WO2021182045A1 - 二酸化硫黄混合物及びその製造方法並びに充填容器 - Google Patents

二酸化硫黄混合物及びその製造方法並びに充填容器 Download PDF

Info

Publication number
WO2021182045A1
WO2021182045A1 PCT/JP2021/005912 JP2021005912W WO2021182045A1 WO 2021182045 A1 WO2021182045 A1 WO 2021182045A1 JP 2021005912 W JP2021005912 W JP 2021005912W WO 2021182045 A1 WO2021182045 A1 WO 2021182045A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur dioxide
filling container
dioxide mixture
filling
less
Prior art date
Application number
PCT/JP2021/005912
Other languages
English (en)
French (fr)
Inventor
陽祐 谷本
秀行 栗原
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US17/595,708 priority Critical patent/US20220250908A1/en
Priority to JP2022505872A priority patent/JPWO2021182045A1/ja
Priority to KR1020227013618A priority patent/KR20220070475A/ko
Priority to CN202180003498.5A priority patent/CN113874300B/zh
Publication of WO2021182045A1 publication Critical patent/WO2021182045A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/48Sulfur dioxide; Sulfurous acid
    • C01B17/50Preparation of sulfur dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/48Sulfur dioxide; Sulfurous acid
    • C01B17/50Preparation of sulfur dioxide
    • C01B17/56Separation; Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/70Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
    • B65D85/84Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for for corrosive chemicals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to a sulfur dioxide mixture, a method for producing the same, and a filling container.
  • Sulfur dioxide (SO 2 ) has traditionally been used in various applications such as food additives, raw materials for industrial chemicals, and raw materials for pharmaceuticals, but in recent years, its use in fine processing of semiconductors has been increasing. High-purity sulfur dioxide is required for microfabrication of semiconductors, and the demand for quality improvement is increasing.
  • the liquefied sulfur dioxide filled in the filling container has the following problems. That is, sulfur dioxide contains a small amount of water that is difficult to remove in the manufacturing process, but even when high-purity sulfur dioxide with a sufficiently low water concentration is filled in the filling container, the filling container Since the water is concentrated inside, sulfur dioxide gas having an insufficiently low water concentration may be released from the filling container. This problem will be described in detail below.
  • sulfur dioxide which is generally called a high-purity product
  • the water concentration in the gas phase rises to 50,000 mol ppm.
  • Products with lower water concentration are also on the market, but the water concentration of the liquid phase at the completion of filling the filling container is still about 60 mol ppm, and the total amount of liquefied sulfur dioxide is finally gasified.
  • the water concentration of the gas phase in the state is 6000 mol ppm.
  • Patent Document 1 discloses a method of removing water in sulfur dioxide gas by bringing sulfur dioxide gas containing impurities into contact with a sulfuric acid solution having a temperature difference. .. Then, in the example of Patent Document 1, sulfur dioxide gas having a water concentration of 1 mg / kg (3.6 volume ppm) is produced. However, since Patent Document 1 does not disclose the water concentration of sulfur dioxide gas required for suppressing metal corrosion, the technique disclosed in Patent Document 1 provides sulfur dioxide capable of suppressing metal corrosion. , It has been difficult to provide in the form of being filled in a filling container so that a gas phase and a liquid phase are present.
  • one aspect of the present invention is as follows [1] to [11].
  • [1] A sulfur dioxide mixture containing sulfur dioxide and water, which is filled in a filling container so that a gas phase and a liquid phase are present, and the water concentration of the gas phase is 0.005 mol ppm or more.
  • [2] A sulfur dioxide mixture containing sulfur dioxide and water, which is filled in a filling container so that a gas phase and a liquid phase are present, and the water concentration of the liquid phase is 0.01 mol ppm or more.
  • the ratio V / G 0 of the internal volume V (unit: L) of the filling container to the initial filling amount G 0 (unit: kg) of the sulfur dioxide mixture in the filling container is 0.80 or more and 2.00.
  • a method for producing a sulfur dioxide mixture containing sulfur dioxide and water A dehydration step in which a sulfur dioxide mixture having a water concentration of 500 mol ppm or more is brought into contact with a water adsorbent to bring the water concentration to less than 50 mol ppm.
  • the sulfur dioxide mixture obtained in the dehydration step is placed in a filling container so that a gas phase and a liquid phase are present and the water concentration of the liquid phase at the completion of filling is 0.01 molppm or more and less than 50 molppm.
  • Filling process and filling process A method for producing a sulfur dioxide mixture comprising.
  • the ratio V / G 0 of the internal volume V (unit: L) to the initial filling amount G 0 (unit: kg) of the sulfur dioxide mixture is 0.80 or more and 2.00 or less [7] or [8]. ]
  • the filling container described in. [10] The filling container according to any one of [7] to [9], which has a capacity of 1 L or more and 2000 L or less. [11] The filling container according to any one of [7] to [10], wherein at least a part thereof is made of stainless steel.
  • the present invention defines the water concentration in the sulfur dioxide mixture in order to suppress metal corrosion due to sulfur dioxide. It is generally known that the corrosion of metals by sulfur dioxide is strongly influenced by the water concentration, but the influence of the water concentration at the ppm level has not been clarified.
  • the sulfur dioxide mixture of this embodiment contains sulfur dioxide and water.
  • the filling container of the present embodiment is a filling container filled with the sulfur dioxide mixture.
  • the sulfur dioxide mixture is filled in a filling container so as to form a gas phase and a liquid phase, and the water concentration of the gas phase is 0.005 molppm or more and less than 5000 molppm.
  • the water concentration of the gas phase in the above range is maintained by setting the water concentration of the liquid phase at the time when the filling container is completed with the sulfur dioxide mixture to be 0.01 molppm or more and less than 50 molppm. Can be done. If the water concentration of the liquid phase of the sulfur dioxide mixture at the time when the filling container is completed is within the above range, the water concentration of the liquid phase increases as the sulfur dioxide mixture gas in the filling container is released. Even so, the water concentration in the gas phase can be easily maintained in the above range, and the corrosion of the metal can be suppressed.
  • the product is composed of a filling container and a sulfur dioxide mixture, and this sulfur dioxide mixture contains sulfur dioxide and water.
  • the sulfur dioxide mixture is filled in a filling container so as to form a gas phase and a liquid phase, and the water concentration of the gas phase is 0.005 molppm or more and less than 5000 molppm, and the filling is completed to achieve this.
  • the water concentration of the liquid phase at the time point is 0.01 molppm or more and less than 50 molppm.
  • at least a part of the filling container may be made of stainless steel.
  • the water concentration in the gas phase is the water concentration between the time when the sulfur dioxide mixture is filled in the filling container and the time when almost the entire amount of the sulfur dioxide mixture in the filling container is released. In the meantime, due to the release of the sulfur dioxide mixture gas, the water concentration in the gas phase of the sulfur dioxide mixture in the filling container gradually increases in the above range.
  • the water concentration of the liquid phase of such a sulfur dioxide mixture at the completion of filling into the filling container is extremely low, the water content is concentrated on the liquid phase side as the vaporized sulfur dioxide mixture gas is released from the filling container. Even so, the water concentration of the liquid phase is kept sufficiently low until the entire amount of the liquefied sulfur dioxide mixture in the filling container is vaporized. Therefore, the water concentration of the sulfur dioxide mixture gas released from the filling container is sufficiently low from the initial stage of release to the final stage of release (the time when the entire amount of the liquefied sulfur dioxide mixture in the filling container is gasified). Therefore, the corrosion of the metal due to the sulfur dioxide mixture gas released from the filling container can be remarkably suppressed until the end of the release.
  • the water concentration of the liquid phase at the completion of filling the filling container is 0.01 molppm or more and less than 50 molppm, preferably 0.01 molppm or more and 10 molppm or less, and more preferably 0.01 molppm or less. It is ppm or more and 3.5 mol ppm or less, and more preferably 0.01 mol ppm or more and 1.0 mol ppm or less.
  • the filling container is completed.
  • the water concentration in the gas phase at that time is preferably less than 25 mol ppm, more preferably 5 mol ppm or less, further preferably 1.7 mol ppm or less, and 0.5 mol ppm or less. Is most preferable.
  • the sulfur dioxide mixture released from the filling container even if the water is concentrated toward the liquid phase due to the release of the sulfur dioxide mixture gas from the filling container.
  • the water concentration of the gas is maintained at a level at which metal corrosion is suppressed (eg, less than 5000 mol ppm) until the end of release. It is difficult to confirm the water concentration lower than 0.01 mol ppm.
  • the sulfur dioxide mixture in the filling container and the sulfur dioxide mixture gas released from the filling container have a low water concentration and do not easily corrode metals as described above. Therefore, it is not necessary to use an expensive corrosion-resistant alloy such as Hastelloy (registered trademark) for the portion where the sulfur dioxide mixture in the filling container and the sulfur dioxide mixture gas released from the filling container come into contact with each other.
  • Metal can be used.
  • the portion of the sulfur dioxide mixture filling container, piping, manufacturing device, supply device, transfer device, reaction device, etc. that comes into contact with the sulfur dioxide mixture can be made of a metal such as stainless steel.
  • the type of stainless steel that can be used is not particularly limited, and examples thereof include SUS316, SUS316L, SUS304, and SUS304L.
  • the initial filling amount G 0 (unit: kg) of the sulfur dioxide mixture into the filling container is the filling amount at the completion of the filling process, and is not particularly limited, but is not particularly limited, but Article 48 of the High Pressure Gas Safety Act. It may be 40% or more and 100% or less of the upper limit of the mass calculated according to the internal volume V of the filled container specified in paragraph 4 and Article 22 of the Container Safety Regulations.
  • the ratio V / G 0 of the internal volume V (unit: L) of the filling container to the initial filling amount G 0 (unit: kg) of the sulfur dioxide mixture in the filling container is not particularly limited. , 0.80 or more and 2.00 or less.
  • the ratio V / G 0 is 0.80 or more (that is, the initial filling amount G 0 of the sulfur dioxide mixture into the filling container is 100% or less of the upper limit of the mass calculated according to the internal volume V of the filling container. If), it is safe to fill the filling container with the sulfur dioxide mixture as it does not result in overfilling. On the other hand, if the ratio V / G 0 is 2.00 or less (that is, the initial filling amount G 0 of the sulfur dioxide mixture into the filling container is 40, which is the upper limit of the mass calculated according to the internal volume V of the filling container.
  • the initial filling amount G 0 of the sulfur dioxide mixture with respect to the internal volume V of the filling container is a sufficient amount, so that the efficiency of transporting the sulfur dioxide mixture by the filling container is high.
  • the ratio V / G 0 of the internal volume V (unit: L) of the filling container to the initial filling amount G 0 (unit: kg) of the sulfur dioxide mixture in the filling container is 1.00 or more and 1.90 or less. It is preferable, and more preferably 1.10 or more and 1.80 or less.
  • water is removed from the sulfur dioxide mixture gas having a water concentration of 500 molppm or more in a dehydration step to obtain a sulfur dioxide mixture gas having a water concentration of less than 50 molppm.
  • the sulfur dioxide mixture gas having a water concentration of 500 molppm or more is brought into contact with a water adsorbent to dehydrate it so that the water concentration is less than 50 molppm.
  • the type of water adsorbent is not particularly limited as long as the water concentration of the sulfur dioxide mixture gas can be less than 50 mol ppm, and examples thereof include zeolite, activated carbon, silica gel, and diphosphorus pentoxide. ..
  • the type of zeolite is not particularly limited, and the ratio of silica to alumina contained in the zeolite and the pore size of the pores are not particularly limited, but those having resistance to sulfur dioxide are preferable, for example, Molecular Sieve 3A. , High silica zeolite can be mentioned.
  • Sulfur dioxide mixture gas having a water concentration of less than 50 mol ppm by the dehydration step is compressed in the filling step to partially liquefy it, and is filled in, for example, a filling container having a capacity of 1 L or more and 2000 L or less.
  • the sulfur dioxide mixture gas is compressed and filled so that a part of the sulfur dioxide mixture gas becomes liquid and the water concentration of the liquid phase at the completion of filling is 0.01 molppm or more and less than 50 molppm. ..
  • the method of compressing the sulfur dioxide mixture gas and filling the filling container is not limited, but for example, the sulfur dioxide mixture gas is pressurized by a compressor to liquefy it, and a distillation tower is used to obtain low boiling point components and high boiling point components. After removing it, it is stored in a product tank, transferred from the product tank to a filling container, and filled.
  • the capacity of the filling container can be 1 L or more and 2000 L or less, but preferably 2 L or more and 1800 L or less, and more preferably 3 L or more and 1500 L or less.
  • the capacity of the filling container is 1 L or more, the amount of the sulfur dioxide mixture that can be used is large, so that the efficiency is excellent.
  • the capacity of the filling container is 2000 L or less, the filling container can be easily manufactured and transported.
  • the temperature of the filling container is not particularly limited, but the filling container may be cooled in advance to ⁇ 90 ° C. or higher and 0 ° C. or lower. Further, if water remains in the filling container, the water concentration of the filled sulfur dioxide mixture increases, so that the remaining water content in the filling container is preheated to 0.1 mol ppm or less. It may be subjected to a reduced pressure treatment.
  • the ratio V / G 1 of the internal volume V (unit: L) of the filling container to the filling amount G 1 (unit: kg) of the sulfur dioxide mixture in the filling container in the filling step is not particularly limited. , 0.80 or more and 115 or less.
  • the ratio V / G 1 is 0.80 or more, it is safe because the filling of the sulfur dioxide mixture in the filling container does not result in overfilling.
  • the ratio V / G 1 is 115 or less, the sulfur dioxide mixture is likely to be liquefied.
  • the ratio V / G 1 of the internal volume V (unit: L) of the filling container to the filling amount G 1 (unit: kg) of the sulfur dioxide mixture in the filling container in the filling step is 1.00 or more and 1.90 or less. Is more preferable, and 1.10 or more and 1.80 or less is further preferable.
  • the method for measuring the water concentration of the sulfur dioxide mixture in each step (dehydration step, filling step) of the method for producing the sulfur dioxide mixture of the present embodiment is a method capable of accurately measuring up to about 0.01 mol ppm.
  • it is not particularly limited.
  • FT-IR Fourier transform infrared spectrophotometer
  • CRDS cavity ring-down spectroscopy
  • the water concentration in the present invention was measured by taking out a sample from the gas phase portion of the filling container and performing cavity ring-down spectroscopy.
  • the sample is taken out from the liquid phase portion of the filling container, gasified, and measured by the cavity ring-down spectroscopy as in the case of the gas phase.
  • a sulfur dioxide mixture having an extremely low water concentration and less likely to corrode metals such as stainless steel can be produced with simple equipment.
  • the sulfur dioxide mixture produced by the method for producing a sulfur dioxide mixture of the present embodiment can be used as an additive gas to an etching gas or a gas for interfacial treatment used for etching in a manufacturing process of a semiconductor or a thin film.
  • the sulfur dioxide mixture obtained by the method for producing a sulfur dioxide mixture of the present embodiment can also be used for producing various chemicals such as pharmaceuticals and dye intermediates.
  • the present embodiment shows an example of the present invention, and the present invention is not limited to the present embodiment.
  • various changes or improvements can be added to the present embodiment, and the modified or improved forms may be included in the present invention.
  • Example 1 30 kg of a sulfur dioxide mixture containing sulfur dioxide and water was filled in a filling container having a capacity of 47 L at a pressure of 0.23 MPaG (gauge pressure) so that a part of the mixture became liquid.
  • the ratio V / G 0 of the internal volume V of the filling container to the initial filling amount G 0 of the filling container is 1.57.
  • the sulfur dioxide mixture in the filling container was divided into a gas phase and a liquid phase, and the water concentration of the liquid phase at the completion of filling was 40 mol ppm.
  • the gas phase was extracted from this filling container at a release rate of 2 L / min until the remaining amount of the sulfur dioxide mixture in the filling container reached 0.4 kg.
  • the liquid phase in the filling container disappeared, the entire amount of the sulfur dioxide mixture was gasified, and the water concentration of the sulfur dioxide mixture gas in the filling container was 4000 mol ppm. That is, it can be considered that the water concentration in the gas phase of the sulfur dioxide mixture was 4000 molppm or less while a part of the sulfur dioxide mixture was in the liquid phase.
  • a rectangular (width 10 mm, length 50 mm, thickness 1 mm) SUS316L test piece was prepared, and after measuring the mass, it was hung in a pressure-resistant container using a Teflon (registered trademark) string.
  • the above-mentioned sulfur dioxide mixture gas having a water concentration of 4000 mol ppm was introduced into the pressure-resistant container, and the internal pressure was set to 0.15 MPaG (gauge pressure).
  • Test I took out the piece.
  • the taken-out test piece was ultrasonically cleaned with ultrapure water and a 10 mass% nitric acid aqueous solution for 10 minutes each, dried, and then the mass was measured and the corrosion rate was calculated from the change in mass. As a result, the corrosion rate was 0.93 ⁇ m / y. As described above, even when 98% of the initial filling amount G 0 was released, the progress of corrosion by the residual sulfur dioxide mixture gas was very slow.
  • Example 2 The same operation as in Example 1 was performed except that the water concentration of the liquid phase at the completion of filling the filling container was 9.5 mol ppm, until the liquid phase of the sulfur dioxide mixture in the filling container disappeared, that is, A sulfur dioxide mixture gas having a water concentration of 950 mol ppm in the gas phase after extracting the gas phase until the remaining amount reached 0.4 kg was obtained.
  • the corrosion rate of the test piece was measured by performing the same operation as in Example 1 except that the sulfur dioxide mixture gas was used, and it was 0.72 ⁇ m / y.
  • Examples 3 to 4, Comparative Examples 1 to 2 As Examples 3 to 4 and Comparative Examples 1 and 2, "the water concentration of the liquid phase at the completion of filling” and “the water concentration of the gas phase after extracting the gas phase until the remaining amount reaches 0.4 kg" are shown. The same operation as in Example 2 was performed except that the values shown in 1 were set, and the corrosion rate of the test piece was measured. The results are shown in Table 1.
  • Example 5 an example of a method for producing a sulfur dioxide mixture in which the water concentration of the liquid phase is less than 50 mol ppm is shown.
  • 30 kg of crude sulfur dioxide mixture gas having a water concentration of 500 mol ppm was sent to a water adsorbent tower (capacity 320 L) at a flow rate of 320 m 3 / h, and a water adsorbent (manufactured by Union Showa Co., Ltd.) filled in the water adsorbent tower.
  • Molecular sheave 3A 260 kg was brought into contact with the product to dehydrate it.
  • the flow rate of the crude sulfur dioxide mixture gas is 10 m / min for a linear velocity LV (Linear Velocity) and 1000 / h for a space velocity SV (Space Velocity).
  • the water concentration of the sulfur dioxide mixture gas at the outlet of the water adsorption tower was 4.2 mol ppm. 30 kg of this sulfur dioxide mixture gas having a water concentration of 4.2 mol ppm was filled in a filling container having a capacity of 47 L while increasing the pressure to about 0.23 MPaG (gauge pressure) with a pump.
  • the water concentration of the liquefied sulfur dioxide mixture (liquid phase) in the filling container was 5.8 mol ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

金属を腐食させにくい二酸化硫黄混合物を提供する。二酸化硫黄混合物は二酸化硫黄と水とを含有する。そして、二酸化硫黄混合物は、気相と液相が存在するように充填容器内に充填されており、気相の水分濃度が0.005モルppm以上5000モルppm未満である。

Description

二酸化硫黄混合物及びその製造方法並びに充填容器
 本発明は二酸化硫黄混合物及びその製造方法並びに充填容器に関する。
 二酸化硫黄(SO2)は、従来から食品添加物、工業薬品の原料、医薬品の原料等の様々な用途に用いられてきたが、近年では半導体の微細加工用途での使用が増えてきている。半導体の微細加工用途では、高純度の二酸化硫黄が必要とされ、その品質向上の要求が強まっている。
 しかしながら、充填容器に充填された液化二酸化硫黄は、以下のような問題点を有していた。すなわち、二酸化硫黄には製造工程では取り除くことが困難な微量の水分が含まれているが、水分濃度が十分に低い高純度の二酸化硫黄が充填容器に充填された場合であっても、充填容器内で水分が濃縮されるため、水分濃度の低さが不十分な二酸化硫黄ガスが充填容器から放出されるおそれがあった。この問題点について以下に詳述する。
 充填容器から気化した二酸化硫黄ガスを放出すると、充填容器内では気液平衡を保つために液相である液化二酸化硫黄が蒸発する。その際には、気液平衡定数が約0.5程度の水分は二酸化硫黄に比べると蒸発量が少ないので液相側に残りやすく、二酸化硫黄ガスの放出に伴って充填容器内で水分が濃縮されていく。そのため、放出開始初期においては二酸化硫黄ガスに同伴する水分量は微量であり二酸化硫黄ガスの水分濃度は十分に低いが、蒸発による液相の減少が進むに伴って、次第に二酸化硫黄ガスに同伴する水分量が上昇し二酸化硫黄ガスの水分濃度が高まっていく。
 例えば、一般的に高純度品と呼ばれる二酸化硫黄は、充填容器への充填完了時の液相の水分濃度は約500モルppmであるが、充填容器からの二酸化硫黄ガスの放出に伴って水分が液相側に濃縮され、最終的に液化二酸化硫黄の全量がガス化した状態では、気相の水分濃度は50000モルppmに上昇する。より水分濃度が低い製品も市場には流通しているが、それでも充填容器への充填完了時の液相の水分濃度は約60モルppmであり、最終的に液化二酸化硫黄の全量がガス化した状態での気相の水分濃度は6000モルppmである。
 二酸化硫黄ガスの水分濃度が高いと、二酸化硫黄ガスが流れる配管の内壁面に水分が付着しやすい。この水分に二酸化硫黄が吸収されて亜硫酸となったり、さらに酸化されて硫酸となったりするので、配管が腐食して劣化し、補修費が増加するおそれがある。また、配管の劣化が進行して、人体に有害な二酸化硫黄ガスが漏洩すると、災害事故に結びつくおそれがある。さらに、配管はステンレス鋼で構成されている場合が多いが、腐食により配管から溶け出したニッケル、クロム、鉄等の重金属が二酸化硫黄ガスに同伴すると、例えば半導体ウェハのエッチングガスとして二酸化硫黄ガスを使用した場合には、この重金属がウェハ表面に付着してウェハを汚染するおそれがある。
 この問題を解決するため、例えば特許文献1には、不純物を含有する二酸化硫黄ガスを、温度差を有する硫酸溶液と接触させることにより、二酸化硫黄ガス中の水分を除去する方法が開示されている。そして、特許文献1の実施例においては、水分濃度1mg/kg(3.6体積ppm)の二酸化硫黄ガスが製造されている。
 しかしながら、特許文献1には、金属の腐食を抑制するために必要な二酸化硫黄ガスの水分濃度が開示されていないため、特許文献1に開示の技術では、金属の腐食を抑制可能な二酸化硫黄を、気相と液相が存在するように充填容器内に充填された形で提供することは困難であった。
日本国特許公開公報 2012年第66962号
 そこで、本発明は、上記のような従来技術が有する問題点を解決し、金属を腐食させにくい二酸化硫黄混合物及びその製造方法を提供することを課題とする。また、本発明は、金属を腐食させにくい二酸化硫黄混合物が充填された充填容器を提供することを併せて課題とする。
 前記課題を解決するため、本発明の一態様は以下の[1]~[11]の通りである。
[1] 二酸化硫黄と水とを含有する二酸化硫黄混合物であって、気相と液相が存在するように充填容器内に充填されており、前記気相の水分濃度が0.005モルppm以上5000モルppm未満である二酸化硫黄混合物。
[2] 二酸化硫黄と水とを含有する二酸化硫黄混合物であって、気相と液相が存在するように充填容器内に充填されており、前記液相の水分濃度が0.01モルppm以上50モルppm未満である二酸化硫黄混合物。
[3] 前記充填容器への前記二酸化硫黄混合物の初期充填量G(単位:kg)に対する前記充填容器の内容積V(単位:L)の比V/Gが0.80以上2.00以下である[1]又は[2]に記載の二酸化硫黄混合物。
[4] 二酸化硫黄と水とを含有する二酸化硫黄混合物を製造する方法であって、
 水分濃度が500モルppm以上である二酸化硫黄混合物を水分吸着剤に接触させ、水分濃度を50モルppm未満とする脱水工程と、
 前記脱水工程で得られた二酸化硫黄混合物を、気相と液相が存在するように且つ充填完了時の液相の水分濃度が0.01モルppm以上50モルppm未満となるように充填容器に充填する充填工程と、
を備える二酸化硫黄混合物の製造方法。
[5] 前記充填容器の少なくとも一部分がステンレス鋼で構成されている[4]に記載の二酸化硫黄混合物の製造方法。
[6] 前記充填工程における前記二酸化硫黄混合物の前記充填容器への充填量G(単位:kg)に対する前記充填容器の内容積V(単位:L)の比V/Gが0.80以上115以下である[4]又は[5]に記載の二酸化硫黄混合物の製造方法。
[7] 二酸化硫黄と水とを含有する二酸化硫黄混合物が充填された充填容器であって、前記二酸化硫黄混合物が気相と液相を形成するように充填されており、前記気相の水分濃度が0.005モルppm以上5000モルppm未満である充填容器。
[8] 二酸化硫黄と水とを含有する二酸化硫黄混合物が充填された充填容器であって、前記二酸化硫黄混合物が気相と液相を形成するように充填されており、前記液相の水分濃度が0.01モルppm以上50モルppm未満である充填容器。
[9] 前記二酸化硫黄混合物の初期充填量G(単位:kg)に対する内容積V(単位:L)の比V/Gが0.80以上2.00以下である[7]又は[8]に記載の充填容器。
[10] 容量が1L以上2000L以下である[7]~[9]のいずれか一項に記載の充填容器。
[11] 少なくとも一部分がステンレス鋼で構成されている[7]~[10]のいずれか一項に記載の充填容器。
 本発明によれば、金属を腐食させにくい二酸化硫黄混合物を提供することができる。
 本発明は、二酸化硫黄による金属の腐食を抑制するために、二酸化硫黄混合物中の水分濃度を規定したものである。二酸化硫黄による金属の腐食については、水分濃度の影響を強く受けることは一般的に知られているが、ppmレベルの水分濃度の影響については明らかとなっていなかった。
 そこで、本発明者らは、二酸化硫黄中の微量の水分による金属の腐食について鋭意検討した結果、驚くべきことに、水分濃度がppmレベルで十分に低い場合には金属の腐食が著しく抑制されることを見出し、本発明を完成するに至った。以下、本発明の一実施形態について詳細に説明する。
 本実施形態の二酸化硫黄混合物は、二酸化硫黄と水とを含有する。また、本実施形態の充填容器は、前記二酸化硫黄混合物が充填された充填容器である。そして、二酸化硫黄混合物は、気相と液相を形成するように充填容器内に充填されており、気相の水分濃度は0.005モルppm以上5000モルppm未満である。
 上記の範囲の気相の水分濃度とすることによって、配管等に使用される金属の腐食を抑制することができる。そして、二酸化硫黄混合物を充填容器に充填完了させた時点での液相の水分濃度を0.01モルppm以上50モルppm未満とすることによって、上記の範囲の気相の水分濃度を保持することができる。充填容器に充填完了させた時点での二酸化硫黄混合物の液相の水分濃度が上記の範囲であれば、充填容器内の二酸化硫黄混合物ガスが放出されることに伴って液相の水分濃度が上昇しても、気相の水分濃度を上記の範囲に保持することが容易となり、前記金属の腐食を抑制することができる。
 すなわち、充填容器と二酸化硫黄混合物とによって製造物が構成されており、この二酸化硫黄混合物は、二酸化硫黄と水とを含有する。二酸化硫黄混合物は、気相と液相を形成するように充填容器に充填されており、気相の水分濃度は0.005モルppm以上5000モルppm未満であり、それを達成するための充填完了時点での液相の水分濃度は0.01モルppm以上50モルppm未満である。また、充填容器は、その少なくとも一部分がステンレス鋼で構成されていてもよい。
 上記の気相の水分濃度は、二酸化硫黄混合物を充填容器に充填完了した時から充填容器内の二酸化硫黄混合物のほぼ全量を放出する時点までの間における水分濃度である。その間には、二酸化硫黄混合物ガスの放出によって、充填容器内の二酸化硫黄混合物の気相の水分濃度は、上記の範囲で徐々に上昇する。
 なお、気相と液相とが共存している二酸化硫黄混合物の気相の水分濃度が0.01モルppm未満の場合においては、水分濃度を直接測定することは困難であるため、液相の水分濃度の1/2を気相の水分濃度とみなす。これは、気相と液相とが共存している二酸化硫黄混合物中の水分濃度は、気相の水分濃度:液相の水分濃度=1:2であることを、本発明者らが実験的に確かめたことに基づく。
 このような二酸化硫黄混合物は、充填容器への充填完了時の液相の水分濃度が極めて低いため、気化した二酸化硫黄混合物ガスの充填容器からの放出に伴って水分が液相側に濃縮されていったとしても、充填容器内の液化二酸化硫黄混合物の全量が気化するまで、液相の水分濃度が十分に低い状態に保たれる。よって、充填容器から放出される二酸化硫黄混合物ガスの水分濃度は、放出初期から放出終期(充填容器内の液化二酸化硫黄混合物の全量がガス化する時期)まで十分に低い。そのため、充填容器から放出された二酸化硫黄混合物ガスによる金属の腐食を、放出終期まで著しく抑制することができる。
 充填容器への充填完了時の液相の水分濃度は0.01モルppm以上50モルppm未満であるが、好ましくは0.01モルppm以上10モルppm以下であり、より好ましくは0.01モルppm以上3.5モルppm以下であり、さらに好ましくは0.01モルppm以上1.0モルppm以下である。
 そして、気相と液相とが共存している二酸化硫黄混合物中の水分濃度は、気相の水分濃度:液相の水分濃度=1:2であることに基づけば、充填容器への充填完了時の気相の水分濃度は25モルppm未満であることが好ましく、5モルppm以下であることがより好ましく、1.7モルppm以下であることがさらに好ましく、0.5モルppm以下であることが最も好ましい。
 液相の水分濃度が50モルppm未満であれば、充填容器からの二酸化硫黄混合物ガスの放出に伴って水分が液相側に濃縮されていったとしても、充填容器から放出される二酸化硫黄混合物ガスの水分濃度が、放出終期まで金属の腐食が抑制されるレベル(例えば5000モルppm未満)に保たれる。なお、0.01モルppmより低い水分濃度については、確認が困難である。
 充填容器内の二酸化硫黄混合物、及び、充填容器から放出された二酸化硫黄混合物ガスは、上記のように水分濃度が低く金属を腐食させにくい。よって、充填容器内の二酸化硫黄混合物、及び、充填容器から放出された二酸化硫黄混合物ガスが接触する部分には、ハステロイ(登録商標)等の高価な耐食性合金を用いる必要がなく、ステンレス鋼等の金属を使用することができる。例えば、二酸化硫黄混合物の充填容器、配管、製造装置、供給装置、搬送装置、反応装置等における二酸化硫黄混合物と接触する部分は、ステンレス鋼等の金属で構成することができる。使用可能なステンレス鋼の種類は特に限定されるものではないが、SUS316、SUS316L、SUS304、SUS304L等があげられる。
 また、二酸化硫黄混合物の充填容器への初期充填量G(単位:kg)は、充填工程完了時の充填量であり、特に限定されるものではないが、高圧ガス保安法第四十八条第四項及び容器保安規則第二十二条で定められた、充填容器の内容積Vに応じて計算した質量の上限値の40%以上100%以下としてもよい。換言すれば、二酸化硫黄混合物の充填容器への初期充填量G(単位:kg)に対する充填容器の内容積V(単位:L)の比V/Gについては特に限定されるものではないが、0.80以上2.00以下としてもよい。
 比V/Gが0.80以上であれば(すなわち、二酸化硫黄混合物の充填容器への初期充填量Gが、充填容器の内容積Vに応じて計算した質量の上限値の100%以下であれば)、充填容器への二酸化硫黄混合物の充填が過充填とはならないので安全である。一方、比V/Gが2.00以下であれば(すなわち、二酸化硫黄混合物の充填容器への初期充填量Gが、充填容器の内容積Vに応じて計算した質量の上限値の40%以上であれば)、充填容器の内容積Vに対する二酸化硫黄混合物の初期充填量Gが十分な量であるので、充填容器による二酸化硫黄混合物の運搬効率が高い。
 なお、二酸化硫黄混合物の充填容器への初期充填量G(単位:kg)に対する充填容器の内容積V(単位:L)の比V/Gは、1.00以上1.90以下がより好ましく、1.10以上1.80以下がさらに好ましい。
 次に、上記のような二酸化硫黄混合物の製造方法の一実施形態について説明する。まず、水分濃度が500モルppm以上である二酸化硫黄混合物ガスから、脱水工程で水分を除去し、水分濃度が50モルppm未満である二酸化硫黄混合物ガスを得る。脱水工程では、水分濃度が500モルppm以上である二酸化硫黄混合物ガスを水分吸着剤に接触させて脱水し、水分濃度を50モルppm未満とする。
 二酸化硫黄混合物ガスの水分濃度を50モルppm未満とすることができるならば、水分吸着剤の種類は特に限定されるものではないが、例えば、ゼオライト、活性炭、シリカゲル、五酸化二リンがあげられる。また、ゼオライトの種類は特に限定されるものではなく、ゼオライトに含有されるシリカとアルミナの比や細孔の孔径も特に限定されないが、対二酸化硫黄耐性を有するものが好ましく、例えば、モレキュラーシーブ3A、ハイシリカゼオライトがあげられる。
 脱水工程によって水分濃度が50モルppm未満とされた二酸化硫黄混合物ガスを、充填工程において圧縮し一部を液化させて、例えば容量1L以上2000L以下の充填容器に充填する。その際には、二酸化硫黄混合物ガスの一部が液体となり且つ充填完了時の液相の水分濃度が0.01モルppm以上50モルppm未満となるように、二酸化硫黄混合物ガスを圧縮し充填する。
 二酸化硫黄混合物ガスを圧縮し充填容器に充填する方法は限定されるものではないが、例えば、二酸化硫黄混合物ガスをコンプレッサーで昇圧して液化し、蒸留塔を用いて低沸点成分及び高沸点成分を除去した後に、製品タンクに貯留し、製品タンクから充填容器に移して充填する方法があげられる。
 充填容器の容量は1L以上2000L以下とすることができるが、好ましくは2L以上1800L以下であり、より好ましくは3L以上1500L以下である。充填容器の容量が1L以上であれば、使用可能な二酸化硫黄混合物の量が多いので効率が優れている。一方、充填容器の容量が2000L以下であれば、充填容器の作製や輸送が容易である。
 また、二酸化硫黄混合物を充填容器に充填するに際しては、充填容器の温度は特に限定されないが、充填容器を-90℃以上0℃以下に予め冷却しておいてもよい。さらに、充填容器内に水分が残存していると、充填した二酸化硫黄混合物の水分濃度が上昇してしまうので、充填容器内の残存水分量が0.1モルppm以下となるように、予め加熱減圧処理を施していてもよい。
 さらに、充填工程における二酸化硫黄混合物の充填容器への充填量G(単位:kg)に対する充填容器の内容積V(単位:L)の比V/Gは、特に限定されるものではないが、0.80以上115以下としてもよい。比V/Gが0.80以上であれば、充填容器への二酸化硫黄混合物の充填が過充填とはならないので安全である。一方、比V/Gが115以下であれば、二酸化硫黄混合物が液化しやすい。
 なお、充填工程における二酸化硫黄混合物の充填容器への充填量G(単位:kg)に対する充填容器の内容積V(単位:L)の比V/Gは、1.00以上1.90以下がより好ましく、1.10以上1.80以下がさらに好ましい。
 また、本実施形態の二酸化硫黄混合物の製造方法の各工程(脱水工程、充填工程)において二酸化硫黄混合物の水分濃度を測定する方法は、0.01モルppm程度まで正確に測定可能な方法であれば、特に限定されるものではない。例えば、鏡面冷却式露点計、フーリエ変換赤外分光光度計(FT-IR:Fourier transform infrared spectrometer)、五酸化リン式水分計等を用いる方法や、キャビティリングダウン分光法(CRDS:cavity ring-down spectroscopy)があげられる。
 なお、本発明における水分濃度は、気相の場合は充填容器の気相部分からサンプルを取り出して、キャビティリングダウン分光法にて測定したものである。一方、液相の場合は充填容器の液相部分からサンプルを取り出した後にガス化して、気相の場合と同様に、キャビティリングダウン分光法にて測定したものである。
 このような本実施形態の二酸化硫黄混合物の製造方法によれば、水分濃度が極めて低くステンレス鋼等の金属の腐食が起こりにくい二酸化硫黄混合物を、簡便な設備で製造することができる。本実施形態の二酸化硫黄混合物の製造方法により製造された二酸化硫黄混合物は、半導体や薄膜トランジスタの製造工程におけるエッチングに使用されるエッチングガスへの添加ガスや界面処理用ガスとして使用することができる。
 さらに、本実施形態の二酸化硫黄混合物の製造方法により得られる二酸化硫黄混合物は、医薬品、染料中間体等の各種化学薬品の製造にも使用することができる。
 なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。
 以下に実施例及び比較例を示して、本発明をより詳細に説明する。
〔実施例1〕
 二酸化硫黄と水とを含有する二酸化硫黄混合物30kgを、容量47Lの充填容器内に、一部が液体となるように、圧力0.23MPaG(ゲージ圧)で充填した。このときの充填容器への初期充填量Gに対する充填容器の内容積Vの比V/Gは1.57となる。充填容器内の二酸化硫黄混合物は気相と液相に分かれており、充填完了時の液相の水分濃度は40モルppmであった。
 この充填容器から、充填容器内の二酸化硫黄混合物の残量が0.4kgになるまで、放出速度2L/minで気相を抜出した。この状態で、充填容器内の液相は消失し、二酸化硫黄混合物の全量がガス化しており、充填容器内の二酸化硫黄混合物ガスの水分濃度は4000モルppmであった。すなわち、前記二酸化硫黄混合物の一部が液相であった間の二酸化硫黄混合物の気相の水分濃度は4000モルppm以下であったとみなすことができる。
 長方形状(幅10mm、長さ50mm、厚さ1mm)のSUS316L製テストピースを用意し、質量を測定した後、テフロン(登録商標)製の紐を用いて耐圧容器内に吊るした。この耐圧容器内に上記の水分濃度4000モルppmの二酸化硫黄混合物ガスを導入し、内圧を0.15MPaG(ゲージ圧)とした。
 この耐圧容器を100℃に加熱した状態で5日間放置した後、Nガスで十分にパージを行って二酸化硫黄濃度が0.1モルppm未満であることを確認後に耐圧容器を開放し、テストピースを取り出した。取り出したテストピースを超純水と10質量%硝酸水溶液でそれぞれ10分間ずつ超音波洗浄し乾燥した後に、質量を測定し、その質量変化から腐食速度を算出した。その結果、腐食速度は0.93μm/yであった。このように、初期充填量Gの98%を放出した状態でも、残留した二酸化硫黄混合物ガスによる腐食の進行は非常に遅かった。
〔実施例2〕
 充填容器への充填完了時の液相の水分濃度が9.5モルppmである点以外は実施例1と同様の操作を行い、充填容器内の二酸化硫黄混合物の液相が消失するまで、すなわち残量が0.4kgになるまで気相を抜き出した後の気相の水分濃度が950モルppmの二酸化硫黄混合物ガスを得た。この二酸化硫黄混合物ガスを用いた点以外は実施例1と同様の操作を行って、テストピースの腐食速度を測定したところ、0.72μm/yであった。
〔実施例3~4、比較例1~2〕
 実施例3~4及び比較例1~2として、「充填完了時の液相の水分濃度」及び「残量が0.4kgになるまで気相を抜き出した後の気相の水分濃度」を表1に示す値にした以外は実施例2と同様の操作を行って、テストピースの腐食速度を測定した。結果を、表1に示す。
 これらの結果(表1を参照)から、充填容器への充填完了時の液相の水分濃度が50モルppm未満であれば、充填容器から放出される二酸化硫黄混合物ガスの水分濃度は放出終期(充填容器内の液化二酸化硫黄混合物の全量がガス化する時期)まで十分に低いので、金属の腐食が著しく抑制されることが分かる。
Figure JPOXMLDOC01-appb-T000001
〔実施例5〕
 次に、液相の水分濃度が50モルppm未満である二酸化硫黄混合物の製造方法の実施例を示す。水分濃度が500モルppmである粗二酸化硫黄混合物ガス30kgを、320m/hの流量で水分吸着塔(容量320L)に送り、水分吸着塔内に充填された水分吸着剤(ユニオン昭和株式会社製のモレキュラーシーブ3A)260kgに接触させて脱水した。
 前記粗二酸化硫黄混合物ガスの流通速度は、線速度LV(Linear Velocity)が10m/min、空間速度SV(Space Velocity)が1000/hである。水分吸着塔の出口の二酸化硫黄混合物ガスの水分濃度は4.2モルppmであった。
 この水分濃度4.2モルppmの二酸化硫黄混合物ガス30kgを、ポンプで0.23MPaG(ゲージ圧)程度に昇圧しながら容量47Lの充填容器に充填した。充填容器内の液化二酸化硫黄混合物(液相)の水分濃度は5.8モルppmであった。

Claims (11)

  1.  二酸化硫黄と水とを含有する二酸化硫黄混合物であって、気相と液相が存在するように充填容器内に充填されており、前記気相の水分濃度が0.005モルppm以上5000モルppm未満である二酸化硫黄混合物。
  2.  二酸化硫黄と水とを含有する二酸化硫黄混合物であって、気相と液相が存在するように充填容器内に充填されており、前記液相の水分濃度が0.01モルppm以上50モルppm未満である二酸化硫黄混合物。
  3.  前記充填容器への前記二酸化硫黄混合物の初期充填量G(単位:kg)に対する前記充填容器の内容積V(単位:L)の比V/Gが0.80以上2.00以下である請求項1又は請求項2に記載の二酸化硫黄混合物。
  4.  二酸化硫黄と水とを含有する二酸化硫黄混合物を製造する方法であって、
     水分濃度が500モルppm以上である二酸化硫黄混合物を水分吸着剤に接触させ、水分濃度を50モルppm未満とする脱水工程と、
     前記脱水工程で得られた二酸化硫黄混合物を、気相と液相が存在するように且つ充填完了時の液相の水分濃度が0.01モルppm以上50モルppm未満となるように充填容器に充填する充填工程と、
    を備える二酸化硫黄混合物の製造方法。
  5.  前記充填容器の少なくとも一部分がステンレス鋼で構成されている請求項4に記載の二酸化硫黄混合物の製造方法。
  6.  前記充填工程における前記二酸化硫黄混合物の前記充填容器への充填量G(単位:kg)に対する前記充填容器の内容積V(単位:L)の比V/Gが0.80以上115以下である請求項4又は請求項5に記載の二酸化硫黄混合物の製造方法。
  7.  二酸化硫黄と水とを含有する二酸化硫黄混合物が充填された充填容器であって、前記二酸化硫黄混合物が気相と液相を形成するように充填されており、前記気相の水分濃度が0.005モルppm以上5000モルppm未満である充填容器。
  8.  二酸化硫黄と水とを含有する二酸化硫黄混合物が充填された充填容器であって、前記二酸化硫黄混合物が気相と液相を形成するように充填されており、前記液相の水分濃度が0.01モルppm以上50モルppm未満である充填容器。
  9.  前記二酸化硫黄混合物の初期充填量G(単位:kg)に対する内容積V(単位:L)の比V/Gが0.80以上2.00以下である請求項7又は請求項8に記載の充填容器。
  10.  容量が1L以上2000L以下である請求項7~9のいずれか一項に記載の充填容器。
  11.  少なくとも一部分がステンレス鋼で構成されている請求項7~10のいずれか一項に記載の充填容器。
PCT/JP2021/005912 2020-03-09 2021-02-17 二酸化硫黄混合物及びその製造方法並びに充填容器 WO2021182045A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/595,708 US20220250908A1 (en) 2020-03-09 2021-02-17 Sulfur dioxide mixture, and method of producing the same, and filling container
JP2022505872A JPWO2021182045A1 (ja) 2020-03-09 2021-02-17
KR1020227013618A KR20220070475A (ko) 2020-03-09 2021-02-17 이산화황 혼합물 및 그 제조 방법 그리고 충전 용기
CN202180003498.5A CN113874300B (zh) 2020-03-09 2021-02-17 二氧化硫混合物及其制造方法以及填充容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-040137 2020-03-09
JP2020040137 2020-03-09

Publications (1)

Publication Number Publication Date
WO2021182045A1 true WO2021182045A1 (ja) 2021-09-16

Family

ID=77672271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005912 WO2021182045A1 (ja) 2020-03-09 2021-02-17 二酸化硫黄混合物及びその製造方法並びに充填容器

Country Status (6)

Country Link
US (1) US20220250908A1 (ja)
JP (1) JPWO2021182045A1 (ja)
KR (1) KR20220070475A (ja)
CN (1) CN113874300B (ja)
TW (1) TWI756068B (ja)
WO (1) WO2021182045A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189616A1 (ja) * 2022-03-31 2023-10-05 住友精化株式会社 腐食性ガス混合物充填容器及び腐食性ガス組成物
WO2024053341A1 (ja) * 2022-09-06 2024-03-14 住友精化株式会社 二酸化硫黄混合物充填容器及び二酸化硫黄組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197262A (ja) * 2006-01-27 2007-08-09 Rikogaku Shinkokai 亜硫酸ガス回収方法および亜硫酸ガス回収プラント
JP2012066962A (ja) * 2010-09-22 2012-04-05 Sumitomo Seika Chem Co Ltd 二酸化硫黄ガスの精製方法及び精製装置
CN102774814A (zh) * 2012-08-23 2012-11-14 楚源高新科技集团股份有限公司 一种纯氧法生产液体二氧化硫的净化新工艺
CN110040691A (zh) * 2019-03-20 2019-07-23 河南心连心深冷能源股份有限公司 一种利用酸性气制备生产高纯二氧化硫的装置及生产方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11157811A (ja) * 1997-11-19 1999-06-15 Sumitomo Seika Chem Co Ltd 二酸化硫黄の製造方法および製造装置
JPH11228114A (ja) * 1998-02-05 1999-08-24 Sumitomo Seika Chem Co Ltd 二酸化硫黄の精製方法、および精製装置
WO2017110412A1 (ja) * 2015-12-22 2017-06-29 昭和電工株式会社 塩化水素混合物及びその製造方法並びに充填容器
WO2017221594A1 (ja) * 2016-06-22 2017-12-28 昭和電工株式会社 硫化水素混合物及びその製造方法並びに充填容器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197262A (ja) * 2006-01-27 2007-08-09 Rikogaku Shinkokai 亜硫酸ガス回収方法および亜硫酸ガス回収プラント
JP2012066962A (ja) * 2010-09-22 2012-04-05 Sumitomo Seika Chem Co Ltd 二酸化硫黄ガスの精製方法及び精製装置
CN102774814A (zh) * 2012-08-23 2012-11-14 楚源高新科技集团股份有限公司 一种纯氧法生产液体二氧化硫的净化新工艺
CN110040691A (zh) * 2019-03-20 2019-07-23 河南心连心深冷能源股份有限公司 一种利用酸性气制备生产高纯二氧化硫的装置及生产方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189616A1 (ja) * 2022-03-31 2023-10-05 住友精化株式会社 腐食性ガス混合物充填容器及び腐食性ガス組成物
WO2024053341A1 (ja) * 2022-09-06 2024-03-14 住友精化株式会社 二酸化硫黄混合物充填容器及び二酸化硫黄組成物

Also Published As

Publication number Publication date
JPWO2021182045A1 (ja) 2021-09-16
CN113874300B (zh) 2023-02-28
US20220250908A1 (en) 2022-08-11
CN113874300A (zh) 2021-12-31
TW202138290A (zh) 2021-10-16
KR20220070475A (ko) 2022-05-31
TWI756068B (zh) 2022-02-21

Similar Documents

Publication Publication Date Title
JP6845235B2 (ja) 硫化水素混合物及びその製造方法並びに充填容器
WO2021182045A1 (ja) 二酸化硫黄混合物及びその製造方法並びに充填容器
JP5231155B2 (ja) 液相状態の化合物の精製装置
JPH07240407A (ja) 部分凝縮による半導体プロセス用薬品の精製方法及び装置
JP6826049B2 (ja) 塩化水素混合物の製造方法
CN105217575B (zh) 一种反应精馏去除氟化氢中水分的方法
KR102430603B1 (ko) 고압 가스 용기의 세정 방법 및 고압 가스 용기
JP2002255865A (ja) 炭化水素ガスの貯蔵及び輸送方法
JP7477730B1 (ja) イソプロピルアルコール収容体及び該収容体の製造方法、並びにイソプロピルアルコール収容体の品質管理方法
JPWO2005044725A1 (ja) 高純度液体塩素の製造方法
WO2024053341A1 (ja) 二酸化硫黄混合物充填容器及び二酸化硫黄組成物
TW202408655A (zh) 異丙醇收容體及該收容體的製造方法、以及異丙醇收容體的品質管理方法
RU2348581C2 (ru) Способ выделения тетрафторида кремния из газовой смеси и установка для его осуществления
JP2021011414A (ja) 二酸化炭素安定同位体の製造装置、一酸化炭素安定同位体の製造装置
TW202400511A (zh) 含氟之氮化合物的保存方法
KR20170067893A (ko) 금속제 부재의 부식 저감 방법
PL230376B1 (pl) Sposób pomiaru rozpuszczalności gazu, zwłaszcza ditlenku węgla w agresywnych chemicznie roztworach krzemianu sodu

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022505872

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227013618

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768159

Country of ref document: EP

Kind code of ref document: A1