WO2021179581A1 - 一种复合材料、杂化电容去离子模块及其脱盐方法 - Google Patents

一种复合材料、杂化电容去离子模块及其脱盐方法 Download PDF

Info

Publication number
WO2021179581A1
WO2021179581A1 PCT/CN2020/118642 CN2020118642W WO2021179581A1 WO 2021179581 A1 WO2021179581 A1 WO 2021179581A1 CN 2020118642 W CN2020118642 W CN 2020118642W WO 2021179581 A1 WO2021179581 A1 WO 2021179581A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
mnti
composite
composite material
module
Prior art date
Application number
PCT/CN2020/118642
Other languages
English (en)
French (fr)
Inventor
王刚
汪仕勇
李长平
吕斯濠
Original Assignee
东莞理工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010172378.5A external-priority patent/CN111342022A/zh
Priority claimed from CN202010171582.5A external-priority patent/CN111362247A/zh
Application filed by 东莞理工学院 filed Critical 东莞理工学院
Publication of WO2021179581A1 publication Critical patent/WO2021179581A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a carbon-coated composite material, a composite electrode and a preparation method thereof, a hybrid capacitor deionization module and a desalination method thereof, and belongs to the technical field of water treatment.
  • CDI The performance of CDI largely depends on the electrode material. According to the different electrode materials, the desalination principle of CDI is mainly divided into the principle of electric double layer and the principle of Faraday.
  • the traditional CDI electrode based on the electric double layer principle is mainly carbon material, because carbon material has the advantages of large specific surface area, abundant pore structure and excellent conductivity.
  • carbon materials are used as CDI electrodes, the specific surface area available for ion adsorption and the ion rejection effect of the same name are limited, and the desalination capacity and recycling performance cannot meet the needs of large-scale applications.
  • NASICON sodium super ion conductor
  • sodium superion conductor sodium super ion conductor
  • the sodium superion conductor can provide fast ion diffusion channels and has a small volume expansion.
  • it also has high ion conductivity.
  • Na 3 MnTi(PO 4 ) 3 has attracted much attention due to its high theoretical capacity, and is cheaper, safer and more environmentally friendly, while the research on Na 3 MnTi(PO 4 ) 3 as a hybrid CDI electrode is still No reports have been seen.
  • the NASICON sodium Fe-base super ionic conductor such as Na 3 Fe 2 (PO 4) 3 ratio of its NaTi 2 (PO 4) 3 having a higher discharge plateau potential, and a higher energy density .
  • QIU et al. studied Na 3 Fe 2 (PO 4 ) 3 as an electrode material for water-based sodium ion batteries and achieved high specific capacity, which further proved its sodium storage characteristics under water-based conditions.
  • the research of Na 3 Fe 2 (PO 4 ) 3 as a hybrid CDI electrode has not been reported yet.
  • the object of the present invention is to provide a carbon-coated sodium superion conductor Na 3 MnTi(PO 4 ) 3 /C composite material or Na 3 Fe 2 (PO 4 ) 3 /C composite material. Since Na 3 MnTi(PO 4 ) 3 or Na 3 Fe 2 (PO 4 ) 3 has obvious disadvantages in its electrical conductivity, it is necessary to combine Na 3 MnTi(PO 4 ) 3 or Na 3 Fe 2 (PO 4 ) 3 with high Carbon materials with electrical conductivity are compounded in order to obtain composite materials with high electrical conductivity and high desalination performance.
  • the present invention provides a carbon-coated Na 3 MnTi(PO 4 ) 3 /C composite material or Na 3 Fe 2 (PO 4 ) 3 /C that has good electrical conductivity, good desalination ability and electrochemical stability Composite material, as the negative electrode of hybrid CDI.
  • the hybrid CDI module described above includes two electrodes, one electrode is Na 3 MnTi(PO 4 ) 3 /C composite electrode or Na 3 Fe 2 (PO 4 ) 3 /C composite electrode, and the other electrode is commercial activated carbon.
  • An object of the present invention is to provide a method for preparing carbon-coated Na 3 MnTi(PO 4 ) 3 /C composite electrode:
  • the Na 3 MnTi(PO 4 ) 3 /C composite material is prepared according to the following method:
  • the molar ratio of sodium acetate, manganese acetate, ammonium dihydrogen phosphate and citric acid is dissolved in a certain amount of deionized water at a molar ratio of 3:1:3:3, and the amount of deionized water used ensures that the raw materials can be dissolved.
  • a molar ratio of 3:1:3:3 3:1:3:3
  • the current collector is graphite paper, titanium sheet or its products, stainless steel sheet or its products.
  • the binder is polytetrafluoroethylene, or a mixture of polyvinyl butyral and polyvinylpyrrolidone at a mass ratio of 4:1.
  • the conductive agent is acetylene black or commercial Super P.
  • Another object of the present invention is to provide a Na 3 MnTi(PO 4 ) 3 /C composite electrode prepared by the above method.
  • Another object of the present invention is to provide a method for preparing carbon-coated sodium superionic conductor Na 3 Fe 2 (PO 4 ) 3 /C composite material:
  • the excess citric acid is determined according to the following method: the molar ratio of citric acid to ferric nitrate is not less than 2:1.
  • sodium nitrate, ferric nitrate and ammonium dihydrogen phosphate are dissolved in a certain amount of deionized water at a molar ratio of 3:2:3, and the amount of deionized water used ensures that the raw materials can be dissolved.
  • a molar ratio of 3:2:3 3:2:3
  • Another object of the present invention is to provide a carbon-coated sodium superionic conductor Na 3 Fe 2 (PO 4 ) 3 /C composite material prepared by the above method.
  • Another object of the present invention is to provide a preparation method of Na 3 Fe 2 (PO 4 ) 3 /C composite electrode:
  • the current collector is graphite paper, titanium sheet or its products, stainless steel sheet or its products;
  • the binder is polytetrafluoroethylene, or polyvinyl butyral and polyvinylpyrrolidone at a mass ratio of 4:1
  • the composition of the mixture is acetylene black or commercial Super P.
  • Another object of the present invention is to provide a hybrid capacitive deionization module containing the above-mentioned Na 3 MnTi(PO 4 ) 3 /C composite electrode.
  • Another object of the present invention is to provide a hybrid capacitive deionization module containing the above-mentioned Na 3 Fe 2 (PO 4 ) 3 /C composite electrode.
  • a hybrid capacitor deionization module the module includes two oppositely arranged end plates and two corresponding electrodes, wherein a sealing material is used to seal and fix the peripheral edges of the two corresponding end plates of the same size; Two corresponding planar electrodes with a certain distance in the middle are placed between the two end plates.
  • one electrode I described Na 3 MnTi (PO 4 ) 3 /C composite electrode or said Na 3 Fe 2 (PO 4 ) 3 /C composite electrode;
  • the other electrode II is a commercial activated carbon electrode, an anion exchange membrane is arranged between the electrodes I and II, and the anion exchange membrane is in close contact with the electrode II.
  • the electrode II is prepared according to the following method: after uniformly mixing the binder, conductive agent and commercial activated carbon, they are bonded on the current collector to obtain a commercial activated carbon electrode,
  • the current collector is graphite paper, titanium sheet or its products, stainless steel sheet or its products;
  • the binder is polytetrafluoroethylene, or polyvinyl butyral and polyvinylpyrrolidone in a mass ratio of 4 :1 composition;
  • the conductive agent is acetylene black or commercial Super P.
  • polyvinyl butyral and polyvinylpyrrolidone When using polyvinyl butyral and polyvinylpyrrolidone as the binder, Na 3 MnTi(PO 4 ) 3 /C or Na 3 Fe 2 (PO 4 ) 3 /C or activated carbon, acetylene black or Super P, Polyvinyl butyral and polyvinylpyrrolidone were dissolved and dispersed in ethanol at a mass ratio of 82.5:10:6:1.5. After mixing, the slurry was coated on the current collector material and dried at 80°C for 12 hours before use.
  • the final electrode mass ratio of the Na 3 MnTi(PO 4 ) 3 /C composite electrode or the Na 3 Fe 2 (PO 4 ) 3 /C composite electrode and the commercial activated carbon electrode is 2:1 to 1: 2.
  • the priority is 2:1, 1:1 or 1:2.
  • the hybrid capacitor deionization and desalination module of the present invention is a sealed body, in which two identical end plates are placed oppositely in parallel with a certain interval between them, and the two end plates are sealed and fixed by a sealing material.
  • the thickness of the sealing material feels the distance between the two end plates placed in parallel.
  • the end plate has at least one hole for the solution to flow into and out of the desalination module.
  • the two electrodes of the present invention are respectively bonded to the two end plates. There is a certain distance between the two electrodes. Further, an insulating non-woven fabric material is arranged between two electrodes with a certain distance. Each electrode is connected to a titanium sheet wire for connecting to an external power source.
  • the electrode I and the electrode II are respectively fixed on the inner surface of the adjacent end plates, the peripheral edges of the two end plates are sealed and fixed to each other by a sealing material, and the distance between the electrode I and the electrode II is controlled by the thickness of the sealing material .
  • the hybrid capacitor deionization module of the present invention uses Na 3 MnTi (PO 4 ) 3 /C composite material or Na 3 Fe 2 (PO 4 ) 3 /C composite material as the negative electrode material, and uses activated carbon as the positive electrode material, and the components are mixed ⁇ CDI module. Under the action of an external electric field, Na + and Cl - can be effectively removed from the brine, thereby achieving desalination; when the two ends of the electrode are removed or the voltage is reversed, Na + and Cl - can be quickly desorbed , Realize the regeneration of the electrode.
  • a hybrid capacitor deionization and desalination method performs desalination in a single hybrid capacitor deionization module or in a module group composed of multiple modules in parallel or in series.
  • the specific method is as follows: The end plate flows into the module and then flows out from the other end plate. While the salt solution is flowing, a certain negative voltage is applied to electrode I and a certain positive voltage is applied to electrode II.
  • the method includes the step of electrode regeneration: deionized water flows in from the end plate at one end of the CDI module, and then flows out from the other end plate, while the deionized water is flowing, a certain positive voltage is applied to the electrode I, A certain negative voltage is applied to the electrode II.
  • the beneficial effect of the present invention is that the present invention adopts a simple sol-gel- cothermal method to prepare a carbon-coated Na 3 MnTi(PO 4 ) 3 /C composite electrode.
  • the conductivity of Na 3 MnTi(PO 4 ) 3 /C composite electrode is significantly enhanced, and the Faraday reaction activity of Na 3 MnTi(PO 4 ) 3 with sodium ions is improved.
  • the results show that the desalination capacity in 500mg L -1 NaCl solution can reach 31.4 mg g -1 under 1.2V voltage; and in the continuous desalination process, it exhibits excellent circulation Regeneration capacity. Therefore, Na 3 MnTi(PO 4 ) 3 /C composite material is expected to become an efficient and economical hybrid CDI electrode material.
  • the beneficial effect of the present invention is that the present invention adopts a simple sol-gel-cothermal method to prepare carbon-coated Na 3 Fe 2 (PO 4 ) 3 /C composite material, and then obtain Na 3 Fe 2 (PO 4 ) 3 /C composite electrode. After the Na 3 Fe 2 (PO 4 ) 3 carbon is coated, the electrical conductivity of the material is significantly enhanced, and the Faraday reaction activity between Na 3 Fe 2 (PO 4 ) 3 and sodium ions is improved.
  • Figures 1(a) and (b) are respectively a typical scanning electron microscope (SEM) image and a transmission electron microscope (TEM) image of Na 3 MnTi(PO 4 ) 3 /C obtained in Example 1.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • Example 2 is the XRD spectrum of the typical Na 3 MnTi(PO 4 ) 3 /C obtained in Example 1.
  • Figure 3 is a typical adsorption and desorption curve of Na 3 MnTi(PO 4 ) 3 /C in a 500 mg/L NaCl solution obtained in Example 1 at different voltages.
  • Fig. 4 is a graph showing the cycle regeneration performance of Na 3 MnTi(PO 4 ) 3 /C desalination under typical 0.8V conditions obtained in Example 1.
  • Figures 5 (a) and (b) are respectively a typical scanning electron microscope (SEM) image and a transmission electron microscope (TEM) image of Na 3 Fe 2 (PO 4 ) 3 /C obtained in Example 3.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • Example 6 is a typical XRD spectrum of Na 3 Fe 2 (PO 4 ) 3 /C obtained in Example 3.
  • Fig. 7 is a typical adsorption and desorption curve of Na 3 Fe 2 (PO 4 ) 3 /C in a 500 mg/L NaCl solution obtained in Example 3 under different voltages.
  • Fig. 8 is a graph showing the regeneration performance of Na 3 Fe 2 (PO 4 ) 3 /C desalination cycle under typical 0.8V conditions obtained in Example 3.
  • test methods described in the following examples are conventional methods unless otherwise specified; the reagents and materials, unless otherwise specified, can be obtained from commercial sources.
  • a preparation method of carbon-coated Na 3 MnTi(PO 4 ) 3 /C composite electrode includes the following process steps:
  • the conductive agent and the carbon-coated Na 3 MnTi(PO 4 ) 3 /C composite material are uniformly mixed, they are bonded on the current collector to obtain the Na 3 MnTi(PO 4 ) 3 /C composite electrode.
  • polytetravinylidene fluoride When using polytetravinylidene fluoride as the binder, dissolve Na 3 MnTi(PO 4 ) 3 /C or activated carbon, acetylene black or Super P and polytetravinylidene fluoride in a mass ratio of 8:1:1 After mixing uniformly, apply the slurry to the current collector material and dry it at 80°C for 12 hours before use.
  • polyvinyl butyral and polyvinylpyrrolidone When using polyvinyl butyral and polyvinylpyrrolidone as the binder, use Na 3 MnTi(PO 4 ) 3 /C or activated carbon, acetylene black or Super P, polyvinyl butyral and polyvinylpyrrolidone to 82.5 Dissolve and disperse in ethanol with a mass ratio of 10:6:1.5. After mixing uniformly, apply the slurry to the current collector material and dry it at 80°C for 12 hours before use.
  • the final Na 3 MnTi(PO 4 ) 3 /C electrode material was obtained ( Figure 1 and Figure 1). 2).
  • Na 3 MnTi(PO 4 ) 3 /C electrode material is still obtained.
  • the Na 3 MnTi(PO 4 ) 3 /C electrode material is used as a hybrid capacitor deionizing negative electrode material; and the hybrid capacitor deionizing positive electrode is a commercial activated carbon material.
  • the module includes two oppositely arranged end plates and two corresponding electrodes. The peripheral edges of the corresponding end plates of the same size are sealed and fixed; two corresponding planar electrodes with a certain distance in the middle are placed between the two end plates.
  • the Na 3 MnTi (PO 4 ) 3 /C composite electrode is a commercial activated carbon electrode
  • an anion exchange membrane is arranged between the electrodes I and II, the anion exchange membrane is in close contact with the electrode II, and the anion exchange membrane is not in contact with the electrode I
  • there is a certain distance between the two electrodes that is, there is a certain distance between the anion exchange membrane and the electrode I
  • an insulating non-woven fabric material is arranged between the two electrodes with a certain distance.
  • Each electrode is connected to a titanium sheet wire for connecting to an external power source.
  • a hybrid capacitor deionization and desalination method performs desalination in a single hybrid capacitor deionization module.
  • the specific method is: the sodium chloride solution to be treated with a salt concentration of 500 mg L -1 flows into the end plate at one end The module then flows out from the other end plate. While the salt solution is flowing, a certain negative voltage is applied to electrode I and a certain positive voltage is applied to electrode II.
  • Steps of electrode regeneration deionized water flows in from the end plate at one end of the CDI module, and then flows out from the other end plate. While the deionized water is flowing, a certain positive voltage is applied to electrode I and a certain negative voltage is applied to electrode II. Voltage.
  • the initial conductivity of the tested NaCl is 1000 ⁇ S cm -1 (with a concentration of 500 mg L -1 ), and the adsorption and regeneration curves are tested under different voltages (Figure 3). After calculation, when the voltage is 1.2V, the maximum desalination capacity of Na 3 MnTi(PO 4 ) 3 /C can reach 31.4 mg g -1 ( Figure 3). During 100 consecutive CDI desalination cycles, Na 3 MnTi( The PO 4 ) 3 /C composite also showed good cycle stability (Figure 4).
  • the assembly, desalination method and electrode regeneration of the hybrid capacitor deionization module are the same as in Example 1.
  • the initial conductivity of NaCl is 1000 ⁇ S cm -1 (concentration is 500 mg L -1 ), and the hybridization of two different final electrode mass ratios is tested.
  • Desalination performance of the electrodeionization module According to calculations, when the voltage is 1.2V, the final electrode mass ratio of Na 3 MnTi(PO 4 ) 3 /C and commercial activated carbon is 2:1, and the desalination amount is 28.8mg g -1 , while Na 3 MnTi(PO 4 ) When the final electrode mass ratio of 3 /C and commercial activated carbon is 1:2, the desalination amount is 25.2 mg g -1 .
  • step (2) During stirring, slowly add excess sodium citrate to the solution obtained in step (1), and then raise the temperature to 80°C until the solution evaporates to dryness, then transfer it to an oven at 100°C to dry for 12 hours to obtain a solid intermediate product.
  • Na 3 Fe 2 (PO 4 ) 3 /C electrode material is obtained ( Figures 5 and 6) .
  • the temperature is increased to 700°C, 750°C and 800°C, respectively, Na 3 Fe 2 (PO 4 ) 3 /C electrode material is still obtained.
  • the Na 3 Fe 2 (PO 4 ) 3 /C electrode material is used as a hybrid capacitor deionizing negative electrode material; and the hybrid capacitor deionizing positive electrode material is a commercial activated carbon material.
  • the module includes two oppositely arranged end plates and two corresponding electrodes. Two of the same size, corresponding to the peripheral edges of the end plate are sealed and fixed; two corresponding flat electrodes with a certain distance in the middle are placed between the two end plates, of which one electrode I described Na 3 Fe 2 ( PO 4 ) 3 /C composite electrode; the other electrode II is a commercial activated carbon electrode, an anion exchange membrane is arranged between the electrodes I and II, the anion exchange membrane is in close contact with the electrode II, and the anion exchange membrane is in close contact with the electrode II.
  • each electrode is connected to a titanium sheet wire for connecting to an external power source.
  • a hybrid capacitor deionization and desalination method performs desalination in a single hybrid capacitor deionization module.
  • the specific method is: the sodium chloride solution to be treated with a salt concentration of 500 mg L -1 flows into the end plate at one end The module then flows out from the other end plate. While the salt solution is flowing, a certain negative voltage is applied to electrode I and a certain positive voltage is applied to electrode II.
  • Steps of electrode regeneration deionized water flows in from the end plate at one end of the CDI module, and then flows out from the other end plate. While the deionized water is flowing, a certain positive voltage is applied to electrode I and a certain negative voltage is applied to electrode II. Voltage.
  • the assembly, desalination method and electrode regeneration of the hybrid capacitor deionization module are the same as in Example 3.
  • the initial conductivity of NaCl is 1000 ⁇ S cm -1 (concentration is 500 mg L -1 ), and the hybridization of two different final electrode mass ratios is tested.
  • Desalination performance of the electrodeionization module After calculation, when the voltage is 1.2V, the final electrode mass ratio of Na 3 Fe 2 (PO 4 ) 3 /C and commercial activated carbon is 2:1, the amount of desalination is 35.8 mg g -1 , while Na 3 Fe 2 When the final electrode mass ratio of (PO 4 ) 3 /C and commercial activated carbon is 1:2, the desalination amount is 32.1 mg g -1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明涉及一种复合材料、杂化电容去离子模块及其脱盐方法,属于水处理技术领域。本发明采用简单的溶胶凝胶-共热法,制备得到了碳包覆的Na 3MnTi(PO4) 3/C复合材料或Na3Fe2(PO4)3/C复合材料,进而制备获得了N 3MnTi(PO4)3/C复合电极或Na3Fe2(PO4)3/C复合电极。本发明将Na3MnTi(PO4)3或Na3Fe2(PO4)3进行碳包覆后,显著增强了材料的电导率,提高Na3MnTi(PO4)3或Na3Fe2(PO4)3与钠离子的法拉第反应活性。将所得Na3MnTi(PO4) 3/C复合电极或Na3Fe2(PO4)3/C复合电极与商业化活性炭组装成杂化CDI模块,在施加外加电场的作用下,可以有效的从盐水中脱除Na +和Cl -,从而实现脱盐;当去除电极两端或者反接电压时,又能快速地将Na +和Cl -脱附出来,实现电极的再生,展现出优异的循环再生能力。

Description

一种复合材料、杂化电容去离子模块及其脱盐方法 技术领域
本发明涉及一种碳包覆复合材料、复合电极及其制备方法、杂化电容去离子模块及其脱盐方法,属于水处理技术领域。
背景技术
随着经济与人口的快速增长,人类对淡水资源的需求也随之增加。然而,在人类工业化进程与城镇化过程中,以及在不恰当的农业活动中等,许多污染物(比如持久性的有机污染物,重金属和染料等)被排放到水体中,造成严重的水体污染,进一步加剧了水资源短缺问题。尽管地球上水资源丰富,但其中有96.5%是以海水及苦咸水的形成存在,而淡水资源只占到地球总水量的2.5%。且在这些淡水资源中,有68.7%分布在两极冰川及高海拔的地区,难以取用,仅有少部分的河流湖泊及地下水供人们使用。为缓解淡水危机,一个行之有效的策略是将海水及苦咸水转化为淡水,因此人们发展了许多脱盐技术,比如反渗透,多级闪蒸,多效蒸馏和电容去离子技术(Capacitive Deionization,CDI)。在这些脱盐技术中,CDI因其低能耗、高的脱盐效率和环境友好等特点,备受研究者关注。
CDI的性能很大程度上取决于电极材料,根据电极材料的不同,CDI的脱盐原理主要分为双电层原理和法拉第原理。基于双电层原理的传统CDI电极主要为碳材料,这是因为碳材料具有大的比表面积,丰富的孔道结构和优异的导电性等优点。但在人们研究过程中发现,当以碳材料为CDI电极时,受限于可供离子吸附的比表面积和同名离子排斥效应等因素,存在脱盐量及循环再生性能无法达到规模化应用的需求。为解决这个问题,2014年,Lee等设计了杂化电容去离子,利用锰钠氧化物(Sodium Manganese Oxide,NMO)电极通过法拉第反应存储钠离子,活性炭存储阴离子,获得了优异的CDI性能。与碳材料相比,基于法拉第反应原理的法拉第电极材料在脱除钠离子等阳离子时,具有大的离子存储容量好良好的循环稳定性等优点。因此,我们迫切需要开发更多具有高吸附容量,优的循环稳定性的法拉第电极材料,并作为杂化电容去离子的负极材料。
近年来,NASICON(钠超离子导体)凭借其较大的理论容量、稳定的三维框架和较大的钠离子通道被广泛应用与钠离子电池方面。在充放电过程中,钠超离子导体可以提供快速的离子扩散通道,和具有较小的体积膨胀,同时,其还具有高的离子电导率,这些特点使得钠超离子导体是可作为杂化CDI电极的。而这这些钠超离子导体中,Na 3MnTi(PO 4) 3因具有高 的理论容量,且更加廉价安全环保备受关注,而Na 3MnTi(PO 4) 3作为杂化CDI电极的研究还未见到报道。另外,这些钠超离子导体中,Fe基钠超离子导体,比如Na 3Fe 2(PO 4) 3因其比NaTi 2(PO 4) 3具有更高放电平台电势,而获得更高的能量密度。同时,QIU等研究了Na 3Fe 2(PO 4) 3作为水系钠离子电池电极材料时,获得了高的比容量,进一步证明其在水系条件下的储钠特性。然而,Na 3Fe 2(PO 4) 3作为杂化CDI电极的研究也还未见到报道。
发明内容
本发明的目的在于提供一种碳包覆钠超离子导体Na 3MnTi(PO 4) 3/C复合材料或Na 3Fe 2(PO 4) 3/C复合材料。由于Na 3MnTi(PO 4) 3或Na 3Fe 2(PO 4) 3本身电导率存在明显的劣势,因此,将Na 3MnTi(PO 4) 3或Na 3Fe 2(PO 4) 3与高电导率的碳材料复合,以期获得高电导率,高脱盐性能的复合材料。本发明提供一种既具有良好导电性,又具备良好脱盐能力及电化学稳定性的碳包覆的Na 3MnTi(PO 4) 3/C复合材料或Na 3Fe 2(PO 4) 3/C复合材料,作为杂化CDI的负极。上述杂化CDI模块包含两个电极,一个电极Na 3MnTi(PO 4) 3/C复合电极或Na 3Fe 2(PO 4) 3/C复合电极,另外一个电极是商业化活性炭。
本发明的一目的是提供一种碳包覆Na 3MnTi(PO 4) 3/C复合电极的制备方法:
将粘结剂,导电剂和碳包覆Na 3MnTi(PO 4) 3/C复合材料混合均匀后,粘结在集流体上,得Na 3MnTi(PO 4) 3/C复合电极,所述Na 3MnTi(PO 4) 3/C复合材料按下述方法制得:
将醋酸钠、醋酸锰、磷酸二氢铵和柠檬酸按照摩尔比为3:1:3:3溶于水,再加入钛酸异丙酯,其中,钛酸异丙酯与醋酸锰的摩尔比为1:1,在80℃的条件下搅拌蒸干水后,转移到100℃的烘箱中干燥,得到固体中间产物;最后将固体中间产物在惰性的气氛下以1~10℃min -1的升温速率升至500~700℃,煅烧12h,得到Na 3MnTi(PO 4) 3/C复合材料。
上述技术方案中,将醋酸钠、醋酸锰、磷酸二氢铵和柠檬酸按摩尔比为3:1:3:3溶于一定量的去离子水,所用去离子水的用量保证原料均可溶解,本领域技术人员可通过原料用量进行合理的选择。
上述技术方案中,所述集流体为石墨纸、钛片或其制品、不锈钢片或其制品。
上述技术方案中,所述粘结剂为聚四氟乙烯,或聚乙烯醇缩丁醛与聚乙烯吡咯烷酮按质量比4:1组成的混合物。
上述技术方案中,所述导电剂为乙炔黑或商品Super P。
本发明的另一目的是提供由上所述方法制得的Na 3MnTi(PO 4) 3/C复合电极。
本发明的又一目的是提供一种碳包覆钠超离子导体Na 3Fe 2(PO 4) 3/C复合材料的制备方法:
将硝酸钠、硝酸铁和磷酸二氢铵按摩尔比为3:2:3溶于水后,加入过量的柠檬酸,在80℃下搅拌蒸干水后,转移到100℃的烘箱中干燥,得到固体中间产物;将固体中间产物在惰性气氛下以1~10℃min -1的升温速率升至600~800℃,煅烧12h,得到碳包覆钠超离子导体Na 3Fe 2(PO 4) 3/C复合材料。
上述技术方案中,所述过量的柠檬酸按下述方法确定:柠檬酸与硝酸铁的摩尔比不小于2:1。
上述技术方案中,将硝酸钠、硝酸铁和磷酸二氢铵按摩尔比为3:2:3溶于一定量的去离子水,所用去离子水的用量保证原料均可溶解,本领域技术人员可通过原料用量进行合理的选择。
本发明的又一目的是提供由上述方法制得的碳包覆钠超离子导体Na 3Fe 2(PO 4) 3/C复合材料。
本发明的又一目的是提供一种Na 3Fe 2(PO 4) 3/C复合电极的制备方法:
将粘结剂,导电剂和如上所述Na 3Fe 2(PO 4) 3/C复合材料混合均匀后,粘结在集流体上,得Na 3Fe 2(PO 4) 3/C复合电极,
其中,所述集流体为石墨纸、钛片或其制品、不锈钢片或其制品;所述粘结剂为聚四氟乙烯,或聚乙烯醇缩丁醛与聚乙烯吡咯烷酮按质量比4:1组成的混合物;所述导电剂为乙炔黑或商品Super P。
本发明的又一目的是提供包含上述Na 3MnTi(PO 4) 3/C复合电极的杂化电容去离子模块。
本发明的又一目的是提供包含上述Na 3Fe 2(PO 4) 3/C复合电极的杂化电容去离子模块。
一种杂化电容去离子模块,所述模块包括两个相对设置的端板和两个对应的电极,其中,采用密封材料将两个相同尺寸,相对应的端板的四周边缘处密封固定;中间间隔有一定距离的两个对应平面电极放置在两个端板之间,其中,一个电极I所述的Na 3MnTi(PO 4) 3/C复合电极或所述的Na 3Fe 2(PO 4) 3/C复合电极;另外一电极II为商业化活性炭电极,在电极I和II之间设有一个阴离子交换膜,所述阴离子交换膜与电极II紧密接触。
进一步地,所述电极II按下述方法制得:将粘结剂,导电剂和商业化活性炭混合均匀后,粘结在集流体上,得商业化活性炭电极,
其中,所述的集流体为石墨纸、钛片或其制品、不锈钢片或其制品;所述的粘结剂为聚四氟乙烯、或聚乙烯醇缩丁醛与聚乙烯吡咯烷酮按质量比4:1组成的混合物;所述的导电剂为乙炔黑或商品Super P。
上述电极I和II中,当采用聚四偏氟乙烯为粘结剂时,将Na 3MnTi(PO 4) 3/C或Na 3Fe 2(PO 4) 3/C或活性炭,乙炔黑或者Super P和聚四偏氟乙烯按照8:1:1的质量比溶解于二 甲基乙酰胺中,混合均匀后将浆液涂到集流体材料上,并在80℃下干燥12h后使用。
当采用聚乙烯醇缩丁醛及聚乙烯吡咯烷酮为粘结剂时,将Na 3MnTi(PO 4) 3/C或Na 3Fe 2(PO 4) 3/C或活性炭,乙炔黑或者Super P、聚乙烯醇缩丁醛和聚乙烯吡咯烷酮以82.5:10:6:1.5的质量比溶解分散于乙醇中,混合均匀后将浆料涂到集流体材料上,并于80℃下干燥12h后使用。
进一步地,所述Na 3MnTi(PO 4) 3/C复合电极或所述Na 3Fe 2(PO 4) 3/C复合电极与商业化活性炭电极的最终电极质量比为2:1~1:2,优先为2:1、1:1或1:2。
本发明所述的杂化电容去离子脱盐模块是一个密封体,其中,两个相同的端板平行相对放置,且二者之间有一定的间隔,两个端板采用密封材料密封固定。密封材料的厚度觉得平行放置的两个端板间的距离。所述的端板至少有一个孔道,以供溶液的流入与流出脱盐模块。
本发明所述的两个电极分别粘接在两个端板上。两个电极间有一定的距离。进一步地,在两个具有一定间距的电极间设有绝缘无纺布材料。电极各自连接钛片导线,用于连接外部电源。
优选地,所述电极I和电极II分别固定在邻近端板的内侧表面上,两个端板的四周边缘处利用密封材料相互密封固定,通过密封材料厚度控制电极I和电极II间的间距大小。
本发明所述的杂化电容去离子模块采用Na 3MnTi(PO 4) 3/C复合材料或者Na 3Fe 2(PO 4) 3/C复合材料作为负极材料,以活性炭作为正极材料,组件杂化CDI模块。在施加外加电场的作用下,可以有效的从盐水中脱除Na +和Cl -,从而实现脱盐;当去除电极两端或者反接电压时,又能快速地将Na +和Cl -脱附出来,实现电极的再生。
一种杂化电容去离子脱盐方法,所述方法在杂化电容去离子单一模块或者在由多个模块并联或串联组成的模块组中进行脱盐,具体方法为:使待处理的盐溶液从一端的端板流入模块,然后从另一个端板流出,在盐溶液流动的同时,对电极I施加一定的负电压,对电极II施加一定的正电压。
进一步地,所述方法包括电极再生的步骤:将去离子水从CDI模块一端的端板流入,然后从另一个端板流出,在去离子水流动的同时,对电极I施加一定的正电压,对电极II施加一定的负电压。
本发明的有益效果是:本发明采用简单的溶胶凝胶-共热法,制备得到了碳包覆的Na 3MnTi(PO 4) 3/C复合电极。将Na 3MnTi(PO 4) 3进行碳包覆后,显著增强Na 3MnTi(PO 4) 3/C复合电极电导率,提高Na 3MnTi(PO 4) 3与钠离子的法拉第反应活性,在与商业化活性炭组装成杂化CDI模块时,结果表明,在1.2V电压下,500mg L -1 NaCl溶液中脱盐容量可达31.4mg g -1;且在连续脱盐过程中,展现出优异的循环再生能力。因此,Na 3MnTi(PO 4) 3/C复合材料有 望成为一种高效、经济的杂化CDI电极材料。
本发明的有益效果是:本发明采用简单的溶胶凝胶-共热法,制备得到了碳包覆的Na 3Fe 2(PO 4) 3/C复合材料,进而获得Na 3Fe 2(PO 4) 3/C复合电极。将Na 3Fe 2(PO 4) 3碳包覆后,显著增强了材料的电导率,提高Na 3Fe 2(PO 4) 3与钠离子的法拉第反应活性。将所得Na 3Fe 2(PO 4) 3/C复合电极与商业化活性炭组装成杂化CDI模块,结果表明,在1.2V电压下,500mg L -1 NaCl溶液中脱盐容量可达43.5mg g -1;且在连续脱盐过程中,展现出优异的循环再生能力。因此,Na 3Fe 2(PO 4) 3/C复合材料有望成为一种高效、经济的杂化CDI电极材料。
附图说明
图1(a)和(b)分别是实施例1所得典型的Na 3MnTi(PO 4) 3/C扫描电子显微镜(SEM)图和透射电镜(TEM)图。
图2是实施例1所得典型的Na 3MnTi(PO 4) 3/C的XRD谱图。
图3是实施例1所得典型的在不同电压下,500mg/L的NaCl溶液中,Na 3MnTi(PO 4) 3/C的吸脱附曲线。
图4是实施例1所得典型的0.8V条件下,Na 3MnTi(PO 4) 3/C脱盐循环再生性能图。
图5(a)和(b)分别是实施例3所得典型的Na 3Fe 2(PO 4) 3/C扫描电子显微镜(SEM)图和透射电镜(TEM)图。
图6是实施例3所得典型的Na 3Fe 2(PO 4) 3/C的XRD谱图。
图7是实施例3所得典型的在不同电压下,500mg/L的NaCl溶液中,Na 3Fe 2(PO 4) 3/C的吸脱附曲线。
图8是实施例3所得典型的0.8V条件下,Na 3Fe 2(PO 4) 3/C脱盐循环再生性能图。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
下述实施例中所述试验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
具体实施方式之一:
一种碳包覆Na 3MnTi(PO 4) 3/C复合材料电极的制备方法,包括下述工艺步骤:
将醋酸钠、醋酸锰、磷酸二氢铵和柠檬酸按照摩尔比3:1:3:3溶于水后,再加入钛酸异丙酯,其中钛酸异丙酯与醋酸锰的摩尔比为1:1,在80℃的条件下搅拌蒸干水后,转移到100℃的烘箱中干燥,得到固体中间产物;最后将固体中间产物在惰性的气氛下以1~10℃min -1的升温速率升至500~700℃,煅烧12h,得到Na 3MnTi(PO 4) 3/C复合材料。将粘结剂,导电剂和碳包覆Na 3MnTi(PO 4) 3/C复合材料混合均匀后,粘结在集流体上,得Na 3MnTi(PO 4) 3/C复合电极。
采用聚四偏氟乙烯为粘结剂时,将Na 3MnTi(PO 4) 3/C或活性炭,乙炔黑或者Super P和聚四偏氟乙烯按照8:1:1的质量比溶解于二甲基乙酰胺中,混合均匀后将浆液涂到集流体材料上,并在80℃下干燥12h后使用。
当采用聚乙烯醇缩丁醛及聚乙烯吡咯烷酮为粘结剂时,将Na 3MnTi(PO 4) 3/C或活性炭,乙炔黑或者Super P、聚乙烯醇缩丁醛和聚乙烯吡咯烷酮以82.5:10:6:1.5的质量比溶解分散于乙醇中,混合均匀后将浆料涂到集流体材料上,并于80℃下干燥12h后使用。
实施例1
依次将3mmol醋酸钠、1mmol醋酸锰、3mmol磷酸二氢铵和3mmol柠檬酸分散在80mL去离子水中,搅拌20min。在搅拌的过程中将钛酸异丙酯逐滴加入到上述溶液中,钛酸异丙酯与醋酸锰的摩尔比为1:1,随后升温到80℃,直到溶液蒸干后,转移到100℃的烘箱中干燥12h得到固体中间产物。将固体中间产物在氮气气氛下以5℃min -1的升温速率升至600℃,并保持12h,待冷却后,得到最终的Na 3MnTi(PO 4) 3/C电极材料(图1和图2)。特别的,当分别升温至500℃和700℃时,依然得到Na 3MnTi(PO 4) 3/C电极材料。Na 3MnTi(PO 4) 3/C电极材料作为杂化电容去离子负极材料;而杂化电容去离子正极则为商业化活性炭材料。
将Na 3MnTi(PO 4) 3/C和商业化活性炭各自地与乙炔黑、聚乙烯烯醇缩丁醛、聚乙烯吡咯烷酮按82.5:10:6:1.5的质量比溶解分散于乙醇中,混合分散均匀后将将浆液涂覆到相同尺寸的石墨纸上,并于80℃下干燥12h后,分别得到了Na 3MnTi(PO 4) 3/C和商业化活性炭电极。两个电极中所述的Na 3MnTi(PO 4) 3/C和商业化活性炭的质量比为1:1。
利用上述Na 3MnTi(PO 4) 3/C和商业化活性炭电极组装杂化电容去离子模块,所述模块包括两个相对设置的端板和两个对应的电极,其中,采用密封材料将两个相同尺寸,相对应的端板的四周边缘处密封固定;中间间隔有一定距离的两个对应平面电极放置在两个端板之间,其中,一个电极I所述的Na 3MnTi(PO 4) 3/C复合电极;另外一电极II为商业化活性炭电极,在电极I和II之间设有一个阴离子交换膜,所述阴离子交换膜与电极II紧密接触,该阴离子交换膜与电极I不接触,两个电极间有一定的距离(即阴离子交换膜与电极I间具有一定间距);在两个具有一定间距的电极间设有绝缘无纺布材料。电极各自连接钛片导线,用于连接 外部电源。
一种杂化电容去离子脱盐方法,所述方法在单一杂化电容去离子模块中进行脱盐,具体方法为:使盐浓度为500mg L -1的待处理氯化钠溶液从一端的端板流入模块,然后从另一个端板流出,在盐溶液流动的同时,对电极I施加一定的负电压,对电极II施加一定的正电压。
电极再生的步骤:将去离子水从CDI模块一端的端板流入,然后从另一个端板流出,在去离子水流动的同时,对电极I施加一定的正电压,对电极II施加一定的负电压。
测试NaCl初始电导率为1000μS cm -1(浓度为500mg L -1),在不同的电压下测试测试吸附和再生曲线(图3)。经计算,当电压为1.2V时,Na 3MnTi(PO 4) 3/C的最大脱盐容量可达31.4mg g -1(图3),在连续100次CDI脱盐循环过程中,Na 3MnTi(PO 4) 3/C复合材料也表现出良好的循环稳定性(图4)。
实施例2
依次将3mmol醋酸钠、1mmol醋酸锰、3mmol磷酸二氢铵和3mmol柠檬酸分散在80mL去离子水中,搅拌20min。在搅拌的过程中将钛酸异丙酯逐滴加入到上述溶液中,钛酸异丙酯与醋酸锰的摩尔比为1:1,随后升温到80℃,直到溶液蒸干后,转移到100℃的烘箱中干燥12h得到固体中间产物。将固体中间产物在氮气气氛下以5℃min -1的升温速率升至600℃,并保持12h,待冷却后,得到最终的Na 3MnTi(PO 4) 3/C电极材料(图1和图2),作为杂化电容去离子负极材料;而杂化电容去离子正极则为商业化活性炭材料。
将Na 3MnTi(PO 4) 3/C和商业化活性炭各自地与乙炔黑、聚乙烯醇缩丁醛、聚乙烯吡咯烷酮按82.5:10:6:1.5的质量比溶解分散于乙醇中,混合分散均匀后将浆液涂覆到相同尺寸的石墨纸上,并于80℃下干燥12h后,分别得到了Na 3MnTi(PO 4) 3/C和商业化活性炭电极。两个电极中所述的Na 3MnTi(PO 4) 3/C和商业化活性炭的最终电极质量比为2:1和1:2。
杂化电容去离子模块的组装、脱盐方法及电极的再生同实施例1,在NaCl初始电导率为1000μS cm -1(浓度为500mg L -1),测试两种不同最终电极质量比的杂化电去离子模块的脱盐性能。经计算,当电压为1.2V时,Na 3MnTi(PO 4) 3/C和商业化活性炭的最终电极质量比为2:1时的脱盐量为28.8mg g -1,而Na 3MnTi(PO 4) 3/C和商业化活性炭的最终电极质量比为1:2时的脱盐量为25.2mg g -1
具体实施方式之一:
一种碳包覆钠超离子导体Na 3Fe 2(PO 4) 3/C复合材料的制备方法,
(1)依次按照Na 3Fe 2(PO 4) 3化学计量比将硝酸钠、硝酸铁和磷酸二氢铵分散在去离子水中,搅拌20min。
(2)在搅拌的过程中将过量的柠檬酸钠缓慢加入到步骤(1)所得溶液中,随后升温到 80℃,直到溶液蒸干后,转移到100℃的烘箱中干燥12h,得到固体中间产物。
(3)将固体中间产物在惰性的气氛下以1~10℃min -1的升温速率升至600~800℃,并保持12h,待冷却后,得到最终的Na 3Fe 2(PO 4) 3/C电极材料。
实施例3
依次将3mmol硝酸钠、2mmol硝酸铁和3mmol磷酸二氢铵分散在80mL去离子水中,搅拌20min。在搅拌过程中将过量的柠檬酸缓慢加入到上述溶液中,柠檬酸与硝酸铁的摩尔比为2:1,随后升温到80℃,直到溶液蒸干后,转移到100℃的烘箱中干燥12h得到固体中间产物。将固体中间产物在氮气气氛下以5℃min -1的升温速率升至650℃,并保持12h,待冷却后,得到Na 3Fe 2(PO 4) 3/C电极材料(图5和6)。特别的,当分别升温至700℃,750℃和800℃时,依然得到Na 3Fe 2(PO 4) 3/C电极材料。Na 3Fe 2(PO 4) 3/C电极材料作为杂化电容去离子负极材料;而杂化电容去离子正极材料选用商业化活性炭材料。
将Na 3Fe 2(PO 4) 3/C和商业化活性炭各自地与乙炔黑、聚乙烯醇缩丁醛、聚乙烯吡咯烷酮按82.5:10:6:1.5的质量比溶解分散于乙醇中,混合分散均匀后将浆液涂覆到相同尺寸的石墨纸上,并于80℃下干燥12h后,分别得到了Na 3Fe 2(PO 4) 3/C和商业化活性炭电极。两个电极中所述的Na 3Fe 2(PO 4) 3/C和商业化活性炭的最终电极质量比为1:1。
利用上述Na 3Fe 2(PO 4) 3/C和商业化活性炭电极组装杂化电容去离子模块,所述模块包括两个相对设置的端板和两个对应的电极,其中,采用密封材料将两个相同尺寸,相对应的端板的四周边缘处密封固定;中间间隔有一定距离的两个对应平面电极放置在两个端板之间,其中,一个电极I所述的Na 3Fe 2(PO 4) 3/C复合电极;另外一电极II为商业化活性炭电极,在电极I和II之间设有一个阴离子交换膜,所述阴离子交换膜与电极II紧密接触,该阴离子交换膜与电极I不接触,两个电极间有一定的距离(即阴离子交换膜与电极I间具有一定间距);在两个具有一定间距的电极间设有绝缘无纺布材料。电极各自连接钛片导线,用于连接外部电源。
一种杂化电容去离子脱盐方法,所述方法在单一杂化电容去离子模块中进行脱盐,具体方法为:使盐浓度为500mg L -1的待处理氯化钠溶液从一端的端板流入模块,然后从另一个端板流出,在盐溶液流动的同时,对电极I施加一定的负电压,对电极II施加一定的正电压。
电极再生的步骤:将去离子水从CDI模块一端的端板流入,然后从另一个端板流出,在去离子水流动的同时,对电极I施加一定的正电压,对电极II施加一定的负电压。
测试NaCl初始电导率为1000μS cm -1(浓度为500mg L -1),在不同的电压下测试吸附和再生曲线(图7)。经计算,当电压为1.2V时,Na 3Fe 2(PO 4) 3/C的最大脱盐容量可达43.5mg g -1(图7),在连续100次CDI脱盐循环过程中,Na 3Fe 2(PO 4) 3/C复合材料也表现出良好的循环 稳定性(图8)。
实施例4
依次将3mmol硝酸钠、2mmol硝酸铁和3mmol磷酸二氢铵分散在80mL去离子水中,搅拌20min。在搅拌的过程中将过量的柠檬酸缓慢加入到上述溶液中,柠檬酸与硝酸铁的摩尔比为2:1,随后升温到80℃,直到溶液蒸干后,转移到100℃的烘箱中干燥12h得到固体中间产物。将固体中间产物在氮气气氛下以5℃min -1的升温速率升至650℃,并保持12h,待冷却后,得到Na 3Fe 2(PO 4) 3/C电极材料,作为杂化电容去离子负极材料;而杂化电容去离子正极材料选用商业化活性炭材料。
将Na 3Fe 2(PO 4) 3/C和商业化活性炭各自地与乙炔黑、聚乙烯醇缩丁醛、聚乙烯吡咯烷酮按82.5:10:6:1.5的质量比溶解分散于乙醇中,混合分散均匀后将浆液涂覆到相同尺寸的石墨纸上,并于80℃下干燥12h后,分别得到了Na 3Fe 2(PO 4) 3/C和商业化活性炭电极。两个电极中所述的Na 3Fe 2(PO 4) 3/C和商业化活性炭的最终电极质量比为2:1和1:2。
杂化电容去离子模块的组装、脱盐方法及电极的再生同实施例3,在NaCl初始电导率为1000μS cm -1(浓度为500mg L -1),测试两种不同最终电极质量比的杂化电去离子模块的脱盐性能。经计算,当电压为1.2V时,Na 3Fe 2(PO 4) 3/C和商业化活性炭的最终电极质量比为2:1时的脱盐量为35.8mg g -1,而Na 3Fe 2(PO 4) 3/C和商业化活性炭的最终电极质量比为1:2时的脱盐量为32.1mg g -1

Claims (13)

  1. 一种碳包覆Na 3MnTi(PO 4) 3/C复合电极的制备方法,其特征在于:
    将粘结剂,导电剂和碳包覆Na 3MnTi(PO 4) 3/C复合材料混合均匀后,粘结在集流体上,得Na 3MnTi(PO 4) 3/C复合电极,所述Na 3MnTi(PO 4) 3/C复合材料按下述方法制得:
    将醋酸钠、醋酸锰、磷酸二氢铵和柠檬酸按照摩尔比3:1:3:3溶于水,再加入钛酸异丙酯,其中,钛酸异丙酯与醋酸锰的摩尔比为1:1,在80℃的条件下搅拌蒸干水后,转移到100℃的烘箱中干燥,得到固体中间产物;最后将固体中间产物在惰性的气氛下以1~10℃min -1的升温速率升至500~700℃,煅烧12h,得到Na 3MnTi(PO 4) 3/C复合材料。
  2. 根据权利要求1所述的方法,其特征在于:所述粘结剂为聚四氟乙烯,或聚乙烯醇缩丁醛与聚乙烯吡咯烷酮按质量比4:1组成的混合物。
  3. 根据权利要求1所述的方法,其特征在于:所述导电剂为乙炔黑或商品Super P。
  4. 权利要求1-3任一项所述方法制得的Na 3MnTi(PO 4) 3/C复合电极。
  5. 一种碳包覆钠超离子导体Na 3Fe 2(PO 4) 3/C复合材料的制备方法,其特征在于:
    将硝酸钠、硝酸铁和磷酸二氢铵按摩尔比为3:2:3溶于水后,加入过量的柠檬酸,在80℃下搅拌蒸干水后,转移到100℃的烘箱中干燥,得到固体中间产物;将固体中间产物在惰性气氛下以1~10℃min -1的升温速率升至600~800℃,煅烧12h,得到碳包覆钠超离子导体Na 3Fe 2(PO 4) 3/C复合材料。
  6. 根据权利要求5所述的方法,其特征在于:所述过量的柠檬酸按下述方法确定:柠檬酸与硝酸铁的摩尔比不小于2:1。
  7. 权利要求5或6所述方法制得的碳包覆钠超离子导体Na 3Fe 2(PO 4) 3/C复合材料。
  8. 一种Na 3Fe 2(PO 4) 3/C复合电极的制备方法,其特征在于:将粘结剂,导电剂和权利要求7所述Na 3Fe 2(PO 4) 3/C复合材料混合均匀后,粘结在集流体上,得Na 3Fe 2(PO 4) 3/C复合电极,
    其中,所述集流体为石墨纸、钛片或其制品、不锈钢片或其制品;所述粘结剂为聚四氟乙烯,或聚乙烯醇缩丁醛与聚乙烯吡咯烷酮按质量比4:1组成的混合物;所述导电剂为乙炔黑或商品Super P。
  9. 一种杂化电容去离子模块,其特征在于:所述模块包括两个相对设置的端板和两个对应的电极,其中,采用密封材料将两个相同尺寸,相对应的端板的四周边缘处密封固定;中间间隔有一定距离的两个对应平面电极放置在两个端板之间,其中,一个电极I采用权利要求4所述的Na 3MnTi(PO 4) 3/C复合电极或权利要求8所述方法制备的Na 3Fe 2(PO 4) 3/C复合电极;另外一电极II为商业化活性炭电极,在电极I和II之间设有一个阴离子交换膜,所述阴离子交换膜与电极II紧密接触。
  10. 根据权利要求9所述模块,其特征在于:所述电极II按下述方法制得:将粘结剂,导电剂和商业化活性炭混合均匀后,粘结在集流体上,得商业化活性炭电极,
    其中,所述的集流体为石墨纸、钛片或其制品、不锈钢片或其制品;所述的粘结剂为聚四氟乙烯、或聚乙烯醇缩丁醛与聚乙烯吡咯烷酮按质量比4:1组成的混合物;所述的导电剂为乙炔黑或商品Super P。
  11. 根据权利要求10所述模块,其特征在于:所述Na 3MnTi(PO 4) 3/C复合电极与商业化活性炭电极的最终电极质量比为2:1~1:2,优先为2:1、1:1或1:2;
    或者,所述Na 3Fe 2(PO 4) 3/C复合电极与商业化活性炭电极的最终电极质量比为2:1~1:2,优先为2:1、1:1或1:2。
  12. 一种杂化电容去离子脱盐方法,其特征在于:所述方法在权利要求9~11任何一项所述的杂化电容去离子单一模块或者在由多个模块并联或串联组成的模块组中进行脱盐,具体方法为:使待处理的盐溶液从一端的端板流入模块,然后从另一个端板流出,在盐溶液流动的同时,对电极I施加一定的负电压,对电极II施加一定的正电压。
  13. 根据权利要求12所述的方法,其特征在于:所述方法包括电极再生的步骤:将去离子水从CDI模块一端的端板流入,然后从另一个端板流出,在去离子水流动的同时,对电极I施加一定的正电压,对电极II施加一定的负电压。
PCT/CN2020/118642 2020-03-12 2020-09-29 一种复合材料、杂化电容去离子模块及其脱盐方法 WO2021179581A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010172378.5A CN111342022A (zh) 2020-03-12 2020-03-12 一种碳包覆Na3MnTi(PO4)3/C复合材料电极及其制备方法和应用
CN202010171582.5 2020-03-12
CN202010172378.5 2020-03-12
CN202010171582.5A CN111362247A (zh) 2020-03-12 2020-03-12 一种碳包覆钠超离子导体Na3Fe2(PO4)3/C复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021179581A1 true WO2021179581A1 (zh) 2021-09-16

Family

ID=77672317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118642 WO2021179581A1 (zh) 2020-03-12 2020-09-29 一种复合材料、杂化电容去离子模块及其脱盐方法

Country Status (1)

Country Link
WO (1) WO2021179581A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114084940A (zh) * 2021-11-26 2022-02-25 中国科学院合肥物质科学研究院 活性材料、吸附电极、电容去离子装置及制备方法和应用
CN115092994A (zh) * 2022-07-18 2022-09-23 济南大学 一种含有电子穿梭体的电容去离子复合电极制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107978739A (zh) * 2017-11-15 2018-05-01 中南大学 一种氟化磷酸锰钛钠/碳复合材料及其制备方法和作为钠离子正极材料的应用
CN109179589A (zh) * 2018-09-20 2019-01-11 同济大学 碳包覆磷酸钒钠电极材料的制备方法及其在杂化电容去离子技术中的应用
EP3450402A1 (en) * 2017-08-29 2019-03-06 Doosan Heavy Industries & Construction Co., Ltd Method for manufacturing capacitive deionization electrode and capacitive deionization electrode manufactured using the same
CN109574161A (zh) * 2019-01-30 2019-04-05 东莞理工学院 一种MnO2复合多孔炭材料电极及其在电容去离子脱盐中的应用
CN109607711A (zh) * 2019-01-30 2019-04-12 东莞理工学院 一种杂化电容去离子脱盐模块及脱盐方法
CN111342022A (zh) * 2020-03-12 2020-06-26 东莞理工学院 一种碳包覆Na3MnTi(PO4)3/C复合材料电极及其制备方法和应用
CN111362247A (zh) * 2020-03-12 2020-07-03 东莞理工学院 一种碳包覆钠超离子导体Na3Fe2(PO4)3/C复合材料及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3450402A1 (en) * 2017-08-29 2019-03-06 Doosan Heavy Industries & Construction Co., Ltd Method for manufacturing capacitive deionization electrode and capacitive deionization electrode manufactured using the same
CN107978739A (zh) * 2017-11-15 2018-05-01 中南大学 一种氟化磷酸锰钛钠/碳复合材料及其制备方法和作为钠离子正极材料的应用
CN109179589A (zh) * 2018-09-20 2019-01-11 同济大学 碳包覆磷酸钒钠电极材料的制备方法及其在杂化电容去离子技术中的应用
CN109574161A (zh) * 2019-01-30 2019-04-05 东莞理工学院 一种MnO2复合多孔炭材料电极及其在电容去离子脱盐中的应用
CN109607711A (zh) * 2019-01-30 2019-04-12 东莞理工学院 一种杂化电容去离子脱盐模块及脱盐方法
CN111342022A (zh) * 2020-03-12 2020-06-26 东莞理工学院 一种碳包覆Na3MnTi(PO4)3/C复合材料电极及其制备方法和应用
CN111362247A (zh) * 2020-03-12 2020-07-03 东莞理工学院 一种碳包覆钠超离子导体Na3Fe2(PO4)3/C复合材料及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BISWAJIT MANDAL, A. K. THAKUR: "AC Impedance Spectroscopy of NASICON type Na3Fe2(PO4)(3) Ceramic", 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017), vol. 1953, 31 December 2018 (2018-12-31), pages 1 - 4, XP055846518, ISSN: 0094-243X, DOI: 10.1063/1.5032673 *
CAO JIANGLIN, WANG YING, WANG LEI, YU FEI, MA JIE: "Na 3 V 2 (PO 4 ) 3 @C as Faradaic Electrodes in Capacitive Deionization for High-Performance Desalination", NANO LETTERS, vol. 19, no. 2, 13 February 2019 (2019-02-13), US, pages 823 - 828, XP055846521, ISSN: 1530-6984, DOI: 10.1021/acs.nanolett.8b04006 *
HONGCAI GAO, YUTAO LI, KYUSUNG PARK, JOHN B. GOODENOUGH: "Sodium Extraction from NASICON-Structured Na3MnTi(PO4)3 through Mn(III)/Mn(II) and Mn(IV)/Mn(III) Redox Couples", CHEMISTRY OF MATERIALS, vol. 28, no. 18, 30 August 2016 (2016-08-30), pages 6553 - 6559, XP055846515, ISSN: 0897-4756, DOI: 10.1021/acs.chemmater.6b02096 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114084940A (zh) * 2021-11-26 2022-02-25 中国科学院合肥物质科学研究院 活性材料、吸附电极、电容去离子装置及制备方法和应用
CN114084940B (zh) * 2021-11-26 2023-06-27 中国科学院合肥物质科学研究院 活性材料、吸附电极、电容去离子装置及制备方法和应用
CN115092994A (zh) * 2022-07-18 2022-09-23 济南大学 一种含有电子穿梭体的电容去离子复合电极制备方法
CN115092994B (zh) * 2022-07-18 2023-04-25 济南大学 一种含有电子穿梭体的电容去离子复合电极去除水中磷酸根离子的方法

Similar Documents

Publication Publication Date Title
Du et al. A novel electroactive λ-MnO 2/PPy/PSS core–shell nanorod coated electrode for selective recovery of lithium ions at low concentration
Chen et al. NaTi2 (PO4) 3-Ag electrodes based desalination battery and energy recovery
WO2021179581A1 (zh) 一种复合材料、杂化电容去离子模块及其脱盐方法
CN110459755B (zh) 一种硫/聚吡咯/石墨烯/碳纳米管复合薄膜、制备方法及其应用
CN109768203A (zh) 一种复合功能化隔膜的制备方法
CN104953093B (zh) 一种锂硒电池柔性正极的制备方法
CN108987647A (zh) 锂硫电池隔膜的制备方法
CN110048094A (zh) 一种用于液相锌离子电池的自支撑复合薄膜及其制备方法
CN113270577A (zh) 一种水系锌离子电池及正极材料
CN111362247A (zh) 一种碳包覆钠超离子导体Na3Fe2(PO4)3/C复合材料及其制备方法和应用
CN113213598A (zh) Ti-MXene衍生磷酸钛钠/石墨烯复合材料及其制备方法和应用
CN112239230B (zh) 一种锂硫电池用分级结构涂层隔膜及其制备方法
CN113184964A (zh) 一种普鲁士蓝类似物/钛三碳二复合材料及其制备方法和应用
CN112928315B (zh) 一种碱性锌基液流电池用复合膜的制备和应用
CN113184963A (zh) 电容去离子单元、装置及方法
CN113178659A (zh) 改性隔膜及其制备方法及锂硫电池
CN111762769A (zh) 氟磷酸钒氧钠/石墨烯复合电极材料制备方法及应用
CA3147457A1 (en) Hybrid energy storage device
CN111342022A (zh) 一种碳包覆Na3MnTi(PO4)3/C复合材料电极及其制备方法和应用
CN110556494A (zh) 锂硫电池用高电导浆料以及基于其的隔膜和应用
CN111115769B (zh) 一种利用电化学方法一步电合成石墨烯复合电极及方法
CN114974930A (zh) 一种1-氨基蒽醌改性还原氧化石墨烯复合材料的制备及应用
CN106904697B (zh) 一种不对称电容去离子器件用石墨烯基电极的制备方法
CN110002551B (zh) 电容脱盐电极材料及制备方法、采用该电极材料制备的电极及制备方法和含有该电极的电池
CN108063253A (zh) 石墨烯及其制备方法,含有石墨烯的正极和电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923701

Country of ref document: EP

Kind code of ref document: A1