップ(Backup)時の動作を説明する。動作時刻t1で、PMU193はクロック信号GCLK1を停止し、信号PSE2、BKを“H”にする。レベルシフタ494はアクティブになり、“H”の信号BKHをバックアップ回路402に出力する。
バックアップ回路402のトランジスタM11がオンになり、スキャンフリップフロップ481のノードQ1のデータがバックアップ回路402のノードSN11に書き込まれる。スキャンフリップフロップ481のノードQ1が“L”であれば、ノードSN11は“L”のままであり、ノードQ1が“H”であれば、ノードSN11は“H”になる。
PMU193は、時刻t2で信号PSE2、BKを“L”にし、時刻t3で信号PSE0を“Lにする。時刻t3で、CPUコア401の状態はパワーゲーティング状態に移行する。なお、信号BKを立ち下げるタイミングで信号PSE0を立ち下げてもよい。
パワーゲーティング(Power−gating)時の動作を説明する。信号PSE0が“Lになることで、V_VDD線の電圧が低下するため、ノードQ1のデータは失われる。ノードSN11は、時刻t3でのノードQ1のデータを保持し続ける。
リカバリ(Recovery)時の動作を説明する。時刻t4で、PMU193が信号PSE0を“H”にすることで、パワーゲーティング状態からリカバリ状態に移行する。V_VDD線の充電が開始され、V_VDD線の電圧がVDDDになった状態(時刻t5)で、PMU193は信号PSE2、RC、SCEを“H”にする。
トランジスタM12はオンになり、容量素子C11の電荷がノードSN11とノードSDとに分配される。ノードSN11が“H”であれば、ノードSDの電圧は上昇する。ノードSEは“H”であるので、スキャンフリップフロップ481の入力側ラッチ回路にノードSDのデータが書き込まれる。時刻t6でノードCKにクロック信号GCLK1が入力されると、入力側ラッチ回路のデータがノードQ1に書き込まれる。つまり、ノードSN11のデータがノードQ1に書き込まれたことになる。
時刻t7で、PMU193は信号PSE2、SCE、RCを“L”にし、リカバリ動作が終了する。
OSトランジスタを用いたバックアップ回路402は、動的および静的低消費電力双方が小さいため、ノーマリオフ・コンピューティングに非常に好適である。なお、OSトランジスタを用いたバックアップ回路402を有するCPUコア401を含むCPU400は、NoffCPU(登録商標)と呼称することができる。NoffCPUは、不揮発性メモリを有し、動作が必要ない場合には、電力供給を停止することができる。フリップフロップ480を搭載しても、CPUコア401の性能低下、動的電力の増加をほとんど発生させないようにできる。
なお、CPUコア401は複数のパワーゲーティング可能なパワードメインを有してもよい。複数のパワードメインには、電圧の入力を制御するための1または複数のパワースイッチが設けられる。また、CPUコア401は、1または複数のパワーゲーティングが行われないパワードメインを有していてもよい。例えば、パワーゲーティングが行われないパワードメインに、フリップフロップ480、パワースイッチ491~493の制御を行うためのパワーゲーティング制御回路を設けてもよい。
なお、フリップフロップ480の適用はCPU400に限定されない。CPU400において、パワーゲーティング可能なパワードメインに設けられるレジスタに、フリップフロップ480を適用できる。
本実施の形態に示す構成、構造、方法などは、他の実施の形態などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態4)
本実施の形態では、上記実施の形態で説明したCPU400、および半導体装置100に適用可能なトランジスタの構成の一例について説明する。一例として、異なる電気特性を有するトランジスタを積層して設ける構成について説明する。当該構成とすることで、半導体装置の設計自由度を高めることができる。また、異なる電気特性を有するトランジスタを積層して設けることで、半導体装置の集積度を高めることができる。
半導体装置の断面構造の一部を図22に示す。図22に示す半導体装置は、トランジスタ550と、トランジスタ500と、容量素子600と、を有している。図23Aはトランジスタ500のチャネル長方向の断面図であり、図23Bはトランジスタ500のチャネル幅方向の断面図である。例えば、トランジスタ500は上記実施の形態に示したメモリセル320が有するOSトランジスタ、つまりチャネル形成領域に酸化物半導体を有するトランジスタに相当する。また、トランジスタ550は上記実施の形態に示した演算回路部210が有するSiトランジスタ、つまりチャネル形成領域にシリコンを有するトランジスタに相当する。
トランジスタ500は、OSトランジスタである。OSトランジスタは、オフ電流が極めて少ない。よって、トランジスタ500を介して記憶ノードに書き込んだデータ電圧あるいは電荷を長期間保持することが可能である。つまり、記憶ノードのリフレッシュ動作頻度を低減、あるいは、リフレッシュ動作を必要としないため、半導体装置の消費電力を低減することができる。
図22では、トランジスタ500はトランジスタ550の上方に設けられ、容量素子600はトランジスタ550、およびトランジスタ500の上方に設けられている。
トランジスタ550は、基板371に設けられる。基板371は、例えば、p型のシリコン基板である。基板371は、n型のシリコン基板でもよい。酸化物層374は、基板371に埋め込み酸化(Burried oxide)によって形成された絶縁層(BOX層ともいう)、例えば酸化シリコンであることが好ましい。トランジスタ550は、基板371に酸化物層374を介して設けられた単結晶シリコン、いわゆるSOI(Silicon On Insulator)基板に設けられる。
SOI基板における基板371は、素子分離層として機能する絶縁体373が設けられる。また基板371は、ウェル領域372を有する。ウェル領域372は、トランジスタ550の導電型に応じてn型またはp型の導電性が付与された領域である。SOI基板における単結晶シリコンには、半導体領域375、ソース領域またはドレイン領域として機能する低抵抗領域376a、低抵抗領域376bが設けられる。またウェル領域372上には、低抵抗領域376cを有する。
トランジスタ550は、導電性を付与する不純物元素が付加されたウェル領域372に重ねて設けることができる。ウェル領域372は、低抵抗領域376cを介して電位を独立して変化させることで、トランジスタ550のボトムゲート電極として機能させることができる。そのため、トランジスタ550のしきい値電圧を制御することができる。特に、ウェル領域372に負の電位を印加することにより、トランジスタ550のしきい値電圧をより大きくし、オフ電流を低減することが可能となる。したがって、ウェル領域372に負の電位を印加することで、Siトランジスタのゲート電極に印加する電位が0Vのときのドレイン電流を小さくすることができる。その結果、トランジスタ550を有する演算回路部210における貫通電流等に基づく消費電力を低減でき、演算効率の向上を図ることができる。
トランジスタ550は、半導体層の上面およびチャネル幅方向の側面が絶縁体377を介して導電体378に覆われている、いわゆるFin型とすることが好ましい。トランジスタ550をFin型とすることにより、実効上のチャネル幅が増大することによりトランジスタ550のオン特性を向上させることができる。また、ゲート電極の電界の寄与を高くすることができるため、トランジスタ550のオフ特性を向上させることができる。
なお、トランジスタ550は、pチャネル型のトランジスタ、あるいはnチャネル型のトランジスタのいずれでもよい。
導電体378は、第1ゲート(トップゲートともいう)電極として機能する場合がある。また、ウェル領域372は、第2ゲート(ボトムゲートともいう)電極として機能する場合がある。その場合、ウェル領域372に印加する電位は、低抵抗領域376cを介して制御することができる。
半導体領域375のチャネルが形成される領域、その近傍の領域、ソース領域、またはドレイン領域となる低抵抗領域376a、および低抵抗領域376b、ウェル領域372の電位を制御する電極に接続される低抵抗領域376cなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。または、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。またはGaAsとGaAlAs等を用いることで、トランジスタ550をHEMTとしてもよい。
ウェル領域372、低抵抗領域376a、低抵抗領域376b、および低抵抗領域376cは、半導体領域375に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性を付与する元素を含む。
ゲート電極として機能する導電体378は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。また導電体378は、ニッケルシリサイド等のシリサイドを用いてもよい。
なお、導電体の材料によって仕事関数が決まるため、当該導電体の材料を選択することで、トランジスタのしきい値電圧を調整することができる。具体的には、導電体に窒化チタン、窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステン、アルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
低抵抗領域376a、低抵抗領域376b、および低抵抗領域376cは、別の導電体、例えばニッケルシリサイド等のシリサイドを積層して設ける構成としてもよい。当該構成とすることで、電極として機能する領域の導電性を高めることができる。またこのとき、ゲート電極として機能する導電体378の側面、およびゲート絶縁膜として機能する絶縁体の側面には、サイドウオールスペーサ(側壁絶縁層ともいう)として機能する絶縁体を設ける構成としてもよい。当該構成とすることで、導電体378と、低抵抗領域376aおよび低抵抗領域376bと、が導通状態となることを防ぐことができる。
トランジスタ550を覆って、絶縁体379、絶縁体381、絶縁体383、および絶縁体385が順に積層して設けられている。
絶縁体379、絶縁体381、絶縁体383、および絶縁体385として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
なお、本明細書中において、酸化窒化物とは、窒素よりも酸素の含有量が多い材料を指す。例えば、酸化窒化シリコンとは、その組成に酸素、窒素、およびシリコンを含み、窒素よりも酸素の含有量が多い材料を示す。また、本明細書中において、窒化酸化物とは、窒素よりも酸素の含有量が多い材料を指す。例えば、窒化酸化アルミニウムとは、その組成に酸素、窒素、およびアルミニウムを含み、酸素よりも窒素の含有量が多い材料を示す。
絶縁体381は、その下方に設けられるトランジスタ550などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体381の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
また、絶縁体383には、基板371、またはトランジスタ550などから、トランジスタ500が設けられる領域に、水素および不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。
水素に対するバリア性を有する膜の一例として、例えば、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ550との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
水素の脱離量は、例えば、昇温脱離ガス分析法(TDS)などを用いて分析することができる。例えば、絶縁体383の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体383の面積当たりに換算して、10×1015atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。
なお、絶縁体385は、絶縁体383よりも誘電率が低いことが好ましい。例えば、絶縁体385の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体385の比誘電率は、絶縁体383の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
また、絶縁体379、絶縁体381、絶縁体383、および絶縁体385には容量素子600、またはトランジスタ500と接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330は、プラグまたは配線としての機能を有する。また、プラグまたは配線としての機能を有する導電体は、複数の構成をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
各プラグ、および配線(導電体328、導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンおよび/またはモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウムおよび/または銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
絶縁体385、および導電体330上に、配線層を設けてもよい。例えば、図22では、絶縁体350、絶縁体352、および絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、および絶縁体354には、導電体356が形成されている。導電体356は、トランジスタ550と接続するプラグ、または配線としての機能を有する。なお導電体356は、導電体328、および導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体350は、絶縁体383と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ550からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構成であることが好ましい。
絶縁体354、および導電体356上に、配線層を設けてもよい。例えば、図22では、絶縁体360、絶縁体362、および絶縁体364が順に積層して設けられている。また、絶縁体360、絶縁体362、および絶縁体364には、導電体366が形成されている。導電体366は、プラグまたは配線としての機能を有する。なお導電体366は、導電体328、および導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体360は、絶縁体383と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体366は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体360が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
絶縁体364、および導電体366上に、配線層を設けてもよい。例えば、図22では、絶縁体370、絶縁体369、および絶縁体368が順に積層して設けられている。また、絶縁体370、絶縁体369、および絶縁体368には、導電体376が形成されている。導電体376は、プラグまたは配線としての機能を有する。なお導電体376は、導電体328、および導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体370は、絶縁体383と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体376は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体370が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
絶縁体368、および導電体376上に、配線層を設けてもよい。例えば、図22では、絶縁体380、絶縁体382、および絶縁体384が順に積層して設けられている。また、絶縁体380、絶縁体382、および絶縁体384には、導電体386が形成されている。導電体386は、プラグまたは配線としての機能を有する。なお導電体386は、導電体328、および導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体380は、絶縁体383と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体386は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体380が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
上記において、導電体356を含む配線層、導電体366を含む配線層、導電体376を含む配線層、および導電体386を含む配線層、について説明したが、本実施の形態に係る半導体装置はこれに限られるものではない。導電体356を含む配線層と同様の配線層を3層以下にしてもよいし、導電体356を含む配線層と同様の配線層を5層以上にしてもよい。
絶縁体384上には絶縁体510、絶縁体512、絶縁体514、および絶縁体516が、順に積層して設けられている。絶縁体510、絶縁体512、絶縁体514、および絶縁体516のいずれかは、酸素および水素に対してバリア性のある物質を用いることが好ましい。
例えば、絶縁体510、および絶縁体514には、例えば、基板371、またはトランジスタ550を設ける領域などから、トランジスタ500を設ける領域に、水素および不純物に対するバリア性を有する膜を用いることが好ましい。したがって、絶縁体383と同様の材料を用いることができる。
水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ550との間に、水素の拡散を抑制する膜を用いることが好ましい。
また、水素に対するバリア性を有する膜として、例えば、絶縁体510、および絶縁体514には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
また、例えば、絶縁体512、および絶縁体516には、絶縁体379と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体512、および絶縁体516として、酸化シリコン膜および/または酸化窒化シリコン膜などを用いることができる。
また、絶縁体510、絶縁体512、絶縁体514、および絶縁体516には、導電体518、およびトランジスタ500を構成する導電体(例えば、導電体503)等が埋め込まれている。なお、導電体518は、容量素子600、またはトランジスタ550と接続するプラグ、または配線としての機能を有する。導電体518は、導電体328、および導電体330と同様の材料を用いて設けることができる。
特に、絶縁体510、および絶縁体514と接する領域の導電体518は、酸素、水素、および水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ550とトランジスタ500とは、酸素、水素、および水に対するバリア性を有する層で、分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
絶縁体516の上方には、トランジスタ500が設けられている。
図23Aおよび図23Bに示すように、トランジスタ500は、絶縁体514および絶縁体516に埋め込まれるように配置された導電体503と、絶縁体516および導電体503の上に配置された絶縁体520と、絶縁体520の上に配置された絶縁体522と、絶縁体522の上に配置された絶縁体524と、絶縁体524の上に配置された酸化物530aと、酸化物530aの上に配置された酸化物530bと、酸化物530b上に互いに離れて配置された導電体542aおよび導電体542bと、導電体542aおよび導電体542b上に配置され、導電体542aと導電体542bの間に重畳して開口が形成された絶縁体580と、開口の底面および側面に配置された絶縁体545と、絶縁体545の形成面に配置された導電体560と、を有する。
また、図23Aおよび図23Bに示すように、酸化物530a、酸化物530b、導電体542a、および導電体542bと、絶縁体580の間に絶縁体544が配置されることが好ましい。また、図23Aおよび図23Bに示すように、導電体560は、絶縁体545の内側に設けられた導電体560aと、導電体560aの内側に埋め込まれるように設けられた導電体560bと、を有することが好ましい。また、図23Aおよび図23Bに示すように、絶縁体580、導電体560、および絶縁体545の上に絶縁体574が配置されることが好ましい。
なお、本明細書などにおいて、酸化物530a、および酸化物530bをまとめて酸化物530という場合がある。
なお、トランジスタ500では、チャネルが形成される領域と、その近傍において、酸化物530a、および酸化物530bの2層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物530bの単層、または3層以上の積層構成を設ける構成にしてもよい。
また、トランジスタ500では、導電体560を2層の積層構成として示しているが、本発明はこれに限られるものではない。例えば、導電体560が、単層構成であってもよいし、3層以上の積層構成であってもよい。また、図22、図23A、および図23Bに示すトランジスタ500は一例であり、その構成に限定されず、回路構成および/または駆動方法などに応じて適切なトランジスタを用いればよい。
ここで、導電体560は、トランジスタのゲート電極として機能し、導電体542aおよび導電体542bは、それぞれソース電極またはドレイン電極として機能する。上記のように、導電体560は、絶縁体580の開口、および導電体542aと導電体542bに挟まれた領域に埋め込まれるように形成される。導電体560、導電体542aおよび導電体542bの配置は、絶縁体580の開口に対して、自己整合的に選択される。つまり、トランジスタ500において、ゲート電極を、ソース電極とドレイン電極の間に、自己整合的に配置させることができる。よって、導電体560を位置合わせのマージンを設けることなく形成することができるので、トランジスタ500の占有面積の縮小を図ることができる。これにより、半導体装置の微細化、高集積化を図ることができる。
さらに、導電体560が、導電体542aと導電体542bの間の領域に自己整合的に形成されるので、導電体560は、導電体542aまたは導電体542bと重畳する領域を有さない。これにより、導電体560と導電体542aおよび導電体542bとの間に形成される寄生容量を低減することができる。よって、トランジスタ500のスイッチング速度を向上させ、高い周波数特性を有せしめることができる。
導電体560は、第1ゲート(トップゲートともいう)電極として機能する場合がある。また、導電体503は、第2ゲート(ボトムゲートともいう)電極として機能する場合がある。その場合、導電体503に印加する電位を、導電体560に印加する電位と、連動させず、独立して変化させることで、トランジスタ500のしきい値電圧を制御することができる。特に、導電体503に負の電位を印加することにより、トランジスタ500のしきい値電圧をより大きくし、オフ電流を低減することが可能となる。したがって、導電体503に負の電位を印加したほうが、印加しない場合よりも、導電体560に印加する電位が0Vのときのドレイン電流を小さくすることができる。
導電体503は、酸化物530、および導電体560と、重なるように配置する。これにより、導電体560、および導電体503に電位を印加した場合、導電体560から生じる電界と、導電体503から生じる電界と、がつながり、酸化物530に形成されるチャネル形成領域を覆うことができる。
本明細書等において、一対のゲート電極(第1のゲート電極、および第2のゲート電極)の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構成を、surrounded channel(S−channel)構成とよぶ。また、本明細書等で開示するS−channel構成は、Fin型構成およびプレーナ型構成とは異なる。S−channel構成を採用することで、短チャネル効果に対する耐性を高める、別言すると短チャネル効果が発生し難いトランジスタとすることができる。
また、導電体503は、導電体518と同様の構成であり、絶縁体514および絶縁体516の開口の内壁に接して導電体503aが形成され、さらに内側に導電体503bが形成されている。なお、トランジスタ500では、導電体503aおよび導電体503bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体503は、単層、または3層以上の積層構成として設ける構成にしてもよい。
ここで、導電体503aは、水素原子、水素分子、水分子、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい)導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい)導電性材料を用いることが好ましい。なお、本明細書において、不純物、または酸素の拡散を抑制する機能とは、上記不純物、または上記酸素のいずれか一または、すべての拡散を抑制する機能とする。
例えば、導電体503aが酸素の拡散を抑制する機能を持つことにより、導電体503bが酸化して導電率が低下することを抑制することができる。
また、導電体503が配線の機能を兼ねる場合、導電体503bは、タングステン、銅、またはアルミニウムを主成分とする、導電性が高い導電性材料を用いることが好ましい。なお、本実施の形態では導電体503を導電体503aと導電体503bの積層で図示したが、導電体503は単層構成であってもよい。
絶縁体520、絶縁体522、および絶縁体524は、第2のゲート絶縁膜としての機能を有する。
ここで、酸化物530と接する絶縁体524は、化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体を用いることが好ましい。当該酸素は、加熱により膜中から放出されやすい。本明細書などでは、加熱により放出される酸素を「過剰酸素」と呼ぶ場合がある。つまり、絶縁体524には、過剰酸素を含む領域(「過剰酸素領域」ともいう)が形成されていることが好ましい。このような過剰酸素を含む絶縁体を酸化物530に接して設けることにより、酸化物530中の酸素欠損(V:oxygen vacancyともいう)を低減し、トランジスタ500の信頼性を向上させることができる。なお、酸化物530中の酸素欠損に水素が入った場合、当該欠陥(以下、VHと呼ぶ場合がある)はドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。従って、水素が多く含まれている酸化物半導体を用いたトランジスタは、ノーマリーオン特性となりやすい。また、酸化物半導体中の水素は、熱、電界などのストレスによって動きやすいため、酸化物半導体に多くの水素が含まれると、トランジスタの信頼性が悪化する恐れもある。本発明の一態様においては、酸化物530中のVHをできる限り低減し、高純度真性または実質的に高純度真性にすることが好ましい。このように、VHが十分低減された酸化物半導体を得るには、酸化物半導体中の水分、水素などの不純物を除去すること(「脱水」または「脱水素化処理」ともいう)と、酸化物半導体に酸素を供給して酸素欠損を補填すること(「加酸素化処理」ともいう)が重要である。VHなどの不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm以上、または3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。
また、上記過剰酸素領域を有する絶縁体と、酸化物530と、を接して加熱処理、マイクロ波処理、またはRF処理のいずれか一または複数の処理を行っても良い。当該処理を行うことで、酸化物530中の水、または水素を除去することができる。例えば、酸化物530において、VoHの結合が切断される反応が起きる、別言すると「VH→Vo+H」という反応が起きて、脱水素化することができる。このとき発生した水素の一部は、酸素と結合してHOとして、酸化物530、または酸化物530近傍の絶縁体から除去される場合がある。また、水素の一部は、導電体542aおよび導電体542bにゲッタリングされる場合がある。
また、上記マイクロ波処理は、例えば、高密度プラズマを発生させる電源を有する装置、または、基板側にRFを印加する電源を有する装置を用いると好適である。例えば、酸素を含むガスを用い、且つ高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを、効率よく酸化物530、または酸化物530近傍の絶縁体中に導入することができる。また、上記マイクロ波処理は、圧力を133Pa以上、好ましくは200Pa以上、さらに好ましくは400Pa以上とすればよい。また、マイクロ波処理を行う装置内に導入するガスとしては、例えば、酸素と、アルゴンとを用い、酸素流量比(O/(O+Ar))が50%以下、好ましくは10%以上30%以下で行うとよい。
また、トランジスタ500の作製工程中において、酸化物530の表面が露出した状態で、加熱処理を行うと好適である。当該加熱処理は、例えば、100℃以上450℃以下、より好ましくは350℃以上400℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、加熱処理は酸素雰囲気で行うことが好ましい。これにより、酸化物530に酸素を供給して、酸素欠損(V)の低減を図ることができる。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で行ってもよい。または、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理した後に、連続して窒素ガスもしくは不活性ガスの雰囲気で加熱処理を行っても良い。
なお、酸化物530に加酸素化処理を行うことで、酸化物530中の酸素欠損を、供給された酸素により修復させる、別言すると「Vo+O→null」という反応を促進させることができる。さらに、酸化物530中に残存した水素に供給された酸素が反応することで、当該水素をHOとして除去する(脱水化する)ことができる。これにより、酸化物530中に残存していた水素が酸素欠損に再結合してVHが形成されるのを抑制することができる。
また、絶縁体524が、過剰酸素領域を有する場合、絶縁体522は、酸素(例えば、酸素原子、酸素分子など)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。
絶縁体522が、酸素および不純物の拡散を抑制する機能を有することで、酸化物530が有する酸素は、絶縁体520側へ拡散することがなく、好ましい。また、導電体503が、絶縁体524および/または酸化物530が有する酸素と反応することを抑制することができる。
絶縁体522は、例えば、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)、または(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いることが好ましい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁膜として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
特に、不純物、および酸素などの拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料であるアルミニウム、ハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。アルミニウム、ハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体522を形成した場合、絶縁体522は、酸化物530からの酸素の放出、および/またはトランジスタ500の周辺部から酸化物530への水素等の不純物の混入を抑制する層として機能する。
または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
また、絶縁体520は、熱的に安定していることが好ましい。例えば、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、好適である。また、high−k材料の絶縁体を酸化シリコン、または酸化窒化シリコンと組み合わせることで、熱的に安定かつ比誘電率の高い積層構成の絶縁体520を得ることができる。
なお、図23Aおよび図23Bのトランジスタ500では、3層の積層構成からなる第2のゲート絶縁膜として、絶縁体520、絶縁体522、および絶縁体524が図示されているが、第2のゲート絶縁膜は、単層、2層、または4層以上の積層構成を有していてもよい。その場合、同じ材料からなる積層構成に限定されず、異なる材料からなる積層構成でもよい。
トランジスタ500は、チャネル形成領域を含む酸化物530に、酸化物半導体として機能する金属酸化物を用いる。例えば、酸化物530として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。
酸化物半導体として機能する金属酸化物の形成は、スパッタリング法で行なってもよいし、ALD(Atomic Layer Deposition)法で行なってもよい。なお、酸化物半導体として機能する金属酸化物については、他の実施の形態で詳細に説明する。
また、酸化物530においてチャネル形成領域として機能する金属酸化物は、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
酸化物530は、酸化物530b下に酸化物530aを有することで、酸化物530aよりも下方に形成された構成物から、酸化物530bへの不純物の拡散を抑制することができる。
なお、酸化物530は、各金属原子の原子数比が異なる複数の酸化物層の積層構成を有することが好ましい。具体的には、酸化物530aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物530bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物530aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物530bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物530bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物530aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。
また、酸化物530aの伝導帯下端のエネルギーが、酸化物530bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物530a電子親和力が、酸化物530bの電子親和力より小さいことが好ましい。
ここで、酸化物530aおよび酸化物530bの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物530aおよび酸化物530bの接合部における伝導帯下端のエネルギー準位は、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物530aと酸化物530bとの界面において形成される混合層の欠陥準位密度を低くするとよい。
具体的には、酸化物530aと酸化物530bが、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物530bがIn−Ga−Zn酸化物の場合、酸化物530aとして、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウムなどを用いるとよい。
このとき、キャリアの主たる経路は酸化物530bとなる。酸化物530aを上述の構成とすることで、酸化物530aと酸化物530bとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ500は高いオン電流を得られる。
酸化物530b上には、ソース電極、およびドレイン電極として機能する導電体542a、および導電体542bが設けられる。導電体542a、および導電体542bとしては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。更に、窒化タンタルなどの金属窒化物膜は、水素または酸素に対するバリア性があるため好ましい。
また、図23Aでは、導電体542a、および導電体542bを単層構成として示したが、2層以上の積層構成としてもよい。例えば、窒化タンタル膜とタングステン膜を積層するとよい。また、チタン膜とアルミニウム膜を積層してもよい。また、タングステン膜上にアルミニウム膜を積層する二層構成、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構成、チタン膜上に銅膜を積層する二層構成、タングステン膜上に銅膜を積層する二層構成としてもよい。
また、チタン膜または窒化チタン膜と、そのチタン膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構成、モリブデン膜または窒化モリブデン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構成等がある。なお、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用いてもよい。
また、図23Aに示すように、酸化物530の、導電体542a(導電体542b)との界面とその近傍には、低抵抗領域として、領域543a、および領域543bが形成される場合がある。このとき、領域543aはソース領域またはドレイン領域の一方として機能し、領域543bはソース領域またはドレイン領域の他方として機能する。また、領域543aと領域543bに挟まれる領域にチャネル形成領域が形成される。
酸化物530と接するように上記導電体542a(導電体542b)を設けることで、領域543a(領域543b)の酸素濃度が低減する場合がある。また、領域543a(領域543b)に導電体542a(導電体542b)に含まれる金属と、酸化物530の成分とを含む金属化合物層が形成される場合がある。このような場合、領域543a(領域543b)のキャリア密度が増加し、領域543a(領域543b)は、低抵抗領域となる。
絶縁体544は、導電体542a、および導電体542bを覆うように設けられ、導電体542a、および導電体542bの酸化を抑制する。このとき、絶縁体544は、酸化物530の側面を覆い、絶縁体524と接するように設けられてもよい。
絶縁体544として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、ネオジム、ランタンまたは、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。また、絶縁体544として、窒化酸化シリコンまたは窒化シリコンなども用いることができる。
特に、絶縁体544として、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウム、およびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。なお、導電体542a、および導電体542bが耐酸化性を有する材料、または、酸素を吸収しても著しく導電性が低下しない材料である場合、絶縁体544は、必須の構成ではない。求めるトランジスタ特性により、適宜設計すればよい。
絶縁体544を有することで、絶縁体580に含まれる水、および水素などの不純物が酸化物530bに拡散することを抑制することができる。また、絶縁体580が有する過剰酸素による導電体542aおよび/または導電体542bの酸化を抑制できる。
絶縁体545は、第1のゲート絶縁膜として機能する。絶縁体545は、上述した絶縁体524と同様に、過剰に酸素を含み、かつ加熱により酸素が放出される絶縁体を用いて形成することが好ましい。
具体的には、過剰酸素を有する酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。
過剰酸素を含む絶縁体を絶縁体545として設けることにより、絶縁体545から、酸化物530bのチャネル形成領域に効果的に酸素を供給することができる。また、絶縁体524と同様に、絶縁体545中の水または水素などの不純物濃度が低減されていることが好ましい。絶縁体545の膜厚は、1nm以上20nm以下とするのが好ましい。また、絶縁体545の形成前および/または形成後に、前述したマイクロ波処理を行なってもよい。
また、絶縁体545が有する過剰酸素を、効率的に酸化物530へ供給するために、絶縁体545と導電体560との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体545から導電体560への酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物を設けることで、絶縁体545から導電体560への過剰酸素の拡散が抑制される。つまり、酸化物530へ供給する過剰酸素量の減少を抑制することができる。また、過剰酸素による導電体560の酸化を抑制することができる。当該金属酸化物としては、絶縁体544に用いることができる材料を用いればよい。
なお、絶縁体545は、第2のゲート絶縁膜と同様に、積層構成としてもよい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合があるため、ゲート絶縁膜として機能する絶縁体を、high−k材料と、熱的に安定している材料との積層構成とすることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。また、熱的に安定かつ比誘電率の高い積層構成とすることができる。
第1のゲート電極として機能する導電体560は、図23Aおよび図23Bでは2層構成として示しているが、単層構成でもよいし、3層以上の積層構成であってもよい。
導電体560aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。導電体560aが酸素の拡散を抑制する機能を持つことにより、絶縁体545に含まれる酸素により、導電体560bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。また、導電体560aとして、酸化物530に適用できる酸化物半導体を用いることができる。その場合、導電体560bをスパッタリング法で成膜することで、導電体560aの電気抵抗値を低下させて導電体にすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。
また、導電体560bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体560bは、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体560bは積層構成としてもよく、例えば、チタンまたは窒化チタンと上記導電性材料との積層構成としてもよい。
絶縁体580は、絶縁体544を介して、導電体542a、および導電体542b上に設けられる。絶縁体580は、過剰酸素領域を有することが好ましい。例えば、絶縁体580として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などを有することが好ましい。特に、酸化シリコン、および酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、空孔を有する酸化シリコンは、後の工程で、容易に過剰酸素領域を形成することができるため好ましい。
絶縁体580は、過剰酸素領域を有することが好ましい。加熱により酸素が放出される絶縁体580を設けることで、絶縁体580中の酸素を酸化物530へと効率良く供給することができる。なお、絶縁体580中の水または水素などの不純物濃度が低減されていることが好ましい。
絶縁体580の開口は、導電体542aと導電体542bの間の領域に重畳して形成される。これにより、導電体560は、絶縁体580の開口、および導電体542aと導電体542bに挟まれた領域に、埋め込まれるように形成される。
半導体装置を微細化するに当たり、ゲート長を短くすることが求められるが、導電体560の導電性が下がらないようにする必要がある。そのために導電体560の膜厚を大きくすると、導電体560はアスペクト比が高い形状となりうる。本実施の形態では、導電体560を絶縁体580の開口に埋め込むように設けるため、導電体560をアスペクト比の高い形状にしても、工程中に導電体560を倒壊させることなく、形成することができる。
絶縁体574は、絶縁体580の上面、導電体560の上面、および絶縁体545の上面に接して設けられることが好ましい。絶縁体574をスパッタリング法で成膜することで、絶縁体545、および絶縁体580へ過剰酸素領域を設けることができる。これにより、当該過剰酸素領域から、酸化物530中に酸素を供給することができる。
例えば、絶縁体574として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、またはマグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。
特に、酸化アルミニウムはバリア性が高く、0.5nm以上3.0nm以下の薄膜であっても、水素、および窒素の拡散を抑制することができる。したがって、スパッタリング法で成膜した酸化アルミニウムは、酸素供給源であるとともに、水素などの不純物のバリア膜としての機能も有することができる。
また、絶縁体574の上に、層間膜として機能する絶縁体581を設けることが好ましい。絶縁体581は、絶縁体524などと同様に、膜中の水または水素などの不純物濃度が低減されていることが好ましい。
また、絶縁体581、絶縁体574、絶縁体580、および絶縁体544に形成された開口に、導電体540a、および導電体540bを配置する。導電体540aおよび導電体540bは、導電体560を挟んで対向して設ける。導電体540aおよび導電体540bは、後述する導電体546、および導電体548と同様の構成である。
絶縁体581上には、絶縁体582が設けられている。絶縁体582は、酸素および水素に対してバリア性のある物質を用いることが好ましい。したがって、絶縁体582には、絶縁体514と同様の材料を用いることができる。例えば、絶縁体582には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
また、絶縁体582上には、絶縁体586が設けられている。絶縁体586は、絶縁体379と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体586として、酸化シリコン膜または酸化窒化シリコン膜などを用いることができる。
また、絶縁体520、絶縁体522、絶縁体524、絶縁体544、絶縁体580、絶縁体574、絶縁体581、絶縁体582、および絶縁体586には、導電体546、および導電体548等が埋め込まれている。
導電体546、および導電体548は、容量素子600、トランジスタ500、またはトランジスタ550と接続するプラグ、または配線としての機能を有する。導電体546、および導電体548は、導電体328、および導電体330と同様の材料を用いて設けることができる。
また、トランジスタ500の形成後、トランジスタ500を囲むように開口を形成し、当該開口を覆うように、水素、または水に対するバリア性が高い絶縁体を形成してもよい。上述のバリア性の高い絶縁体でトランジスタ500を包み込むことで、外部から水分、および水素が侵入するのを防止することができる。または、複数のトランジスタ500をまとめて、水素、または水に対するバリア性が高い絶縁体で包み込んでもよい。なお、トランジスタ500を囲むように開口を形成する場合、例えば、絶縁体522または絶縁体514に達する開口を形成し、絶縁体522または絶縁体514に接するように上述のバリア性の高い絶縁体を形成すると、トランジスタ500の作製工程の一部を兼ねられるため、好適である。なお、水素、または水に対するバリア性が高い絶縁体としては、例えば、絶縁体522または絶縁体514と同様の材料を用いればよい。
続いて、トランジスタ500の上方には、容量素子600が設けられている。容量素子600は、導電体610と、導電体620と、絶縁体630とを有する。
また、導電体546、および導電体548上に、導電体612を設けてもよい。導電体612は、トランジスタ500と接続するプラグ、または配線としての機能を有する。導電体610は、容量素子600の電極としての機能を有する。なお、導電体612、および導電体610は、同時に形成することができる。
導電体612、および導電体610には、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化タンタル膜、窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。または、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。
本実施の形態では、導電体612、および導電体610を単層構成で示したが、当該構成に限定されず、2層以上の積層構成でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、および導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
絶縁体630を介して、導電体610と重畳するように、導電体620を設ける。なお、導電体620は、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステンおよび/またはモリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構成と同時に形成する場合は、低抵抗金属材料であるCu(銅)および/またはAl(アルミニウム)等を用いればよい。
導電体620、および絶縁体630上には、絶縁体640が設けられている。絶縁体640は、絶縁体379と同様の材料を用いて設けることができる。また、絶縁体640は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
本構成を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、微細化または高集積化を図ることができる。
本実施の形態に示す構成、構造、方法などは、他の実施の形態などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態5)
本実施の形態では、上記実施の形態で説明した演算処理システム1000が有する各構成を含む集積回路の構成について図24A、図24Bを参照しながら説明する。
図24Aは、演算処理システム1000が有する各構成を含む集積回路を説明するための模式図の一例である。図24Aに図示する集積回路390は、CPU400および半導体装置100として説明したアクセラレータが有する回路の一部をOSトランジスタで構成することで、各回路を一体化した1つの集積回路とすることができる。
図24Aに図示するように、CPU400において、CPUコア401の上層にあるOSトランジスタを有する層にバックアップ回路402を設けることができる。また図24Aに図示するように、半導体装置100において、演算回路部210を構成するSiトランジスタを含む層110の上層には、記憶回路部310を構成するOSトランジスタを含む層120を設けることができる。層110には、書き込みビット線駆動回路220、読み出しワード線駆動回路230、および書き込みワード線駆動回路240などの駆動回路を設けることができる。
また図24Aに図示するように、制御装置150、記憶装置160などを設けることができる。記憶装置160としては、Siトランジスタを含むSRAM、DRAMなどの他、上記実施の形態で説明したNOSRAM、DOSRAMを適用することができる。また、記憶装置160としてMRAM、PRAM、ReRAM、FeRAMなどを用いてもよい。
また記憶装置160では、Siトランジスタを有する層に設けられる駆動回路上にOSトランジスタを有する層を積層することで、メモリ密度の向上を図ることができる。
図24Aに図示するように、CPU400、半導体装置100、制御装置150、および記憶装置160等の各回路を密結合させたSoCの場合、発熱の問題があるが、OSトランジスタは熱による電気特性の変動量がSiトランジスタと比べて小さいため、好適である。また、図24Aに図示するように三次元方向において回路を集積化することによって、シリコン貫通電極(Through Silicon Via:TSV)などを用いた積層構造などと比較して寄生容量を小さくすることができる。よって、各配線の充放電に要する消費電力を削減することができる。そのため、演算処理効率の向上を図ることができる。
図24Bに、集積回路390を組み込んだ半導体チップの一例を示す。図24Bに示す半導体チップ391は、リード392及び集積回路390を有する。集積回路390は、図24Aで説明したように、上記実施の形態で示した各種の回路が1つのダイに設けられている。集積回路390は積層構造をもち、Siトランジスタを有する層(Siトランジスタ層393)、配線層394、OSトランジスタを有する層(OSトランジスタ層395)に大別される。OSトランジスタ層395は、Siトランジスタ層393上に積層して設けることができるため、半導体チップ391の小型化が容易である。
図24Bでは、半導体チップ391のパッケージにQFP(Quad Flat Package)を適用しているが、パッケージの態様はこれに限定されない。その他の構成例としては、挿入実装型であるDIP(Dual In−line Package)、PGA(Pin Grid Array)、表面実装型であるSOP(Small Outline Package)、SSOP(Shrink Small Outline Package)、TSOP(Thin−Small Outline Package)、LCC(Leaded Chip Carrier)、QFN(Quad Flat Non−leaded package)、BGA(Ball Grid Array)、FBGA(Fine pitch Ball Grid Array)、接触実装型であるDTP(Dual Tape carrier Package)、QTP(Quad Tape−carrier Package)等の構造を適宜用いることができる。
Siトランジスタを有する演算回路および駆動回路と、OSトランジスタを有するメモリ回路は、全て、Siトランジスタ層393、配線層394およびOSトランジスタ層395に形成することができる。すなわち、上記半導体装置を構成する素子は、同一の製造プロセスで形成することが可能である。そのため、図24Bに示す半導体チップ391は、構成する素子が増えても製造プロセスを増やす必要がなく、上記半導体装置を低コストで組み込むことができる。
本実施の形態に示す構成、構造、方法などは、他の実施の形態などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態6)
本実施の形態では、上記実施の形態で説明した集積回路390を適用することが可能な電子機器、移動体、演算システムについて、図25A乃至図28を参照しながら説明する。
図25Aは、移動体の一例として自動車の外観図を図示している。図25Bは、自動車内でのデータのやり取りを簡略化した図である。自動車590は、複数のカメラ591等を有する。また、自動車590は、赤外線レーダー、ミリ波レーダー、レーザーレーダーなど各種センサ(図示せず)などを備える。
自動車590において、カメラ591等に上記集積回路390(あるいは上記集積回路390を組み込んだ半導体チップ391)を用いることができる。自動車590は、カメラ591が複数の撮像方向592で得られた複数の画像を上記実施の形態で説明した集積回路390で処理し、バス593等を介してホストコントローラ594等により複数の画像をまとめて解析することで、ガードレールおよび/または歩行者の有無など、周囲の交通状況を判断し、自動運転を行うことができる。また、道路案内、危険予測などを行うシステムに用いることができる。
集積回路390では、得られた画像データをニューラルネットワークなどの演算処理を行うことで、例えば、画像の高解像度化、画像ノイズの低減、顔認識(防犯目的など)、物体認識(自動運転の目的など)、画像圧縮、画像補正(広ダイナミックレンジ化)、レンズレスイメージセンサの画像復元、位置決め、文字認識、反射映り込み低減などの処理を行うことができる。
なお、上述では、移動体の一例として自動車について説明しているが、移動体は自動車に限定されない。例えば、移動体としては、電車、モノレール、船、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット)なども挙げることができ、これらの移動体に本発明の一態様のコンピュータを適用して、人工知能を利用したシステムを付与することができる。
図26Aは、携帯型電子機器の一例を示す外観図である。図26Bは、携帯型電子機器内でのデータのやり取りを簡略化した図である。携帯型電子機器595は、プリント配線基板596、スピーカー597、カメラ598、マイクロフォン599等を有する。
携帯型電子機器595において、プリント配線基板596に上記集積回路390を設けることができる。携帯型電子機器595は、スピーカー597、カメラ598、マイクロフォン599等で得られる複数のデータを上記実施の形態で説明した集積回路390を用いて処理・解析することで、ユーザの利便性を向上させることができる。また、音声案内、画像検索などを行うシステムに用いることができる。
集積回路390では、得られた画像データをニューラルネットワークなどの演算処理を行うことで、例えば、画像の高解像度化、画像ノイズの低減、顔認識(防犯目的など)、物体認識(自動運転の目的など)、画像圧縮、画像補正(広ダイナミックレンジ化)、レンズレスイメージセンサの画像復元、位置決め、文字認識、反射映り込み低減などの処理を行うことができる。
図27Aに示す携帯型ゲーム機1100は、筐体1101、筐体1102、筐体1103、表示部1104、接続部1105、操作キー1107等を有する。筐体1101、筐体1102および筐体1103は、取り外すことが可能である。筐体1101に設けられている接続部1105を筐体1108に取り付けることで、表示部1104に出力される映像を、別の映像機器に出力することができる。他方、筐体1102および筐体1103を筐体1109に取り付けることで、筐体1102および筐体1103を一体化し、操作部として機能させる。筐体1102および筐体1103の基板に設けられているチップなどに先の実施の形態に示す集積回路390を組み込むことができる。
図27BはUSB接続タイプのスティック型の電子機器1120である。電子機器1120は、筐体1121、キャップ1122、USBコネクタ1123および基板1124を有する。基板1124は、筐体1121に収納されている。例えば、基板1124には、メモリチップ1125、コントローラチップ1126が取り付けられている。基板1124のコントローラチップ1126などに先の実施の形態に示す集積回路390を組み込むことができる。
図27Cは人型のロボット1130である。ロボット1130は、センサ2101乃至2106、および制御回路2110を有する。例えば、制御回路2110には、先の実施の形態に示す集積回路390を組み込むことができる。
上記実施の形態で説明した集積回路390は、電子機器に内蔵する代わりに、電子機器と通信を行うサーバーに用いることもできる。この場合、電子機器とサーバーによって演算システムが構成される。図28に、システム3000の構成例を示す。
システム3000は、電子機器3001と、サーバー3002によって構成される。電子機器3001とサーバー3002間の通信は、インターネット回線3003を介して行うことができる。
サーバー3002には、複数のラック3004を有する。複数のラックには、複数の基板3005が設けられ、当該基板3005上に上記実施の形態で説明した集積回路390を搭載することができる。これにより、サーバー3002にニューラルネットワークが構成される。そして、サーバー3002は、電子機器3001からインターネット回線3003を介して入力されたデータを用いて、ニューラルネットワークの演算を行うことができる。サーバー3002による演算の結果は必要に応じて、インターネット回線3003を介して電子機器3001に送信することができる。これにより、電子機器3001における演算の負担を低減することができる。
本実施の形態に示す構成、構造、方法などは、他の実施の形態などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
100:半導体装置、110:層、120:層、150:制御装置、160:記憶装置、193:PMU、200:演算ブロック、210:演算回路部、211:演算回路、220:ビット線駆動回路、230:ワード線駆動回路、240:ワード線駆動回路、290:演算ブロックアレイ、310:記憶回路部、320:メモリセル、321:トランジスタ、322:トランジスタ、323:トランジスタ、324:容量

Claims (22)

  1.  複数の演算ブロックを有し、
     前記演算ブロックは、
     演算回路部と、記憶回路部と、を有し、
     前記演算回路部は、第1トランジスタを有し、
     前記記憶回路部は、第2トランジスタを有し、
     前記演算回路部は前記記憶回路部と電気的に接続され、
     前記演算回路部と前記記憶回路部は、互いに重なる領域を有する半導体装置。
  2.  請求項1において、
     前記演算ブロックは、
     第1駆動回路と、第2駆動回路と、第3駆動回路と、を有し、
     前記第1駆動回路、前記第2駆動回路、および前記第3駆動回路は、
     前記記憶回路部と電気的に接続され、
     前記演算回路部、前記第1駆動回路、前記第2駆動回路、および前記第3駆動回路は、第1層に設けられ、
     前記記憶回路部は第2層に設けられ、
     前記第1層と前記第2層は互いに重なる領域を有する半導体装置。
  3.  請求項2において、
     前記第1駆動回路は、前記記憶回路部にデータを供給する機能を有する半導体装置。
  4.  請求項2または請求項3において、
     前記第2駆動回路は、前記記憶回路部にデータを書き込む動作を制御する機能を有する半導体装置。
  5.  請求項2乃至請求項4のいずれか一項において、
     前記第3駆動回路は、前記記憶回路部からデータを読み出す動作を制御する機能を有する半導体装置。
  6.  請求項1乃至請求項5のいずれか一項において、
     前記演算回路部は、積和演算を行う機能を有する半導体装置。
  7.  請求項1乃至請求項6のいずれか一項において、
     前記記憶回路部は、データを保持する機能を有する半導体装置。
  8.  請求項7において、
     前記データは重みデータである半導体装置。
  9.  請求項1乃至請求項8のいずれか一項において、
     前記第1トランジスタは、チャネルが形成される半導体にシリコンを含む、半導体装置。
  10.  請求項1乃至請求項5のいずれか一項において、
     前記第2トランジスタは、チャネルが形成される半導体に酸化物半導体を含む、半導体装置。
  11.  請求項10において、
     前記酸化物半導体は、インジウムまたは亜鉛の少なくとも一方を含む、半導体装置。
  12.  M行N列(M、Nはそれぞれ2以上の自然数)のマトリクス状に設けられた複数の演算ブロックと、N個の第1駆動回路と、を有する半導体装置であって、
     前記N個の第1駆動回路は、それぞれが各列に配置され、
     前記複数の演算ブロックのそれぞれは、
     演算回路部と、記憶回路部と、を有し、
     前記演算回路部は、前記記憶回路部と電気的に接続され、
     前記演算回路部と前記記憶回路部は、互いに重なる領域を有し、
     e列目(eは1以上N以下の自然数)に配置された前記記憶回路部は、
     e列目に配置された前記第1駆動回路と電気的に接続される半導体装置。
  13.  請求項12において、
     前記演算回路部は、積和演算を行う機能を有する半導体装置。
  14.  請求項12または請求項13において、
     前記記憶回路部は、データを保持する機能を有する半導体装置。
  15.  請求項14において、
     前記データは重みデータである半導体装置。
  16.  請求項12乃至請求項14のいずれか一項において、
     前記記憶回路部は、複数のメモリセルを有し、
     前記メモリセルは、
     チャネルが形成される半導体に酸化物半導体を含むトランジスタを有する半導体装置。
  17.  請求項12乃至請求項16のいずれか一項において、
     前記第1駆動回路は、前記記憶回路部にデータを供給する機能を有する半導体装置。
  18.  請求項12乃至請求項17のいずれか一項において、
     列方向に延在する第2駆動回路を有し、
     前記第2駆動回路は、
     前記記憶回路部と電気的に接続する半導体装置。
  19.  請求項18において、
     前記第2駆動回路は、前記記憶回路部にデータを書き込む動作を制御する機能を有する半導体装置。
  20.  請求項12乃至請求項19のいずれか一項において、
     前記複数の演算ブロックのそれぞれは、
     第3駆動回路を有し、
     前記第3駆動回路は、
     前記記憶回路部と電気的に接続する半導体装置。
  21.  請求項12乃至請求項19のいずれか一項において、
     列方向に延在する第3駆動回路を有し、
     前記第3駆動回路は、
     前記記憶回路部と電気的に接続する半導体装置。
  22.  請求項20または請求項21において、
     前記第3駆動回路は、前記記憶回路部からデータを読み出す動作を制御する機能を有する半導体装置。
PCT/IB2021/051788 2020-03-18 2021-03-04 半導体装置 WO2021186279A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022508602A JPWO2021186279A1 (ja) 2020-03-18 2021-03-04
KR1020227035369A KR20220155329A (ko) 2020-03-18 2021-03-04 반도체 장치
US17/802,281 US20230099168A1 (en) 2020-03-18 2021-03-04 Semiconductor device
CN202180022121.4A CN115298824A (zh) 2020-03-18 2021-03-04 半导体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-047259 2020-03-18
JP2020047259 2020-03-18

Publications (1)

Publication Number Publication Date
WO2021186279A1 true WO2021186279A1 (ja) 2021-09-23

Family

ID=77768028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/051788 WO2021186279A1 (ja) 2020-03-18 2021-03-04 半導体装置

Country Status (5)

Country Link
US (1) US20230099168A1 (ja)
JP (1) JPWO2021186279A1 (ja)
KR (1) KR20220155329A (ja)
CN (1) CN115298824A (ja)
WO (1) WO2021186279A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256822A (ja) * 2010-09-14 2012-12-27 Semiconductor Energy Lab Co Ltd 記憶装置及び半導体装置
JP2015188071A (ja) * 2014-03-14 2015-10-29 株式会社半導体エネルギー研究所 半導体装置
JP2019033233A (ja) * 2017-08-10 2019-02-28 株式会社半導体エネルギー研究所 半導体装置、および電子機器
JP2019036280A (ja) * 2017-08-11 2019-03-07 株式会社半導体エネルギー研究所 グラフィックスプロセッシングユニット、コンピュータ、電子機器及び並列計算機
JP2019047006A (ja) * 2017-09-05 2019-03-22 株式会社半導体エネルギー研究所 半導体装置、電子機器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10607135B2 (en) 2017-10-19 2020-03-31 General Electric Company Training an auto-encoder on a single class

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256822A (ja) * 2010-09-14 2012-12-27 Semiconductor Energy Lab Co Ltd 記憶装置及び半導体装置
JP2015188071A (ja) * 2014-03-14 2015-10-29 株式会社半導体エネルギー研究所 半導体装置
JP2019033233A (ja) * 2017-08-10 2019-02-28 株式会社半導体エネルギー研究所 半導体装置、および電子機器
JP2019036280A (ja) * 2017-08-11 2019-03-07 株式会社半導体エネルギー研究所 グラフィックスプロセッシングユニット、コンピュータ、電子機器及び並列計算機
JP2019047006A (ja) * 2017-09-05 2019-03-22 株式会社半導体エネルギー研究所 半導体装置、電子機器

Also Published As

Publication number Publication date
US20230099168A1 (en) 2023-03-30
JPWO2021186279A1 (ja) 2021-09-23
CN115298824A (zh) 2022-11-04
KR20220155329A (ko) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2018178793A1 (ja) 半導体装置、半導体装置の作製方法
JP7361730B2 (ja) 記憶装置
KR102496132B1 (ko) 기억 장치
JP2023164563A (ja) 半導体装置
WO2021234500A1 (ja) 半導体装置
WO2021064502A1 (ja) 半導体装置
WO2021186279A1 (ja) 半導体装置
WO2021130591A1 (ja) 半導体装置
WO2022013677A1 (ja) 半導体装置
WO2021198841A1 (ja) 半導体装置
WO2021165779A1 (ja) 半導体装置
WO2023199182A1 (ja) 半導体装置
WO2024013604A1 (ja) 半導体装置
WO2021209858A1 (ja) 半導体装置
WO2023223126A1 (ja) 半導体装置
KR20230070233A (ko) 반도체 장치 및 전자 기기
KR20230071139A (ko) 반도체 장치 및 전자 기기
JP2023152817A (ja) 半導体装置
KR20230043924A (ko) 반도체 장치의 구동 방법
JP2018180975A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772566

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508602

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227035369

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21772566

Country of ref document: EP

Kind code of ref document: A1