WO2021184615A1 - 空调系统的控制方法 - Google Patents

空调系统的控制方法 Download PDF

Info

Publication number
WO2021184615A1
WO2021184615A1 PCT/CN2020/102416 CN2020102416W WO2021184615A1 WO 2021184615 A1 WO2021184615 A1 WO 2021184615A1 CN 2020102416 W CN2020102416 W CN 2020102416W WO 2021184615 A1 WO2021184615 A1 WO 2021184615A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
refrigerant
conditioning system
actual
heat exchanger
Prior art date
Application number
PCT/CN2020/102416
Other languages
English (en)
French (fr)
Inventor
张洪亮
张捷
赵雷
谢吉培
李林
徐志强
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021184615A1 publication Critical patent/WO2021184615A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the invention belongs to the technical field of air conditioning, and specifically relates to a control method of an air conditioning system.
  • the outdoor heat exchanger when used as a condenser and the indoor heat exchanger is used as an evaporator, it can cool the room; when the indoor heat exchanger is used as a condenser and the outdoor heat exchanger is used Used as an evaporator, it can heat the room.
  • An existing air conditioning system includes a compressor, a four-way reversing valve, an outdoor heat exchanger, an indoor heat exchanger, a gas-liquid separator, an electronic expansion valve, and a liquid storage tank, wherein the refrigerant outlet end of the compressor is connected to The first end of the four-way reversing valve, the cold inlet end of the compressor is connected to the third end of the four-way reversing valve through a gas-liquid separator, and the first end of the outdoor heat exchanger is connected to the second end of the four-way reversing valve.
  • the refrigerant pipeline between the second end of the outdoor heat exchanger and the first end of the indoor heat exchanger is connected with an electronic expansion valve and a liquid storage tank, and the second end of the indoor heat exchanger is connected with a four-way reversing valve The fourth end of the connection.
  • the circulation route of the refrigerant in the above air conditioning system is: compressor ⁇ four-way reversing valve ⁇ outdoor heat exchanger ⁇ electronic expansion valve ⁇ liquid tank ⁇ indoor heat exchanger ⁇ four-way reversing valve ⁇ gas-liquid separation
  • the circulation route of the refrigerant in the above air conditioning system is: compressor ⁇ four-way reversing valve ⁇ indoor heat exchanger ⁇ electronic expansion valve ⁇ liquid tank ⁇ outdoor heat exchanger ⁇ four-way exchange To valve ⁇ gas-liquid separator ⁇ compressor.
  • the liquid storage tank has limited ability to control the amount of refrigerant participating in the cycle. It can only realize that it does not store refrigerant during cooling and stores refrigerant during heating. It cannot be flexible to the amount of refrigerant participating in the cycle.
  • the adjustment of the air-conditioning system limits the operating efficiency of the air-conditioning system. For example, the amount of refrigerant involved in the cycle is too high, causing the condensing pressure to be too high, the power consumption of the compressor rises sharply, and the suction liquid returns too much.
  • the present invention provides A control method of an air-conditioning system.
  • the air-conditioning system includes a compressor, a four-way reversing valve, an outdoor heat exchanger, an indoor heat exchanger, a gas-liquid separator, an electronic expansion valve, and a liquid storage tank.
  • the refrigerant of the compressor The outlet end is connected to the first end of the four-way reversing valve, the refrigerant inlet end of the compressor is connected to the third end of the four-way reversing valve through the gas-liquid separator, and the outdoor heat exchange
  • the first end of the heat exchanger is connected with the second end of the four-way reversing valve, and the refrigerant pipeline between the second end of the outdoor heat exchanger and the first end of the indoor heat exchanger is connected with the Electronic expansion valve, the second end of the indoor heat exchanger is connected to the fourth end of the four-way reversing valve;
  • the refrigerant inlet end of the liquid storage tank is connected to the electronic expansion valve through a first liquid inlet pipe And the outdoor heat exchanger; and the refrigerant inlet end of the liquid storage tank is connected between the electronic expansion valve and the indoor heat exchanger through a second liquid inlet pipe;
  • the refrigerant of the liquid storage tank The outlet end is connected between the electronic expansion valve and the outdoor
  • the control method includes: obtaining the actual pressure value and actual temperature value of the refrigerant at the second end of the outdoor heat exchanger during cooling; or, obtaining the actual temperature of the indoor heat exchanger during heating.
  • the actual pressure value and actual temperature value of the refrigerant at the first end calculate the actual subcooling value of the air conditioning system based on the actual pressure value and actual temperature value; compare the actual subcooling value with the preset target
  • the cooling degree values are compared, and the amount of refrigerant participating in the circulation in the air-conditioning system is selectively controlled based on the comparison result.
  • the step of "calculating the actual subcooling value of the air conditioning system based on the actual pressure value and the actual temperature value" includes: determining that the actual pressure value corresponds to The saturation temperature value of the refrigerant; calculate the difference between the saturation temperature value and the actual temperature value, and use the difference as the actual subcooling value.
  • the method for determining the target subcooling value includes: obtaining an actual outdoor ambient temperature value during heating, and based on the actual outdoor ambient temperature value and The preset corresponding relationship between the outdoor ambient temperature value during heating and the target supercooling value determines the target supercooling value.
  • each of the preset correspondences between the outdoor ambient temperature value and the target subcooling value includes an outdoor ambient temperature value range and a target subcooling value corresponding thereto.
  • the method for determining the target subcooling value includes: obtaining the actual indoor ambient temperature value during cooling, and based on the actual indoor ambient temperature value and the advance The corresponding relationship between the set indoor ambient temperature value and the target subcooling value during cooling determines the target subcooling value.
  • each of the preset corresponding relationships between the indoor ambient temperature value and the target subcooling value includes an indoor ambient temperature value range and a target subcooling value corresponding thereto.
  • the step of "selectively controlling the amount of circulating refrigerant in the air conditioning system based on the comparison result" includes: if the actual subcooling value is less than the Target subcooling value, increase the amount of circulating refrigerant in the air-conditioning system; and/or, if the actual subcooling value is greater than the target subcooling value, reduce the amount of circulating refrigerant in the air-conditioning system And/or, if the actual subcooling value is equal to the target subcooling value, the amount of refrigerant participating in the circulation in the air conditioning system is kept unchanged.
  • the method of "increasing the amount of circulating refrigerant in the air-conditioning system” includes: controlling the conduction of the first drain pipe and controlling the The first liquid inlet pipe, the second liquid inlet pipe, and the second liquid discharge pipe are cut off; and/or, during cooling, the second liquid outlet pipe is controlled to be conductive and the first liquid inlet pipe and the second liquid inlet pipe are controlled Cut off with the first drain pipe.
  • the method of "reducing the amount of circulating refrigerant in the air-conditioning system” includes: controlling the conduction of the second liquid inlet pipe and controlling the The first liquid inlet pipe, the first liquid discharge pipe, and the second liquid discharge pipe are cut off; and/or, during cooling, the first liquid inlet pipe is controlled to conduct and the second liquid inlet pipe and the first liquid discharge pipe are controlled It is cut off with the second drain pipe.
  • the method of "maintaining the amount of circulating refrigerant in the air conditioning system unchanged” includes: controlling the first liquid inlet pipe, the second liquid inlet pipe, and The first drain pipe and the second drain pipe are cut off.
  • the amount of refrigerant involved in the circulation when the amount of refrigerant involved in the circulation is too much, the amount of refrigerant involved in the circulation can be reduced by conducting the first liquid inlet pipe or the second liquid inlet pipe to reduce the condensing pressure and reduce the compressor's Power consumption.
  • the first discharge pipe or the second discharge pipe can be connected to increase the amount of refrigerant participating in the cycle to increase the system pressure, thereby ensuring the cooling or heating effect of the air conditioning system. This achieves the purpose of flexibly adjusting the amount of refrigerant circulating in the air conditioning system by controlling the conduction and cut-off of the first liquid inlet pipe, the second liquid inlet pipe, the first liquid discharge pipe and the second liquid discharge pipe.
  • the air conditioning system control method of the present invention based on the obtained actual pressure value and actual temperature value of the refrigerant at the second end of the outdoor heat exchanger during cooling, or the obtained value of the first end of the indoor heat exchanger during heating The actual pressure value and actual temperature value of the refrigerant are calculated, the actual subcooling value of the air conditioning system is calculated, and then the actual subcooling value is compared with the preset target subcooling value, and based on the comparison result, the air conditioning system is selectively evaluated.
  • the amount of refrigerant participating in the circulation is controlled, so that the purpose of flexibly adjusting the amount of refrigerant participating in the circulation in the air-conditioning system can be realized more efficiently, so as to more reliably improve the operating efficiency of the air-conditioning system.
  • Figure 1 is a schematic diagram of the structure of the air conditioning system of this embodiment
  • FIG. 2 is a schematic flowchart of the control method of the air conditioning system according to this embodiment.
  • the terms “first”, “second”, and “third” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance.
  • the terms “installation”, “connection”, and “connection” should be interpreted broadly, for example, it may be a fixed connection or a detachable connection, or Integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the air-conditioning system includes a compressor 1, a four-way reversing valve 2, an outdoor heat exchanger 3, an indoor heat exchanger 4, and a gas-liquid separator 5.
  • the electronic expansion valve 6 and the liquid storage tank 7, the refrigerant outlet end of the compressor 1 is connected to the first end of the four-way reversing valve 2 (the left end in Figure 1), and the refrigerant inlet end of the compressor 1 passes through the gas-liquid separator 5 is connected to the third end of the four-way reversing valve 2 (the right end in Figure 1), and the first end of the outdoor heat exchanger 3 is connected to the second end (upper end in Figure 1) of the four-way reversing valve 2,
  • An electronic expansion valve 6 is connected to the refrigerant pipeline between the second end of the outdoor heat exchanger 3 and the first end of the indoor heat exchanger 4, and the second end of the indoor heat exchanger 4 is connected to the four-way reversing valve 2.
  • the fourth end (the lower end in FIG. 1); the refrigerant inlet end of the liquid storage tank 7 is connected between the electronic expansion valve 6 and the outdoor heat exchanger 3 through the first liquid inlet pipe 81; and the refrigerant inlet end of the liquid storage tank 7 It is connected between the electronic expansion valve 6 and the indoor heat exchanger 4 through the second liquid inlet pipe 82; the refrigerant outlet end of the liquid storage tank 7 is connected between the electronic expansion valve 6 and the outdoor heat exchanger 3 through the first liquid discharge pipe 83 And the refrigerant outlet end of the liquid storage tank 7 is connected between the electronic expansion valve 6 and the indoor heat exchanger 4 through the second drain pipe 84.
  • the circulation route of the refrigerant in the air conditioning system during refrigeration is generally: compressor 1 ⁇ four-way reversing valve 2 ⁇ outdoor heat exchanger 3 ⁇ electronic expansion valve 6 ⁇ indoor heat exchanger 4 ⁇ four-way reversing valve 2 ⁇ Gas-liquid separator 5 ⁇ Compressor 1.
  • the refrigerant inlet end of the liquid storage tank 7 is connected between the electronic expansion valve 6 and the outdoor heat exchanger 3 through the first liquid inlet pipe 81; and the refrigerant inlet end of the liquid storage tank 7 It is connected between the electronic expansion valve 6 and the indoor heat exchanger 4 through the second liquid inlet pipe 82; the refrigerant outlet end of the liquid storage tank 7 is connected between the electronic expansion valve 6 and the outdoor heat exchanger 3 through the first liquid discharge pipe 83 And the refrigerant outlet end of the liquid storage tank 7 is connected between the electronic expansion valve 6 and the indoor heat exchanger 4 through the second drain pipe 84.
  • the first inlet pipe 81 or the second inlet pipe 82 can be connected to reduce the amount of refrigerant participating in the cycle to reduce the condensing pressure and reduce the power consumption of the compressor 1.
  • the first drain pipe 83 or the second drain pipe 84 can be connected to increase the amount of circulating refrigerant to increase the system pressure, thereby ensuring the cooling or heating effect of the air conditioning system. This realizes the flexible adjustment of the amount of circulating refrigerant in the air conditioning system by controlling the opening and closing of the first liquid inlet pipe 81, the second liquid inlet pipe 82, the first liquid discharge pipe 83, and the second liquid discharge pipe 84. Purpose. Among them, the specific control method of the air conditioning system will be described in detail below.
  • the air-conditioning system further includes a first on-off valve 91, a second on-off valve 92, a third on-off valve 93, and a fourth on-off valve 94;
  • An on-off valve 91 is connected to the first inlet pipe 81
  • the second on-off valve 92 is connected to the second inlet pipe 82
  • the third on-off valve 93 is connected to the first drain pipe 83
  • the fourth The shutoff valve 94 is connected to the second drain pipe 84.
  • the first on-off valve 91, the second on-off valve 92, the third on-off valve 93, and the fourth on-off valve 94 can be selected as solenoid valves or other valves, as long as the corresponding pipeline can be opened and closed. Can.
  • the air-conditioning system further includes a first check valve 95, a second check valve 96, and a third check valve 97;
  • the first check valve 95 is set to Only the refrigerant is allowed to flow from the refrigerant outlet end of the compressor 1 to the four-way reversing valve 2;
  • the second check valve 96 is set to only allow the refrigerant to flow from the first inlet pipe 81 and/or the second inlet pipe 82 to the liquid storage tank 7;
  • the third one-way valve 97 is set to only allow the refrigerant to flow from the liquid storage tank 7 to the first drain pipe 83 and/or the second drain pipe 84.
  • the first one-way valve 95 is set to only allow the refrigerant to flow from the refrigerant outlet end of the compressor 1 to the four-way reversing valve 2, so as to prevent the compressor 1 from shutting down or other circumstances causing the refrigerant outlet pressure of the compressor 1 to decrease.
  • the refrigerant flows back to the compressor 1, causing the compressor 1 to be damaged.
  • the air conditioning system There may be only one second check valve 96 in the air conditioning system.
  • One end of the second check valve 96 may be connected to the refrigerant inlet of the liquid storage tank 7, and the other end may be connected to the first inlet pipe 81 and the second inlet pipe through a three-way pipe.
  • the liquid pipe 82 is connected; two second one-way valves 96 can also be provided in the air-conditioning system.
  • the first liquid inlet pipe 81 and the second liquid pipe 82 are respectively connected to a second one-way valve 96, and two second one-way valves 96
  • the valve 96 can be connected to the refrigerant inlet of the liquid storage tank 7 through a three-way pipe; or, the air conditioning system includes two second one-way valves 96; one of the second one-way valves 96 is used to connect a refrigerant of the liquid storage tank 7
  • the inlet and the first liquid inlet pipe 81, and the other second one-way valve 96 are used to connect the other refrigerant inlet of the liquid storage tank 7 and the second liquid inlet pipe 82.
  • the air conditioning system in Fig. 1 is such a setting method. .
  • the air conditioning system in Figure 1 includes a third one-way valve 97; the inlet end of the third one-way valve 97 is connected to the refrigerant outlet of the liquid storage tank 7, and the outlet end of the third one-way valve 97 passes through a three-way pipe Connected to the first drain pipe 83 and the second drain pipe 83.
  • the air-conditioning system further includes a first pressure sensor 32 and a first temperature sensor 31.
  • the first pressure sensor 32 and the first temperature sensor 31 are arranged in the outdoor heat exchanger. 3 of the second end.
  • the first pressure sensor 32 and the first temperature sensor 31 can measure the actual pressure value and actual temperature value of the refrigerant at the second end of the outdoor heat exchanger 3. In this embodiment, it is mainly to obtain the outdoor heat exchanger during cooling.
  • the actual pressure value and actual temperature value of the refrigerant outlet of 3 provide a basis for adjusting the amount of refrigerant participating in the cycle during refrigeration.
  • the air-conditioning system further includes a second pressure sensor 41 and a second temperature sensor 42, and the second pressure sensor 41 and the second temperature sensor 42 are arranged in the indoor heat exchanger.
  • the second pressure sensor 41 and the second temperature sensor 42 can measure the actual pressure value and actual temperature value of the refrigerant at the first end of the indoor heat exchanger 4.
  • the actual pressure value and actual temperature value of the refrigerant outlet of the heater 4 provide a basis for adjusting the amount of refrigerant participating in the circulation during heating.
  • the air-conditioning system further includes a water circulation unit; the water circulation unit is arranged to exchange heat with the indoor heat exchanger 4 on one side and heat exchange with indoor air on the other side. In this way, the fluctuation of the heating temperature or the cooling temperature of the air conditioning system can be reduced, and during defrosting, cold or hot air can be continuously provided to the room for a period of time, thereby ensuring the heat exchange effect of the air conditioning system.
  • the air-conditioning system further includes an outdoor fan 33; the outdoor fan 33 is configured to dissipate heat to the outdoor heat exchanger 3.
  • the outdoor heat exchanger 3 can be selected as a finned heat exchanger to increase the heat exchange area between the outdoor heat exchanger 3 and outdoor air and improve the heat exchange effect.
  • this embodiment also provides a control method for the above-mentioned air conditioning system, and the control method includes:
  • the electronic expansion valve 6 may control the refrigerant flow in the air-conditioning system according to the superheat of the air-conditioning system within a period of time after the air-conditioning system is turned on. At this time, the air-conditioning system is in an unstable state. If the amount of refrigerant in the system is adjusted, the desired effect may not be achieved. Therefore, before selectively controlling the amount of refrigerant circulating in the air conditioning system based on the comparison result between the actual subcooling value and the preset target subcooling value, it is best to keep the system in a stable state.
  • the actual pressure value and actual temperature value of the refrigerant at the second end of the outdoor heat exchanger 3 can be acquired through the first pressure sensor 32 and the first temperature sensor 31; the indoor temperature can also be acquired through the second pressure sensor 41 and the second temperature sensor 42.
  • This embodiment provides a control method for the above-mentioned air-conditioning system, based on the actual pressure value of the refrigerant at the second end of the outdoor heat exchanger 3 (that is, the outlet end of the refrigerant when used as a condenser) obtained during cooling and the actual Temperature value, or obtained actual pressure value and actual temperature value of the refrigerant at the first end of the indoor heat exchanger 4 (that is, the outlet end of the refrigerant when used as a condenser) during heating, and calculate the actual subcooling value of the air conditioning system , And then compare the actual subcooling value with the preset target subcooling value, and selectively control the amount of circulating refrigerant in the air conditioning system based on the comparison result, so as to achieve a more efficient and flexible adjustment of the air conditioning system
  • the purpose of the amount of refrigerant participating in the circulation is to more reliably improve the operating efficiency of the air-conditioning system.
  • the step S2 of "calculating the actual subcooling value of the air conditioning system based on the actual pressure value and the actual temperature value" includes: determining the saturation of the refrigerant corresponding to the actual pressure value Temperature value: Calculate the difference between the saturation temperature value and the actual temperature value, and use the difference as the actual subcooling value.
  • the saturation temperature value corresponding to the actual pressure value of the refrigerant can be determined by looking up the table. For example, for the same saturation temperature value of 31°C, the corresponding pressure value of R22 refrigerant is 1.12Mpa, the corresponding pressure value of R134A refrigerant is 0.69Mpa, and the corresponding pressure value of R410A refrigerant is 1.849Mpa.
  • the method for determining the target supercooling value in step S3 includes: obtaining the actual outdoor ambient temperature value during heating, and based on the actual outdoor ambient temperature value The corresponding relationship between the outdoor ambient temperature value during heating and the target supercooling degree value set in advance determines the target supercooling degree value.
  • each of the preset correspondences between the outdoor environmental temperature value and the target subcooling value includes an outdoor environmental temperature value range and a target subcooling value corresponding thereto.
  • the method for determining the target subcooling value in step S3 includes: acquiring the actual indoor ambient temperature value during cooling, and based on the actual indoor ambient temperature value and The preset corresponding relationship between the indoor ambient temperature value during cooling and the target subcooling value determines the target subcooling value.
  • each of the preset corresponding relationships between the indoor ambient temperature value and the target subcooling value includes an indoor ambient temperature value range and a target subcooling value corresponding thereto.
  • the actual indoor ambient temperature value refers to the actual indoor air temperature
  • the air-conditioning system is a water-cooled air conditioner
  • the indoor heat exchanger 4 When the heat is exchanged with one side of the water circulation unit first, and the other side of the water circulation unit exchanges heat with the indoor air, the actual indoor ambient temperature value refers to the heat exchange between the water circulation unit and the indoor heat exchanger 4 temperature.
  • the outdoor ambient temperature value within a certain range or within a certain range can be adjusted.
  • the indoor temperature value corresponds to the same target subcooling value, as shown in Table 1 and Table 2, where the endpoint values of two adjacent temperature ranges do not overlap, that is, when one temperature range includes the endpoint value, the other temperature range does not. Include the endpoint value.
  • the step S3 of "selectively control the amount of circulating refrigerant in the air conditioning system based on the comparison result" includes: if the actual subcooling value is less than the target overcooling Cooling value, increase the amount of circulating refrigerant in the air-conditioning system; and/or, if the actual subcooling value is greater than the target subcooling value, reduce the amount of circulating refrigerant in the air-conditioning system; and/or, if the actual If the cooling value is equal to the target subcooling value, the amount of circulating refrigerant in the air conditioning system is kept unchanged. Specifically:
  • the second liquid discharge pipe 84 is controlled to conduct and the first liquid inlet pipe 81, the second liquid inlet pipe 82 and the first liquid discharge pipe 83 are controlled to be cut off.
  • the refrigerant flows from the outdoor heat exchanger 3 to the indoor heat exchanger 4.
  • the pressure on the refrigerant pipeline between the electronic expansion valve 6 and the indoor heat exchanger 4 Lower corresponds to the saturation temperature lower than the ambient temperature (except for extreme low-temperature refrigeration conditions)
  • the refrigerant in the storage tank absorbs heat from the external environment and gradually evaporates, making the pressure in the storage tank higher than the electronic
  • the pressure in the refrigerant pipeline between the expansion valve 6 and the indoor heat exchanger 4 leads to the second drain pipe 84 to make it easier for the refrigerant in the liquid storage tank 7 to be added to the refrigerant cycle of the air conditioning system.
  • the first liquid discharge pipe 83 is controlled to be turned on and the first liquid inlet pipe 81, the second liquid inlet pipe 82 and the second liquid discharge pipe 84 are controlled to be cut off.
  • the refrigerant flows from the indoor heat exchanger 4 to the outdoor heat exchanger 3.
  • the pressure on the refrigerant pipeline between the electronic expansion valve 6 and the outdoor heat exchanger 3 Low so the pressure in the liquid storage tank corresponds to the saturation temperature lower than the ambient temperature, the refrigerant in the liquid storage tank absorbs heat from the external environment and gradually evaporates, making the pressure in the liquid storage tank higher than the electronic expansion valve 6 and outdoor heat exchange
  • the pressure in the refrigerant pipeline between the devices 3 leads to the first drain pipe 83 to make it easier for the refrigerant in the liquid storage tank 7 to be added to the refrigerant circulation of the air conditioning system.
  • the first liquid inlet pipe 81 is controlled to conduct and the second liquid inlet pipe 82, the first liquid discharge pipe 83 and the second liquid discharge pipe 84 are controlled to be cut off.
  • the refrigerant flows from the outdoor heat exchanger 3 to the indoor heat exchanger 4.
  • the pressure on the refrigerant pipeline between the electronic expansion valve 6 and the outdoor heat exchanger 3 is higher, and the pressure in the liquid storage tank corresponds to a saturation temperature higher than the external environment.
  • the refrigerant in the liquid storage tank gradually condenses, so that the pressure in the liquid storage tank is lower than the pressure in the refrigerant pipeline between the electronic expansion valve 6 and the outdoor heat exchanger 3, and it is easier to conduct the first liquid inlet pipe 81
  • the refrigerant participating in the circulation in the air conditioning system is added to the liquid storage tank 7.
  • the second liquid inlet pipe 82 is controlled to conduct and the first liquid inlet pipe 81, the first liquid discharge pipe 83 and the second liquid discharge pipe 84 are controlled to be cut off.
  • the refrigerant flows from the indoor heat exchanger 4 to the outdoor heat exchanger 3.
  • the pressure on the refrigerant pipeline between the electronic expansion valve 6 and the indoor heat exchanger 4 is higher, and the corresponding saturation temperature of the pressure in the liquid storage tank is higher than the external environment.
  • the refrigerant in the liquid storage tank gradually condenses, so that the pressure in the liquid storage tank is lower than the pressure in the refrigerant pipeline between the electronic expansion valve 6 and the indoor heat exchanger 4, and it is easier to conduct the second liquid inlet pipe 82
  • the refrigerant participating in the circulation in the air conditioning system is added to the liquid storage tank 7.
  • the method of "keep the amount of circulating refrigerant in the air conditioning system unchanged" includes: controlling the first liquid inlet pipe 81, the second liquid inlet pipe 82, the first liquid discharge pipe 83 and the second liquid discharge pipe 84 to cut off, namely The refrigerant in the liquid storage tank 7 is not allowed to flow in or out.
  • control method of the air conditioning system can be stored as a program in a computer readable storage medium.
  • the storage medium includes a number of instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute part of the steps of the methods in the various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明属于空调技术领域,具体涉及一种空调系统的控制方法。本发明通过基于获取的制冷时室外换热器的第二端的冷媒的实际压力值和实际温度值,或者获取的制热时室内换热器的第一端的冷媒的实际压力值和实际温度值,计算空调系统的实际过冷度值,然后将实际过冷度值与预设的目标过冷度值进行比较,并基于比较结果选择性地对空调系统中参与循环的冷媒量进行控制,从而可以更高效的实现灵活的调节空调系统中参与循环的冷媒量的目的,以更可靠的提高空调系统的运行效率。

Description

空调系统的控制方法 技术领域
本发明属于空调技术领域,具体涉及一种空调系统的控制方法。
背景技术
在空调系统的冷媒循环过程中,当室外换热器作冷凝器使用而室内换热器作蒸发器使用时,则可对室内进行制冷;当室内换热器作冷凝器使用而室外换热器作蒸发器使用,则可对室内进行制热。
现有的一种空调系统,包括压缩机、四通换向阀、室外换热器、室内换热器、气液分离器、电子膨胀阀和储液罐,其中压缩机的冷媒出口端连接在四通换向阀的第一端,压缩机的冷进口端通过气液分离器连接在四通换向阀的第三端,室外换热器的第一端与四通换向阀的第二端连接,室外换热器的第二端与室内换热器的第一端之间的冷媒管路上连接有电子膨胀阀和储液罐,室内换热器的第二端与四通换向阀的第四端连接。在制冷时,上述空调系统的冷媒的流通路线为:压缩机→四通换向阀→室外换热器→电子膨胀阀→储液罐→室内换热器→四通换向阀→气液分离器→压缩机;在制热时,上述空调系统的冷媒的流通路线为:压缩机→四通换向阀→室内换热器→电子膨胀阀→储液罐→室外换热器→四通换向阀→气液分离器→压缩机。
但是,现有的上述空调系统中储液罐对参与循环的冷媒量的控制能力是有限的,只能实现在制冷时不储存冷媒,在制热时储存冷媒,不能对参与循环的冷媒量灵活的进行调节,从而限制了空调系统的运行效率。例如,参与循环的冷媒量过多而造成冷凝压力过高,压缩机功耗大幅上升及吸气回液过多等问题。如果参与循环的冷媒量过少,则会出现空调系统的运行低压(一般为蒸发器与压缩机之间管路上的压力)偏低等问题,这些问题均会降低空调系统的制冷或制热效果。
相应地,本领域需要一种新的空调系统的控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有的空调系统存在的储液罐不能对参与循环的冷媒量灵活的进行调节,从而限制了空调系统的运行效率的问题,本发明提供了一种空调系统的控制方法,该空调系统包括压缩机、四通换向阀、室外换热器、室内换热器、气液分离器、电子膨胀阀和储液罐,所述压缩机的冷媒出口端连接在所述四通换向阀的第一端,所述压缩机的冷媒进口端通过所述气液分离器连接在所述四通换向阀的第三端,所述室外换热器的第一端与所述四通换向阀的第二端连接,所述室外换热器的第二端与所述室内换热器的第一端之间的冷媒管路上连接有所述电子膨胀阀,所述室内换热器的第二端连接在所述四通换向阀的第四端;所述储液罐的冷媒进口端通过第一进液管连接在所述电子膨胀阀与所述室外换热器之间;且所述储液罐的冷媒进口端通过第二进液管连接在所述电子膨胀阀与所述室内换热器之间;所述储液罐的冷媒出口端通过第一排液管连接在所述电子膨胀阀与所述室外换热器之间;且所述储液罐的冷媒出口端通过第二排液管连接在所述电子膨胀阀与所述室内换热器之间,所述控制方法包括:获取制冷时所述室外换热器的第二端的冷媒的实际压力值和实际温度值;或者,获取制热时所述室内换热器的第一端的冷媒的实际压力值和实际温度值;基于所述实际压力值和实际温度值计算所述空调系统的实际过冷度值;将所述实际过冷度值与预设的目标过冷度值进行比较,并基于比较结果选择性地对所述空调系统中参与循环的冷媒量进行控制。
作为本发明提供的上述控制方法的一种优选的技术方案,“基于所述实际压力值和实际温度值计算所述空调系统的实际过冷度值”的步骤包括:确定所述实际压力值对应的冷媒的饱和温度值;计算所述饱和温度值与所述实际温度值的差值,并将该差值作为所述实际过冷度值。
作为本发明提供的上述控制方法的一种优选的技术方案,所述目标过冷度值的确定方法包括:获取制热时实际的室外环境温度值,并基于所述实际的室外环境温度值和预先设定的制热时室外环境温度值与目标过冷度值的对应关系确定所述目标过冷度值。优选地,所述预先 设定的室外环境温度值与目标过冷度值的对应关系中的每一个均包括室外环境温度值范围及与其相对应的一个目标过冷度值。
作为本发明提供的上述控制方法的一种优选的技术方案,所述目标过冷度值的确定方法包括:获取制冷时实际的室内环境温度值,并基于所述实际的室内环境温度值和预先设定的制冷时室内环境温度值与目标过冷度值的对应关系确定所述目标过冷度值。优选地,所述预先设定的室内环境温度值与目标过冷度值的对应关系中的每一个均包括室内环境温度值范围及与其相对应的一个目标过冷度值。
作为本发明提供的上述控制方法的一种优选的技术方案,“基于比较结果选择性地对所述空调系统中参与循环的冷媒量进行控制”的步骤包括:若实际过冷度值小于所述目标过冷度值,则增加所述空调系统中参与循环的冷媒量;并且/或者,若实际过冷度值大于所述目标过冷度值,则减少所述空调系统中参与循环的冷媒量;并且/或者,若实际过冷度值等于所述目标过冷度值,则保持所述空调系统中参与循环的冷媒量不变。
作为本发明提供的上述控制方法的一种优选的技术方案,“增加所述空调系统中参与循环的冷媒量”的方法包括:制热时控制所述第一排液管导通且控制所述第一进液管、第二进液管和第二排液管截止;并且/或者,制冷时控制所述第二排液管导通且控制所述第一进液管、第二进液管和第一排液管截止。
作为本发明提供的上述控制方法的一种优选的技术方案,“减少所述空调系统中参与循环的冷媒量”的方法包括:制热时控制所述第二进液管导通且控制所述第一进液管、第一排液管和第二排液管截止;并且/或者,制冷时控制所述第一进液管导通且控制所述第二进液管、第一排液管和第二排液管截止。
作为本发明提供的上述控制方法的一种优选的技术方案,“保持所述空调系统中参与循环的冷媒量不变”的方法包括:控制所述第一进液管、第二进液管、第一排液管和第二排液管截止。
根据本发明的空调系统控制方法,当参与循环的冷媒量过多时,可以通过导通第一进液管或第二进液管来减少参与循环的冷媒量来降低冷凝压力,并降低压缩机的功耗。当参与循环的冷媒量过少时,可 以通过导通第一排液管或第二排液管来增加参与循环的冷媒量来增加系统压力,从而保证空调系统的制冷或制热效果。从而实现了通过控制第一进液管、第二进液管、第一排液管和第二排液管的导通与截止来对空调系统中参与循环的冷媒量进行灵活的调节的目的。
此外,根据本发明的空调系统控制方法,通过基于获取的制冷时室外换热器的第二端的冷媒的实际压力值和实际温度值,或者获取的制热时室内换热器的第一端的冷媒的实际压力值和实际温度值,计算空调系统的实际过冷度值,然后将实际过冷度值与预设的目标过冷度值进行比较,并基于比较结果选择性地对空调系统中参与循环的冷媒量进行控制,从而可以更高效的实现灵活的调节空调系统中参与循环的冷媒量的目的,以更可靠的提高空调系统的运行效率。
附图说明
下面参照附图来描述本发明的空调系统的控制方法。附图中:
图1为本实施例的空调系统的结构示意图;
图2为本实施例的空调系统的控制方法的流程示意图。
附图标记列表
1-压缩机;2-四通换向阀;3-室外换热器;31-第一温度传感器;32-第一压力传感器;33-室外风机;4-室内换热器;41-第二压力传感器;42-第二温度传感器;5-气液分离器;6-电子膨胀阀;7-储液罐;81-第一进液管;82-第二进液管;83-第一排液管;84-第二排液管;91-第一通断阀;92-第二通断阀;93-第三通断阀;94-第四通断阀;95-第一单向阀;96-第二单向阀;97-第三单向阀。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然本实施例针对室外环境温度值与目标过冷度值的对应关系,以及室内环境温度值与目标过冷度值的对应关系是以具体数值进行示例性说明的,但是该对应关系并非一成不变, 针对不同的空调机型,本领域技术人员可以根据需要对其数值可以进行相应的调整,以便适应具体的应用场合。
需要说明的是,在本发明的描述中,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
首先,本实施例提供了一种空调系统,如图1所示,该空调系统包括压缩机1、四通换向阀2、室外换热器3、室内换热器4、气液分离器5、电子膨胀阀6和储液罐7,压缩机1的冷媒出口端连接在四通换向阀2的第一端(图1中的左端),压缩机1的冷媒进口端通过气液分离器5连接在四通换向阀2的第三端(图1中的右端),室外换热器3的第一端与四通换向阀2的第二端(图1中的上端)连接,室外换热器3的第二端与室内换热器4的第一端之间的冷媒管路上连接有电子膨胀阀6,室内换热器4的第二端连接在四通换向阀2的第四端(图1中的下端);储液罐7的冷媒进口端通过第一进液管81连接在电子膨胀阀6与室外换热器3之间;且储液罐7的冷媒进口端通过第二进液管82连接在电子膨胀阀6与室内换热器4之间;储液罐7的冷媒出口端通过第一排液管83连接在电子膨胀阀6与室外换热器3之间;且储液罐7的冷媒出口端通过第二排液管84连接在电子膨胀阀6与室内换热器4之间。
示例性地,本实施例提供的空调系统的一般工作原理为:
1)空调系统制冷时
将四通阀的第一端与第二端(图1中的左端与上端)导通,且四通阀的第三端与第四端导通(图1中的右端与下端),使空调系统处于制冷状态,制冷时空调系统的冷媒的流通路线一般为:压缩机1→四通换向阀2→室外换热器3→电子膨胀阀6→室内换热器4→四通换向阀2→气液分离器5→压缩机1。
2)空调系统制热时
将四通阀的第一端与第四端导通(图1中的左端与下端), 且四通阀的第二端与第三端导通(图1中的上端与右端),使空调系统处于制热状态,制热时空调系统的冷媒的流通路线一般为:压缩机1→四通换向阀2→室内换热器4→电子膨胀阀6→室外换热器3→四通换向阀2→气液分离器5→压缩机1。
本实施例提供的一种空调系统,将储液罐7的冷媒进口端通过第一进液管81连接在电子膨胀阀6与室外换热器3之间;且储液罐7的冷媒进口端通过第二进液管82连接在电子膨胀阀6与室内换热器4之间;储液罐7的冷媒出口端通过第一排液管83连接在电子膨胀阀6与室外换热器3之间;且储液罐7的冷媒出口端通过第二排液管84连接在电子膨胀阀6与室内换热器4之间。当参与循环的冷媒量过多时,可以通过导通第一进液管81或第二进液管82来减少参与循环的冷媒量来降低冷凝压力,并降低压缩机1的功耗。当参与循环的冷媒量过少时,可以通过导通第一排液管83或第二排液管84来增加参与循环的冷媒量来增加系统压力,从而保证空调系统的制冷或制热效果。从而实现了通过控制第一进液管81、第二进液管82、第一排液管83和第二排液管84的开闭来对空调系统中参与循环的冷媒量进行灵活的调节的目的。其中,在下文会对该空调系统的具体控制方法进行详细的描述。
作为本实施例提供的上述空调系统的一种优选的实施方式,空调系统还包括第一通断阀91、第二通断阀92、第三通断阀93和第四通断阀94;第一通断阀91连接在第一进液管81上,第二通断阀92连接在第二进液管82上,第三通断阀93连接在第一排液管83上,第四通断阀94连接在第二排液管84上。
示例性地,第一通断阀91、第二通断阀92、第三通断阀93和第四通断阀94可以选择为电磁阀或者其他阀门,只要能够实现相应管路的开闭即可。
作为本实施例提供的上述空调系统的一种优选的实施方式,空调系统还包括第一单向阀95、第二单向阀96和第三单向阀97;第一单向阀95设置成仅允许冷媒由压缩机1的冷媒出口端流向四通换向阀2;第二单向阀96设置成仅允许冷媒由第一进液管81和/或第二进液管82流向储液罐7;第三单向阀97设置成仅允许冷媒由储液罐7流向第一排液管83和/或第二排液管84。
示例性地,第一单向阀95设置成仅允许冷媒由压缩机1的冷媒出口端流向四通换向阀2,以防止压缩机1停机或其他情况导致压缩机1的冷媒出口压力降低时冷媒倒流回压缩机1使压缩机1发生损坏的问题。
该空调系统中可以只有一个第二单向阀96,第二单向阀96可以一端与储液罐7的冷媒进口连接,另一端通过三通管分别与第一进液管81和第二进液管82连接;该空调系统中也可以设置两个第二单向阀96,第一进液管81和第二进液管82分别连接一个第二单向阀96,两个第二单向阀96可以通过一个三通管与储液罐7的冷媒进口连接;或者,空调系统包括两个第二单向阀96;其中一个第二单向阀96用于连接储液罐7的一个冷媒进口与第一进液管81,另一个第二单向阀96用于连接储液罐7的另一个冷媒进口与第二进液管82,如图1中的空调系统即为这种设置方法。
第三单向阀97与储液罐7、第一排液管83和/或第二排液管84的连接方式请参照第二单向阀96的描述,在此不再赘述。其中,图1中的空调系统包括一个第三单向阀97;第三单向阀97的进口端连接在储液罐7的冷媒出口上,第三单向阀97的出口端通过三通管与第一排液管83和第二排液管连接83。
作为本实施例提供的上述空调系统的一种优选的实施方式,空调系统还包括第一压力传感器32和第一温度传感器31,第一压力传感器32和第一温度传感器31设置在室外换热器3的第二端。
示例性地,第一压力传感器32和第一温度传感器31可以测量室外换热器3的第二端的冷媒的实际压力值和实际温度值,本实施例中主要是为了获取制冷时室外换热器3的冷媒出口的实际压力值和实际温度值,以为制冷时调节参与循环的冷媒量提供依据。
作为本实施例提供的上述空调系统的一种优选的实施方式,空调系统还包括第二压力传感器41和第二温度传感器42,第二压力传感器41和第二温度传感器42设置在室内换热器4的第一端。
示例性地,第二压力传感器41和第二温度传感器42可以测量室内换热器4的第一端的冷媒的实际压力值和实际温度值,本实施例中主要是为了获取制热时室内换热器4的冷媒出口的实际压力值和实际温度值,以为制热时调节参与循环的冷媒量提供依据。
作为本实施例提供的上述空调系统的一种优选的实施方式, 空调系统还包括水循环机组;水循环机组设置成一侧与室内换热器4换热,另一侧与室内空气换热。如此,可以减少空调系统的制热温度或制冷温度的波动,在除霜时,仍能在一段时间内继续向室内提供冷风或热风,从而保证空调系统的换热效果。
作为本实施例提供的上述空调系统的一种优选的实施方式,空调系统还包括室外风机33;室外风机33设置成对室外换热器3散热。室外换热器3可以选择为翅片式换热器,以增大室外换热器3与室外空气的热交换面积,提高换热效果。
此外,如图2所示,本实施例还提供了一种用于上述空调系统的控制方法,该控制方法包括:
S1、获取制冷时室外换热器3的第二端的冷媒的实际压力值和实际温度值;或者,获取制热时室内换热器4的第一端的冷媒的实际压力值和实际温度值;
S2、基于实际压力值和实际温度值计算空调系统的实际过冷度值;
S3、将实际过冷度值与预设的目标过冷度值进行比较,并基于比较结果选择性地对空调系统中参与循环的冷媒量进行控制。
示例性地,在空调系统开启后的一段时间内电子膨胀阀6可能会根据空调系统的过热度对空调系统中的冷媒流量进行控制,这时空调系统及处于不稳定状态,在这时若对系统的冷媒量进行调节,则可能达不到应有的效果。所以,在基于实际过冷度值与预设的目标过冷度值进行的比较结果选择性地对空调系统中参与循环的冷媒量进行控制前,最好使系统处于稳定的状态。
可以通过第一压力传感器32和第一温度传感器31来获取室外换热器3的第二端的冷媒的实际压力值和实际温度值;还可以通过第二压力传感器41和第二温度传感器42获取室内换热器4的第一端的冷媒的实际压力值和实际温度值。
本实施例提供的一种用于上述空调系统的控制方法,通过基于获取的制冷时室外换热器3(即作为冷凝器使用时冷媒的出口端)的第二端的冷媒的实际压力值和实际温度值,或者获取的制热时室内换热器4的第一端(即作为冷凝器使用时冷媒的出口端)的冷媒的实际压力值和 实际温度值,计算空调系统的实际过冷度值,然后将实际过冷度值与预设的目标过冷度值进行比较,并基于比较结果选择性地对空调系统中参与循环的冷媒量进行控制,从而可以更高效的实现灵活的调节空调系统中参与循环的冷媒量的目的,以更可靠的提高空调系统的运行效率。
作为本实施例提供的上述控制方法的一种优选的实施方式,“基于实际压力值和实际温度值计算空调系统的实际过冷度值”的步骤S2包括:确定实际压力值对应的冷媒的饱和温度值;计算饱和温度值与实际温度值的差值,并将该差值作为实际过冷度值。
示例性地,不同种类的冷媒的压力与其饱和温度值都有相应的对照表,通过查表可以确定冷媒的实际压力值对应的饱和温度值。例如,对于同一饱和温度值31℃,R22冷媒对应的压力值为1.12Mpa,R134A冷媒对应的压力值为0.69Mpa,R410A冷媒对应的压力值为1.849Mpa。
作为本实施例提供的上述控制方法的一种优选的实施方式,步骤S3中的目标过冷度值的确定方法包括:获取制热时实际的室外环境温度值,并基于实际的室外环境温度值和预先设定的制热时室外环境温度值与目标过冷度值的对应关系确定目标过冷度值。优选地,预先设定的室外环境温度值与目标过冷度值的对应关系中的每一个均包括室外环境温度值范围及与其相对应的一个目标过冷度值。
作为本实施例提供的上述控制方法的一种优选的实施方式,步骤S3中的目标过冷度值的确定方法包括:获取制冷时实际的室内环境温度值,并基于实际的室内环境温度值和预先设定的制冷时室内环境温度值与目标过冷度值的对应关系确定目标过冷度值。优选地,预先设定的室内环境温度值与目标过冷度值的对应关系中的每一个均包括室内环境温度值范围及与其相对应的一个目标过冷度值。
应当说明的是,当室内换热器4直接与室内空气进行换热时,实际的室内环境温度值指的是室内的实际空气温度;而当空调系统为水机空调时,室内换热器4先与水循环机组的一侧进行换热,水循环机组的另一侧再与室内的空气换热时,实际的室内环境温度值指的是水循环机组与室内换热器4进行热交换的一侧的温度。
制热时室外环境温度值与目标过冷度值的对应关系,以及制冷时室内环境温度值与目标过冷度值的对应关系,根据空调系统的型号 的不同,其对应关系在数值上可能会存在差别,且其具体的对应关系可以通过经验或者实验的方法进行确定,本实施例仅对空调系统的控制方法在原理上进行阐述,并在下文中对该对应关系作了示例性的说明,以使本领域的技术人员能够在此基础上实施。
为了在空调系统中参与循环的冷媒量进行控制的同时,兼顾空调系统的稳定性,避免对空调系统中的冷媒量频繁的进行调节,可以将一定范围内的室外环境温度值或者一定范围内的室内温度值对应于同一目标过冷度值,如表1和表2所示,其中两个相邻温度范围的端点值不重合,即一个温度范围包括该端点值时,另一个温度范围则不包括该端点值。
表1 室外环境温度值与目标过冷度值的对应关系
室外环境温度值范围(℃) 小于10 10~20 2~30 30~40 大于40
目标过冷度值(℃) 6 7 8 8 6
表2 室内环境温度值与目标过冷度值的对应关系
室内环境温度值范围(℃) 小于5 5~15 15~25 25~35 大于35
目标过冷度值(℃) 3 4 5 5 4
作为本实施例提供的上述控制方法的一种优选的实施方式,“基于比较结果选择性地对空调系统中参与循环的冷媒量进行控制”的步骤S3包括:若实际过冷度值小于目标过冷度值,则增加空调系统中参与循环的冷媒量;并且/或者,若实际过冷度值大于目标过冷度值,则减少空调系统中参与循环的冷媒量;并且/或者,若实际过冷度值等于目标过冷度值,则保持空调系统中参与循环的冷媒量不变。具体为:
1)“增加空调系统中参与循环的冷媒量”的方法包括:
制冷时控制第二排液管84导通且控制第一进液管81、第二进液管82和第一排液管83截止。此时,冷媒由室外换热器3流向室内换热器4,且由于冷媒经过电子膨胀阀6节流后压力减小,电子膨胀阀6与室内换热器4之间的冷媒管路上的压力较低,储液罐中压力对应饱和温度低于外界环境温度(极端的低温制冷工况除外),储液罐中的冷媒从外界环境中吸热逐渐蒸发,使储液罐中压力高于电子膨胀阀6与室内换热器4之间 的冷媒管路中的压力,导通第二排液管84更容易使储液罐7中的冷媒加入空调系统的冷媒循环中。
制热时控制第一排液管83导通且控制第一进液管81、第二进液管82和第二排液管84截止。此时,冷媒由室内换热器4流向室外换热器3,且由于冷媒经过电子膨胀阀6节流后压力减小,电子膨胀阀6与室外换热器3之间的冷媒管路上的压力较低,所以储液罐中压力对应饱和温度低于外界环境温度,储液罐中的制冷剂从外界环境中吸热逐渐蒸发,使储液罐中压力高于电子膨胀阀6与室外换热器3之间的冷媒管路中的压力,导通第一排液管83更容易使储液罐7中的冷媒加入空调系统的冷媒循环中。
2)“减少空调系统中参与循环的冷媒量”的方法包括:
制冷时控制第一进液管81导通且控制第二进液管82、第一排液管83和第二排液管84截止。此时,冷媒由室外换热器3流向室内换热器4,电子膨胀阀6与室外换热器3之间的冷媒管路上的压力较高,储液罐中压力对应饱和温度高于外界环境温度,储液罐中的冷媒逐渐冷凝,使储液罐中压力低于电子膨胀阀6与室外换热器3之间的冷媒管路中的压力,导通第一进液管81更容易使空调系统中参与循环的冷媒加入储液罐7中。
制热时控制第二进液管82导通且控制第一进液管81、第一排液管83和第二排液管84截止。此时,冷媒由室内换热器4流向室外换热器3,电子膨胀阀6与室内换热器4之间的冷媒管路上的压力较高,储液罐中压力对应饱和温度高于外界环境温度,储液罐中的制冷剂逐渐冷凝,使储液罐中压力低于电子膨胀阀6与室内换热器4之间的冷媒管路中的压力,导通第二进液管82更容易使空调系统中参与循环的冷媒加入储液罐7中。
3)“保持空调系统中参与循环的冷媒量不变”的方法包括:控制第一进液管81、第二进液管82、第一排液管83和第二排液管84截止,即不允许储液罐7中的冷媒流进或流出。
需要说明的是,尽管上文详细描述了本发明方法的详细步骤,但是,在不偏离本发明的基本原理的前提下,本领域技术人员可以对上述步骤进行组合、拆分及调换顺序,如此修改后的技术方案并没有改变本发明的基本构思,因此也落入本发明的保护范围之内。
本领域的技术人员应当理解的是,可以将本实施例提供的空调系统的控制方法作为程序存储在一个计算机可读取存储介质中。该存 储介质中包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的保护范围之内并且形成不同的实施例。例如,在本发明的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种空调系统的控制方法,所述空调系统包括压缩机、四通换向阀、室外换热器、室内换热器、气液分离器、电子膨胀阀和储液罐,所述压缩机的冷媒出口端连接在所述四通换向阀的第一端,所述压缩机的冷媒进口端通过所述气液分离器连接在所述四通换向阀的第三端,所述室外换热器的第一端与所述四通换向阀的第二端连接,所述室外换热器的第二端与所述室内换热器的第一端之间的冷媒管路上连接有所述电子膨胀阀,所述室内换热器的第二端连接在所述四通换向阀的第四端;所述储液罐的冷媒进口端通过第一进液管连接在所述电子膨胀阀与所述室外换热器之间;且所述储液罐的冷媒进口端通过第二进液管连接在所述电子膨胀阀与所述室内换热器之间;所述储液罐的冷媒出口端通过第一排液管连接在所述电子膨胀阀与所述室外换热器之间;且所述储液罐的冷媒出口端通过第二排液管连接在所述电子膨胀阀与所述室内换热器之间,其特征在于,所述控制方法包括:
    获取制冷时所述室外换热器的第二端的冷媒的实际压力值和实际温度值;或者,获取制热时所述室内换热器的第一端的冷媒的实际压力值和实际温度值;
    基于所述实际压力值和实际温度值计算所述空调系统的实际过冷度值;
    将所述实际过冷度值与预设的目标过冷度值进行比较,并基于比较结果选择性地对所述空调系统中参与循环的冷媒量进行控制。
  2. 根据权利要求1所述的控制方法,其特征在于,“基于所述实际压力值和实际温度值计算所述空调系统的实际过冷度值”的步骤包括:
    确定所述实际压力值对应的冷媒的饱和温度值;
    计算所述饱和温度值与所述实际温度值的差值,并将该差值作为所述实际过冷度值。
  3. 根据权利要求1所述的控制方法,其特征在于,所述目标过冷度值的确定方法为:
    获取制热时实际的室外环境温度值,并基于所述实际的室外环境温度 值和预先设定的室外环境温度值与目标过冷度值的对应关系确定所述目标过冷度值。
  4. 根据权利要求3所述的控制方法,其特征在于,所述预先设定的室外环境温度值与目标过冷度值的对应关系中的每一个均包括室外环境温度值范围及与其相对应的一个目标过冷度值。
  5. 根据权利要求1所述的控制方法,其特征在于,所述目标过冷度值的确定方法为:
    获取制冷时实际的室内环境温度值,并基于所述实际的室内环境温度值和预先设定的室内环境温度值与目标过冷度值的对应关系确定所述目标过冷度值。
  6. 根据权利要求5所述的控制方法,其特征在于,所述预先设定的室内环境温度值与目标过冷度值的对应关系中的每一个均包括室内环境温度值范围及与其相对应的一个目标过冷度值。
  7. 根据权利要求1所述的控制方法,其特征在于,“基于比较结果选择性地对所述空调系统中参与循环的冷媒量进行控制”的步骤包括:
    若实际过冷度值小于所述目标过冷度值,则增加所述空调系统中参与循环的冷媒量;并且/或者
    若实际过冷度值大于所述目标过冷度值,则减少所述空调系统中参与循环的冷媒量;并且/或者
    若实际过冷度值等于所述目标过冷度值,则保持所述空调系统中参与循环的冷媒量不变。
  8. 根据权利要求7所述的控制方法,其特征在于,“增加所述空调系统中参与循环的冷媒量”的方法包括:
    制热时控制所述第一排液管导通且控制所述第一进液管、第二进液管和第二排液管截止;
    并且/或者,制冷时控制所述第二排液管导通且控制所述第一进液管、 第二进液管和第一排液管截止。
  9. 根据权利要求7所述的控制方法,其特征在于,“减少所述空调系统中参与循环的冷媒量”的方法包括:
    制热时控制所述第二进液管导通且控制所述第一进液管、第一排液管和第二排液管截止;
    并且/或者,制冷时控制所述第一进液管导通且控制所述第二进液管、第一排液管和第二排液管截止。
  10. 根据权利要求7所述的控制方法,其特征在于,“保持所述空调系统中参与循环的冷媒量不变”的方法包括:控制所述第一进液管、第二进液管、第一排液管和第二排液管截止。
PCT/CN2020/102416 2020-03-16 2020-07-16 空调系统的控制方法 WO2021184615A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010182558.1A CN113405243A (zh) 2020-03-16 2020-03-16 空调系统的控制方法
CN202010182558.1 2020-03-16

Publications (1)

Publication Number Publication Date
WO2021184615A1 true WO2021184615A1 (zh) 2021-09-23

Family

ID=77676734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102416 WO2021184615A1 (zh) 2020-03-16 2020-07-16 空调系统的控制方法

Country Status (2)

Country Link
CN (1) CN113405243A (zh)
WO (1) WO2021184615A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113865029A (zh) * 2021-09-30 2021-12-31 青岛海信日立空调系统有限公司 空调器
CN114353369A (zh) * 2021-12-20 2022-04-15 青岛海尔空调电子有限公司 热泵系统
CN114659239A (zh) * 2022-03-25 2022-06-24 青岛海尔空调器有限总公司 空调预热的控制方法、控制系统、电子设备和储存介质
CN114738975A (zh) * 2022-05-07 2022-07-12 美的集团武汉暖通设备有限公司 多联机空调的控制方法、多联机空调以及存储介质
CN115371308A (zh) * 2022-08-18 2022-11-22 南京天加环境科技有限公司 一种防回液空调系统及控制方法
CN115711472A (zh) * 2022-11-28 2023-02-24 珠海格力电器股份有限公司 空调控制方法和控制装置、空调系统及存储介质
CN115790055A (zh) * 2022-11-10 2023-03-14 宁波奥克斯电气股份有限公司 除霜控制方法、控制装置及空调器
CN118391759A (zh) * 2024-06-28 2024-07-26 珠海格力电器股份有限公司 空调机组及其控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114413429B (zh) * 2022-01-26 2023-05-30 青岛海信日立空调系统有限公司 空调系统
CN114543259B (zh) * 2022-03-08 2023-10-17 青岛海信日立空调系统有限公司 一种空调装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2685779Y (zh) * 2004-04-05 2005-03-16 广东科龙电器股份有限公司 可实现冷媒充灌量动态控制的空调器节流装置
CN102087057A (zh) * 2009-12-08 2011-06-08 海信(山东)空调有限公司 可平衡冷媒量的空调系统
CN202885371U (zh) * 2012-09-24 2013-04-17 宁波奥克斯空调有限公司 热泵空调的冷媒循环系统
CN109899940A (zh) * 2019-03-21 2019-06-18 珠海格力电器股份有限公司 空调系统及其冷媒量的控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279203A (ja) * 2002-03-19 2003-10-02 Mitsubishi Electric Building Techno Service Co Ltd 冷媒液チャージ装置及び液冷媒チャージ方法
JP2010007995A (ja) * 2008-06-27 2010-01-14 Daikin Ind Ltd 空気調和装置の冷媒量判定方法および空気調和装置
KR101900901B1 (ko) * 2012-05-30 2018-09-27 삼성전자주식회사 공기 조화기 및 그 제어 방법
CN103712309A (zh) * 2012-10-04 2014-04-09 Tcl空调器(中山)有限公司 一种空调器冷媒流量控制方法
CN203100306U (zh) * 2012-12-26 2013-07-31 广东美的制冷设备有限公司 储液式空调系统
CN104676944B (zh) * 2013-11-28 2018-04-03 合肥美的暖通设备有限公司 空调系统及其冷媒调节方法
CN105371545B (zh) * 2014-07-31 2017-10-13 青岛海尔空调器有限总公司 空调器及其制冷系统的制冷剂循环量调节方法
CN106642787A (zh) * 2016-09-10 2017-05-10 赵向辉 冷媒循环量可调的制冷或热泵系统
CN109210630A (zh) * 2018-09-29 2019-01-15 珠海格力电器股份有限公司 对流辐射复合换热系统、换热设备及控制方法
CN110068102B (zh) * 2019-04-29 2021-01-29 宁波奥克斯电气股份有限公司 冷媒量控制方法
CN110849007B (zh) * 2019-11-26 2022-04-08 宁波奥克斯电气股份有限公司 一种冷媒量自动调节控制方法、装置及空调器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2685779Y (zh) * 2004-04-05 2005-03-16 广东科龙电器股份有限公司 可实现冷媒充灌量动态控制的空调器节流装置
CN102087057A (zh) * 2009-12-08 2011-06-08 海信(山东)空调有限公司 可平衡冷媒量的空调系统
CN202885371U (zh) * 2012-09-24 2013-04-17 宁波奥克斯空调有限公司 热泵空调的冷媒循环系统
CN109899940A (zh) * 2019-03-21 2019-06-18 珠海格力电器股份有限公司 空调系统及其冷媒量的控制方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113865029B (zh) * 2021-09-30 2022-11-29 青岛海信日立空调系统有限公司 空调器
CN113865029A (zh) * 2021-09-30 2021-12-31 青岛海信日立空调系统有限公司 空调器
CN114353369A (zh) * 2021-12-20 2022-04-15 青岛海尔空调电子有限公司 热泵系统
CN114659239B (zh) * 2022-03-25 2023-11-21 青岛海尔空调器有限总公司 空调预热的控制方法、控制系统、电子设备和储存介质
CN114659239A (zh) * 2022-03-25 2022-06-24 青岛海尔空调器有限总公司 空调预热的控制方法、控制系统、电子设备和储存介质
CN114738975A (zh) * 2022-05-07 2022-07-12 美的集团武汉暖通设备有限公司 多联机空调的控制方法、多联机空调以及存储介质
CN114738975B (zh) * 2022-05-07 2024-04-26 美的集团武汉暖通设备有限公司 多联机空调的控制方法、多联机空调以及存储介质
CN115371308B (zh) * 2022-08-18 2023-12-19 南京天加环境科技有限公司 一种防回液空调系统及控制方法
CN115371308A (zh) * 2022-08-18 2022-11-22 南京天加环境科技有限公司 一种防回液空调系统及控制方法
CN115790055A (zh) * 2022-11-10 2023-03-14 宁波奥克斯电气股份有限公司 除霜控制方法、控制装置及空调器
CN115711472A (zh) * 2022-11-28 2023-02-24 珠海格力电器股份有限公司 空调控制方法和控制装置、空调系统及存储介质
CN115711472B (zh) * 2022-11-28 2024-08-06 珠海格力电器股份有限公司 空调控制方法和控制装置、空调系统及存储介质
CN118391759A (zh) * 2024-06-28 2024-07-26 珠海格力电器股份有限公司 空调机组及其控制方法

Also Published As

Publication number Publication date
CN113405243A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
WO2021184615A1 (zh) 空调系统的控制方法
US20220316780A1 (en) Systems and methods for controlling a refrigeration system
WO2017219650A1 (zh) 空调系统、复合冷凝器、空调系统的运行控制方法及装置
WO2015092895A1 (ja) 空気調和装置
JP6479181B2 (ja) 空気調和装置
EP3492839A1 (en) Refrigeration cycle device
WO2016194098A1 (ja) 空気調和装置及び運転制御装置
CN109869941B (zh) 热泵系统、吸气过热度及气液分离器积液蒸发控制方法
CN107166582B (zh) 空调冷却水系统、空调系统及空调冷却水系统控制方法
WO2019144618A1 (zh) 一种热泵系统及其控制方法
CN106016541A (zh) 自然冷机房空调及其过冷度控制方法
WO2022068950A1 (zh) 房间温度调节装置
EP3106768B1 (en) Heat source-side unit and air conditioning device
KR102329030B1 (ko) 자연냉각 기계실 에어컨의 제어 방법, 제어 장치 및 자연냉각 기계실 에어컨
WO2021142993A1 (zh) 多联式空调机组的控制方法
JP2018071864A (ja) 空気調和機
US11624518B2 (en) Water source heat pump head pressure control for hot gas reheat
JP6844663B2 (ja) 水量調整装置
KR100885566B1 (ko) 공기 조화기의 제어방법
CN212109060U (zh) 空调系统
JP2018146169A (ja) 空調機
CN107356009B (zh) 多联机系统及其低温控制方法
KR100639488B1 (ko) 공기조화기 및 그 과부하 제어방법
JP2014134321A (ja) 複合型空調システム
CA3019759C (en) Water source heat pump head pressure control for hot gas reheat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926124

Country of ref document: EP

Kind code of ref document: A1