JP2019047006A - 半導体装置、電子機器 - Google Patents
半導体装置、電子機器 Download PDFInfo
- Publication number
- JP2019047006A JP2019047006A JP2017169955A JP2017169955A JP2019047006A JP 2019047006 A JP2019047006 A JP 2019047006A JP 2017169955 A JP2017169955 A JP 2017169955A JP 2017169955 A JP2017169955 A JP 2017169955A JP 2019047006 A JP2019047006 A JP 2019047006A
- Authority
- JP
- Japan
- Prior art keywords
- transistor
- wiring
- circuit
- potential
- memory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 225
- 230000006870 function Effects 0.000 claims abstract description 112
- 238000012545 processing Methods 0.000 claims abstract description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 32
- 239000010703 silicon Substances 0.000 claims description 32
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 72
- 150000004706 metal oxides Chemical class 0.000 abstract description 62
- 238000003860 storage Methods 0.000 abstract description 11
- 239000010410 layer Substances 0.000 description 208
- 210000004027 cell Anatomy 0.000 description 203
- 239000003990 capacitor Substances 0.000 description 60
- 239000000758 substrate Substances 0.000 description 52
- 238000000034 method Methods 0.000 description 47
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 40
- 239000000463 material Substances 0.000 description 40
- 230000015572 biosynthetic process Effects 0.000 description 36
- 239000010408 film Substances 0.000 description 34
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 33
- 239000001301 oxygen Substances 0.000 description 33
- 229910052760 oxygen Inorganic materials 0.000 description 33
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 31
- 125000004429 atom Chemical group 0.000 description 26
- 210000002569 neuron Anatomy 0.000 description 25
- 229910052738 indium Inorganic materials 0.000 description 24
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 24
- 230000002829 reductive effect Effects 0.000 description 23
- 239000004020 conductor Substances 0.000 description 22
- 239000007789 gas Substances 0.000 description 21
- 229910052757 nitrogen Inorganic materials 0.000 description 20
- 239000013078 crystal Substances 0.000 description 19
- 239000011701 zinc Substances 0.000 description 19
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical group [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 17
- 229910052733 gallium Inorganic materials 0.000 description 17
- 239000012535 impurity Substances 0.000 description 17
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 16
- 238000013528 artificial neural network Methods 0.000 description 16
- 230000002093 peripheral effect Effects 0.000 description 16
- 229910052725 zinc Inorganic materials 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 14
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000002184 metal Substances 0.000 description 12
- 230000008859 change Effects 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- 238000004544 sputter deposition Methods 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 238000000231 atomic layer deposition Methods 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 9
- 230000004913 activation Effects 0.000 description 9
- 230000007547 defect Effects 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000008878 coupling Effects 0.000 description 8
- 238000010168 coupling process Methods 0.000 description 8
- 238000005859 coupling reaction Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 229910052711 selenium Inorganic materials 0.000 description 8
- 239000011669 selenium Substances 0.000 description 8
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical group [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000010955 niobium Substances 0.000 description 6
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 6
- 229910052718 tin Chemical group 0.000 description 6
- 229910052727 yttrium Inorganic materials 0.000 description 6
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical group [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 5
- 150000001342 alkaline earth metals Chemical class 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 229910021419 crystalline silicon Inorganic materials 0.000 description 5
- 230000005669 field effect Effects 0.000 description 5
- -1 for example Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 239000002159 nanocrystal Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 3
- 101100437484 Arabidopsis thaliana BGLU18 gene Proteins 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 3
- 101100342633 Bos taurus LLGL1 gene Proteins 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 101100065855 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) EXG1 gene Proteins 0.000 description 3
- 101100058298 Saccharomycopsis fibuligera BGL1 gene Proteins 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 3
- 101150100570 bglA gene Proteins 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 3
- 229910003437 indium oxide Inorganic materials 0.000 description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 229910001195 gallium oxide Inorganic materials 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 2
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 2
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 230000001151 other effect Effects 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000005001 rutherford backscattering spectroscopy Methods 0.000 description 2
- 229940065287 selenium compound Drugs 0.000 description 2
- 150000003343 selenium compounds Chemical class 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 101150046766 BGL2 gene Proteins 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 238000004435 EPR spectroscopy Methods 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910002808 Si–O–Si Inorganic materials 0.000 description 1
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 description 1
- GDFCWFBWQUEQIJ-UHFFFAOYSA-N [B].[P] Chemical compound [B].[P] GDFCWFBWQUEQIJ-UHFFFAOYSA-N 0.000 description 1
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- FTWRSWRBSVXQPI-UHFFFAOYSA-N alumanylidynearsane;gallanylidynearsane Chemical compound [As]#[Al].[As]#[Ga] FTWRSWRBSVXQPI-UHFFFAOYSA-N 0.000 description 1
- 239000005407 aluminoborosilicate glass Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 239000005380 borophosphosilicate glass Substances 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 229910052800 carbon group element Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- NJWNEWQMQCGRDO-UHFFFAOYSA-N indium zinc Chemical compound [Zn].[In] NJWNEWQMQCGRDO-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000011156 metal matrix composite Substances 0.000 description 1
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 description 1
- 229910021334 nickel silicide Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 1
- KJOLVZJFMDVPGB-UHFFFAOYSA-N perylenediimide Chemical compound C=12C3=CC=C(C(NC4=O)=O)C2=C4C=CC=1C1=CC=C2C(=O)NC(=O)C4=CC=C3C1=C42 KJOLVZJFMDVPGB-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000004549 pulsed laser deposition Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 1
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Landscapes
- Thin Film Transistor (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
【課題】占有面積の小さい半導体装置、高速動作が可能な半導体装置、消費電力の小さい半導体装置、信頼性の高い半導体装置及び新規な半導体装置を提供する。【解決手段】CPUと、GPUと、メモリと、を有する半導体装置100であって、CPUは第1トランジスタを有し、GPUは第2トランジスタを有し、メモリは第3トランジスタを有し、メモリはCPUの上に設けられ、GPUはメモリの上に設けられる。CPUは、記憶回路と電気的に接続され、GPUは記憶回路と電気的に接続される。CPUは、CPUとして動作する機能を有し、GPUは、並列演算処理を行なう機能を有する。メモリを構成するトランジスタにには、金属酸化物の一種である酸化物半導体を用いる。【選択図】図1
Description
本発明の一態様は、半導体装置に関する。
ただし、本発明の一態様は、上記の技術分野に限定されるものではない。本明細書等で開示する発明の一態様は、物、方法、または、製造方法に関する。または、本明細書等で開示する発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。
より具体的には、本明細書等で開示する本発明の一態様の技術分野の一例として、表示装置(液晶表示装置、発光表示装置など)、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置、電子機器、それらの駆動方法、または、それらの製造方法、を挙げることができる。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタ、半導体回路は半導体装置の一態様である。また、表示装置、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置および電子機器などは、半導体装置と言える場合がある。もしくは、これらは半導体装置を有すると言える場合がある。
近年、IoT(Internet of Things)および人工知能(AI:Artificial Intelligence)などの技術が発展しており、人工知能の一つとして人工ニューラルネットワークが注目されている。人工ニューラルネットワークにより、従来のノイマン型コンピュータよりも高性能なコンピュータの実現が期待される。
人工ニューラルネットワークの演算には、GPU(Graphics Processing Unit)などが用いられている。また、特許文献1では、チャネル形成領域に酸化物半導体を有するトランジスタを用いた記憶装置によって、人工ニューラルネットワークの演算に必要な重みデータを保持する発明が開示されている。一般に、GPUは、CPU(Central Processing Unit)や、メモリなどと組み合わせて用いられる。
本発明の一態様は、占有面積の小さい半導体装置の提供を課題の一とする。または、高速動作が可能な半導体装置の提供を課題の一とする。または、消費電力の小さい半導体装置の提供を課題の一とする。または、信頼性の高い半導体装置の提供を課題の一とする。または、新規な半導体装置の提供を課題の一とする。
なお、本発明の一態様は、必ずしも上記の課題の全てを解決する必要はなく、少なくとも一の課題を解決できるものであればよい。また、上記の課題の記載は、他の課題の存在を妨げるものではない。これら以外の課題は、明細書、特許請求の範囲、図面などの記載から、自ずと明らかとなるものであり、明細書、特許請求の範囲、図面などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、第1演算回路と、第2演算回路と、記憶回路と、を有し、第1演算回路は第1トランジスタを有し、第2演算回路は第2トランジスタを有し、記憶回路は第3トランジスタを有し、記憶回路は第1演算回路の上に設けられ、第2演算回路は記憶回路の上に設けられ、第1演算回路は記憶回路と電気的に接続され、第2演算回路は記憶回路と電気的に接続され、第1演算回路または第2演算回路の一方は、CPUとして動作する機能を有し、第1演算回路または第2演算回路の他方は、並列演算処理を行なう機能を有し、第3トランジスタの半導体層は酸化物半導体を含むことを特徴とする半導体装置である。
第1トランジスタおよび第2トランジスタの一方または双方の半導体層に、金属酸化物の一種である酸化物半導体を用いてもよい。なお、第1演算回路および第2演算回路の一方または双方に高速動作が求められる場合は、第1トランジスタおよび第2トランジスタの、一方または双方の半導体層にシリコン、ガリウム砒素などの半導体材料を用いてもよい。
また、本発明の別の一態様は、上記の半導体装置と、カメラ、バッテリ、またはセンサと、を有する電子機器である。
本発明の一態様により、占有面積の小さい半導体装置を提供することができる。または、高速動作が可能な半導体装置を提供することができる。または、消費電力の小さい半導体装置を提供することができる。または、信頼性の高い半導体装置を提供することができる。または、新規な半導体装置を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。また、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。これら以外の効果は、明細書、特許請求の範囲、図面などの記載から、自ずと明らかとなるものであり、明細書、特許請求の範囲、図面などの記載から、これら以外の効果を抽出することが可能である。
以下、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の実施の形態における説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。したがって、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
また、本明細書等において、金属酸化物(metal oxide)とは、広い表現での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductorともいう)などに分類される。例えば、トランジスタのチャネル形成領域に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、金属酸化物が増幅作用、整流作用、およびスイッチング作用の少なくとも1つを有する場合、当該金属酸化物を、金属酸化物半導体(metal oxide semiconductor)と呼ぶことができる。以下、チャネル形成領域に金属酸化物を含むトランジスタを、「oxトランジスタ」または「OSトランジスタ」という場合がある。
また、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
XとYとが直接的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に接続されていない場合であり、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)を介さずに、XとYとが、接続されている場合である。
XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイッチは、オン状態、または、オフ状態になり、電流を流すか流さないかを制御する機能を有している。または、スイッチは、電流を流す経路を選択して切り替える機能を有している。なお、XとYとが電気的に接続されている場合は、XとYとが直接的に接続されている場合を含むものとする。
XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(DA変換回路、AD変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、切り替え回路、増幅回路(信号振幅または電流量などを大きく出来る回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。なお、XとYとが機能的に接続されている場合は、XとYとが直接的に接続されている場合と、XとYとが電気的に接続されている場合とを含むものとする。
なお、XとYとが電気的に接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合(つまり、XとYとの間に別の素子または別の回路を挟んで接続されている場合)と、XとYとが機能的に接続されている場合(つまり、XとYとの間に別の回路を挟んで機能的に接続されている場合)と、XとYとが直接接続されている場合(つまり、XとYとの間に別の素子または別の回路を挟まずに接続されている場合)とが、本明細書等に開示されているものとする。つまり、電気的に接続されている、と明示的に記載されている場合は、単に、接続されている、とのみ明示的に記載されている場合と同様な内容が、本明細書等に開示されているものとする。
また、本明細書等において、トランジスタの接続関係を説明する際、ソースとドレインとの一方を、「ソースまたはドレインの一方」(または第1電極、または第1端子)と表記し、ソースとドレインとの他方を「ソースまたはドレインの他方」(または第2電極、または第2端子)と表記している。これは、トランジスタのソースとドレインは、トランジスタの構造または動作条件等によって変わるためである。なおトランジスタのソースとドレインの呼称については、ソース(ドレイン)端子や、ソース(ドレイン)電極等、状況に応じて適切に言い換えることができる。また、本明細書等では、ゲート以外の2つの端子を第1端子、第2端子と呼ぶ場合や、第3端子、第4端子と呼ぶ場合がある。なお、本明細書等において、チャネル形成領域はチャネルが形成される領域を指し、ゲートに電位を印加することでこの領域が形成されて、ソース‐ドレイン間に電流を流すことができる。
また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができるものとする。
また、本明細書等に記載するトランジスタが2つ以上のゲートを有するとき、それらのゲートを第1ゲート、第2ゲートと呼ぶ場合や、フロントゲート、バックゲートと呼ぶ場合がある。特に、「フロントゲート」という語句は、単に「ゲート」という語句に互いに言い換えることができる。また、「バックゲート」という語句は、単に「ゲート」という語句に互いに言い換えることができる。
また、本明細書等において「電極」や「配線」の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「配線」が一体となって形成されている場合なども含む。
なお、本明細書等において、特に断りがない場合、オン電流とは、トランジスタがオン状態にあるときのドレイン電流をいう。オン状態(オンと略す場合もある)とは、特に断りがない場合、nチャネル型トランジスタでは、ゲートとソースの間の電圧(VG)がしきい値電圧(Vth)以上の状態、pチャネル型トランジスタでは、VGがVth以下の状態をいう。例えば、nチャネル型のトランジスタのオン電流とは、VGがVth以上のときのドレイン電流を言う。また、トランジスタのオン電流は、ドレインとソースの間の電圧(VD)に依存する場合がある。
また、本明細書等において、特に断りがない場合、オフ電流とは、トランジスタがオフ状態にあるときのドレイン電流をいう。オフ状態(オフと略す場合もある)とは、特に断りがない場合、nチャネル型トランジスタでは、VGがVthよりも低い状態、pチャネル型トランジスタでは、VGがVthよりも高い状態をいう。例えば、nチャネル型のトランジスタのオフ電流とは、VGがVthよりも低いときのドレイン電流を言う。トランジスタのオフ電流は、VGに依存する場合がある。従って、トランジスタのオフ電流が10−21A未満である、とは、トランジスタのオフ電流が10−21A未満となるVGの値が存在することを言う場合がある。
また、トランジスタのオフ電流は、VDに依存する場合がある。本明細書において、オフ電流は、特に記載がない場合、VDの絶対値が0.1V、0.8V、1V、1.2V、1.8V、2.5V、3V、3.3V、10V、12V、16V、または20Vにおけるオフ電流を表す場合がある。または、当該トランジスタが含まれる半導体装置等において使用されるVDにおけるオフ電流を表す場合がある。
また、本明細書等において、電圧と電位は、適宜言い換えることができる。電圧は、基準となる電位からの電位差のことであり、例えば基準となる電位をグラウンド電位(接地電位)とすると、電圧を電位に言い換えることができる。グラウンド電位は必ずしも0Vを意味するとは限らない。なお電位は相対的なものであり、基準となる電位によっては、配線等に与える電位を変化させる場合がある。
また、本明細書等において、「配線」、「信号線」、「電源線」などの用語は、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「配線」という用語を、「信号線」という用語に変更することが可能な場合がある。また、例えば、「配線」という用語を、「電源線」などの用語に変更することが可能な場合がある。また、その逆も同様で、「信号線」「電源線」などの用語を、「配線」という用語に変更することが可能な場合がある。「電源線」などの用語は、「信号線」などの用語に変更することが可能な場合がある。また、その逆も同様で「信号線」などの用語は、「電源線」などの用語に変更することが可能な場合がある。また、配線に印加されている「電位」という用語を、場合によっては、または、状況に応じて、「信号」などという用語に変更することが可能な場合がある。また、その逆も同様で、「信号」などの用語は、「電位」という用語に変更することが可能な場合がある。
また、図面上は独立している構成要素同士が電気的に接続しているように図示されている場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もある。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、および電極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における電気的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場合も、その範疇に含める。
本明細書等において、「第1」、「第2」などの序数詞は、構成要素の混同を避けるために付すものであり、工程順または積層順など、なんらかの順番や順位を示すものではない。また、本明細書等において序数詞が付されていない用語であっても、構成要素の混同を避けるため、特許請求の範囲において序数詞が付される場合がある。また、本明細書等において付された序数詞と、特許請求の範囲において付された序数詞が異なる場合がある。また、本明細書等において序数詞が付されている用語であっても、特許請求の範囲などにおいて序数詞を省略する場合がある。
(実施の形態1)
本発明の一態様に係る半導体装置について、図面を用いて説明する。図1(A)は、半導体装置100の斜視図である。半導体装置100は、集積回路110、集積回路120、および集積回路130が積層された構成を有する。図1(A)では、集積回路110上に集積回路120が設けられ、集積回路120上に集積回路130が設けられている。
本発明の一態様に係る半導体装置について、図面を用いて説明する。図1(A)は、半導体装置100の斜視図である。半導体装置100は、集積回路110、集積回路120、および集積回路130が積層された構成を有する。図1(A)では、集積回路110上に集積回路120が設けられ、集積回路120上に集積回路130が設けられている。
集積回路110、集積回路120、および集積回路130としては、演算回路(CPU、GPU、DSP(Digital Signal Processor)など)、PLD(Programmable Logic Device)、MCU(Microcontroller Unit)、カスタムLSI、記憶回路(メモリ:フラッシュメモリ、DRAM、SRAMなど)、または通信用回路などの任意の回路を用いることができる。
図1(B)は、半導体装置100の構成を分かり易く説明するための斜視図である。本実施の形態では、集積回路110としてCPU、集積回路120として記憶回路(以下、「メモリ」ともいう。)、集積回路130としてGPUを用いる場合について説明する。
<CPU>
図2に、集積回路110に適用可能なCPUの構成の一例を示す。図2に示すCPU200は、CPUコア201、パワーマネージメントユニット221および周辺回路222を有する。パワーマネージメントユニット221は、パワーコントローラ202、およびパワースイッチ203を有する。周辺回路222は、キャッシュメモリを有するキャッシュ204、バスインターフェース(BUS I/F)205、およびデバッグインターフェース(Debug I/F)206を有する。CPUコア201は、データバス223、制御装置207(コントロールユニット)、PC208(プログラムカウンタ)、パイプラインレジスタ209、パイプラインレジスタ210、ALU(Arithmetic logic unit)211、およびレジスタファイル312を有する。CPUコア201と、キャッシュ204等の周辺回路222とのデータのやり取りは、データバス223を介して行われる。
図2に、集積回路110に適用可能なCPUの構成の一例を示す。図2に示すCPU200は、CPUコア201、パワーマネージメントユニット221および周辺回路222を有する。パワーマネージメントユニット221は、パワーコントローラ202、およびパワースイッチ203を有する。周辺回路222は、キャッシュメモリを有するキャッシュ204、バスインターフェース(BUS I/F)205、およびデバッグインターフェース(Debug I/F)206を有する。CPUコア201は、データバス223、制御装置207(コントロールユニット)、PC208(プログラムカウンタ)、パイプラインレジスタ209、パイプラインレジスタ210、ALU(Arithmetic logic unit)211、およびレジスタファイル312を有する。CPUコア201と、キャッシュ204等の周辺回路222とのデータのやり取りは、データバス223を介して行われる。
制御装置207は、PC208、パイプラインレジスタ209、パイプラインレジスタ210、ALU211、レジスタファイル212、キャッシュ204、バスインターフェース205、デバッグインターフェース206、およびパワーマネージメントユニット221の動作を統括的に制御することで、入力されたアプリケーションなどのプログラムに含まれる命令をデコードし、実行する機能を有する。
ALU211は、四則演算、論理演算などの各種演算処理を行う機能を有する。
キャッシュ204は、使用頻度の高いデータを一時的に記憶しておく機能を有する。PC208は、次に実行する命令のアドレスを記憶する機能を有するレジスタである。なお、図2では図示していないが、キャッシュ204には、キャッシュメモリの動作を制御するキャッシュコントローラが設けられている。
パイプラインレジスタ209は、命令データを一時的に記憶する機能を有するレジスタである。
レジスタファイル212は、汎用レジスタを含む複数のレジスタを有しており、メインメモリから読み出されたデータ、またはALU211の演算処理の結果得られたデータ、などを記憶することができる。
パイプラインレジスタ210は、ALU211の演算処理に利用するデータ、またはALU211の演算処理の結果得られたデータなどを一時的に記憶する機能を有するレジスタである。
バスインターフェース205は、CPU200とCPU200の外部にある各種装置との間におけるデータの経路としての機能を有する。デバッグインターフェース206は、デバッグの制御を行うための命令をCPU200に入力するための信号の経路としての機能を有する。
パワースイッチ203は、CPU200が有する、パワーコントローラ202以外の各種回路への、電力供給を制御する機能を有する。上記各種回路は、幾つかのパワードメインにそれぞれ属しており、同一のパワードメインに属する各種回路は、パワースイッチ203によって電力供給の有無が制御される。また、パワーコントローラ202はパワースイッチ203の動作を制御する機能を有する。このような構成を有することで、CPU200は、パワーゲーティングを行うことが可能である。
パワーゲーティングの流れについて、一例を挙げて説明する。まず、CPUコア201が、電力供給を停止するタイミングを、パワーコントローラ202のレジスタに設定する。次いで、CPUコア201からパワーコントローラ202へ、パワーゲーティングを開始する旨の命令を送る。次いで、CPU200内に含まれる各種レジスタとキャッシュ204が、データの退避を開始する。次いで、CPU200が有するパワーコントローラ202以外の各種回路への電力供給が、パワースイッチ203により停止される。次いで、割込み信号がパワーコントローラ202に入力されることで、CPU200が有する各種回路への電力供給が開始される。なお、パワーコントローラ202にカウンタを設けておき、電力供給が開始されるタイミングを、割込み信号の入力に依らずに、当該カウンタを用いて決めるようにしてもよい。次いで、各種レジスタとキャッシュ204が、データの復帰を開始する。次いで、制御装置207における命令の実行が再開される。
このようなパワーゲーティングは、プロセッサ全体、もしくはプロセッサを構成する一つ、または複数の論理回路において行うことができる。また、短い時間でも電力供給を停止することができる。このため、空間的に、あるいは時間的に細かい粒度で消費電力の削減を行うことができる。
各種レジスタとキャッシュ204のデータを後述するメモリに退避することで、CPU200への電力供給が停止されても、各種レジスタとキャッシュ204のデータを保持することができる。また、一定期間毎に各種レジスタとキャッシュ204のデータを退避することで、CPU200の電力供給が予期せず停止した場合も、データ消失の被害を最小限に抑えることができる。さらに、後述するメモリが不揮発性メモリである場合は、半導体装置100への電力供給が予期せず停止した場合も、データ消失の被害を最小限に抑えることができる。
<メモリ>
図3に、集積回路120に適用可能なメモリの一例を示す。メモリ300は、周辺回路311、およびメモリセルアレイ401を有する。周辺回路311は、ローデコーダ321、ワード線ドライバ回路322、ビット線ドライバ回路330、出力回路340、コントロールロジック回路360を有する。
図3に、集積回路120に適用可能なメモリの一例を示す。メモリ300は、周辺回路311、およびメモリセルアレイ401を有する。周辺回路311は、ローデコーダ321、ワード線ドライバ回路322、ビット線ドライバ回路330、出力回路340、コントロールロジック回路360を有する。
ビット線ドライバ回路330は、カラムデコーダ331、プリチャージ回路332、センスアンプ333、および書き込み回路334を有する。プリチャージ回路332は、配線SL(図示せず)および配線CL(図示せず)などをプリチャージする機能を有する。センスアンプ333は、配線RBLから読み出されたデータ信号を増幅する機能を有する。なお、配線SL、配線CL、および配線RBLは、メモリセルアレイ401が有するメモリセル411に接続されている配線であり、詳しくは後述する。増幅されたデータ信号は、出力回路340を介して、デジタルのデータ信号RDATAとしてメモリ300の外部に出力される。
メモリ300には、外部から電源電圧として低電源電圧(VSS)、周辺回路311用の高電源電圧(VDD)、メモリセルアレイ401用の高電源電圧(VIL)が供給される。
また、メモリ300には、制御信号(CE、WE、RE)、アドレス信号ADDR、データ信号WDATAが外部から入力される。アドレス信号ADDRは、ローデコーダ321およびカラムデコーダ331に入力され、WDATAは書き込み回路334に入力される。
コントロールロジック回路360は、外部からの入力信号(CE、WE、RE)を処理して、ローデコーダ321、カラムデコーダ331の制御信号を生成する。CEは、チップイネーブル信号であり、WEは、書き込みイネーブル信号であり、REは、読み出しイネーブル信号である。コントロールロジック回路360が処理する信号は、これに限定されるものではなく、必要に応じて、他の制御信号を入力すればよい。
なお、上述の各回路あるいは各信号は、必要に応じて、適宜、取捨することができる。
メモリセルアレイ401を構成するトランジスタにoxトランジスタを適用することができる。また、周辺回路311を構成するトランジスタにoxトランジスタを適用することができる。メモリセルアレイ401と周辺回路311を、oxトランジスタを用いて形成することで、メモリセルアレイ401と周辺回路311を、同一の製造工程で作製することが可能になり、製造コストを低く抑えることができる。
〔メモリセルアレイの構成例〕
図4にメモリセルアレイ401の詳細を記載する。メモリセルアレイ401は、一列にm(mは1以上の整数である。)個、一行にn(nは1以上の整数である。)個、計m×n個のメモリセル411を有し、メモリセル411は行列状に配置されている。図4では、メモリセル411のアドレスも併せて表記しており、[1,1]、[m,1]、[i,j]、[1,n]、[m,n](iは、1以上m以下の整数であり、jは、1以上n以下の整数である。)のアドレスに位置しているメモリセル411を図示している。なお、メモリセルアレイ401とワード線ドライバ回路322とを接続している配線の数は、メモリセル411の構成、一列中に含まれるメモリセル411の数などによって決まる。また、メモリセルアレイ401とビット線ドライバ回路330とを接続している配線の数は、メモリセル411の構成、一行中に含まれるメモリセル411の数などによって決まる。
図4にメモリセルアレイ401の詳細を記載する。メモリセルアレイ401は、一列にm(mは1以上の整数である。)個、一行にn(nは1以上の整数である。)個、計m×n個のメモリセル411を有し、メモリセル411は行列状に配置されている。図4では、メモリセル411のアドレスも併せて表記しており、[1,1]、[m,1]、[i,j]、[1,n]、[m,n](iは、1以上m以下の整数であり、jは、1以上n以下の整数である。)のアドレスに位置しているメモリセル411を図示している。なお、メモリセルアレイ401とワード線ドライバ回路322とを接続している配線の数は、メモリセル411の構成、一列中に含まれるメモリセル411の数などによって決まる。また、メモリセルアレイ401とビット線ドライバ回路330とを接続している配線の数は、メモリセル411の構成、一行中に含まれるメモリセル411の数などによって決まる。
〔メモリセルの構成例〕
図5および図6に上述のメモリセル411に適用できるメモリセルの構成例について説明する。
図5および図6に上述のメモリセル411に適用できるメモリセルの構成例について説明する。
[DOSRAM]
図5(A)に、DRAMのメモリセルの回路構成例を示す。本明細書等において、oxトランジスタを用いたDRAMを、DOSRAM(Dynamic Oxide Semiconductor Random Access Memory)呼ぶ。メモリセル410は、トランジスタM1と、容量素子CAと、を有する。なお、トランジスタM1は、フロントゲート(単にゲートと呼ぶ場合がある。)、およびバックゲートを有する。
図5(A)に、DRAMのメモリセルの回路構成例を示す。本明細書等において、oxトランジスタを用いたDRAMを、DOSRAM(Dynamic Oxide Semiconductor Random Access Memory)呼ぶ。メモリセル410は、トランジスタM1と、容量素子CAと、を有する。なお、トランジスタM1は、フロントゲート(単にゲートと呼ぶ場合がある。)、およびバックゲートを有する。
トランジスタM1の第1端子は、容量素子CAの第1端子と接続され、トランジスタM1の第2端子は、配線BILと接続され、トランジスタM1のゲートは、配線WOLと接続され、トランジスタM1のバックゲートは、配線BGLと接続されている。容量素子CAの第2端子は、配線CALと接続されている。
配線BILは、ビット線として機能し、配線WOLは、ワード線として機能する。配線CALは、容量素子CAの第2端子に所定の電位を印加するための配線として機能する。データの書き込み時、および読み出し時において、配線CALには、低レベル電位(基準電位という場合がある。)を印加するのが好ましい。
配線BGLは、トランジスタM1のバックゲートに電位を印加するための配線として機能する。配線BGLに任意の電位を印加することによって、トランジスタM1のしきい値電圧を増減することができる。
データの書き込みおよび読み出しは、配線WOLに高レベル電位を印加し、トランジスタM1を導通状態にし、配線BILと容量素子CAの第1端子を接続することによって行われる。
また、上述したメモリ300が有するメモリセルは、メモリセル410に限定されず、回路構成の変更を行うことができる。
例えば、上述したメモリ300が有するメモリセルは、図5(B)に示すようなメモリセルの構成でもよい。メモリセル420は、トランジスタM1のバックゲートが、配線BGLでなく、配線WOLと接続される構成となっている。このような構成にすることによって、トランジスタM1のバックゲートに、トランジスタM1のゲートと同じ電位を印加することができるため、トランジスタM1が導通状態のときにおいて、トランジスタM1に流れる電流を増加することができる。
また、例えば、上述したメモリ300が有するメモリセルは、シングルゲート構造のトランジスタ、つまりバックゲートを有さないトランジスタM1で構成されたメモリセルとしてもよい。そのメモリセルの回路構成例を図5(C)に示す。メモリセル430は、メモリセル410のトランジスタM1からバックゲートを除いた構成となっている。なお、メモリ300にメモリセル430を適用することによって、トランジスタM1はバックゲートを有さないため、メモリ300の作製工程をメモリセル410、およびメモリセル420よりも短縮することができる。
なお、トランジスタM1のチャネル形成領域には、インジウム、元素M(元素Mはアルミニウム、ガリウム、イットリウム、またはスズ)、亜鉛のいずれか一を有する酸化物半導体を用いることができる。つまり、トランジスタM1としてoxトランジスタを適用することができる。特に、インジウム、ガリウム、亜鉛からなる酸化物半導体であることが好ましい。
インジウム、ガリウム、亜鉛を含む酸化物半導体を適用したoxトランジスタは、オフ電流が極めて小さいという特性を有している。トランジスタM1としてoxトランジスタを用いることによって、トランジスタM1のリーク電流を非常に低くすることができる。つまり、書き込んだデータをトランジスタM1によって長時間保持することができるため、メモリセルのリフレッシュの頻度を少なくすることができる。また、メモリセルのリフレッシュ動作を不要にすることができる。また、リーク電流が非常に低いため、メモリセル410、メモリセル420、メモリセル430に対して多値データ、またはアナログデータを保持することができる。
トランジスタM1としてoxトランジスタを適用することにより、DOSRAMを構成することができる。
[NOSRAM]
図5(D)に、2トランジスタ1容量素子のゲインセル型のメモリセルの回路構成例を示す。メモリセル440は、トランジスタM2と、トランジスタM3と、容量素子CBと、を有する。なお、トランジスタM2は、フロントゲート(単にゲートと呼ぶ場合がある。)、およびバックゲートを有する。
図5(D)に、2トランジスタ1容量素子のゲインセル型のメモリセルの回路構成例を示す。メモリセル440は、トランジスタM2と、トランジスタM3と、容量素子CBと、を有する。なお、トランジスタM2は、フロントゲート(単にゲートと呼ぶ場合がある。)、およびバックゲートを有する。
トランジスタM2の第1端子は、容量素子CBの第1端子と接続され、トランジスタM2の第2端子は、配線WBLと接続され、トランジスタM2のゲートは、配線WOLと接続され、トランジスタM2のバックゲートは、配線BGLと接続されている。容量素子CBの第2端子は、配線CALと接続されている。トランジスタM3の第1端子は、配線RBLと接続され、トランジスタM3の第2端子は、配線SLと接続され、トランジスタM3のゲートは、容量素子CBの第1端子と接続されている。
配線WBLは、書き込みビット線として機能し、配線RBLは、読み出しビット線として機能し、配線WOLは、ワード線として機能する。配線CALは、容量素子CBの第2端子に所定の電位を印加するための配線として機能する。データの書き込み時、データ保持の最中、データの読み出し時において、配線CALには、低レベル電位(基準電位という場合がある)を印加するのが好ましい。
配線BGLは、トランジスタM2のバックゲートに電位を印加するための配線として機能する。配線BGLに任意の電位を印加することによって、トランジスタM2のしきい値電圧を増減することができる。
データの書き込みは、配線WOLに高レベル電位を印加し、トランジスタM2を導通状態にし、配線WBLと容量素子CBの第1端子を接続することによって行われる。具体的には、トランジスタM2が導通状態のときに、配線WBLに記録する情報に対応する電位を印加し、容量素子CBの第1端子、およびトランジスタM3のゲートに該電位を書き込む。その後、配線WOLに低レベル電位を印加し、トランジスタM2を非導通状態にすることによって、容量素子CBの第1端子の電位、およびトランジスタM3のゲートの電位を保持する。
データの読み出しは、配線SLに所定の電位を印加することによって行われる。トランジスタM3のソース−ドレイン間に流れる電流、およびトランジスタM3の第1端子の電位は、トランジスタM3のゲートの電位、およびトランジスタM3の第2端子の電位によって決まるので、トランジスタM3の第1端子に接続されている配線RBLの電位を読み出すことによって、容量素子CBの第1端子(またはトランジスタM3のゲート)に保持されている電位を読み出すことができる。つまり、容量素子CBの第1端子(またはトランジスタM3のゲート)に保持されている電位から、このメモリセルに書き込まれている情報を読み出すことができる。
また、上述したメモリ300が有するメモリセルは、メモリセル440に限定されず、回路の構成を適宜変更することができる。
例えば、上述したメモリ300が有するメモリセルは、図5(E)に示すようなメモリセルの構成でもよい。メモリセル450は、図5(B)のメモリセル420が有するトランジスタM1と同様に、トランジスタM2のバックゲートが、配線BGLでなく、配線WOLと接続される構成となっている。このような構成にすることによって、トランジスタM2のバックゲートに、トランジスタM2のゲートと同じ電位を印加することができるため、トランジスタM2が導通状態のときにおいて、トランジスタM2に流れる電流を増加することができる。
また、例えば、上述したメモリ300が有するメモリセルは、バックゲートを有さないトランジスタM2で構成されたメモリセルであってもよい。そのメモリセルの回路構成例を図5(F)に示す。メモリセル460は、メモリセル440のトランジスタM2からバックゲートを除いた構成となっている。なお、メモリ300にメモリセル460を適用することによって、トランジスタM2はバックゲートを有さないため、メモリ300の作製工程をメモリセル460、およびメモリセル450よりも短縮することができる。
また、例えば、配線WBLと配線RBLを一本の配線BILとしてまとめた構成であってもよい。そのメモリセルの回路構成例を図5(G)に示す。メモリセル470は、メモリセル440の配線WBLと配線RBLを一本の配線BILとして、トランジスタM2の第2端子、およびトランジスタM3の第1端子が、配線BILと接続されている構成となっている。つまり、メモリセル470は、書き込みビット線と、読み出しビット線と、を1本の配線BILとして動作する構成となっている。
なお、トランジスタM2、および/またはトランジスタM3のチャネル形成領域には、インジウム、元素M(元素Mはアルミニウム、ガリウム、イットリウム、またはスズ)、亜鉛のいずれか一を有する酸化物半導体を用いることができる。つまり、トランジスタM2、および/またはトランジスタM3としてoxトランジスタを適用することができる。特に、インジウム、ガリウム、亜鉛からなる酸化物半導体であることが好ましい。
インジウム、ガリウム、亜鉛を含む酸化物半導体を適用したOSトランジスタは、オフ電流が極めて小さいという特性を有しているので、トランジスタM2、および/またはトランジスタM3としてOSトランジスタを用いることによって、トランジスタM2、および/またはトランジスタM3のリーク電流を非常に低くすることができる。特に、書き込んだデータをトランジスタM2によって長時間保持することができるため、メモリセルのリフレッシュの頻度を少なくすることができる。また、メモリセルのリフレッシュ動作を不要にすることができる。また、リーク電流が非常に低いため、メモリセル440、メモリセル450、メモリセル460、メモリセル470に対して多値データ、またはアナログデータを保持することができる。
トランジスタM2としてoxトランジスタを適用したメモリセル440、メモリセル450、メモリセル460、およびメモリセル470は、前述したNOSRAMの一態様である。
なお、トランジスタM3のチャネル形成領域には、シリコンを有することが好ましい。特に、該シリコンは、非晶質シリコン、多結晶シリコン、低温ポリシリコン(LTPS:Low Temperature Poly−Silicon)とすることができる(以後、Siトランジスタと呼称する。)。Siトランジスタは、oxトランジスタよりも電界効果移動度が高くなる場合があるため、読み出しトランジスタとして、Siトランジスタを適用するのは好適といえる。
また、トランジスタM3としてoxトランジスタを用いた場合、メモリセルを単極性回路で構成することができる。
また、図6(A)に、3トランジスタ1容量素子のゲインセル型のメモリセルを示す。メモリセル480は、トランジスタM4乃至トランジスタM6と、容量素子CCと、を有する。なお、トランジスタM4は、フロントゲート(単にゲートと呼ぶ場合がある。)、およびバックゲートを有する。
トランジスタM4の第1端子は、容量素子CCの第1端子と接続され、トランジスタM4の第2端子は、配線BILと接続され、トランジスタM4のゲートは、配線WWLと接続され、トランジスタM4のバックゲートは、配線BGLと電気的に接続されている。容量素子CCの第2端子は、トランジスタM5の第1端子と、配線GNDLと、に電気的に接続されている。トランジスタM5の第2端子は、トランジスタM6の第1端子と接続され、トランジスタM5のゲートは、容量素子CCの第1端子と接続されている。トランジスタM6の第2端子は、配線BILと接続され、トランジスタM6のゲートは配線RWLと接続されている。
配線BILは、ビット線として機能し、配線WWLは、書き込みワード線として機能し、配線RWLは、読み出しワード線として機能する。
配線BGLは、トランジスタM4のバックゲートに電位を印加するための配線として機能する。配線BGLに任意の電位を印加することによって、トランジスタM4のしきい値電圧を増減することができる。
配線GNDLは、低レベル電位を与える配線である。
データの書き込みは、配線WWLに高レベル電位を印加し、トランジスタM4を導通状態にし、配線BILと容量素子CCの第1端子を接続することによって行われる。具体的には、トランジスタM4が導通状態のときに、配線BILに記録する情報に対応する電位を印加し、容量素子CCの第1端子、およびトランジスタM5のゲートに該電位を書き込む。その後、配線WWLに低レベル電位を印加し、トランジスタM4を非導通状態にすることによって、容量素子CCの第1端子の電位、およびトランジスタM5のゲートの電位を保持する。
データの読み出しは、配線BILに所定の電位をプリチャージして、その後配線BILを電気的に浮遊状態にし、かつ配線RWLに高レベル電位を印加することによって行われる。配線RWLが高レベル電位となるので、トランジスタM6は導通状態となり、配線BILとトランジスタM5の第2端子が電気的に接続状態となる。このとき、トランジスタM5の第2端子には、配線BILの電位が印加されることになるが、容量素子CCの第1端子(またはトランジスタM5のゲート)に保持されている電位に応じて、トランジスタM5の第2端子の電位、および配線BILの電位が変化する。ここで、配線BILの電位を読み出すことによって、容量素子CCの第1端子(またはトランジスタM5のゲート)に保持されている電位を読み出すことができる。つまり、容量素子CCの第1端子(またはトランジスタM5のゲート)に保持されている電位から、このメモリセルに書き込まれている情報を読み出すことができる。
また、上述したメモリ300が有するメモリセルは、回路の構成を適宜変更することができる。例えば、図5(B)に示すメモリセル420のトランジスタM1、および図5(E)に示すメモリセル450のトランジスタM2のように、メモリセル480は、トランジスタM4のバックゲートを、配線BGLでなく、配線WOLと接続する構成であってもよい(図示しない)。このような構成にすることによって、トランジスタM4のバックゲートに、トランジスタM4のゲートと同じ電位を印加することができるため、トランジスタM4が導通状態のときにおいて、トランジスタM4に流れる電流を増加することができる。また、例えば、図5(C)に示すメモリセル430のトランジスタM1、および図5(F)に示すメモリセル460のトランジスタM2のように、メモリセル480は、トランジスタM4がバックゲートを有さない構成であってもよい。このような構成にすることによって、トランジスタM4はバックゲートを有さない分、メモリ300の作製工程を短縮することができる。
なお、トランジスタM4乃至トランジスタM6のチャネル形成領域には、インジウム、元素M(元素Mはアルミニウム、ガリウム、イットリウム、またはスズ)、亜鉛のいずれか一を有する酸化物半導体を用いることができる。つまり、トランジスタM4乃至トランジスタM6としてoxトランジスタを適用することができる。特に、インジウム、ガリウム、亜鉛からなる酸化物半導体であることが好ましい。インジウム、ガリウム、亜鉛を含む酸化物半導体を適用したOSトランジスタは、オフ電流が極めて小さいという特性を有しているので、トランジスタM4乃至トランジスタM6としてoxトランジスタを用いることによって、トランジスタM4乃至トランジスタM6のリーク電流を非常に低くすることができる。特に、書き込んだデータをトランジスタM4によって長時間保持することができるため、メモリセルのリフレッシュの頻度を少なくすることができる。また、メモリセルのリフレッシュ動作を不要にすることができる。
トランジスタM4としてoxトランジスタを適用したメモリセル480は、前述したNOSRAMの一態様である。
なお、本実施の形態で説明したトランジスタM5およびM6のチャネル形成領域には、シリコンを有することが好ましい。特に、該シリコンは、非晶質シリコン、多結晶シリコン、低温ポリシリコンとすることができる。Siトランジスタは、oxトランジスタよりも電界効果移動度が高くなる場合があるため、読み出しトランジスタとして、Siトランジスタを適用するのは好適といえる。
また、トランジスタM5およびM6としてoxトランジスタを用いた場合、メモリセルを単極性回路で構成することができる。
[oxSRAM]
図6(B)に、oxトランジスタを用いたSRAM(Static Random Access Memory)の一例を示す。本明細書等において、oxトランジスタを用いたSRAMを、oxSRAMと呼ぶ。なお、図6(B)に示すメモリセル490は、バックアップ可能なSRAMのメモリセルである。
図6(B)に、oxトランジスタを用いたSRAM(Static Random Access Memory)の一例を示す。本明細書等において、oxトランジスタを用いたSRAMを、oxSRAMと呼ぶ。なお、図6(B)に示すメモリセル490は、バックアップ可能なSRAMのメモリセルである。
メモリセル490は、トランジスタM7乃至トランジスタM10と、トランジスタMS1乃至トランジスタMS4と、容量素子CD1と、容量素子CD2と、有する。なお、トランジスタM7乃至トランジスタM10は、フロントゲート(単にゲートと呼ぶ場合がある。)、およびバックゲートを有する。なお、トランジスタMS1、およびトランジスタMS2は、pチャネル型トランジスタであり、トランジスタMS3、およびトランジスタMS4は、nチャネル型トランジスタである。
トランジスタM7の第1端子は、配線BILと接続され、トランジスタM7の第2端子は、トランジスタMS1の第1端子と、トランジスタMS3の第1端子と、トランジスタMS2のゲートと、トランジスタMS4のゲートと、トランジスタM10の第1端子と、に接続されている。トランジスタM7のゲートは、配線WOLと接続され、トランジスタM7のバックゲートは、配線BGL1と接続されている。トランジスタM8の第1端子は、配線BILBと接続され、トランジスタM8の第2端子は、トランジスタMS2の第1端子と、トランジスタMS4の第1端子と、トランジスタMS1のゲートと、トランジスタMS3のゲートと、トランジスタM9の第1端子と、に接続されている。トランジスタM8のゲートは、配線WOLと接続され、トランジスタM8のバックゲートは、配線BGL2と接続されている。
トランジスタMS1の第2端子は、配線VDLと電気的に接続されている。トランジスタMS2の第2端子は、配線VDLと電気的に接続されている。トランジスタMS3の第2端子は、配線GNDLと電気的に接続されている。トランジスタMS4の第2端子は、配線GNDLと接続されている。
トランジスタM9の第2端子は、容量素子CD1の第1端子と接続され、トランジスタM9のゲートは、配線BRLと接続され、トランジスタM9のバックゲートは、配線BGL3と接続されている。トランジスタM10の第2端子は、容量素子CD2の第1端子と接続され、トランジスタM10のゲートは、配線BRLと接続され、トランジスタM10のバックゲートは、配線BGL4と接続されている。
容量素子CD1の第2端子は、配線GNDLと接続され、容量素子CD2の第2端子は、配線GNDLと接続されている。
配線BILおよび配線BILBは、ビット線として機能し、配線WOLは、ワード線として機能し、配線BRLは、トランジスタM9、およびトランジスタM10の導通状態、非導通状態を制御する配線である。
配線BGL1乃至配線BGL4は、それぞれトランジスタM7乃至トランジスタM10のバックゲートに電位を印加するための配線として機能する。配線BGL1乃至配線BGL4に任意の電位を印加することによって、それぞれトランジスタM7乃至トランジスタM10のしきい値電圧を増減することができる。
配線VDLは、高レベル電位を与える配線であり、配線GNDLは、低レベル電位を与える配線である。
データの書き込みは、配線WOLに高レベル電位を印加し、かつ配線BRLに高レベル電位を印加することによって行われる。具体的には、トランジスタM10が導通状態のときに、配線BILに記録する情報に対応する電位を印加し、トランジスタM10の第2端子側に該電位を書き込む。
ところで、メモリセル490は、トランジスタMS1乃至トランジスタMS2によってインバータループを構成しているので、トランジスタM8の第2端子側に、該電位に対応するデータ信号の反転信号が入力される。トランジスタM8が導通状態であるため、配線BILBには、配線BILに印加されている電位、すなわち配線BILに入力されている信号の反転信号が出力される。また、トランジスタM9、およびトランジスタM10が導通状態であるため、トランジスタM7の第2端子の電位、およびトランジスタM8の第2端子の電位は、それぞれ容量素子CD2の第1端子、および容量素子CD1の第1端子に保持される。その後、配線WOLに低レベル電位を印加し、かつ配線BRLに低レベル電位を印加し、トランジスタM7乃至トランジスタM10を非導通状態にすることによって、容量素子CD1の第1端子、および容量素子CD2の第1端子を保持する。
データの読み出しは、あらかじめ配線BILおよび配線BILBを所定の電位にプリチャージした後に、配線WOLに高レベル電位を印加し、配線BRLに高レベル電位を印加することによって、容量素子CD1の第1端子の電位が、メモリセル490のインバータループによってリフレッシュされ、配線BILBに出力される。また、容量素子CD2の第1端子の電位が、メモリセル490のインバータループによってリフレッシュされ、配線BILに出力される。配線BILおよび配線BILBでは、それぞれプリチャージされた電位から容量素子CD2の第1端子の電位、および容量素子CD1の第1端子の電位に変動するため、配線BILまたは配線BILBの電位から、メモリセルに保持された電位を読み出すことができる。
なお、トランジスタM7乃至トランジスタM10のチャネル形成領域には、インジウム、元素M(元素Mはアルミニウム、ガリウム、イットリウム、またはスズ)、亜鉛のいずれか一を有する酸化物半導体を用いることができる。つまり、トランジスタM7乃至トランジスタM10としてoxトランジスタを適用することができる。特に、インジウム、ガリウム、亜鉛からなる酸化物半導体であることが好ましい。インジウム、ガリウム、亜鉛を含む酸化物半導体を適用したOSトランジスタは、オフ電流が極めて小さいという特性を有しているので、トランジスタM7乃至トランジスタM10としてOSトランジスタを用いることによって、トランジスタM7乃至トランジスタM10のリーク電流を非常に低くすることができる。特に、書き込んだデータをトランジスタM7乃至トランジスタM10によって長時間保持することができるため、メモリセルのリフレッシュの頻度を少なくすることができる。また、メモリセルのリフレッシュ動作を不要にすることができる。また、リーク電流が非常に低いため、メモリセル480に対して多値データ、またはアナログデータを保持することができる。
トランジスタM7乃至トランジスタM10としてoxトランジスタを用いることにより、oxSRAMを構成することができる。
なお、トランジスタMS1乃至トランジスタMS4のチャネル形成領域には、シリコンを有することが好ましい。特に、該シリコンは、該シリコンは、非晶質シリコン、多結晶シリコン、低温ポリシリコンとすることができる。Siトランジスタは、oxトランジスタよりも電界効果移動度が高くなる場合があるため、インバータに含まれるトランジスタとして、Siトランジスタを適用するのは好適といえる。
本実施の形態で説明したメモリは、CPUやGPUなどに含まれる、レジスタおよびキャッシュなどの記憶素子に用いることができる。
<GPU>
図7に、集積回路130に適用可能なGPUの構成の一例を示す。図7に示すGPU500は、制御装置501(コントロールユニット)、パワーマネージメントユニット516、スレッド配分ユニット502、複数の演算ユニット(AU:Arithmetic Unit)512、L2(レベル2)キャッシュメモリ504、デバイスメモリ505を有する。パワーマネージメントユニット516は、パワーコントローラ517、およびパワースイッチ518を有する。
図7に、集積回路130に適用可能なGPUの構成の一例を示す。図7に示すGPU500は、制御装置501(コントロールユニット)、パワーマネージメントユニット516、スレッド配分ユニット502、複数の演算ユニット(AU:Arithmetic Unit)512、L2(レベル2)キャッシュメモリ504、デバイスメモリ505を有する。パワーマネージメントユニット516は、パワーコントローラ517、およびパワースイッチ518を有する。
デバイスメモリ505は、GPU500が実行するプログラム(カーネル、またはカーネル・プログラムとも呼ばれる。)、GPU500が処理するデータを記憶する。ホスト520のCPU521の命令に応じて、GPU500はカーネルを起動し、データを処理する。GPU500が処理したデータは、デバイスメモリ505に書き込まれ、CPU521のメインメモリ522へ転送される。メインメモリ522とデバイスメモリ505間のデータの転送は、CPU521によって制御される。
なお、CPU521として上掲のCPU200を用いればよい。メインメモリ522として上掲のメモリ300を用いればよい。
制御装置501は、パワーマネージメントユニット516、スレッド配分ユニット502、AU503、L2キャッシュメモリ504、デバイスメモリ505の動作を統括的に制御する。
スレッド配分ユニット502は、複数のスレッドで構成されるスレッド・ブロックを、使用可能なAU503に割り当てる。ここでいう、スレッドとは、カーネルにおける最小の実行単位をさす。
AU503は、多数のスレッドを同時に実行する並列演算処理ができる。例えば、AU503は、L1キャッシュメモリ、共有メモリ、レジスタ、命令発行ユニット、複数のプロセッサ・コア、複数の超越関数演算器を備える。GPU500の並列演算処理機能を活かすため、AU503に、複数のディープラーニング用演算器を設けてもよい。
L2キャッシュメモリ504は、GPU500内のAU503で共有される。L2キャッシュメモリ504とAU503のL1キャッシュ間でデータのロードおよびストアが行われる。L2キャッシュメモリ504は適宜設ければよい。L2キャッシュメモリ504が設けられない場合は、デバイスメモリ505とL1キャッシュ間でデータのロードおよびストアが行われる。
GPU500を構成するトランジスタの少なくとも一部にoxトランジスタを用いることで、GPUの消費電力を低減させることができる。例えば、人工ニューラルネットワークなど大規模な計算をGPUで行う場合、GPUは大電力を必要とし、チップは高温に発熱する。GPU500を構成するトランジスタの少なくとも一部にoxトランジスタを用いることで、GPU500の消費電力を低減し、半導体装置100の発熱を抑えることができる。
パワースイッチ518は、GPU500が有する、パワーコントローラ517以外の各種回路への、電力供給を制御する機能を有する。各種回路は、幾つかのパワードメインにそれぞれ属しており、同一のパワードメインに属する各種回路は、パワースイッチ518によって電力供給の有無が制御される。また、パワーコントローラ517はパワースイッチ518の動作を制御する機能を有する。このような構成を有することで、GPU500は、パワーゲーティングを行うことが可能である。
L2キャッシュメモリ504およびデバイスメモリ505のデータをメモリ300(集積回路120)に退避することで、GPU500(集積回路130)への電力供給が停止されても、L2キャッシュメモリ504およびデバイスメモリ505のデータを保持することができる。また、一定期間毎にL2キャッシュメモリ504およびデバイスメモリ505のデータを退避することで、GPU500の電力供給が予期せず停止した場合も、データ消失の被害を最小限に抑えることができる。さらに、メモリ300が不揮発性メモリである場合は、半導体装置100への電力供給が予期せず停止した場合も、データ消失の被害を最小限に抑えることができる。
また、L2キャッシュメモリ504として、DOSRAM、NOSRAM、oxSRAMを用いてもよい。デバイスメモリ505として、DOSRAM、NOSRAM、oxSRAMを用いてもよい。この場合、メモリ300にデータを退避する前にGPU500の電力供給が停止した場合でも、データ消失の被害を最小限に抑えることができる。
また、使用していないAU503への電力供給を停止することで、GPU500の消費電力を低減し、半導体装置100の発熱を抑えることができる。
<半導体装置100>
半導体装置100を構成する集積回路110としてCPU、集積回路120としてメモリ、集積回路130としてGPUを用いる場合は、CPUとGPUの間にメモリを挟んで積層することが好ましい。なお、CPUとGPUの積層順に特段の限定は無い。すなわち、図1(A)の構成だけでなく、集積回路130上に集積回路120が設けられ、集積回路120上に集積回路110を設けてもよい。
半導体装置100を構成する集積回路110としてCPU、集積回路120としてメモリ、集積回路130としてGPUを用いる場合は、CPUとGPUの間にメモリを挟んで積層することが好ましい。なお、CPUとGPUの積層順に特段の限定は無い。すなわち、図1(A)の構成だけでなく、集積回路130上に集積回路120が設けられ、集積回路120上に集積回路110を設けてもよい。
集積回路110(CPU)、集積回路120(メモリ)、および集積回路130(GPU)は、それぞれが互いに電気的に接続され、データの送受信が行なわれる。また、一般に、半導体装置の高速動作実現のため、データ転送速度の向上が求められている。CPU、GPU、メモリなどの集積回路を平面に並べて配置すると、それぞれを接続する配線の抵抗および寄生容量の低減が難しく、データ転送速度の向上が難しい。CPU、GPU、メモリなどの集積回路を積層して設けることで、配線抵抗および寄生容量の低減が容易となり、データ転送速度を高めることができる。
特に、CPUとGPUの間にメモリを設けることで、CPUとメモリまでの距離とGPUとメモリまでの距離を揃えやすくなる。よって、CPUとメモリ間のアクセス速度と、GPUとメモリ間のアクセス速度の最適化が容易となる。
また、CPUとGPUでメモリを共通使用することで、デバイス間のデータコピー動作を削減することができる。
また、CPU、メモリ、およびGPUを積層することで、半導体装置100の占有面積を低減することができる。
集積回路120として用いるメモリは、DOSRAM、NOSRAM、および/またはoxRAMなどのoxトランジスタを用いたメモリが好ましい。oxトランジスタは高温下でもオフ電流が増加しにくいため、CPUまたはGPUの発熱による高温下においてもデータ消失が生じにくい。同様の理由により、CPUおよびGPUが有するキャッシュメモリやレジスタにoxトランジスタを用いることが好ましい。oxトランジスタを用いることで、半導体装置100の信頼性を高めることができる。また、oxトランジスタを用いることにより、集積回路110乃至集積回路130の積層を容易とすることができる。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態2)
本実施の形態では、半導体装置100の断面構成例について図面を用いて説明する。
本実施の形態では、半導体装置100の断面構成例について図面を用いて説明する。
<半導体装置の構造例>
図8に、半導体装置100の一部の断面を示す。図8に示す半導体装置100は、基板231上に、集積回路110、集積回路120、および集積回路130を積層している。図8では、基板231として単結晶半導体基板(例えば、単結晶シリコン基板)を用いる場合を示している。集積回路110に含まれるトランジスタは、ソース、ドレイン、およびチャネルが、基板231の一部に形成される。また、集積回路120および集積回路130には薄膜トランジスタ(例えば、oxトランジスタ)が含まれる。
図8に、半導体装置100の一部の断面を示す。図8に示す半導体装置100は、基板231上に、集積回路110、集積回路120、および集積回路130を積層している。図8では、基板231として単結晶半導体基板(例えば、単結晶シリコン基板)を用いる場合を示している。集積回路110に含まれるトランジスタは、ソース、ドレイン、およびチャネルが、基板231の一部に形成される。また、集積回路120および集積回路130には薄膜トランジスタ(例えば、oxトランジスタ)が含まれる。
〔集積回路110〕
図8において、集積回路110は、基板231上にトランジスタ233a、トランジスタ233b、およびトランジスタ233cを有する。図8では、トランジスタ233a、トランジスタ233b、およびトランジスタ233cのチャネル長方向の断面を示している。
図8において、集積回路110は、基板231上にトランジスタ233a、トランジスタ233b、およびトランジスタ233cを有する。図8では、トランジスタ233a、トランジスタ233b、およびトランジスタ233cのチャネル長方向の断面を示している。
前述した通り、トランジスタ233a、トランジスタ233b、およびトランジスタ233cのチャネルは、基板231の一部に形成される。集積回路に高速動作が求められる場合は、基板231として単結晶半導体基板を用いることが好ましい。
トランジスタ233a、トランジスタ233b、およびトランジスタ233cは、素子分離層232によって他のトランジスタと電気的に分離される。素子分離層の形成は、LOCOS(Local Oxidation of Silicon)法や、STI(Shallow Trench Isolation)法などを用いることができる。
また、トランジスタ233a、トランジスタ233b、およびトランジスタ233c上に絶縁層234、絶縁層235、絶縁層237が設けられ、絶縁層237中に電極238が埋設されている。電極238はコンタクトプラグ236を介してトランジスタ233aのソースまたはドレインの一方と電気的に接続されている。
また、電極238および絶縁層237の上に、絶縁層239、絶縁層240、および絶縁層241が設けられ、絶縁層239、絶縁層240、および絶縁層241の中に電極242が埋設されている。電極242は、電極238と電気的に接続される。
また、電極242および絶縁層241の上に、絶縁層243、および絶縁層244が設けられ、絶縁層243、および絶縁層244の中に電極245が埋設されている。電極245は、電極242と電気的に接続される。
また、電極245および絶縁層244の上に、絶縁層246および絶縁層247が設けられ、絶縁層246および絶縁層247の中に電極249が埋設されている。電極249は、電極245と電気的に接続される。
また、電極249および絶縁層247の上に、絶縁層248および絶縁層250が設けられ、絶縁層248および絶縁層250の中に電極251が埋設されている。電極251は、電極249と電気的に接続される。
〔集積回路120〕
集積回路120は、集積回路110上に設けられる。図8において、集積回路120は、トランジスタ368a、トランジスタ368b、トランジスタ368c、および容量素子369を有する。図8では、トランジスタ368aおよびトランジスタ368bは、チャネル長方向の断面を示している。また、トランジスタ368cは、チャネル幅方向の断面を示している。なお、トランジスタ368a、トランジスタ368b、およびトランジスタ368cは、バックゲートを有するトランジスタである。
集積回路120は、集積回路110上に設けられる。図8において、集積回路120は、トランジスタ368a、トランジスタ368b、トランジスタ368c、および容量素子369を有する。図8では、トランジスタ368aおよびトランジスタ368bは、チャネル長方向の断面を示している。また、トランジスタ368cは、チャネル幅方向の断面を示している。なお、トランジスタ368a、トランジスタ368b、およびトランジスタ368cは、バックゲートを有するトランジスタである。
トランジスタ368a、トランジスタ368b、およびトランジスタ368cの半導体層に、金属酸化物の一種である酸化物半導体を用いることが好ましい。すなわち、トランジスタ368a、トランジスタ368b、およびトランジスタ368cにoxトランジスタを用いることが好ましい。
トランジスタ368a、トランジスタ368b、およびトランジスタ368cは、絶縁層361および絶縁層362上に設けられている。また、絶縁層362上に絶縁層363および絶縁層364が設けられている。トランジスタ368a、トランジスタ368b、およびトランジスタ368cのバックゲートは、絶縁層363および絶縁層364中に埋設されている。絶縁層364上に、絶縁層365および絶縁層366が設けられている。また、電極367が、絶縁層361乃至絶縁層366中に埋設されている。電極367は、電極251と電気的に接続されている。
また、トランジスタ368a、トランジスタ368b、トランジスタ368c、および容量素子369上に、絶縁層371、絶縁層372、および絶縁層373が形成され、絶縁層373上に電極375が形成されている。電極375はコンタクトプラグ374を介して電極367と電気的に接続される。
また、電極375上に、絶縁層376、絶縁層377、絶縁層378、および絶縁層379が設けられている。また、電極380が、絶縁層376乃至絶縁層379中に埋設されている。電極380は、電極375と電気的に接続されている。
また、電極380および絶縁層379の上に、絶縁層381および絶縁層382が設けられ、絶縁層381および絶縁層382の中に電極383が埋設されている。電極383は、電極380と電気的に接続される。
〔集積回路130〕
集積回路130は、集積回路120上に設けられる。図8において、集積回路130は、トランジスタ538a、トランジスタ538b、トランジスタ538c、および容量素子539を有する。図8では、トランジスタ538aおよびトランジスタ538bは、チャネル長方向の断面を示している。また、トランジスタ538cは、チャネル幅方向の断面を示している。なお、トランジスタ538a、トランジスタ538b、およびトランジスタ538cは、バックゲートを有するトランジスタである。
集積回路130は、集積回路120上に設けられる。図8において、集積回路130は、トランジスタ538a、トランジスタ538b、トランジスタ538c、および容量素子539を有する。図8では、トランジスタ538aおよびトランジスタ538bは、チャネル長方向の断面を示している。また、トランジスタ538cは、チャネル幅方向の断面を示している。なお、トランジスタ538a、トランジスタ538b、およびトランジスタ538cは、バックゲートを有するトランジスタである。
トランジスタ538a、トランジスタ538b、およびトランジスタ538cの半導体層に、金属酸化物の一種である酸化物半導体を用いることが好ましい。すなわち、トランジスタ538a、トランジスタ538b、およびトランジスタ538cにoxトランジスタを用いることが好ましい。
トランジスタ538a、トランジスタ538b、およびトランジスタ538cは、絶縁層531および絶縁層532上に設けられている。また、絶縁層532上に絶縁層533および絶縁層534が設けられている。トランジスタ538a、トランジスタ538b、およびトランジスタ538cのバックゲートは、絶縁層533および絶縁層534中に埋設されている。絶縁層534上に、絶縁層535および絶縁層536が設けられている。また、電極537が、絶縁層531乃至絶縁層536中に埋設されている。電極537は、電極383と電気的に接続されている。
また、トランジスタ538a、トランジスタ538b、トランジスタ538c、および容量素子539上に、絶縁層541、絶縁層542、および絶縁層543が形成され、絶縁層543上に電極545が形成されている。電極545は電極537とコンタクトプラグ544を介して電気的に接続される。また、電極545は、コンタクトプラグを介してトランジスタ538aのソースまたはドレインの一方と電気的に接続されている。
また、電極545上に、絶縁層546、絶縁層547、および絶縁層548が設けられている。また、電極549が、絶縁層546乃至絶縁層548中に埋設されている。電極549は、電極545を介してコンタクトプラグ544と電気的に接続されている。
また、電極549および絶縁層548の上に、絶縁層550および絶縁層551が設けられ、絶縁層550および絶縁層551の中に電極552が埋設されている。電極552および絶縁層551の上に、絶縁層553が設けられている。
<変形例>
図9に半導体装置100Aの一部の断面を示す。半導体装置100Aは半導体装置100の変形例である。半導体装置100Aは、集積回路110A、集積回路120、および集積回路130を有する。集積回路110A、集積回路120、および集積回路130は、基板231上に順に設けられる。半導体装置100Aでは、基板231として絶縁性基板(例えば、ガラス基板)を用いる。
図9に半導体装置100Aの一部の断面を示す。半導体装置100Aは半導体装置100の変形例である。半導体装置100Aは、集積回路110A、集積回路120、および集積回路130を有する。集積回路110A、集積回路120、および集積回路130は、基板231上に順に設けられる。半導体装置100Aでは、基板231として絶縁性基板(例えば、ガラス基板)を用いる。
半導体装置100Aでは、集積回路110Aに含まれるトランジスタに薄膜トランジスタ(例えば、oxトランジスタ)を用いる。半導体装置100Aは、集積回路120および/または集積回路130と同様に作製することができる。
集積回路110Aに含まれるトランジスタを全てoxトランジスタとすることで、集積回路110Aを単極性の集積回路にすることができる。半導体装置100Aに含まれるトランジスタを全てoxトランジスタとすることで、半導体装置100Aを単極性の半導体装置にすることができる。
<構成材料について>
〔基板〕
基板として用いる材料に大きな制限はないが、少なくとも後の加熱処理に耐えうる程度の耐熱性を有していることが必要となる。例えば、基板としてシリコンや炭化シリコンなどを材料とした単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウムなどを材料とした化合物半導体基板等を用いることができる。また、SOI基板や、半導体基板上に歪トランジスタやFIN型トランジスタなどの半導体素子が設けられたものなどを用いることもできる。または、高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)に適用可能なヒ化ガリウム、ヒ化アルミニウムガリウム、ヒ化インジウムガリウム、窒化ガリウム、リン化インジウム、シリコンゲルマニウムなどを用いてもよい。すなわち、基板は、単なる支持基板に限らず、他のトランジスタなどのデバイスが形成された基板であってもよい。
〔基板〕
基板として用いる材料に大きな制限はないが、少なくとも後の加熱処理に耐えうる程度の耐熱性を有していることが必要となる。例えば、基板としてシリコンや炭化シリコンなどを材料とした単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウムなどを材料とした化合物半導体基板等を用いることができる。また、SOI基板や、半導体基板上に歪トランジスタやFIN型トランジスタなどの半導体素子が設けられたものなどを用いることもできる。または、高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)に適用可能なヒ化ガリウム、ヒ化アルミニウムガリウム、ヒ化インジウムガリウム、窒化ガリウム、リン化インジウム、シリコンゲルマニウムなどを用いてもよい。すなわち、基板は、単なる支持基板に限らず、他のトランジスタなどのデバイスが形成された基板であってもよい。
また、基板として、バリウムホウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板、セラミック基板、石英基板、サファイア基板などを用いることもできる。なお、基板として、可撓性基板(フレキシブル基板)を用いてもよい。可撓性基板を用いる場合、可撓性基板上に、トランジスタや容量素子などを直接作製してもよいし、他の作製基板上にトランジスタや容量素子などを作製し、その後可撓性基板に剥離、転置してもよい。なお、作製基板から可撓性基板に剥離、転置するために、作製基板とトランジスタや容量素子などとの間に剥離層を設けるとよい。
可撓性基板としては、例えば、金属、合金、樹脂もしくはガラス、またはそれらの繊維などを用いることができる。基板に用いる可撓性基板は、線膨張率が低いほど環境による変形が抑制されて好ましい。基板に用いる可撓性基板は、例えば、線膨張率が1×10−3/K以下、5×10−5/K以下、または1×10−5/K以下である材質を用いればよい。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネート、アクリルなどがある。特に、アラミドは、線膨張率が低いため、可撓性基板として好適である。
〔絶縁層〕
絶縁層は、窒化アルミニウム、酸化アルミニウム、窒化酸化アルミニウム、酸化窒化アルミニウム、酸化マグネシウム、窒化シリコン、酸化シリコン、窒化酸化シリコン、酸化窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、酸化タンタル、アルミニウムシリケートなどから選ばれた材料を、単層でまたは積層して用いる。また、酸化物材料、窒化物材料、酸化窒化物材料、窒化酸化物材料のうち、複数の材料を混合した材料を用いてもよい。
絶縁層は、窒化アルミニウム、酸化アルミニウム、窒化酸化アルミニウム、酸化窒化アルミニウム、酸化マグネシウム、窒化シリコン、酸化シリコン、窒化酸化シリコン、酸化窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、酸化タンタル、アルミニウムシリケートなどから選ばれた材料を、単層でまたは積層して用いる。また、酸化物材料、窒化物材料、酸化窒化物材料、窒化酸化物材料のうち、複数の材料を混合した材料を用いてもよい。
なお、本明細書等において、窒化酸化物とは、酸素よりも窒素の含有量が多い化合物をいう。また、酸化窒化物とは、窒素よりも酸素の含有量が多い化合物をいう。なお、各元素の含有量は、例えば、ラザフォード後方散乱法(RBS:Rutherford Backscattering Spectrometry)等を用いて測定することができる。
また、半導体層として金属酸化物の一種である酸化物半導体を用いる場合は、半導体層中の水素濃度の増加を防ぐために、絶縁層中の水素濃度を低減することが好ましい。具体的には、絶縁層中の水素濃度を、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)において2×1020atoms/cm3以下、好ましくは5×1019atoms/cm3以下、より好ましくは1×1019atoms/cm3以下、さらに好ましくは5×1018atoms/cm3以下とする。特に、半導体層と接する絶縁層の水素濃度を低減することが好ましい。
また、半導体層中の窒素濃度の増加を防ぐために、絶縁層中の窒素濃度を低減することが好ましい。具体的には、絶縁層中の窒素濃度を、SIMSにおいて5×1019atoms/cm3以下、好ましくは5×1018atoms/cm3以下、より好ましくは1×1018atoms/cm3以下、さらに好ましくは5×1017atoms/cm3以下とする。
また、絶縁層の少なくとも半導体層と接する領域と、絶縁層の少なくとも半導体層と接する領域は、欠陥が少ないことが好ましく、代表的には、電子スピン共鳴法(ESR:Electron Spin Resonance)で観察されるシグナルが少ない方が好ましい。例えば、上述のシグナルとしては、g値が2.001に観察されるE’センターが挙げられる。なお、E’センターは、シリコンのダングリングボンドに起因する。例えば、絶縁層として、酸化シリコン層または酸化窒化シリコン層を用いる場合、E’センター起因のスピン密度が、3×1017spins/cm3以下、好ましくは5×1016spins/cm3以下である酸化シリコン層または酸化窒化シリコン層を用いればよい。
また、上述のシグナル以外に二酸化窒素(NO2)に起因するシグナルが観察される場合がある。当該シグナルは、Nの核スピンにより3つのシグナルに分裂しており、それぞれのg値が2.037以上2.039以下(第1のシグナルとする)、g値が2.001以上2.003以下(第2のシグナルとする)、及びg値が1.964以上1.966以下(第3のシグナルとする)に観察される。
例えば、絶縁層として、二酸化窒素(NO2)に起因するシグナルのスピン密度が、1×1017spins/cm3以上1×1018spins/cm3未満である絶縁層を用いると好適である。
なお、二酸化窒素(NO2)を含む窒素酸化物(NOx)は、絶縁層中に準位を形成する。当該準位は、酸化物半導体層のエネルギーギャップ内に位置する。そのため、窒素酸化物(NOx)が、絶縁層と酸化物半導体層の界面に拡散すると、当該準位が絶縁層側において電子をトラップする場合がある。この結果、トラップされた電子が、絶縁層と酸化物半導体層の界面近傍に留まるため、トランジスタのしきい値電圧をプラス方向にシフトさせてしまう。したがって、絶縁層および絶縁層として窒素酸化物の含有量が少ない膜を用いると、トランジスタのしきい値電圧のシフトを低減することができる。
窒素酸化物(NOx)の放出量が少ない絶縁層としては、例えば、酸化窒化シリコン層を用いることができる。当該酸化窒化シリコン層は、昇温脱離ガス分析法(TDS:Thermal Desorption Spectroscopy)において、窒素酸化物(NOx)の放出量よりアンモニアの放出量が多い膜であり、代表的にはアンモニアの放出量が1×1018個/cm3以上5×1019個/cm3以下である。なお、上記のアンモニアの放出量は、TDSにおける加熱処理の温度が50℃以上650℃以下、または50℃以上550℃以下の範囲での総量である。
窒素酸化物(NOx)は、加熱処理においてアンモニア及び酸素と反応するため、アンモニアの放出量が多い絶縁層を用いることで窒素酸化物(NOx)が低減される。
また、酸化物半導体層に接する絶縁層のうち少なくとも1つは、加熱により酸素が放出される絶縁層を用いて形成することが好ましい。具体的には、絶縁層の表面温度が100℃以上700℃以下、好ましくは100℃以上500℃以下の加熱処理で行われるTDSにて、酸素原子に換算した酸素の脱離量が1.0×1018atoms/cm3以上、1.0×1019atoms/cm3以上、または1.0×1020atoms/cm3以上である絶縁層を用いることが好ましい。なお、本明細書などにおいて、加熱により放出される酸素を「過剰酸素」ともいう。
また、過剰酸素を含む絶縁層は、絶縁層に酸素を添加する処理を行って形成することもできる。酸素を添加する処理は、酸化性雰囲気下における熱処理やプラズマ処理などで行なうことができる。または、イオン注入法、イオンドーピング法、プラズマイマージョンイオン注入法などを用いて酸素を添加してもよい。酸素を添加する処理に用いるガスとしては、16O2もしくは18O2などの酸素ガス、亜酸化窒素ガス、またはオゾンガスなどの、酸素を含むガスが挙げられる。なお、本明細書では酸素を添加する処理を「酸素ドープ処理」ともいう。酸素ドープ処理は、基板を加熱して行なってもよい。
また、絶縁層として、ポリイミド、アクリル系樹脂、ベンゾシクロブテン系樹脂、ポリアミド、エポキシ系樹脂等の、耐熱性を有する有機材料を用いることができる。また上記有機材料の他に、低誘電率材料(low−k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラス)等を用いることができる。なお、これらの材料で形成される絶縁層を複数積層させることで、絶縁層を形成してもよい。
なおシロキサン系樹脂とは、シロキサン系材料を出発材料として形成されたSi−O−Si結合を含む樹脂に相当する。シロキサン系樹脂は置換基としては有機基(例えばアルキル基やアリール基)やフルオロ基を用いても良い。また、有機基はフルオロ基を有していても良い。
絶縁層の形成方法は、特に限定されない。なお、絶縁層に用いる材料によっては焼成工程が必要な場合がある。この場合、絶縁層の焼成工程と他の熱処理工程を兼ねることで、効率よくトランジスタを作製することが可能となる。
〔電極〕
電極を形成するための導電性材料としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウムなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
電極を形成するための導電性材料としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウムなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
また、前述した金属元素および酸素を含む導電性材料を用いてもよい。また、前述した金属元素および窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物(ITO:Indium Tin Oxide)、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、インジウムガリウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。
また、上記の材料で形成される導電層を複数積層して用いてもよい。例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、窒素を含む導電性材料と、酸素を含む導電性材料と、を組み合わせた積層構造としてもよい。
なお、半導体層に酸化物半導体を用いて、ゲート電極として前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いる場合は、酸素を含む導電性材料を半導体層側に設けるとよい。酸素を含む導電性材料を半導体層側に設けることで、当該導電性材料から離脱した酸素が半導体層に供給されやすくなる。
なお、電極としては、例えば、タングステン、ポリシリコン等の埋め込み性の高い導電性材料を用いればよい。また、埋め込み性の高い導電性材料と、チタン層、窒化チタン層、窒化タンタル層などのバリア層(拡散防止層)を組み合わせて用いてもよい。なお、電極を「コンタクトプラグ」という場合がある。
特に、ゲート絶縁層と接する電極に不純物が透過しにくい導電性材料を用いることが好ましい。不純物が透過しにくい導電性材料として、例えば窒化タンタルが挙げられる。
絶縁層に不純物が透過しにくい絶縁性材料を用い、電極、電極に不純物が透過しにくい導電性材料を用いることで、トランジスタへの不純物の拡散をさらに抑制することができる。よって、トランジスタの信頼性をさらに高めることができる。すなわち、半導体装置の信頼性をさらに高めることができる。
〔半導体層〕
半導体層として、単結晶半導体、多結晶半導体、微結晶半導体、または非晶質半導体などを、単体でまたは組み合わせて用いることができる。半導体材料としては、例えば、シリコンや、ゲルマニウムなどを用いることができる。また、シリコンゲルマニウム、炭化シリコン、ガリウムヒ素、酸化物半導体、窒化物半導体などの化合物半導体や、有機半導体などを用いることができる。
半導体層として、単結晶半導体、多結晶半導体、微結晶半導体、または非晶質半導体などを、単体でまたは組み合わせて用いることができる。半導体材料としては、例えば、シリコンや、ゲルマニウムなどを用いることができる。また、シリコンゲルマニウム、炭化シリコン、ガリウムヒ素、酸化物半導体、窒化物半導体などの化合物半導体や、有機半導体などを用いることができる。
また、半導体層として有機物半導体を用いる場合は、芳香環をもつ低分子有機材料やπ電子共役系導電性高分子などを用いることができる。例えば、ルブレン、テトラセン、ペンタセン、ペリレンジイミド、テトラシアノキノジメタン、ポリチオフェン、ポリアセチレン、ポリパラフェニレンビニレンなどを用いることができる。
なお、半導体層を積層してもよい。半導体層を積層する場合は、それぞれ異なる結晶状態を有する半導体を用いてもよいし、それぞれ異なる半導体材料を用いてもよい。
また、酸化物半導体のバンドギャップは2eV以上あるため、半導体層に酸化物半導体を用いると、オフ電流が極めて少ないトランジスタを実現することができる。具体的には、ソースとドレイン間の電圧が3.5V、室温(代表的には25℃)下において、チャネル幅1μm当たりのオフ電流を1×10−20A未満、1×10−22A未満、あるいは1×10−24A未満とすることができる。すなわち、オンオフ比を20桁以上とすることもできる。また、半導体層に酸化物半導体を用いたトランジスタは、ソースとドレイン間の絶縁耐圧が高い。よって、信頼性の良好なトランジスタを提供できる。また、出力電圧が大きく高耐圧なトランジスタを提供できる。また、信頼性の良好な半導体装置などを提供できる。また、出力電圧が大きく高耐圧な半導体装置を提供することができる。
また、本明細書等において、チャネルが形成される半導体層に結晶性を有するシリコンを用いたトランジスタを「結晶性Siトランジスタ」ともいう。
結晶性Siトランジスタは、oxトランジスタよりも比較的高い移動度を得やすい。一方で、結晶性Siトランジスタは、oxトランジスタのように極めて少ないオフ電流の実現が困難である。よって、半導体層に用いる半導体材料は、目的や用途に応じて適宜使い分けることが肝要である。例えば、目的や用途に応じて、oxトランジスタと結晶性Siトランジスタなどを組み合わせて用いてもよい。
半導体層として酸化物半導体層を用いる場合は、酸化物半導体層をスパッタリング法で形成することが好ましい。酸化物半導体層は、スパッタリング法で形成すると酸化物半導体層の密度を高められるため、好適である。スパッタリング法で酸化物半導体層を形成する場合、スパッタリングガスには、希ガス(代表的にはアルゴン)、酸素、または、希ガスおよび酸素の混合ガスを用いればよい。また、スパッタリングガスの高純度化も必要である。例えば、スパッタリングガスとして用いる酸素ガスや希ガスは、露点が−60℃以下、好ましくは−100℃以下にまで高純度化したガスを用いる。高純度化されたスパッタリングガスを用いて成膜することで、酸化物半導体層に水分等が取り込まれることを可能な限り防ぐことができる。
また、スパッタリング法で酸化物半導体層を形成する場合、スパッタリング装置が有する成膜室内の水分を可能な限り除去することが好ましい。例えば、クライオポンプのような吸着式の真空排気ポンプを用いて、成膜室内を高真空(5×10−7Paから1×10−4Pa程度まで)に排気することが好ましい。特に、スパッタリング装置の待機時における、成膜室内のH2Oに相当するガス分子(m/z=18に相当するガス分子)の分圧を1×10−4Pa以下、好ましく5×10−5Pa以下とすることが好ましい。
〔金属酸化物〕
酸化物半導体は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウムまたはスズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
酸化物半導体は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウムまたはスズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
ここで、酸化物半導体が、インジウム、元素Mおよび亜鉛を有する場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウムまたはスズなどとする。そのほかの元素Mに適用可能な元素として、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。
なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
[金属酸化物の構成]
以下では、本発明の一態様で開示されるトランジスタに用いることができるCAC(Cloud−Aligned Composite)−OSの構成について説明する。
以下では、本発明の一態様で開示されるトランジスタに用いることができるCAC(Cloud−Aligned Composite)−OSの構成について説明する。
なお、本明細書等において、CAAC(c−axis aligned crystal)、およびCAC(Cloud−Aligned Composite)と記載する場合がある。なお、CAACは結晶構造の一例を表し、CACは機能、または材料の構成の一例を表す。
CAC−OSまたはCAC−metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OSまたはCAC−metal oxideを、トランジスタの活性層に用いる場合、導電性の機能は、キャリアとなる電子(または正孔)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OSまたはCAC−metal oxideに付与することができる。CAC−OSまたはCAC−metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
また、CAC−OSまたはCAC−metal oxideは、導電性領域、および絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
また、CAC−OSまたはCAC−metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
また、CAC−OSまたはCAC−metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC−OSまたはCAC−metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC−OSまたはCAC−metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、および高い電界効果移動度を得ることができる。
すなわち、CAC−OSまたはCAC−metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。
[金属酸化物の構造]
酸化物半導体(金属酸化物)は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC−OS(c−axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)および非晶質酸化物半導体などがある。
酸化物半導体(金属酸化物)は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC−OS(c−axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)および非晶質酸化物半導体などがある。
CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。
ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、および七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう。)を確認することは難しい。すなわち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためである。
また、CAAC−OSは、インジウム、および酸素を有する層(以下、In層)と、元素M、亜鉛、および酸素を有する層(以下、(M、Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M、Zn)層の元素Mがインジウムと置換した場合、(In、M、Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In、M)層と表すこともできる。
CAAC−OSは結晶性の高い金属酸化物である。一方、CAAC−OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、金属酸化物の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損など)の少ない金属酸化物ともいえる。したがって、CAAC−OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC−OSを有する金属酸化物は熱に強く、信頼性が高い。
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する金属酸化物である。a−like OSは、鬆または低密度領域を有する。すなわち、a−like OSは、nc−OSおよびCAAC−OSと比べて、結晶性が低い。
酸化物半導体(金属酸化物)は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
[金属酸化物を有するトランジスタ]
続いて、上記金属酸化物をトランジスタのチャネル形成領域に用いる場合について説明する。
続いて、上記金属酸化物をトランジスタのチャネル形成領域に用いる場合について説明する。
なお、上記金属酸化物をトランジスタのチャネル形成領域に用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
また、トランジスタには、キャリア密度の低い金属酸化物を用いることが好ましい。金属酸化物膜のキャリア密度を低くする場合においては、金属酸化物膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性という。例えば、金属酸化物は、キャリア密度が8×1011/cm3未満、好ましくは1×1011/cm3未満、さらに好ましくは1×1010/cm3未満であり、1×10−9/cm3以上とすればよい。
また、高純度真性または実質的に高純度真性である金属酸化物膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
また、金属酸化物のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い金属酸化物をチャネル形成領域に有するトランジスタは、電気特性が不安定となる場合がある。
したがって、トランジスタの電気特性を安定にするためには、金属酸化物中の不純物濃度を低減することが有効である。また、金属酸化物中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
[不純物]
ここで、金属酸化物中における各不純物の影響について説明する。
ここで、金属酸化物中における各不純物の影響について説明する。
金属酸化物において、第14族元素の一つであるシリコンや炭素が含まれると、金属酸化物において欠陥準位が形成される。このため、金属酸化物におけるシリコンや炭素の濃度と、金属酸化物との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm3以下、好ましくは2×1017atoms/cm3以下とする。
また、金属酸化物にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。したがって、アルカリ金属またはアルカリ土類金属が含まれている金属酸化物をチャネル形成領域に用いたトランジスタはノーマリーオン特性となりやすい。このため、金属酸化物中のアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる金属酸化物中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm3以下、好ましくは2×1016atoms/cm3以下にする。
また、金属酸化物において、窒素が含まれると、キャリアである電子が生じ、キャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている金属酸化物をチャネル形成領域に用いたトランジスタはノーマリーオン特性となりやすい。したがって、当該金属酸化物において、チャネル形成領域の窒素はできる限り低減されていることが好ましい。例えば、金属酸化物中の窒素濃度は、SIMSにおいて、5×1019atoms/cm3未満、好ましくは5×1018atoms/cm3以下、より好ましくは1×1018atoms/cm3以下、さらに好ましくは5×1017atoms/cm3以下とする。
また、金属酸化物に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。当該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。したがって、水素が含まれている金属酸化物をチャネル形成領域に用いたトランジスタはノーマリーオン特性となりやすい。このため、金属酸化物中の水素はできる限り低減されていることが好ましい。具体的には、金属酸化物において、SIMSにより得られる水素濃度を、1×1020atoms/cm3未満、好ましくは1×1019atoms/cm3未満、より好ましくは5×1018atoms/cm3未満、さらに好ましくは1×1018atoms/cm3未満とする。
不純物が十分に低減された金属酸化物をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
<成膜方法について>
絶縁層を形成するための絶縁性材料、電極を形成するための導電性材料、または半導体層を形成するための半導体材料は、スパッタリング法、スピンコート法、CVD(Chemical Vapor Deposition)法(熱CVD法、MOCVD(Metal Organic Chemical Vapor Deposition)法、PECVD(Plasma Enhanced CVD)法、高密度プラズマCVD(High density plasma CVD)法、LPCVD(low pressure CVD)法、APCVD(atmospheric pressure CVD)法等を含む)、ALD(Atomic Layer Deposition)法、または、MBE(Molecular Beam Epitaxy)法、または、PLD(Pulsed Laser Deposition)法、ディップ法、スプレー塗布法、液滴吐出法(インクジェット法など)、印刷法(スクリーン印刷、オフセット印刷など)を用いて形成することができる。
絶縁層を形成するための絶縁性材料、電極を形成するための導電性材料、または半導体層を形成するための半導体材料は、スパッタリング法、スピンコート法、CVD(Chemical Vapor Deposition)法(熱CVD法、MOCVD(Metal Organic Chemical Vapor Deposition)法、PECVD(Plasma Enhanced CVD)法、高密度プラズマCVD(High density plasma CVD)法、LPCVD(low pressure CVD)法、APCVD(atmospheric pressure CVD)法等を含む)、ALD(Atomic Layer Deposition)法、または、MBE(Molecular Beam Epitaxy)法、または、PLD(Pulsed Laser Deposition)法、ディップ法、スプレー塗布法、液滴吐出法(インクジェット法など)、印刷法(スクリーン印刷、オフセット印刷など)を用いて形成することができる。
プラズマCVD法は、比較的低温で高品質の膜が得られる。MOCVD法、ALD法、または熱CVD法などの、成膜時にプラズマを用いない成膜方法を用いると、被形成面にダメージが生じにくい。例えば、半導体装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、半導体装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない成膜方法の場合、こういったプラズマダメージが生じないため、半導体装置の歩留まりを高くすることができる。また、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
CVD法およびALD法は、ターゲットなどから放出される粒子が堆積する成膜方法とは異なり、被処理物の表面における反応により膜が形成される成膜方法である。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。
CVD法およびALD法は、原料ガスの流量比によって、得られる膜の組成を制御することができる。例えば、CVD法およびALD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。また、例えば、CVD法およびALD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送や圧力調整に掛かる時間の分、成膜に掛かる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。
なお、ALD法により成膜する場合は、材料ガスとして塩素を含まないガスを用いることが好ましい。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態3)
本実施の形態では、人工ニューラルネットワークに用いることが可能な半導体装置の構成例について説明する。
本実施の形態では、人工ニューラルネットワークに用いることが可能な半導体装置の構成例について説明する。
図10(A)に示すように、ニューラルネットワークNNは入力層IL、出力層OL、中間層(隠れ層)HLによって構成することができる。入力層IL、出力層OL、中間層HLはそれぞれ、1または複数のニューロン(ユニット)を有する。なお、中間層HLは1層であってもよいし2層以上であってもよい。2層以上の中間層HLを有するニューラルネットワークはDNN(ディープニューラルネットワーク)と呼ぶこともでき、ディープニューラルネットワークを用いた学習は深層学習と呼ぶこともできる。
入力層ILの各ニューロンには入力データが入力され、中間層HLの各ニューロンには前層または後層のニューロンの出力信号が入力され、出力層OLの各ニューロンには前層のニューロンの出力信号が入力される。なお、各ニューロンは、前後の層の全てのニューロンと結合されていてもよいし(全結合)、一部のニューロンと結合されていてもよい。
図10(B)に、ニューロンによる演算の例を示す。ここでは、ニューロンNと、ニューロンNに信号を出力する前層の2つのニューロンを示している。ニューロンNには、前層のニューロンの出力x1と、前層のニューロンの出力x2が入力される。そして、ニューロンNにおいて、出力x1と重みw1の乗算結果(x1w1)と出力x2と重みw2の乗算結果(x2w2)の総和x1w1+x2w2が計算された後、必要に応じてバイアスbが加算され、値a=x1w1+x2w2+bが得られる。そして、値aは活性化関数hによって変換され、ニューロンNから出力信号y=h(a)が出力される。
このように、ニューロンによる演算には、前層のニューロンの出力と重みの積を足し合わせる演算、すなわち積和演算が含まれる(上記のx1w1+x2w2)。この積和演算は、プログラムを用いてソフトウェア上で行ってもよいし、ハードウェアによって行われてもよい。積和演算をハードウェアによって行う場合は、積和演算回路を用いることができる。この積和演算回路としては、デジタル回路を用いてもよいし、アナログ回路を用いてもよい。積和演算回路にアナログ回路を用いる場合、積和演算回路の回路規模の縮小、または、メモリへのアクセス回数の減少による処理速度の向上及び消費電力の低減を図ることができる。
積和演算回路は、チャネル形成領域にシリコン(単結晶シリコンなど)を含むトランジスタ(Siトランジスタ)によって構成してもよいし、チャネル形成領域に金属酸化物の一種である酸化物半導体を含むトランジスタ(oxトランジスタ)によって構成してもよい。特に、oxトランジスタはオフ電流が極めて少ないため、書き込まれたデータが変動しにくく、長期間保持することができる。よって、oxトランジスタは、アナログデータまたは多値のデジタルデータ(離散的なデータ)を保持するメモリ(「多値メモリ」ともいう。)を構成するトランジスタとして好適である。すなわち、oxトランジスタは、アナログ回路を構成するトランジスタとして好適である。なお、Siトランジスタとoxトランジスタの両方を用いて積和演算回路を構成してもよい。以下、積和演算回路の機能を備えた半導体装置の構成例について説明する。
<半導体装置の構成例>
図11に、ニューラルネットワークの演算を行う機能を有する半導体装置MACの構成例を示す。なお、半導体装置MACは、本発明の一態様の半導体装置100で実現することができる。半導体装置MACは、ニューロン間の結合強度(重み)に対応する第1のデータと、入力データに対応する第2のデータの積和演算を行う機能を有する。なお、第1のデータ及び第2のデータはそれぞれ、アナログデータまたは多値のデジタルデータとすることができる。また、半導体装置MACは、積和演算によって得られたデータを活性化関数によって変換する機能を有する。
図11に、ニューラルネットワークの演算を行う機能を有する半導体装置MACの構成例を示す。なお、半導体装置MACは、本発明の一態様の半導体装置100で実現することができる。半導体装置MACは、ニューロン間の結合強度(重み)に対応する第1のデータと、入力データに対応する第2のデータの積和演算を行う機能を有する。なお、第1のデータ及び第2のデータはそれぞれ、アナログデータまたは多値のデジタルデータとすることができる。また、半導体装置MACは、積和演算によって得られたデータを活性化関数によって変換する機能を有する。
半導体装置MACは、セルアレイCA、電流源回路CS、カレントミラー回路CM、回路WDD、回路WLD、回路CLD、オフセット回路OFST、及び活性化関数回路ACTVを有する。
セルアレイCAは、複数のメモリセルMC及び複数のメモリセルMCrefを有する。図11には、セルアレイCAがm行n列(m,nは1以上の整数)のメモリセルMC(MC[1,1]乃至[m,n])と、m個のメモリセルMCref(MCref[1]乃至[m])を有する構成例を示している。メモリセルMCは、第1のデータを格納する機能を有する。また、メモリセルMCrefは、積和演算に用いられる参照データを格納する機能を有する。なお、参照データはアナログデータまたは多値のデジタルデータとすることができる。
メモリセルMC[i,j](iは1以上m以下の整数、jは1以上n以下の整数)は、配線WL[i]、配線RW[i]、配線WD[j]、及び配線BL[j]と接続されている。また、メモリセルMCref[i]は、配線WL[i]、配線RW[i]、配線WDref、配線BLrefと接続されている。ここで、メモリセルMC[i,j]と配線BL[j]間を流れる電流をIMC[i,j]と表記し、メモリセルMCref[i]と配線BLref間を流れる電流をIMCref[i]と表記する。
メモリセルMC及びメモリセルMCrefの具体的な構成例を、図12に示す。図12には代表例としてメモリセルMC[1,1]、[2,1]及びメモリセルMCref[1]、[2]を示しているが、他のメモリセルMC及びメモリセルMCrefにも同様の構成を用いることができる。メモリセルMC及びメモリセルMCrefはそれぞれ、トランジスタTr11、Tr12、容量素子C11を有する。ここでは、トランジスタTr11及びトランジスタTr12がnチャネル型のトランジスタである場合について説明する。
メモリセルMCにおいて、トランジスタTr11のゲートは配線WLと接続され、ソースまたはドレインの一方はトランジスタTr12のゲート、及び容量素子C11の第1の電極と接続され、ソースまたはドレインの他方は配線WDと接続されている。トランジスタTr12のソースまたはドレインの一方は配線BLと接続され、ソースまたはドレインの他方は配線VRと接続されている。容量素子C11の第2の電極は、配線RWと接続されている。配線VRは、所定の電位を供給する機能を有する配線である。ここでは一例として、配線VRから低電源電位(接地電位など)が供給される場合について説明する。
トランジスタTr11のソースまたはドレインの一方、トランジスタTr12のゲート、及び容量素子C11の第1の電極と接続されたノードを、ノードNMとする。また、メモリセルMC[1,1]、[2,1]のノードNMを、それぞれノードNM[1,1]、[2,1]と表記する。
メモリセルMCrefも、メモリセルMCと同様の構成を有する。ただし、メモリセルMCrefは配線WDの代わりに配線WDrefと接続され、配線BLの代わりに配線BLrefと接続されている。また、メモリセルMCref[1]、[2]において、トランジスタTr11のソースまたはドレインの一方、トランジスタTr12のゲート、及び容量素子C11の第1の電極と接続されたノードを、それぞれノードNMref[1]、[2]と表記する。
ノードNMとノードNMrefはそれぞれ、メモリセルMCとメモリセルMCrefの保持ノードとして機能する。ノードNMには第1のデータが保持され、ノードNMrefには参照データが保持される。また、配線BL[1]からメモリセルMC[1,1]、[2,1]のトランジスタTr12には、それぞれ電流IMC[1,1]、IMC[2,1]が流れる。また、配線BLrefからメモリセルMCref[1]、[2]のトランジスタTr12には、それぞれ電流IMCref[1]、IMCref[2]が流れる。
トランジスタTr11は、ノードNMまたはノードNMrefの電位を保持する機能を有するため、トランジスタTr11のオフ電流は少ないことが好ましい。そのため、トランジスタTr11としてオフ電流が極めて少ないoxトランジスタを用いることが好ましい。これにより、ノードNMまたはノードNMrefの電位の変動を抑えることができ、演算精度の向上を図ることができる。また、ノードNMまたはノードNMrefの電位をリフレッシュする動作の頻度を低く抑えることが可能となり、消費電力を削減することができる。
トランジスタTr12は特に限定されず、例えばSiトランジスタまたはoxトランジスタなどを用いることができる。トランジスタTr12にoxトランジスタを用いる場合、トランジスタTr11と同じ製造装置を用いて、トランジスタTr12を作製することが可能となり、製造コストを抑制することができる。なお、トランジスタTr12はnチャネル型であってもpチャネル型であってもよい。
電流源回路CSは、配線BL[1]乃至[n]及び配線BLrefと接続されている。電流源回路CSは、配線BL[1]乃至[n]及び配線BLrefに電流を供給する機能を有する。なお、配線BL[1]乃至[n]に供給される電流値と配線BLrefに供給される電流値は異なっていてもよい。ここでは、電流源回路CSから配線BL[1]乃至[n]に供給される電流をIC、電流源回路CSから配線BLrefに供給される電流をICrefと表記する。
カレントミラー回路CMは、配線IL[1]乃至[n]及び配線ILrefを有する。配線IL[1]乃至[n]はそれぞれ配線BL[1]乃至[n]と接続され、配線ILrefは、配線BLrefと接続されている。ここでは、配線IL[1]乃至[n]と配線BL[1]乃至[n]の接続箇所をノードNP[1]乃至[n]と表記する。また、配線ILrefと配線BLrefの接続箇所をノードNPrefと表記する。
カレントミラー回路CMは、ノードNPrefの電位に応じた電流ICMを配線ILrefに流す機能と、この電流ICMを配線IL[1]乃至[n]にも流す機能を有する。図11には、配線BLrefから配線ILrefに電流ICMが排出され、配線BL[1]乃至[n]から配線IL[1]乃至[n]に電流ICMが排出される例を示している。また、カレントミラー回路CMから配線BL[1]乃至[n]を介してセルアレイCAに流れる電流を、IB[1]乃至[n]と表記する。また、カレントミラー回路CMから配線BLrefを介してセルアレイCAに流れる電流を、IBrefと表記する。
回路WDDは、配線WD[1]乃至[n]及び配線WDrefと接続されている。回路WDDは、メモリセルMCに格納される第1のデータに対応する電位を、配線WD[1]乃至[n]に供給する機能を有する。また、回路WDDは、メモリセルMCrefに格納される参照データに対応する電位を、配線WDrefに供給する機能を有する。回路WLDは、配線WL[1]乃至[m]と接続されている。回路WLDは、データの書き込みを行うメモリセルMCまたはメモリセルMCrefを選択するための信号を、配線WL[1]乃至[m]に供給する機能を有する。回路CLDは、配線RW[1]乃至[m]と接続されている。回路CLDは、第2のデータに対応する電位を、配線RW[1]乃至[m]に供給する機能を有する。
オフセット回路OFSTは、配線BL[1]乃至[n]及び配線OL[1]乃至[n]と接続されている。オフセット回路OFSTは、配線BL[1]乃至[n]からオフセット回路OFSTに流れる電流量、及び/または、配線BL[1]乃至[n]からオフセット回路OFSTに流れる電流の変化量を検出する機能を有する。また、オフセット回路OFSTは、検出結果を配線OL[1]乃至[n]に出力する機能を有する。なお、オフセット回路OFSTは、検出結果に対応する電流を配線OLに出力してもよいし、検出結果に対応する電流を電圧に変換して配線OLに出力してもよい。セルアレイCAとオフセット回路OFSTの間を流れる電流を、Iα[1]乃至[n]と表記する。
オフセット回路OFSTの構成例を図13に示す。図13に示すオフセット回路OFSTは、回路OC[1]乃至[n]を有する。また、回路OC[1]乃至[n]はそれぞれ、トランジスタTr21、トランジスタTr22、トランジスタTr23、容量素子C21、及び抵抗素子R1を有する。各素子の接続関係は図13に示す通りである。なお、容量素子C21の第1の電極及び抵抗素子R1の第1の端子と接続されたノードを、ノードNaとする。また、容量素子C21の第2の電極、トランジスタTr21のソースまたはドレインの一方、及びトランジスタTr22のゲートと接続されたノードを、ノードNbとする。
配線VrefLは電位Vrefを供給する機能を有し、配線VaLは電位Vaを供給する機能を有し、配線VbLは電位Vbを供給する機能を有する。また、配線VDDLは電位VDDを供給する機能を有し、配線VSSLは電位VSSを供給する機能を有する。ここでは、電位VDDが高電源電位であり、電位VSSが低電源電位である場合について説明する。また、配線RSTは、トランジスタTr21の導通状態を制御するための電位を供給する機能を有する。トランジスタTr22、トランジスタTr23、配線VDDL、配線VSSL、及び配線VbLによって、ソースフォロワ回路が構成される。
次に、回路OC[1]乃至[n]の動作例を説明する。なお、ここでは代表例として回路OC[1]の動作例を説明するが、回路OC[2]乃至[n]も同様に動作させることができる。まず、配線BL[1]に第1の電流が流れると、ノードNaの電位は、第1の電流と抵抗素子R1の抵抗値に応じた電位となる。また、このときトランジスタTr21はオン状態であり、ノードNbに電位Vaが供給される。その後、トランジスタTr21はオフ状態となる。
次に、配線BL[1]に第2の電流が流れると、ノードNaの電位は、第2の電流と抵抗素子R1の抵抗値に応じた電位に変化する。このときトランジスタTr21はオフ状態であり、ノードNbはフローティング状態となっているため、ノードNaの電位の変化に伴い、ノードNbの電位は容量結合により変化する。ここで、ノードNaの電位の変化をΔVNaとし、容量結合係数を1とすると、ノードNbの電位はVa+ΔVNaとなる。そして、トランジスタTr22のしきい値電圧をVthとすると、配線OL[1]から電位Va+ΔVNa−Vthが出力される。ここで、Va=Vthとすることにより、配線OL[1]から電位ΔVNaを出力することができる。
電位ΔVNaは、第1の電流から第2の電流への変化量、抵抗素子R1、及び電位Vrefに応じて定まる。ここで、抵抗素子R1と電位Vrefは既知であるため、電位ΔVNaから配線BLに流れる電流の変化量を求めることができる。
上記のようにオフセット回路OFSTによって検出された電流量、及び/または電流の変化量に対応する信号は、配線OL[1]乃至[n]を介して活性化関数回路ACTVに入力される。
活性化関数回路ACTVは、配線OL[1]乃至[n]、及び、配線NIL[1]乃至[n]と接続されている。活性化関数回路ACTVは、オフセット回路OFSTから入力された信号を、あらかじめ定義された活性化関数に従って変換するための演算を行う機能を有する。活性化関数としては、例えば、シグモイド関数、tanh関数、softmax関数、ReLU関数、しきい値関数などを用いることができる。活性化関数回路ACTVによって変換された信号は、出力データとして配線NIL[1]乃至[n]に出力される。
<半導体装置の動作例>
上記の半導体装置MACを用いて、第1のデータと第2のデータの積和演算を行うことができる。以下、積和演算を行う際の半導体装置MACの動作例を説明する。
上記の半導体装置MACを用いて、第1のデータと第2のデータの積和演算を行うことができる。以下、積和演算を行う際の半導体装置MACの動作例を説明する。
図14に半導体装置MACの動作例のタイミングチャートを示す。図14には、図12における配線WL[1]、配線WL[2]、配線WD[1]、配線WDref、ノードNM[1,1]、ノードNM[2,1]、ノードNMref[1]、ノードNMref[2]、配線RW[1]、及び配線RW[2]の電位の推移と、電流IB[1]−Iα[1]、及び電流IBrefの値の推移を示している。電流IB[1]−Iα[1]は、配線BL[1]からメモリセルMC[1,1]、[2,1]に流れる電流の総和に相当する。
なお、ここでは代表例として図12に示すメモリセルMC[1,1]、[2,1]及びメモリセルMCref[1]、[2]に着目して動作を説明するが、他のメモリセルMC及びメモリセルMCrefも同様に動作させることができる。
〔第1のデータの格納〕
まず、時刻T01−T02において、配線WL[1]の電位がハイレベルとなり、配線WD[1]の電位が接地電位(GND)よりもVPR−VW[1,1]大きい電位となり、配線WDrefの電位が接地電位よりもVPR大きい電位となる。また、配線RW[1]、及び配線RW[2]の電位が基準電位(REFP)となる。なお、電位VW[1,1]はメモリセルMC[1,1]に格納される第1のデータに対応する電位である。また、電位VPRは参照データに対応する電位である。これにより、メモリセルMC[1,1]及びメモリセルMCref[1]が有するトランジスタTr11がオン状態となり、ノードNM[1,1]の電位がVPR−VW[1,1]、ノードNMref[1]の電位がVPRとなる。
まず、時刻T01−T02において、配線WL[1]の電位がハイレベルとなり、配線WD[1]の電位が接地電位(GND)よりもVPR−VW[1,1]大きい電位となり、配線WDrefの電位が接地電位よりもVPR大きい電位となる。また、配線RW[1]、及び配線RW[2]の電位が基準電位(REFP)となる。なお、電位VW[1,1]はメモリセルMC[1,1]に格納される第1のデータに対応する電位である。また、電位VPRは参照データに対応する電位である。これにより、メモリセルMC[1,1]及びメモリセルMCref[1]が有するトランジスタTr11がオン状態となり、ノードNM[1,1]の電位がVPR−VW[1,1]、ノードNMref[1]の電位がVPRとなる。
このとき、配線BL[1]からメモリセルMC[1,1]のトランジスタTr12に流れる電流IMC[1,1],0は、次の式で表すことができる。ここで、kはトランジスタTr12のチャネル長、チャネル幅、移動度、及びゲート絶縁膜の容量などで決まる定数である。また、VthはトランジスタTr12のしきい値電圧である。
IMC[1,1],0=k(VPR−VW[1,1]−Vth)2 (E1)
また、配線BLrefからメモリセルMCref[1]のトランジスタTr12に流れる電流IMCref[1],0は、次の式で表すことができる。
IMCref[1],0=k(VPR−Vth)2 (E2)
次に、時刻T02−T03において、配線WL[1]の電位がローレベルとなる。これにより、メモリセルMC[1,1]及びメモリセルMCref[1]が有するトランジスタTr11がオフ状態となり、ノードNM[1,1]及びノードNMref[1]の電位が保持される。
なお、前述の通り、トランジスタTr11としてoxトランジスタを用いることが好ましい。これにより、トランジスタTr11のリーク電流を抑えることができ、ノードNM[1,1]及びノードNMref[1]の電位を正確に保持することができる。
次に、時刻T03−T04において、配線WL[2]の電位がハイレベルとなり、配線WD[1]の電位が接地電位よりもVPR−VW[2,1]大きい電位となり、配線WDrefの電位が接地電位よりもVPR大きい電位となる。なお、電位VW[2,1]はメモリセルMC[2,1]に格納される第1のデータに対応する電位である。これにより、メモリセルMC[2,1]及びメモリセルMCref[2]が有するトランジスタTr11がオン状態となり、ノードNM[1,1]の電位がVPR−VW[2,1]、ノードNMref[1]の電位がVPRとなる。
このとき、配線BL[1]からメモリセルMC[2,1]のトランジスタTr12に流れる電流IMC[2,1],0は、次の式で表すことができる。
IMC[2,1],0=k(VPR−VW[2,1]−Vth)2 (E3)
また、配線BLrefからメモリセルMCref[2]のトランジスタTr12に流れる電流IMCref[2],0は、次の式で表すことができる。
IMCref[2],0=k(VPR−Vth)2 (E4)
次に、時刻T04−T05において、配線WL[2]の電位がローレベルとなる。これにより、メモリセルMC[2,1]及びメモリセルMCref[2]が有するトランジスタTr11がオフ状態となり、ノードNM[2,1]及びノードNMref[2]の電位が保持される。
以上の動作により、メモリセルMC[1,1]、[2,1]に第1のデータが格納され、メモリセルMCref[1]、[2]に参照データが格納される。
ここで、時刻T04−T05において、配線BL[1]及び配線BLrefに流れる電流を考える。配線BLrefには、電流源回路CSから電流が供給される。また、配線BLrefを流れる電流は、カレントミラー回路CM、メモリセルMCref[1]、[2]へ排出される。電流源回路CSから配線BLrefに供給される電流をICref、配線BLrefからカレントミラー回路CMへ排出される電流をICM,0とすると、次の式が成り立つ。
ICref−ICM,0=IMCref[1],0+IMCref[2],0 (E5)
配線BL[1]には、電流源回路CSからの電流が供給される。また、配線BL[1]を流れる電流は、カレントミラー回路CM、メモリセルMC[1,1]、[2,1]へ排出される。また、配線BL[1]からオフセット回路OFSTに電流が流れる。電流源回路CSから配線BL[1]に供給される電流をIC,0、配線BL[1]からオフセット回路OFSTに流れる電流をIα,0とすると、次の式が成り立つ。
IC−ICM,0=IMC[1,1],0+IMC[2,1],0+Iα,0 (E6)
〔第1のデータと第2のデータの積和演算〕
次に、時刻T05−T06において、配線RW[1]の電位が基準電位よりもVX[1]大きい電位となる。このとき、メモリセルMC[1,1]、及びメモリセルMCref[1]のそれぞれの容量素子C11には電位VX[1]が供給され、容量結合によりトランジスタTr12のゲートの電位が上昇する。なお、電位Vx[1]はメモリセルMC[1,1]及びメモリセルMCref[1]に供給される第2のデータに対応する電位である。
次に、時刻T05−T06において、配線RW[1]の電位が基準電位よりもVX[1]大きい電位となる。このとき、メモリセルMC[1,1]、及びメモリセルMCref[1]のそれぞれの容量素子C11には電位VX[1]が供給され、容量結合によりトランジスタTr12のゲートの電位が上昇する。なお、電位Vx[1]はメモリセルMC[1,1]及びメモリセルMCref[1]に供給される第2のデータに対応する電位である。
トランジスタTr12のゲートの電位の変化量は、配線RWの電位の変化量に、メモリセルの構成によって決まる容量結合係数を乗じた値となる。容量結合係数は、容量素子C11の容量、トランジスタTr12のゲート容量、及び寄生容量などによって算出される。以下では便宜上、配線RWの電位の変化量とトランジスタTr12のゲートの電位の変化量が同じ、すなわち容量結合係数が1であるとして説明する。実際には、容量結合係数を考慮して電位Vxを決定すればよい。
メモリセルMC[1]及びメモリセルMCref[1]の容量素子C11に電位VX[1]が供給されると、ノードNN[1]及びノードNMref[1]の電位がそれぞれVX[1]上昇する。
ここで、時刻T05−T06において、配線BL[1]からメモリセルMC[1,1]のトランジスタTr12に流れる電流IMC[1,1],1は、次の式で表すことができる。
IMC[1,1],1=k(VPR−VW[1,1]+VX[1]−Vth)2 (E7)
すなわち、配線RW[1]に電位VX[1]を供給することにより、配線BL[1]からメモリセルMC[1,1]のトランジスタTr12に流れる電流は、ΔIMC[1,1]=IMC[1,1],1−IMC[1,1],0増加する。
また、時刻T05−T06において、配線BLrefからメモリセルMCref[1]のトランジスタTr12に流れる電流IMCref[1],1は、次の式で表すことができる。
IMCref[1],1=k(VPR+VX[1]−Vth)2 (E8)
すなわち、配線RW[1]に電位VX[1]を供給することにより、配線BLrefからメモリセルMCref[1]のトランジスタTr12に流れる電流は、ΔIMCref[1]=IMCref[1],1−IMCref[1],0増加する。
また、配線BL[1]及び配線BLrefに流れる電流について考える。配線BLrefには、電流源回路CSから電流ICrefが供給される。また、配線BLrefを流れる電流は、カレントミラー回路CM、メモリセルMCref[1]、[2]へ排出される。配線BLrefからカレントミラー回路CMへ排出される電流をICM,1とすると、次の式が成り立つ。
ICref−ICM,1=IMCref[1],1+IMCref[2],0 (E9)
配線BL[1]には、電流源回路CSから電流ICが供給される。また、配線BL[1]を流れる電流は、カレントミラー回路CM、メモリセルMC[1,1]、[2,1]へ排出される。さらに、配線BL[1]からオフセット回路OFSTにも電流が流れる。配線BL[1]からオフセット回路OFSTに流れる電流をIα,1とすると、次の式が成り立つ。
IC−ICM,1=IMC[1,1],1+IMC[2,1],1+Iα,1 (E10)
そして、式(E1)乃至式(E10)から、電流Iα,0と電流Iα,1の差(差分電流ΔIα)は次の式で表すことができる。
ΔIα=Iα,0−Iα,1=2kVW[1,1]VX[1] (E11)
このように、差分電流ΔIαは、電位VW[1,1]とVX[1]の積に応じた値となる。
その後、時刻T06−T07において、配線RW[1]の電位は接地電位となり、ノードNM[1,1]及びノードNMref[1]の電位は時刻T04−T05と同様になる。
次に、時刻T07−T08において、配線RW[1]の電位が基準電位よりもVX[1]大きい電位となり、配線RW[2]の電位が基準電位よりもVX[2]大きい電位が供給される。これにより、メモリセルMC[1,1]、及びメモリセルMCref[1]のそれぞれの容量素子C11に電位VX[1]が供給され、容量結合によりノードNM[1,1]及びノードNMref[1]の電位がそれぞれVX[1]上昇する。また、メモリセルMC[2,1]、及びメモリセルMCref[2]のそれぞれの容量素子C11に電位VX[2]が供給され、容量結合によりノードNM[2,1]及びノードNMref[2]の電位がそれぞれVX[2]上昇する。
ここで、時刻T07−T08において、配線BL[1]からメモリセルMC[2,1]のトランジスタTr12に流れる電流IMC[2,1],1は、次の式で表すことができる。
IMC[2,1],1=k(VPR−VW[2,1]+VX[2]−Vth)2 (E12)
すなわち、配線RW[2]に電位VX[2]を供給することにより、配線BL[1]からメモリセルMC[2,1]のトランジスタTr12に流れる電流は、ΔIMC[2,1]=IMC[2,1],1−IMC[2,1],0増加する。
また、時刻T05−T06において、配線BLrefからメモリセルMCref[2]のトランジスタTr12に流れる電流IMCref[2],1は、次の式で表すことができる。
IMCref[2],1=k(VPR+VX[2]−Vth)2 (E13)
すなわち、配線RW[2]に電位VX[2]を供給することにより、配線BLrefからメモリセルMCref[2]のトランジスタTr12に流れる電流は、ΔIMCref[2]=IMCref[2],1−IMCref[2],0増加する。
また、配線BL[1]及び配線BLrefに流れる電流について考える。配線BLrefには、電流源回路CSから電流ICrefが供給される。また、配線BLrefを流れる電流は、カレントミラー回路CM、メモリセルMCref[1]、[2]へ排出される。配線BLrefからカレントミラー回路CMへ排出される電流をICM,2とすると、次の式が成り立つ。
ICref−ICM,2=IMCref[1],1+IMCref[2],1 (E14)
配線BL[1]には、電流源回路CSから電流ICが供給される。また、配線BL[1]を流れる電流は、カレントミラー回路CM、メモリセルMC[1,1]、[2,1]へ排出される。さらに、配線BL[1]からオフセット回路OFSTにも電流が流れる。配線BL[1]からオフセット回路OFSTに流れる電流をIα,2とすると、次の式が成り立つ。
IC−ICM,2=IMC[1,1],1+IMC[2,1],1+Iα,2 (E15)
そして、式(E1)乃至式(E8)、及び、式(E12)乃至式(E15)から、電流Iα,0と電流Iα,2の差(差分電流ΔIα)は次の式で表すことができる。
ΔIα=Iα,0−Iα,2=2k(VW[1,1]VX[1]+VW[2,1]VX[2]) (E16)
このように、差分電流ΔIαは、電位VW[1,1]と電位VX[1]の積と、電位VW[2,1]と電位VX[2]の積と、を足し合わせた結果に応じた値となる。
その後、時刻T08−T09において、配線RW[1]、[2]の電位は接地電位となり、ノードNM[1,1]、[2,1]及びノードNMref[1]、[2]の電位は時刻T04−T05と同様になる。
式(E9)及び式(E16)に示されるように、オフセット回路OFSTに入力される差分電流ΔIαは、第1のデータ(重み)に対応する電位VXと、第2のデータ(入力データ)に対応する電位VWの積を足し合わせた結果に応じた値となる。すなわち、差分電流ΔIαをオフセット回路OFSTで計測することにより、第1のデータと第2のデータの積和演算の結果を得ることができる。
なお、上記では特にメモリセルMC[1,1]、[2,1]及びメモリセルMCref[1]、[2]に着目したが、メモリセルMC及びメモリセルMCrefの数は任意に設定することができる。メモリセルMC及びメモリセルMCrefの行数mを任意の数とした場合の差分電流ΔIαは、次の式で表すことができる。
ΔIα=2kΣiVW[i,1]VX[i] (E17)
また、メモリセルMC及びメモリセルMCrefの列数nを増やすことにより、並列して実行される積和演算の数を増やすことができる。
以上のように、半導体装置MACを用いることにより、第1のデータと第2のデータの積和演算を行うことができる。なお、メモリセルMC及びメモリセルMCrefとして図12に示す構成を用いることにより、少ないトランジスタ数で積和演算回路を構成することができる。そのため、半導体装置MACの回路規模の縮小を図ることができる。
半導体装置MACをニューラルネットワークにおける演算に用いる場合、メモリセルMCの行数mは一のニューロンに供給される入力データの数に対応させ、メモリセルMCの列数nはニューロンの数に対応させることができる。例えば、図10(A)に示す中間層HLにおいて半導体装置MACを用いた積和演算を行う場合を考える。このとき、メモリセルMCの行数mは、入力層ILから供給される入力データの数(入力層ILのニューロンの数)に設定し、メモリセルMCの列数nは、中間層HLのニューロンの数に設定することができる。
なお、半導体装置MACを適用するニューラルネットワークの構造は特に限定されない。例えば半導体装置MACは、畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN)、オートエンコーダ、ボルツマンマシン(制限ボルツマンマシンを含む)などに用いることもできる。
以上のように、半導体装置MACを用いることにより、ニューラルネットワークの積和演算を行うことができる。さらに、セルアレイCAに図12に示すメモリセルMC及びメモリセルMCrefを用いることにより、演算精度の向上、消費電力の削減、または回路規模の縮小を図ることが可能な集積回路ICを提供することができる。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態4)
本実施の形態は、上記実施の形態に示す半導体装置が組み込まれた電子部品および電子機器の一例を示す。
本実施の形態は、上記実施の形態に示す半導体装置が組み込まれた電子部品および電子機器の一例を示す。
<電子部品>
まず、半導体装置100が組み込まれた電子部品の例を、図15(A)、(B)を用いて説明を行う。
まず、半導体装置100が組み込まれた電子部品の例を、図15(A)、(B)を用いて説明を行う。
図15(A)に示す電子部品7000はICチップであり、リード及び回路部を有する。電子部品7000は、例えばプリント基板7002に実装される。このようなICチップが複数組み合わされて、それぞれがプリント基板7002上で電気的に接続されることで電子部品が実装された基板(実装基板7004)が完成する。
電子部品7000の回路部に、半導体装置100を用いることができる。
図15(A)では、電子部品7000のパッケージにQFP(Quad Flat Package)を適用しているが、パケージの態様はこれに限定されない。例えば、QFN(Quad Flat Non−leaded package)、BGA(Ball Grid Array)、またはLGA(Land Grid Array)であってもよい。また、TCP(Tape Carrier Package)であってもよい。
図15(B)は、電子部品7400の模式図である。電子部品7400はカメラモジュールであり、イメージセンサチップ7451を内蔵している。電子部品7400は、イメージセンサチップ7451を固定するパッケージ基板7411、レンズカバー7421、およびレンズ7435等を有する。また、パッケージ基板7411およびイメージセンサチップ7451の間には撮像装置の駆動回路および信号変換回路などの機能を有するICチップ7490も設けられており、SiP(System in package)としての構成を有している。ランド7441は電極パッド7461と電気的に接続され、電極パッド7461はイメージセンサチップ7451またはICチップ7490とワイヤ7471によって電気的に接続されている。図15(B)は、電子部品7400の内部を示すために、レンズカバー7421およびレンズ7435の一部を省略して図示している。
イメージセンサチップ7451の回路部は、半導体装置100(集積回路110、集積回路120、集積回路130)、層7033の積層でなる。
層7033は受光素子を有する。当該受光素子として、例えば、セレン系材料を光電変換層としたpn接合型フォトダイオードなどを用いることができる。セレン系材料を用いた光電変換素子は、可視光に対する外部量子効率が高く、高感度の光センサを実現することができる。
セレン系材料はp型半導体として用いることができる。セレン系材料としては、単結晶セレンや多結晶セレンなどの結晶性セレン、非晶質セレン、銅、インジウム、セレンの化合物(CIS)、または、銅、インジウム、ガリウム、セレンの化合物(CIGS)などを用いることができる。
上記pn接合型フォトダイオードのn型半導体は、バンドギャップが広く、可視光に対して透光性を有する材料で形成することが好ましい。例えば、亜鉛酸化物、ガリウム酸化物、インジウム酸化物、錫酸化物、またはそれらが混在した酸化物などを用いることができる。
また、層7033が有する受光素子として、p型シリコン半導体とn型シリコン半導体の用いたpn接合型フォトダイオードを用いてもよい。また、p型シリコン半導体とn型シリコン半導体の間にi型シリコン半導体層を設けたpin接合型フォトダイオードであってもよい。
上記シリコンを用いたフォトダイオードは単結晶シリコンを用いて形成することができる。このとき、層7032と層7033とは、貼り合わせ工程を用いて電気的な接合を得ることが好ましい。また、上記シリコンを用いたフォトダイオードは、非晶質シリコン、微結晶シリコン、多結晶シリコンなどの薄膜を用いて形成することもできる。
また、層7033に換えて、半導体装置100とMEMSセンサなどを組み合わせてもよい。半導体装置100と層7033に加えて、MEMSセンサなどを組み合わせてもよい。また、例えば、力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、匂い、または赤外線を測定する機能を含むセンサを組み合わせてもよい。
<電子機器>
次に、上記電子部品を備えた電子機器の例について図16乃至図17を用いて説明を行う。
次に、上記電子部品を備えた電子機器の例について図16乃至図17を用いて説明を行う。
図16(A)に示すロボット2100は、演算装置2110、照度センサ2101、マイクロフォン2102、上部カメラ2103、スピーカ2104、ディスプレイ2105、下部カメラ2106および障害物センサ2107、移動機構2108を備える。
ロボット2100において、演算装置2110、照度センサ2101、上部カメラ2103、ディスプレイ2105、下部カメラ2106および障害物センサ2107等に、上記電子部品を使用することができる。
マイクロフォン2102は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ2104は、音声を発する機能を有する。ロボット2100は、マイクロフォン2102およびスピーカ2104を用いて、使用者とコミュニケーションをとることが可能である。
ディスプレイ2105は、種々の情報の表示を行う機能を有する。ロボット2100は、使用者の望みの情報をディスプレイ2105に表示することが可能である。ディスプレイ2105は、タッチパネルを搭載していてもよい。
上部カメラ2103および下部カメラ2106は、ロボット2100の周囲を撮像する機能を有する。また、障害物センサ2107は、移動機構2108を用いてロボット2100が前進する際の進行方向における障害物の有無を察知することができる。ロボット2100は、上部カメラ2103、下部カメラ2106および障害物センサ2107を用いて、周囲の環境を認識し、安全に移動することが可能である。
図16(B)に示す飛行体2120は、演算装置2121と、プロペラ2123と、カメラ2122と、を有し、自立して飛行する機能を有する。
飛行体2120において、演算装置2121およびカメラ2122に上記電子部品を用いることができる。
図16(C)は、自動車の一例を示す外観図である。自動車2980は、カメラ2981等を有する。また、自動車2980は、赤外線レーダー、ミリ波レーダー、レーザーレーダーなど各種センサなどを備える。自動車2980は、カメラ2981が撮影した画像を解析し、歩行者の有無など、周囲の交通状況を判断し、自動運転を行うことができる。
自動車2980において、カメラ2981に上記電子部品を用いることができる。
図16(D)に示す情報端末2910は、筐体2911に、表示部2912、マイク2917、スピーカ部2914、カメラ2913、外部接続部2916、および操作スイッチ2915等を有する。表示部2912には、可撓性基板が用いられた表示パネルおよびタッチスクリーンを備える。また、情報端末2910は、筐体2911の内側にアンテナ、バッテリなどを備える。情報端末2910は、例えば、スマートフォン、携帯電話、タブレット型情報端末、タブレット型パーソナルコンピュータ、電子書籍端末等として用いることができる。情報端末2910はその内部の記憶装置とカメラ2913に上記電子部品を用いることができる。
図16(E)に腕時計型の情報端末の一例を示す。情報端末2960は、筐体2961、表示部2962、バンド2963、バックル2964、操作スイッチ2965、入出力端子2966などを備える。また、情報端末2960、筐体2961の内側にアンテナ、バッテリなどを備える。情報端末2960は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。情報端末2960はその内部の記憶装置に上記電子部品を用いることができる。
図16(F)にUSB型の周辺機器の一例を示す。周辺機器2920は、スティック型の周辺機器であり、筐体2921、コネクタ2922、半導体装置2923などを備える。半導体装置2923は筐体2921に設けられている。半導体装置2923に上記電子部品を用いることができる。
周辺機器2920は、USBポートを有するホスト機器とコネクタ2922を介して接続し、ホスト機器の機能を高めることができる。例えば、半導体装置2923が記憶装置として機能する場合、ホスト機器の記憶容量を増やすことができる。また、半導体装置2923がGPUとして機能する場合、ホスト機器の画像処理能力や並列演算処理能力などを高めることができる。周辺機器2920は可搬性に優れ、持ち運びが容易である。
なお、ホスト機器と周辺機器2920を接続するための通信規格はUSB規格に限らない。IEEE1394またはHDMI(登録商標)などの通信規格を用いてもよい。
図17は、掃除ロボットの一例を示す模式図である。
掃除ロボット5100は、上面に配置されたディスプレイ5101、側面に配置された複数のカメラ5102、ブラシ5103、操作ボタン5104を有する。また図示されていないが、掃除ロボット5100の下面には、タイヤ、吸い込み口等が備えられている。掃除ロボット5100は、その他に赤外線センサ、超音波センサ、加速度センサ、ピエゾセンサ、光センサ、ジャイロセンサなどの各種センサを備えている。また、掃除ロボット5100は、無線による通信手段を備えている。
カメラ5102に、上記電子部品を用いることができる。
掃除ロボット5100は自走し、ゴミ5120を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
また、掃除ロボット5100はカメラ5102が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ5103に絡まりそうな物体を検知した場合は、ブラシ5103の回転を止めることができる。
ディスプレイ5101には、バッテリの残量や、吸引したゴミの量などを表示することができる。また、掃除ロボット5100が走行した経路をディスプレイ5101に表示させてもよい。また、ディスプレイ5101をタッチパネルとし、操作ボタン5104をディスプレイ5101に設けてもよい。
掃除ロボット5100は、スマートフォンなどの携帯電子機器5140と通信することができる。カメラ5102が撮影した画像は、携帯電子機器5140に表示させることができる。そのため、掃除ロボット5100の持ち主は、外出先からでも、部屋の様子を知ることができる。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
100 半導体装置
110 集積回路
120 集積回路
130 集積回路
200 CPU
201 CPUコア
202 パワーコントローラ
203 パワースイッチ
204 キャッシュ
205 バスインターフェース
206 デバッグインターフェース
207 制御装置
208 PC
209 パイプラインレジスタ
210 パイプラインレジスタ
211 ALU
221 パワーマネージメントユニット
222 周辺回路
223 データバス
110 集積回路
120 集積回路
130 集積回路
200 CPU
201 CPUコア
202 パワーコントローラ
203 パワースイッチ
204 キャッシュ
205 バスインターフェース
206 デバッグインターフェース
207 制御装置
208 PC
209 パイプラインレジスタ
210 パイプラインレジスタ
211 ALU
221 パワーマネージメントユニット
222 周辺回路
223 データバス
Claims (4)
- 第1演算回路と、第2演算回路と、記憶回路と、を有し、
前記第1演算回路は第1トランジスタを有し、
前記第2演算回路は第2トランジスタを有し、
前記記憶回路は第3トランジスタを有し、
前記記憶回路は前記第1演算回路の上に設けられ、
前記第2演算回路は前記記憶回路の上に設けられ、
前記第1演算回路は前記記憶回路と電気的に接続され、
前記第2演算回路は前記記憶回路と電気的に接続され、
前記第1演算回路または前記第2演算回路の一方は、
CPUとして動作する機能を有し、
前記第1演算回路または前記第2演算回路の他方は、
並列演算処理を行なう機能を有し、
前記第3トランジスタの半導体層は酸化物半導体を含むことを特徴とする半導体装置。 - 請求項1において、
前記第1トランジスタの半導体層および前記第2トランジスタの半導体層の少なくとも一方は、シリコンを含むことを特徴とする半導体装置。 - 請求項1において、
前記第1トランジスタの半導体層および前記第2トランジスタの半導体層の少なくとも一方は、酸化物半導体を含むことを特徴とする半導体装置。 - 請求項1乃至請求項3のいずれか一項に記載の半導体装置と、
カメラ、バッテリ、またはセンサと、
を有する電子機器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017169955A JP2019047006A (ja) | 2017-09-05 | 2017-09-05 | 半導体装置、電子機器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017169955A JP2019047006A (ja) | 2017-09-05 | 2017-09-05 | 半導体装置、電子機器 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019047006A true JP2019047006A (ja) | 2019-03-22 |
Family
ID=65813015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017169955A Withdrawn JP2019047006A (ja) | 2017-09-05 | 2017-09-05 | 半導体装置、電子機器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019047006A (ja) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020254909A1 (ja) * | 2019-06-21 | 2020-12-24 | 株式会社半導体エネルギー研究所 | 半導体装置、及び電子機器 |
WO2021009586A1 (ja) * | 2019-07-12 | 2021-01-21 | 株式会社半導体エネルギー研究所 | 積和演算回路と記憶装置を有する半導体装置、電子部品、および電子機器 |
WO2021024083A1 (ja) * | 2019-08-08 | 2021-02-11 | 株式会社半導体エネルギー研究所 | 半導体装置 |
WO2021064502A1 (ja) * | 2019-10-04 | 2021-04-08 | 株式会社半導体エネルギー研究所 | 半導体装置 |
WO2021130591A1 (ja) * | 2019-12-27 | 2021-07-01 | 株式会社半導体エネルギー研究所 | 半導体装置 |
WO2021148897A1 (ja) * | 2020-01-21 | 2021-07-29 | 株式会社半導体エネルギー研究所 | 半導体装置、及び電子機器 |
WO2021186279A1 (ja) * | 2020-03-18 | 2021-09-23 | 株式会社半導体エネルギー研究所 | 半導体装置 |
WO2021209855A1 (ja) * | 2020-04-17 | 2021-10-21 | 株式会社半導体エネルギー研究所 | 半導体装置、及び電子機器 |
CN113571515A (zh) * | 2020-04-29 | 2021-10-29 | 广东致能科技有限公司 | 一种驱动电路、驱动ic以及驱动系统 |
WO2022064316A1 (ja) * | 2020-09-22 | 2022-03-31 | 株式会社半導体エネルギー研究所 | 半導体装置 |
CN116209269A (zh) * | 2022-09-16 | 2023-06-02 | 北京超弦存储器研究院 | 存储器及其制备方法、电子设备 |
US11921919B2 (en) | 2021-02-19 | 2024-03-05 | Semiconductor Energy Laboratory Co., Ltd. | Electronic device |
US12002535B2 (en) | 2019-09-20 | 2024-06-04 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device comprising memory cell array and arithmetic circuit |
WO2024176059A1 (ja) * | 2023-02-24 | 2024-08-29 | 株式会社半導体エネルギー研究所 | 半導体装置 |
WO2024176062A1 (ja) * | 2023-02-24 | 2024-08-29 | 株式会社半導体エネルギー研究所 | 半導体装置 |
WO2024194749A1 (ja) * | 2023-03-21 | 2024-09-26 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP7571127B2 (ja) | 2020-04-17 | 2024-10-22 | 株式会社半導体エネルギー研究所 | 半導体装置、及び電子機器 |
-
2017
- 2017-09-05 JP JP2017169955A patent/JP2019047006A/ja not_active Withdrawn
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11875837B2 (en) | 2019-06-21 | 2024-01-16 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and electronic device |
WO2020254909A1 (ja) * | 2019-06-21 | 2020-12-24 | 株式会社半導体エネルギー研究所 | 半導体装置、及び電子機器 |
WO2021009586A1 (ja) * | 2019-07-12 | 2021-01-21 | 株式会社半導体エネルギー研究所 | 積和演算回路と記憶装置を有する半導体装置、電子部品、および電子機器 |
WO2021024083A1 (ja) * | 2019-08-08 | 2021-02-11 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US11908947B2 (en) | 2019-08-08 | 2024-02-20 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US12002535B2 (en) | 2019-09-20 | 2024-06-04 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device comprising memory cell array and arithmetic circuit |
WO2021064502A1 (ja) * | 2019-10-04 | 2021-04-08 | 株式会社半導体エネルギー研究所 | 半導体装置 |
WO2021130591A1 (ja) * | 2019-12-27 | 2021-07-01 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US12120443B2 (en) | 2020-01-21 | 2024-10-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and electronic device |
WO2021148897A1 (ja) * | 2020-01-21 | 2021-07-29 | 株式会社半導体エネルギー研究所 | 半導体装置、及び電子機器 |
WO2021186279A1 (ja) * | 2020-03-18 | 2021-09-23 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP7571127B2 (ja) | 2020-04-17 | 2024-10-22 | 株式会社半導体エネルギー研究所 | 半導体装置、及び電子機器 |
WO2021209855A1 (ja) * | 2020-04-17 | 2021-10-21 | 株式会社半導体エネルギー研究所 | 半導体装置、及び電子機器 |
CN113571515A (zh) * | 2020-04-29 | 2021-10-29 | 广东致能科技有限公司 | 一种驱动电路、驱动ic以及驱动系统 |
US11870434B2 (en) | 2020-04-29 | 2024-01-09 | Guangdong Zhineng Technology Co., Ltd. | Driving circuit, driving IC, and driving system |
CN113571515B (zh) * | 2020-04-29 | 2024-04-09 | 广东致能科技有限公司 | 一种驱动电路、驱动ic以及驱动系统 |
WO2022064316A1 (ja) * | 2020-09-22 | 2022-03-31 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US11921919B2 (en) | 2021-02-19 | 2024-03-05 | Semiconductor Energy Laboratory Co., Ltd. | Electronic device |
CN116209269B (zh) * | 2022-09-16 | 2024-02-20 | 北京超弦存储器研究院 | 存储器及其制备方法、电子设备 |
CN116209269A (zh) * | 2022-09-16 | 2023-06-02 | 北京超弦存储器研究院 | 存储器及其制备方法、电子设备 |
WO2024176059A1 (ja) * | 2023-02-24 | 2024-08-29 | 株式会社半導体エネルギー研究所 | 半導体装置 |
WO2024176062A1 (ja) * | 2023-02-24 | 2024-08-29 | 株式会社半導体エネルギー研究所 | 半導体装置 |
WO2024194749A1 (ja) * | 2023-03-21 | 2024-09-26 | 株式会社半導体エネルギー研究所 | 半導体装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019047006A (ja) | 半導体装置、電子機器 | |
US20210287732A1 (en) | Semiconductor device and dynamic logic circuit | |
JP7234110B2 (ja) | メモリセル及び半導体装置 | |
JP7305005B2 (ja) | 記憶装置 | |
KR102617170B1 (ko) | 기억 장치 | |
KR102602338B1 (ko) | 기억 장치 | |
JP7419453B2 (ja) | 半導体装置 | |
WO2018220471A1 (ja) | 記憶装置及びその動作方法 | |
JP7432680B2 (ja) | 半導体装置 | |
US12040009B2 (en) | Sense amplifier, semiconductor device, operation method thereof, and electronic device | |
WO2018224912A1 (ja) | 半導体装置、および半導体装置の作製方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20200827 |