WO2021177378A1 - 耐火断熱ボード及び耐火断熱構造体 - Google Patents

耐火断熱ボード及び耐火断熱構造体 Download PDF

Info

Publication number
WO2021177378A1
WO2021177378A1 PCT/JP2021/008276 JP2021008276W WO2021177378A1 WO 2021177378 A1 WO2021177378 A1 WO 2021177378A1 JP 2021008276 W JP2021008276 W JP 2021008276W WO 2021177378 A1 WO2021177378 A1 WO 2021177378A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
foamed
insulating board
resin molded
slurry
Prior art date
Application number
PCT/JP2021/008276
Other languages
English (en)
French (fr)
Inventor
和人 田原
浩徳 長崎
航平 水田
正憲 三本
芳範 下條
博伸 吉川
Original Assignee
株式会社ジェイエスピー
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイエスピー, デンカ株式会社 filed Critical 株式会社ジェイエスピー
Priority to JP2022504439A priority Critical patent/JPWO2021177378A1/ja
Priority to CA3170397A priority patent/CA3170397A1/en
Priority to US17/909,098 priority patent/US20240209622A1/en
Priority to EP21765165.2A priority patent/EP4116279A4/en
Priority to CN202180009020.3A priority patent/CN114981509A/zh
Publication of WO2021177378A1 publication Critical patent/WO2021177378A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • E04B1/941Building elements specially adapted therefor
    • E04B1/942Building elements specially adapted therefor slab-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/42Glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/46Rock wool ; Ceramic or silicate fibres
    • C04B14/4618Oxides
    • C04B14/4625Alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/46Rock wool ; Ceramic or silicate fibres
    • C04B14/4643Silicates other than zircon
    • C04B14/4668Silicates other than zircon of vulcanic origin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene
    • C04B16/0633Polypropylene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/08Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • C04B28/065Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/141Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing dihydrated gypsum before the final hardening step, e.g. forming a dihydrated gypsum product followed by a de- and rehydration step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/16Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/044Water-setting substance, e.g. concrete, plaster
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/105Ceramic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/108Rockwool fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0221Vinyl resin
    • B32B2266/0228Aromatic vinyl resin, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • C04B2111/0062Gypsum-paper board like materials
    • C04B2111/00629Gypsum-paper board like materials the covering sheets being made of material other than paper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/05Open cells, i.e. more than 50% of the pores are open
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/24Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by surface fusion and bonding of particles to form voids, e.g. sintering

Definitions

  • the present invention relates to a fireproof heat insulating board and a fireproof heat insulating structure for constructing a fireproof heat insulating structure of a building.
  • heat insulating materials and fireproof materials are used in buildings, and polyurethane foam, polystyrene foam, phenol foam, etc., which are resin foams with high heat insulating effect, light weight, and good workability, are used as heat insulating materials.
  • polyurethane foam, polystyrene foam, phenol foam, etc. which are resin foams with high heat insulating effect, light weight, and good workability, are used as heat insulating materials.
  • inorganic fiber aggregates such as glass wool and rock wool, which are inexpensive in terms of cost, are also used.
  • the resin foam is an organic substance, it burns in the event of a fire and often causes damage due to the spread of fire, so countermeasures are desired.
  • inorganic fiber aggregates such as glass wool and rock wool are mainly composed of non-combustible materials, but they tend to have higher thermal conductivity than resin foams and are inferior in terms of heat insulation, and are fibrous. Therefore, there was a problem that the workability was inferior due to the feeling of piercing. Furthermore, in the past, at the time of construction, the fiber aggregate was packed in a plastic bag and fitted between the pillar and the outer wall of the house, but gaps may occur or the fibers may fall off over time. There was such a problem.
  • a heat insulating material that imparts nonflammability to the resin foam is already on the market.
  • a non-combustible heat insulating board having a structure in which one side or both sides of a phenol foam board is laminated with a non-combustible material such as aluminum foil, aluminum hydroxide paper, or plaster-based plate material can be mentioned.
  • a conventional non-combustible heat insulating board although the surface facing the flame does not burn in the event of a fire, the heat melts the phenol foam inside to form a cavity, and the board itself falls off and the problem of spreading the fire can be solved.
  • it is not a material that satisfies the fireproof structural specifications stipulated by the Building Standards Law.
  • a technique for improving the burn resistance of polyurethane foam a technique relating to a heat insulating material for forming a foam with an alkali metal carbonate, isocyanates, water and a reaction catalyst (Patent Document 1), lithium, sodium, potassium, etc.
  • Patent Document 1 a technique relating to a heat insulating material for forming a foam with an alkali metal carbonate, isocyanates, water and a reaction catalyst
  • Li, sodium, potassium, etc. One or two selected from the group consisting of hydroxides, oxides, carbonates, sulfates, nitrates, aluminates, borates, and phosphates of metals selected from the group consisting of boron and aluminum.
  • Patent Document 2 A technique (Patent Document 2) related to an injection material for improving the ground of a tunnel is known, which is a curable composition composed of the above-mentioned inorganic compound, water, and isocyanates.
  • Patent Document 2 was developed for ground improvement and is not intended to obtain heat insulating performance.
  • Patent Document 1 in the conventional method of reacting an aqueous solution of alkali metal carbonate of 30% or more with isocyanates, a large amount of water is used and a large amount of unreacted water remains. It is considered that the heat insulating performance is not large because it is necessary to dry the foam and the bubble size of the obtained foam is large.
  • synthetic resin foam particles are surface-treated by forming a coating composed of sepiolite and an aqueous organic binder containing a water-soluble resin as a main component.
  • a technique relating to a heat-insulating coated granule in which a coating material composed of an inorganic powder and an aqueous inorganic binder containing water glass containing an alkali metal silicate as a main component is further coated and dried and cured is provided.
  • the bubble structure on the surface of at least a part of the synthetic resin foam was filled with a silica-based inorganic substance composed of one or a mixture of one or more of calcium silicate, magnesium silicate, aluminum silicate, and aluminosilicate.
  • Patent Document 4 A technique relating to an inorganic material-containing synthetic resin foam (Patent Document 4) is disclosed.
  • Patent Document 4 A technique relating to an inorganic material-containing synthetic resin foam (Patent Document 4) is disclosed.
  • Patent Document 4 A technique relating to an inorganic material-containing synthetic resin foam
  • a heat absorbing material including a porous molded body composed of a water-absorbed inorganic porous molded body containing calcium silicate powder and particles containing magnesium phosphate hydrate and a binder.
  • Patent Document 5 a technique relating to a laminate having a fiber heat insulating material made of an inorganic fiber having a shrinkage rate of 5% or less at 1100 ° C. for 24 hours is disclosed.
  • Patent Document 5 is a technique for preventing the spread of fire of a cable by laminating a material having a high heat insulating property, and its performance is mainly due to the heat insulating property and cannot be directly applied to a building.
  • the fireproof structure described in Patent Document 5 does not contain water of crystallization.
  • Bead method A technique relating to a foamed resin composite structure in which a foamed resin formed of polystyrene foam is filled with a filling material made of an organic substance having an oxygen index greater than 21 in the communication voids formed between the foamed beads (Patent Document 6).
  • a composite molded article in which the voids of a thermoplastic resin foamed particle molded article having communicating voids and a void ratio of 5 to 60% are filled with a cured product of cement or gypsum containing smectite.
  • Patent Document 7 is known.
  • Patent Document 6 since the communication voids are filled with a filling material which is an organic substance, improvement in combustion resistance at a non-combustible level cannot be expected. Further, Patent Document 6 is intended for expanded polystyrene foam having a very dense porosity of a foam having a porosity of about 3%, and it cannot be said that the voids can be effectively used. Patent Document 7 preferably contains ettringite in its cured product as cement, and although the cement containing ettringite is exemplified by the product name, there is no description about the reinforcing fiber to be used.
  • Patent Document 8 contains calcium aluminate having a CaO content of 40% by mass or more, gypsum, an inorganic powder having a hollow structure having an average particle size of 20 to 60 ⁇ m, and a waste glass foam powder having an average particle size of 20 to 130 ⁇ m.
  • the composition can be described and reinforcing materials such as non-woven fabrics and fiber sheets can be arranged on one side or both sides of a molded body of non-combustible heat insulating material, the types of reinforcing materials and the like are limited. There is no.
  • the material described in Patent Document 9 is used for the purpose of covering the surface of a steel frame and protecting it from a fire, and is considered not to have a large heat insulating performance.
  • a composition for fireproof coating which is characterized by containing ettringite as a main component, and is for fireproof coating containing inorganic compound powders and granules that emit nonflammable gas at 100 to 1000 ° C. and titanium oxide powders and granules.
  • a composition (Patent Document 10) is known.
  • Patent Document 11 A technique relating to a non-firing refractory heat insulating material composed of a heat-resistant aggregate, a lightweight aggregate, an alumina-based binder, silicon carbide, and a reinforcing fiber is known (Patent Document 11).
  • Patent Document 11 describes Shirasu balloon as a lightweight aggregate and calcium aluminate as an alumina-based binder.
  • Patent Documents 10 and 11 described above are also premised on being used as a refractory heat insulating material in a high temperature region used in steelmaking and steelmaking, and have both heat insulating performance under normal environment and fire resistance in the event of a fire. It was inadequate. Therefore, there has been a demand for a method capable of achieving both heat insulation and fire resistance.
  • the present inventors have obtained the finding that by using a specific composition, a fire-resistant heat-insulating board capable of solving the above-mentioned problems and achieving both high heat-insulating performance and fire-resistant performance can be obtained.
  • the present invention has been completed.
  • an embodiment of the present invention can provide the following.
  • a foamed resin molded body having continuous voids is filled with a slurry, and after the filled slurry is filled, a hydrate containing 50 kg / m 3 or more of water of crystallization is produced by a hydration reaction, and at least on the surface.
  • a fireproof insulation board partially reinforced with one or more inorganic fibers selected from the group consisting of basalt fibers and ceramic fibers.
  • foamed resin molded product contains at least one selected from the group consisting of foamed polyurethane resin, foamed polystyrene resin, foamed polyolefin resin, and foamed phenol resin. ..
  • a refractory insulation structure including the refractory insulation board according to any one of (1) to (5).
  • the fireproof heat insulating board according to the present invention has the effect of having both fire resistance and heat insulating properties.
  • a fire-resistant heat-insulating structure such as a wall or a pillar using the fire-resistant heat-insulating board, the shape can be maintained without collapsing or deforming even if it receives a flame, so that it also has an effect of preventing the spread of fire in the event of a fire.
  • the refractory heat insulating board according to the embodiment of the present invention is characterized by containing a hydrate.
  • a hydrate example, ettringite (3CaO ⁇ Al 2 O 3 ⁇ 3CaSO 4 ⁇ 32H 2 O), may be included gypsum, or a mixture thereof.
  • the hydrate may contain ettringite or dihydrate gypsum, or a mixture thereof, in an amount of 50% by mass or more, more preferably 60% by mass or more, 80% by mass or more, 90% by mass or more, or 100%. It may be contained in mass%.
  • the hydrate preferably contains water of crystallization in an amount of 50 kg / m 3 or more, and more preferably 70 kg / m 3 or more.
  • the hydrate preferably contains water of crystallization in an amount of 400 kg / m 3 or less, and more preferably 300 kg / m 3 or less.
  • the hydrate is formed by a hydration reaction after filling the voids of a foamed resin molded product having continuous voids (hereinafter, also abbreviated as resin molded product) with a raw material.
  • a raw material is not particularly limited.
  • the raw material for producing ettringite include a mixture of Auinbeelite cement and gypsum, a mixture of calcium aluminate and gypsum, and the like.
  • examples of the raw material for producing dihydrate gypsum include ⁇ -type hemihydrate gypsum and ⁇ -type hemihydrate gypsum.
  • a raw material that produces ettringite is preferable.
  • the raw materials for producing ettringite a mixture of calcium aluminate and gypsum is preferable.
  • the calcium aluminate is a hydration activity containing CaO and Al 2 O 3 as main components, which is obtained by mixing a calcia raw material and an alumina raw material and firing them in a kiln or melting and cooling them in an electric furnace. It is a general term for substances having.
  • the calcium aluminate is not particularly limited, but an amorphous calcium aluminate that has been rapidly cooled after melting is preferable in terms of initial strength development after curing.
  • the CaO content of calcium aluminate is preferably 30% by mass or more, more preferably 34% by mass or more, and most preferably 40% by mass or more in terms of reaction activity. When the CaO content is 34% by mass or more, fire resistance is exhibited.
  • the CaO content of calcium aluminate is preferably 50% by mass or less.
  • some of the calcium aluminate CaO and Al 2 O 3 are alkali metal oxides, alkaline earth metal oxides, silicon oxide, titanium oxide, iron oxide, alkali metal halides, and alkaline earths.
  • Compounds substituted with metal halides, alkali metal sulfates, alkaline earth metal sulfates, etc. can also be used, or compounds in which a small amount of these are solid-dissolved in a compound containing CaO and Al 2 O 3 as main components. Can also be used.
  • the vitrification rate of calcium aluminate is preferably 8% or more, preferably 50% or more, and most preferably 90% or more.
  • the vitrification rate of calcium aluminate can be calculated by the following method.
  • the main peak area S of the crystalline mineral was measured in advance by the powder X-ray diffraction method, then heated at 1000 ° C. for 2 hours, slowly cooled at a cooling rate of 1 to 10 ° C./min, and powdered X-ray.
  • the main peak area S 0 of the crystalline mineral after heating by the diffraction method is obtained, and further, using these S 0 and S values, the vitrification rate ⁇ is calculated using the following formula.
  • Vitrification rate ⁇ (%) 100 ⁇ (1-S / S 0 )
  • the particle size of the calcium aluminate in terms of early strength development, preferably 3000 cm 2 / g or more in Blaine specific surface area value, 5000 cm 2 / g or more is more preferable.
  • the particle size is 3000 cm 2 / g or more, the initial strength development is improved, which is preferable.
  • the brain specific surface area value is a value measured in accordance with JIS R5201: 2015 (physical test method for cement).
  • any of anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum can be used, and the gypsum is not particularly limited.
  • the anhydrite is a generic name of the compound represented by the molecular formula comprising CaSO 4 with calcium sulfate anhydrite
  • the hemihydrate gypsum is a general term for CaSO 4 ⁇ 1 / 2H 2 O comprising molecular compound represented by the formula
  • gypsum and is a generic name of the compound represented by CaSO 4 ⁇ 2H 2 O made molecular formula.
  • the particle size of gypsum is preferably 1 to 30 ⁇ m, more preferably 5 to 25 ⁇ m, in terms of nonflammability, initial strength development, and appropriate working time.
  • the average particle size is a value measured in a dispersed state using a measuring laser diffraction type particle size distribution meter and an ultrasonic device.
  • the particle size of the gypsum, in that the non-flammable and early strength development and proper working time is obtained preferably 3000 cm 2 / g or more in Blaine specific surface area value, 4000 cm 2 / g or more is more preferable.
  • the pH when the gypsum is immersed in water preferably shows a value from weak alkali to acidity, and more preferably pH 8 or less.
  • the amount of gypsum used in this composition is preferably 70 to 250 parts by mass and more preferably 100 to 200 parts by mass with respect to 100 parts by mass of calcium aluminate.
  • amount of gypsum is 70 parts by mass or more or 300 parts by mass or less, it is preferable because sufficient fire resistance is imparted.
  • the raw material and water (tap water, etc.) for producing the hydrate are used.
  • a slurry to produce a hydrate As such a raw material, powder is preferable (a raw material that is a powder is also referred to as a "powder raw material").
  • the amount of water used when preparing the slurry is not particularly limited, but is preferably 40 to 300 parts by mass, more preferably 80 to 250 parts by mass with respect to 100 parts by mass of the raw material.
  • the amount of water used is 40 parts by mass or more, the filling in the voids does not vary and the fire resistance is not impaired.
  • the amount of water used is 300 parts by mass or less, the hydrate content in the cured product in the voids does not decrease and the fire resistance is not impaired.
  • one or more of all kinds of additives can be used in preparing the slurry as long as the performance is not affected.
  • additives are not particularly limited, and examples thereof include the following.
  • Various surfactants that regulate the fluidity of the slurry.
  • An air entraining agent that introduces air bubbles.
  • Carbonization accelerators such as sugars.
  • Flame-retardant imparting agents such as phosphorus compounds, bromine compounds, boron compounds, nitrogen compounds, magnesium hydroxide, and sodium hydrogen carbonate.
  • Fire spread inhibitor such as heat-expanded graphite.
  • Inorganic substances such as talc and zeolite.
  • Hydration accelerators such as slaked lime and various carbonates.
  • Coagulation retardants such as oxycarboxylic acid salt and tartaric acid.
  • Clay minerals such as bentonite and sepiolite.
  • Anion exchangers such as hydrotalcite.
  • the foamed resin molded product according to the embodiment of the present invention is a resin having continuous voids and having voids that can be filled with hydrates such as slurry.
  • the type of resin include foamed polyvinyl alcohol resin, foamed polyurethane resin, foamed polystyrene resin, foamed polyolefin resin, foamed phenol resin and the like.
  • foamed polyvinyl alcohol resin foamed polyurethane resin
  • foamed polystyrene resin foamed polyolefin resin
  • foamed phenol resin foamed phenol resin and the like.
  • one or more selected from the group consisting of expanded polyurethane resin, expanded polystyrene resin, expanded polyolefin resin, and expanded phenol resin is preferable.
  • Granular foams of these resins having closed cells and having a diameter of several mm are packed in a mold and heat-press molded to form continuous voids between the granular foams, whereby the resin molded product is formed. can get.
  • the continuous porosity of the resin molded product can be adjusted by the degree of pressurization during manufacturing.
  • polystyrene resin a resin molded product having continuous voids can be produced in accordance with the method for producing polystyrene foam by the bead method. Among these, from the viewpoint of versatility, it is preferable to use a expanded polystyrene resin molded product.
  • the continuous porosity of the foamed resin molded product is 25% by volume or more, it is preferable because sufficient fire resistance can be imparted to the obtained board. Further, when the continuous porosity of the foamed resin molded product is 70% by volume or less, the board density is small, the thermal conductivity is small, and the heat insulating property is improved, which is preferable.
  • the method of filling the resin molded body with hydrate such as slurry is not particularly limited, but a method of press-fitting with compressed air, a method of depressurizing with a vacuum pump and filling by suction, or installing the resin molded body on a vibration table.
  • a method of filling the voids while applying vibration of 30 to 60 hertz can be mentioned. Of these, a method of filling the voids while applying vibration is preferable from the viewpoint of quality stability.
  • At least one or more inorganic fibers selected from the basalt fiber and the ceramic fiber contained in the refractory heat insulating board are used when the refractory heat insulating board is exposed to a high temperature condition.
  • inorganic fibers selected from the basalt fiber and the ceramic fiber contained in the refractory heat insulating board are used when the refractory heat insulating board is exposed to a high temperature condition.
  • Basalt fiber refers to a fiber obtained by crushing high-density basalt, melting it at a high temperature of 1500 ° C. or higher, and spinning it.
  • Ceramic fiber is a general term for artificial mineral fibers mainly composed of alumina (Al 2 O 3 ) and silica (SiO 2). Ceramic fibers are classified into amorphous alumina silica fibers (RCF: Refractory Ceramic Fiber) and crystalline fibers (AF: Aluminum Fiber) composed of alumina and silica having an alumina content of 60% or more. Can also be used.
  • the form of use of the inorganic fiber is not particularly limited, but a bundle of fibers processed by knitting into a cloth shape, cut into a length of about 1 to 50 mm or 1 to 30 mm, and processed into a short fiber shape.
  • a short fiber-like material mixed with an organic solvent or the like and processed into a sheet shape having a thickness of about 0.1 mm to 3 mm by a papermaking method or the like can be used.
  • those processed into a cloth shape are preferable because they are easy to handle.
  • these inorganic fibers be applied to at least a portion of the surface of the refractory insulation board, more preferably the entire surface, to reinforce the board.
  • the inorganic fiber may be included inside the fireproof heat insulating board.
  • the term "surface of the refractory heat insulating board" as used herein preferably refers to a surface having an area defined in the vertical and horizontal directions, which is larger than the thickness, but may also include a surface parallel to the thickness direction.
  • the amount of the inorganic fibers is not but preferably 30 ⁇ 350g / m 2 particularly limited, and more preferably 50 ⁇ 200g / m 2.
  • the amount of the inorganic fiber is 30 g / m 2 or more, a sufficient shrinkage suppressing effect can be obtained, and when it is 350 g / m 2 or less, the enhancement of the effect is considered to be the upper limit that can be expected, which is economical.
  • the method for curing the refractory heat insulating board after filling the voids with the refractory heat insulating composition slurry is not particularly limited, but after filling, the refractory heat insulating board can be cured in the air at room temperature, or the surface of the refractory heat insulating board is covered with a plastic film at room temperature. It may be cured in the air, or further, it may be cured at a temperature of 30 to 50 ° C. in order to shorten the curing time.
  • refractory insulation board it is also possible to further cover the entire refractory insulation board with a non-woven fabric, or attach non-combustible paper, aluminum craft, or the like to the surface of the refractory insulation board.
  • the shape of the refractory heat insulating board according to the embodiment of the present invention is not particularly limited, but is preferably in the range of 500 to 1000 mm in length, 1000 to 2000 mm in width, and 10 to 100 mm in thickness. If the size is within this range, the workability at the time of installation is good without becoming too heavy.
  • the density of the refractory heat insulating board according to the embodiment of the present invention can be adjusted within a range that does not impair the fire resistance and heat insulating property.
  • 250 to 800 kg / m 3 is preferable, and 300 to 600 kg / m 3 is more preferable.
  • a density of 250 kg / m 3 or more is preferable because sufficient fire resistance can be ensured.
  • a density of 800 kg / m 3 or less is preferable because sufficient heat insulating performance can be obtained.
  • the refractory insulation boards described above can also be used to provide refractory structures that can be used in buildings.
  • a fireproof structure is composed of, for example, a siding board, a moisture permeable waterproof sheet, a fireproof heat insulating board, a structural plywood, and a fireproof heat insulating board in the order of the layer structure from the outer wall side, and is composed of the structural plywood and the fireproof heat insulating board.
  • a structure in which a space of about 100 mm (a space in which a heat insulating material such as glass wool can be accommodated) is provided between the boards by studs can be mentioned.
  • a furring strip may be provided between the siding board and the breathable waterproof sheet (see FIG. 2).
  • fireproof insulation boards When constructing a fireproof structure, multiple fireproof insulation boards may be stacked and pasted according to the required fireproof specifications, or the fireproof insulation board may be used in combination with a reinforced gypsum board, calcium silicate board, etc. May be used.
  • Example 1 The entire lower surface of the foamed resin molded product (size: length 20 cm ⁇ width 20 cm ⁇ thickness 5 cm) having continuous voids was reinforced by applying the inorganic fibers shown in Table 1, and a polyethylene non-woven fabric was further layered on top of the inorganic fibers. This is set in a vibration impregnation device, and a slurry (slurry that produces hydrate) prepared as described below is poured onto the upper surface of the resin molded product, and vibration of 60 Hz is applied for 1 minute to create the slurry in the voids. A fireproof insulation board was manufactured by impregnation.
  • the slurry is a slurry in which a powder raw material and water are mixed to form a hydrate after filling.
  • the refractory heat insulating board was removed from the apparatus and cured at room temperature for 7 days to evaluate the water of crystallization content, fire resistance, shape retention, shape retention, and thermal conductivity of the hydrate. The results are shown in Table 1.
  • Foamed resin molded product A2 Commercially available polystyrene resin foamed beads (diameter 1 to 5 mm) are filled in a molding machine (manufactured by Daisen Kogyo Co., Ltd .: VS-500) and heated by steam to create voids between the foamed particles. A foamed resin molded product having open cells was produced by fusing the foamed particles to each other in the holding state. The continuous porosity was controlled by adjusting the degree of pressurization.
  • the foamed resin molded body before filling with the slurry described later had a continuous porosity of 36.8% by volume, a density of the foamed resin molded body of 10.5 kg / m 3 , and a thermal conductivity of 0.033 W / (m ⁇ K). rice field.
  • the density of the foamed resin molded product was determined by determining the mass and the external dimensions of the foamed resin molded product and dividing the mass by the apparent volume obtained from the external dimensions.
  • the production rate of ettringite was determined by X-ray diffraction.
  • Inorganic fiber 1 IF1: GBF Basalt Fiber basalt fiber cloth, product name: BCGM120, fiber usage: 100 g / m 2 Inorganic fiber 2 (IF2): GBF Basalt Fiber short basalt fiber, product name: KV13, average fiber length: 5 mm, fiber usage: 150 g / m 2 Inorganic fiber 3 (IF3): Alumina paper manufactured by Zircar Ceramics, Product name: Aluminum Type AL25 / 1700, Product
  • Continuous porosity The continuous porosity of the foamed resin molded product was determined.
  • a sample is cut out from a foamed resin molded product left in an environment of a temperature of 23 ° C. and a relative humidity of 50% for 24 hours or more, and the apparent volume (Va) is obtained from the external dimensions (length 10 cm ⁇ width 10 cm ⁇ thickness 5 cm) of the sample.
  • the sample is submerged in a graduated cylinder containing ethanol at a temperature of 23 ° C. using a wire net, and the air existing in the voids in the molded product is degassed by applying light vibration or the like. Light vibration was applied by hitting the graduated cylinder with a light force.
  • water of crystallization 20 g of water is sampled from a fire-resistant heat insulating board, free water and foam in the cured product are dissolved with acetone, and after filtration, the residue is thoroughly washed with acetone and placed in an environment of 25 ° C. , Vacuum dried in desiccator for 48 hours.
  • the amount of crystalline water was calculated by measuring the mass loss of the dried cured product in the range of 50 to 200 ° C. with a thermal analyzer (heating rate: 10 ° C./min, in air).
  • the water of crystallization referred to here refers to chemically or physically bonded water contained in the fireproof heat insulating board, excluding free water that can be removed by drying such as acetone.
  • Fire resistance The fire resistance was simply evaluated as shown in FIGS. 1 and 2 using a small gas burner and a thermocouple. Using a test piece measuring 10 cm in length x 10 cm in width x 5 cm in thickness, adjust the distance of the gas burner so that the surface temperature of the test piece is 900 ° C., measure the temperature of the back side with a thermocouple, and reach 100 ° C. The time to do so was measured. That is, the longer it takes to reach 100 ° C., the better the fire resistance.
  • Thermal conductivity Using a test piece of 10 cm in length ⁇ 5 cm in width ⁇ 5 cm in thickness obtained from a fire-resistant heat insulating board, the thermal conductivity was measured by a rapid thermal conductivity meter (box type probe method).
  • Shape retention Good (good) when there are no cracks, cracks, collapses, or defects in the test piece after the fire resistance test, and NG (inappropriate) when cracks, cracks, collapses, or defects are confirmed.
  • Shape retention rate The test piece was placed in an electric furnace and heated to 900 ° C., the volume of the test piece was measured after 1 hour had passed, and the shape retention rate was calculated by comparing with the volume of the test piece before heating. ..
  • Example 2 The same procedure as in Experimental Example 1 was carried out except that the board was prepared using the types and amounts of inorganic fibers shown in Table 2. The results are shown in Table 2.
  • Example 3 The same procedure as in Experimental Example 1 was carried out except that a board was prepared using the types of slurry raw material powders shown in Table 3 below. The results are shown in Table 3.
  • Slurry raw material powder 2 (Material used) Slurry raw material powder 2 (RM2): Mixture of 100 parts of calcium aluminate (CA2) and 100 parts of gypsum (CS1) Produced hydrate: ettringite 82%, aluminum hydroxide: 8%, others: 10% Calcium aluminate (CA2): CaO: 34% by mass, brain specific surface area value 4500 cm 2 / g, vitrification rate 15%
  • Slurry raw material powder 3 (RM3): Auinbeelite cement (manufactured by BUZZI, product name: BUZZI NEXT BASE) Produced hydrate: Etringite 90%, Others: 10% Slurry raw material powder 4 (RM4): ⁇ -type hemihydrate gypsum (manufactured by Noritake Company, product name: FT-2, average particle size 15 ⁇ m) Produced hydrate: 100% dihydrate gypsum Synthetic ettringite 1 (ET1): Ethring
  • Example 4 Water was added to 100 parts by mass of the powder (slurry raw material powder 1) as shown in Table 4, and the same procedure as in Experimental Example 1 was carried out except that a slurry was prepared. The results are shown in Table 4.
  • Water is a mass portion with respect to 100 parts by mass of powder.
  • Example 5" Similar to Experimental Example 1 except that inorganic fiber 1 (IF1) was used as the inorganic fiber, slurry raw material powder 1 was used as the slurry raw material powder, and the foamed resin molded body shown in Table 5 was used as the foamed resin molded body. went. The results are shown in Table 5. Here, the density of the obtained refractory heat insulating board was measured and used as the board density.
  • Foamed resin molded body A (A1 to A4): Commercially available expanded polystyrene resin beads (particle size 1 to 5 mm) are filled in a molding machine (manufactured by Daisen Kogyo Co., Ltd .: VS-500) and heated by steam. A foamed resin molded product having open cells was produced by fusing the foamed particles together with voids between the foamed particles. The open cell ratio was controlled by adjusting the degree of pressurization. The thermal conductivity of the foamed resin molded product not filled with the non-combustible material slurry is 0.033 W / (m ⁇ K).
  • Effervescent resin molded product B (B1 to B4): A commercially available foamed rigid polyurethane resin molded product was crushed to prepare granules having a particle size of 1 to 5 mm. The obtained granules are filled in a molding machine (manufactured by Daisen Kogyo Co., Ltd .: VS-500) and heated by steam to fuse the foamed particles with each other with voids between the foamed particles. A foamed resin molded product having the above was produced. The open cell ratio was controlled by adjusting the degree of pressurization. The thermal conductivity of the foamed resin molded product not filled with the non-combustible material slurry is 0.027 W / (m ⁇ K).
  • Foamed resin molded product C (C1 to C4): Commercially available polyethylene foam was crushed to prepare granules having a particle size of 1 to 5 mm. The obtained granules are filled in a molding machine (manufactured by Daisen Kogyo Co., Ltd .: VS-500) and heated by steam to fuse the foamed particles with each other with voids between the foamed particles. A foamed resin molded product having the above was produced. The open cell ratio was controlled by adjusting the degree of pressurization. The thermal conductivity of the foamed resin molded product not filled with the non-combustible material slurry is 0.030 W / (m ⁇ K).
  • Effervescent resin molded product D (D1 to D4): Commercially available phenol resin foam was crushed to prepare granules having a particle size of 1 to 5 mm. The obtained granules are filled in a molding machine (manufactured by Daisen Kogyo Co., Ltd .: VS-500) and heated by steam to fuse the foamed particles with each other with voids between the foamed particles. A foamed resin molded product having the above was produced. The open cell ratio was controlled by adjusting the degree of pressurization. The thermal conductivity of the foamed resin molded product not filled with the non-combustible material slurry is 0.022 W / (m ⁇ K).
  • Example 6 Experiment No. A refractory insulation board (length 1000 mm ⁇ width 1000 mm ⁇ thickness 25 mm) was prepared from the refractory insulation compositions of 1-1, 1-2, 2-5 and 5-2, and the structure of the refractory structure shown in FIGS. It was assembled and installed in a refractory furnace. The size of the fireproof structure was 2200 mm in width ⁇ 1200 mm in length. In the test, the type and thickness of the refractory heat insulating composition of the refractory heat insulating board were changed, and the combustion state of the refractory structure after the test was confirmed. When installing boards with different thicknesses, the number of installed boards was changed. The results are shown in Table 6.
  • the refractory structure is installed in the refractory furnace, heating is performed on the interior side simulating the inner wall, and flames are applied from gas burners (total of 5 units) to ISO.
  • the refractory structure was heated for 1 hour on a standard heating curve according to 834. After that, the heating was stopped and the state of being installed in the refractory furnace was maintained for 3 hours.
  • the structure was removed from the refractory furnace, the refractory insulation board was peeled off, and the combustion state of the columns was confirmed.
  • a refractory heat insulating board having fire resistance and heat insulating properties can be obtained.
  • a structure such as a wall or a pillar using the fireproof heat insulating board according to the present embodiment, the shape can be maintained even if it receives a flame, so that it has an effect of preventing the spread of fire in the event of a fire. Therefore, the fire-resistant heat insulating structure of the present embodiment can contribute to the construction of buildings, vehicles, aircraft, ships, refrigeration, and refrigeration equipment having high fire safety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Building Environments (AREA)

Abstract

連続空隙を有する発泡樹脂成形体にスラリーを充填して構成され、充填したスラリーが充填後に水和反応によって結晶水を50kg/m3以上含有した水和物を生成し、表面の少なくとも一部をバサルトファイバー及びセラミックファイバーからなる群から選択される1種以上の無機繊維で補強した耐火断熱ボード。

Description

耐火断熱ボード及び耐火断熱構造体
 本発明は、建築物の耐火断熱構造を構築するための耐火断熱ボード及び耐火断熱構造体に関する。
 建築物には、様々な断熱材や耐火材が使用されており、断熱材としては、断熱効果が高く軽量で作業性が良い樹脂発泡体であるポリウレタンフォーム、ポリスチレンフォーム、及びフェノールフォーム等が使われ、またコスト的に安価なグラスウールやロックウール等の無機系の繊維集合体も使われている。
 樹脂発泡体は有機物のため火災発生時には燃焼し、しばしば延焼による被害拡大の原因となるため、その対策が望まれている。
 一方、グラスウールやロックウール等の無機系の繊維集合体は燃えない素材を主体に構成されているが、樹脂発泡体に比べ熱伝導率が高い傾向があり断熱性の点で劣り、また繊維状であるため穿刺感を感じ、作業性に劣る問題もあった。さらに従来、施工時には繊維集合体をプラスチック製の袋に収めた荷姿とし、これを住宅の柱と外壁の間にはめ込む方法が採られているが、隙間が生じたり、経年で脱落したりするといった課題があった。
 他方、樹脂発泡体に不燃性を付与した断熱材は既に市販されている。例えば、フェノールフォームのボードの片面あるいは両面を、不燃材であるアルミニウム箔、水酸化アルミニウム紙、石膏系板材等で積層した構造の不燃断熱ボードが挙げられる。しかしこうした従来の不燃断熱ボードは、火災時には火炎に面した表面は燃えないものの、その熱で内部のフェノールフォームが溶けて空洞ができ、ボード自体が脱落して延焼するという課題が解決できておらず、建築基準法で定められた耐火構造仕様を満足する資材とはなっていない。
 樹脂発泡体の耐燃焼性を向上する技術としては、以下が知られている。例えば、ポリウレタンフォームの耐燃焼性を向上する技術としては、アルカリ金属炭酸塩、イソシアネート類、水及び反応触媒で発泡体を形成する断熱材料に関する技術(特許文献1)や、リチウム、ナトリウム、カリウム、ホウ素、及びアルミニウムからなる群より選ばれる金属の、水酸化物、酸化物、炭酸塩類、硫酸塩、硝酸塩、アルミン酸塩、ホウ酸塩、及びリン酸塩類からなる群より選ばれる一種又は二種以上の無機化合物と水とイソシアネート類とからなる硬化性組成物で、主にトンネルの地盤改良用の注入材に関する技術(特許文献2)が、知られている。しかし特許文献2の従来技術は、地盤改良用に開発されたものであり断熱性能を得ることを目的とするものではない。また特に特許文献1のように、アルカリ金属炭酸塩の30%以上の水溶液とイソシアネート類を反応させる従来の手法では、多量の水を使用するため未反応の水が多量に残ることから、断熱材として使用するためには乾燥する必要があり、しかも得られる発泡体の気泡サイズが大きくなることから断熱性能は大きくないと考えられる。
 合成樹脂発泡体を被覆して耐燃焼性を向上する技術としては、セピオライトと水溶性樹脂を主成分とする水性有機バインダーとからなる被覆を形成して表面処理を施した合成樹脂の発泡体粒子に、無機粉体とアルカリ金属ケイ酸塩を主成分とする水ガラスを含む水性無機バインダーとからなるコーティング材を更に被覆し、乾燥硬化させる断熱性被覆粒体に関する技術(特許文献3)や、合成樹脂発泡体の少なくとも一部の表面の気泡構造内に、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸アルミニウム、アルミノケイ酸塩のうちの1種又は2種以上の混合物からなるシリカ系無機物が充填した無機物含有合成樹脂発泡体に関する技術(特許文献4)が開示されている。しかしこれらケイ酸塩類を用いる従来技術は、燃焼によって、樹脂発泡体が溶けて充填されたケイ酸塩自体の結合力も失われ粉化するため、断熱ボードとしての形状を保つことが難しいと考えられる。
 耐火断熱材料表面をファイバーで補強する技術としては、ケイ酸カルシウム粉体を含む吸水した無機多孔質成形体からなる多孔質成形体とリン酸マグネシウム水和物とバインダーを含む粒子を具備する吸熱材と、1100℃24時間の収縮率が5%以下の無機繊維からなる繊維断熱材とを有する積層物に関する技術(特許文献5)が開示されている。しかし特許文献5は断熱性の高い材料を積層することでケーブルの延焼を防止する技術であり、その性能は主に断熱性によるものであって、建築物にそのまま適用できるものではない。特許文献5に記載の耐火構造は、結晶水を含有していない。
 ビーズ法ポリスチレンフォームで形成された発泡樹脂において、発泡ビーズ間に形成された連通空隙に、酸素指数が21より大きい有機系物質からなる充填材料を充填した発泡樹脂複合構造体に関する技術(特許文献6)や、連通した空隙を有し、空隙率が5~60%である熱可塑性樹脂発泡粒子成形体の空隙に、スメクタイトを含有するセメント又は石膏の硬化物が充填されている複合成形体に関する技術(特許文献7)が知られている。しかし特許文献6では、連通空隙に有機系物質である充填材料を充填するため、不燃レベルの耐燃焼性の向上は期待できない。また特許文献6は、発泡体の空隙率が3%程度の非常に密実な空隙を持つ発泡ポリスチレンフォームを対象にしているものであり、その空隙を有効に利用できているとは言い難い。特許文献7はセメントとしてその硬化物にエトリンガイトを含有することが好ましく、エトリンガイトを含有するセメントを製品名で例示しているが、使用する補強繊維についての記載はない。
 特許文献8はCaO含有量が40質量%以上のカルシウムアルミネート、石膏、平均粒子径が20~60μmの中空構造を有する無機粉末、平均粒子径が20~130μmの廃ガラス発泡体粉末を含有する組成物を記載し、不織布や繊維シート等の補強材を不燃断熱材の成形体の片面又は両面に配置することも可能である、と記載されているが、補強材等の種類を限定してはいない。特許文献9に記載の材料は、鉄骨表面を被覆し火災から保護する目的で使用されるものであり、大きな断熱性能を有しないと考えられる。
 エトリンジャイトを主たる成分として含有してなることを特徴とする耐火被覆用組成物であり、100~1000℃で不燃性ガスを放出する無機化合物粉粒体や酸化チタン粉粒体を含有する耐火被覆用組成物(特許文献10)が知られている。
 耐熱性骨材、軽量骨材、アルミナ系結合材、炭化珪素、及び補強繊維からなる不焼成耐火断熱材に関する技術が知られている(特許文献11)。特許文献11には、軽量骨材としてシラスバルーン、アルミナ系結合材としてカルシウムアルミネートが記載されている。
特開平10-067576号公報 特開平08-092555号公報 特開2001-329629号公報 特開2012-102305号公報 特開2016-065360号公報 特許第4983967号公報 特開2015-199945号公報 特開2017-077994号公報 特開平07-048153号公報 特開平07-061841号公報 特開昭62-041774号公報
 しかし、上述した特許文献10及び11に記載の従来技術でも、製鉄や製鋼で使用する高温領域の耐火断熱材に使用することを前提としており、通常環境下の断熱性能も火災時の耐火性も不十分であった。このため、断熱性と耐火性を両立できる手法が求められていた。
 本発明者らは、種々検討を重ねた結果、特定の組成を用いることにより、前述のような課題を解決して高い断熱性能と耐火性能を両立できる耐火断熱ボードが得られる知見を得て、本発明を完成するに至った。
 すなわち本発明の実施形態は以下を提供できる。
(1)連続空隙を有する発泡樹脂成形体にスラリーを充填して構成され、充填したスラリーが充填後に水和反応によって結晶水を50kg/m3以上含有した水和物を生成し、表面の少なくとも一部をバサルトファイバー及びセラミックファイバーからなる群から選択される1種以上の無機繊維で補強した耐火断熱ボード。
(2)前記水和物が、二水石膏及びエトリンガイトからなる群から選択される1種以上を50質量%以上含有する(1)に記載の耐火断熱ボード。
(3)発泡樹脂成形体が、発泡ポリウレタン樹脂、発泡ポリスチレン樹脂、発泡ポリオレフィン樹脂、及び発泡フェノール樹脂からなる群から選択される1種以上を含む(1)又は(2)に記載の耐火断熱ボード。
(4)前記発泡樹脂成形体の連続空隙率が25~70体積%である(1)から(3)のうちのいずれかに記載の耐火断熱ボード。
(5)密度が250~800kg/m3である(1)から(4)のうちのいずれかに記載の耐火断熱ボード。
(6)(1)から(5)のいずれかに記載の耐火断熱ボードを含んだ耐火断熱構造体。
 本発明に係る耐火断熱ボードは、耐火性と断熱性を併せ持つ効果を奏する。その耐火断熱ボードを用いて壁や柱等の耐火断熱構造体を構築することで、火炎を受けても崩壊や変形がなく形状を維持できるので、火災時の延焼を阻止する効果をも奏する。
耐火試験を示す側面図である。 耐火試験を示す上面図である。
 以下、本発明を詳細に説明する。なお、本明細書における部や%は、特に規定しない限り質量基準で示す。本明細書における数値範囲は、別段の定めがないかぎりはその上限値及び下限値を含むものとする。
 本発明の実施形態に係る耐火断熱ボードは、水和物を含有することを特徴とする。そうした水和物としては例えば、エトリンガイト(3CaO・Al23・3CaSO4・32H2O)、二水石膏、又はその混合物を含めてよい。好ましい実施形態においては、水和物が、エトリンガイト若しくは二水石膏、又はその混合物を50質量%以上含有してよく、更に好ましくは60質量%以上、80質量%以上、90質量%以上、又は100質量%含有してもよい。
 水和物は、結晶水を50kg/m3以上含有することが好ましく、70kg/m3以上含有することがより好ましい。水和物は、結晶水を400kg/m3以下含有することが好ましく、300kg/m3以下含有することがより好ましい。
 さらに当該水和物は、耐火性向上の観点から、連続空隙を有する発泡樹脂成形体(以下、樹脂成形体とも略記する。)の空隙への原材料を充填した後に水和反応により形成されるものが好ましい。そうした原材料としては、特に限定されるものではない。エトリンガイトを生成する原材料としては、アウインビーライトセメントと石膏の混合物、カルシウムアルミネートと石膏の混合物等が挙げられる。他方、二水石膏を生成する原材料としては、α型半水石膏やβ型半水石膏等が挙げられる。原材料の中では、エトリンガイトを生成する原材料が好ましい。エトリンガイトを生成する原材料の中では、カルシウムアルミネートと石膏の混合物が好ましい。
 当該カルシウムアルミネートとは、カルシア原料とアルミナ原料等を混合して、キルンで焼成し、或いは、電気炉で溶融し冷却して得られるCaOとAl23とを主成分とする水和活性を有する物質の総称である。カルシウムアルミネートは、特に限定されるものではないが、硬化後の初期強度発現性の点で、溶融後に急冷した非晶質カルシウムアルミネートが好ましい。カルシウムアルミネートのCaO含有量は反応活性の点で、30質量%以上が好ましく、34質量%以上がより好ましく、40質量%以上が最も好ましい。CaO含有量が34質量%以上だと耐火性を示す。カルシウムアルミネートのCaO含有量は50質量%以下が好ましい。
 当該カルシウムアルミネートとして、カルシウムアルミネートのCaOやAl23の一部が、アルカリ金属酸化物、アルカリ土類金属酸化物、酸化ケイ素、酸化チタン、酸化鉄、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、アルカリ金属硫酸塩、及びアルカリ土類金属硫酸塩等と置換した化合物も使用できるし、或いは、CaOとAl23とを主成分とするものに、これらが少量固溶した化合物も使用できる。
 カルシウムアルミネートのガラス化率は、8%以上が好ましく、50%以上が好ましく、90%以上が最も好ましい。カルシウムアルミネートのガラス化率は、以下の手法で算出できる。加熱前のサンプルについて、粉末X線回折法により結晶鉱物のメインピーク面積Sを予め測定し、その後1000℃で2時間加熱後、1~10℃/分の冷却速度で徐冷し、粉末X線回折法による加熱後の結晶鉱物のメインピーク面積S0を求め、更に、これらのS0及びSの値を用い、次の式を用いてガラス化率χを算出する。
ガラス化率χ(%)=100×(1-S/S0
 カルシウムアルミネートの粒度は、初期強度発現性の点で、ブレーン比表面積値で3000cm2/g以上が好ましく、5000cm2/g以上がより好ましい。当該粒度が3000cm2/g以上であると初期強度発現性が向上するため好ましい。ここで、ブレーン比表面積値とは、JIS R5201:2015(セメントの物理試験方法)に準拠して測定した値である。
 本組成物が含む石膏としては、無水石膏、半水石膏、二水石膏のいずれも使用でき、特に限定されるものではない。無水石膏とは硫酸カルシウム無水物でCaSO4なる分子式で示される化合物の総称であり、半水石膏とは、CaSO4・1/2H2Oなる分子式で示される化合物の総称であり、二水石膏とは、CaSO4・2H2Oなる分子式で示される化合物の総称である。
 石膏の粒度は、不燃性や初期強度発現性と適正な作業時間が得られる点で、平均粒子径1~30μmが好ましく、5~25μmがより好ましい。ここで、平均粒子径とは、測定レーザー回折式粒度分布計を用い、超音波装置を用いて分散させた状態で測定した値である。
 石膏の粒度は、不燃性や初期強度発現性と適正な作業時間が得られる点で、ブレーン比表面積値で3000cm2/g以上が好ましく、4000cm2/g以上がより好ましい。
 石膏を水に浸漬させた時のpHは、弱アルカリから酸性の値を示すことが好ましく、pH8以下がより好ましい。pH8以下だと、石膏成分の溶解度が小さく、不燃性や初期強度発現性を向上するため好ましい。ここでいうpHとは、石膏/イオン交換水=1g/100gの20℃における希釈スラリーのpHを、イオン交換電極等を用いて測定したものである。
 本組成物における石膏の使用量は、カルシウムアルミネート100質量部に対して、70~250質量部が好ましく、100~200質量部がより好ましい。石膏が70質量部以上又は300質量部以下だと、十分な耐火性を付与するため好ましい。
 本発明の実施形態においては、当該発泡樹脂成形体の空隙への原材料の充填後に水和反応により水和物を形成するにあたって、当該水和物を生成するための原材料と水(水道水等)を混合して、水和物を生成するためのスラリーを調製する。そうした原材料としては、粉体が好ましい(粉体である原材料のことを「粉体原料」とも称する)。当該スラリーを調製するときの水の使用量は、特に限定するものではないが、原材料100質量部に対して40~300質量部が好ましく、80~250質量部がより好ましい。水の使用量が40質量部以上であれば、空隙への充填にばらつきが生じず耐火性を損なわない。水の使用量が300質量部以下であれば、空隙内の硬化体中の水和物含有量が減少せず耐火性を損なわない。
 或る実施形態では、当該スラリーの調製にあたって更に、性能に影響を与えない範囲であらゆる各種添加剤を1種以上使用できる。そうした添加剤としては特に限定されるものではないが、例えば以下が挙げられる。スラリーの流動性を調整する各種界面活性剤。気泡を導入する空気連行剤。糖類等の炭化促進剤。リン化合物、臭素化合物、ホウ素化合物、窒素化合物、水酸化マグネシウム、炭酸水素ナトリウム等の難燃性付与剤。熱膨張黒鉛等の延焼防止剤。タルクやゼオライト等の無機物。消石灰や各種炭酸塩等の水和促進剤。オキシカルボン酸塩や酒石酸等の凝結遅延剤。従来の防錆剤、防凍剤、収縮低減剤。ベントナイトやセピオライト等の粘土鉱物。ハイドロタルサイト等のアニオン交換体。
 本発明の実施形態に係る発泡樹脂成形体とは、連続空隙を有する樹脂であり、スラリー等の水和物を充填できる空隙を有するものをいう。樹脂の種類としては、例えば、発泡ポリビニルアルコール樹脂、発泡ポリウレタン樹脂、発泡ポリスチレン樹脂、発泡ポリオレフィン樹脂、発泡フェノール樹脂等が挙げられる。これらの中では、発泡ポリウレタン樹脂、発泡ポリスチレン樹脂、発泡ポリオレフィン樹脂、及び発泡フェノール樹脂からなる群から選択される1種以上が好ましい。これらの樹脂からなる、独立気泡を有する直径数mmの粒状発泡体を、型に詰めて加熱加圧成形し、粒状発泡体間に連続空隙が生じるように成形することで、当該樹脂成形体を得られる。樹脂成形体の連続空隙率は、製造時の加圧の程度によって調節可能である。ポリスチレン樹脂についてはビーズ法ポリスチレンフォームの製造方法に準拠して連続空隙を有する樹脂成形体を製造できる。これらの中では、汎用性の点から、発泡ポリスチレン樹脂成形体の使用が好ましい。発泡樹脂成形体の連続空隙率が25体積%以上であると、得られるボードに十分な耐火性を付与できるため好ましい。また発泡樹脂成形体の連続空隙率が70体積%以下であると、ボード密度が小さくなり熱伝導率が小さく、断熱性が向上するため好ましい。
 樹脂成形体へのスラリー等の水和物の充填方法は、特に限定するものではないが、圧搾空気による圧入や真空ポンプで減圧して吸引により充填する方法や、振動テーブルに樹脂成形体を設置し30~60ヘルツの振動を加えながら空隙内に充填する方法が挙げられる。このうち品質安定性の面から振動を加えながら空隙内に充填する方法が好ましい。
 当該耐火断熱ボードが含むバサルトファイバー及びセラミックファイバーから選択される少なくとも1種以上の無機繊維(以下、単に「無機繊維」とも称する)は、耐火断熱ボードが高温状態に曝された場合に、当該耐火断熱ボードの変形や収縮を抑制し、さらには水和物の結晶水の蒸発速度を抑制することで、耐火性を向上する効果を奏する。
 バサルトファイバーとは高密度の玄武岩を粉砕し、1500℃以上の高温で溶融し、それを紡糸することで得られるファイバーをいう。セラミックファイバーとはアルミナ(Al23)とシリカ(SiO2)を主成分とした人造鉱物繊維の総称をいう。セラミックファイバーは、非晶質のアルミナシリカ繊維(RCF:Refractory Ceramic Fiber)や、アルミナ含有量が60%以上のアルミナとシリカからなる結晶質の繊維(AF:Alumina Fiber)に分類されるが、いずれも使用可能である。
 当該無機繊維の使用形態は特に限定されるものではないが、繊維の束をクロス状に編んで加工したもの、長さ1~50mm又は1~30mm程度に裁断し、短繊維状に加工したもの、短繊維状のものを有機溶媒等と混合して抄造法により厚さ0.1mm~3mm程度のシート状に加工したもの等が使用できる。これらの中では、取り扱いが容易な点で、クロス状に加工したものが好ましい。こうした無機繊維は、耐火断熱ボードの表面の少なくとも一部、より好ましくは表面の全体に適用して、当該ボードを補強することが好ましい。また、無機繊維を耐火断熱ボードの内部に含めるようにしてもかまわない。なおここでいう「耐火断熱ボードの表面」とは、厚さに比べて大きい縦横で規定される面積を持つ面を指すことが好ましいが、厚さ方向に平行な面も含んでもかまわない。
 当該無機繊維の使用量は特に限定するものではないが30~350g/m2が好ましく、50~200g/m2がより好ましい。無機繊維が30g/m2以上であると十分な収縮抑制効果が得られ、350g/m2以下であると効果の増進は期待できる上限になると考えられ、経済的である。
 耐火断熱組成物スラリーを空隙に充填した後の耐火断熱ボードの養生方法は、特に限定するものではないが、充填後、常温下で気中養生したり、耐火断熱ボード表面をプラスチックフィルムで覆い常温で気中養生したり、さらには、養生時間を短縮するために30~50℃の温度で養生したりしてもよい。
 或る実施形態では、更に不織布で耐火断熱ボード全体を被覆したり、不燃紙やアルミクラフト等を耐火断熱ボード表面に貼付したりすることも可能である。
 本発明の実施形態に係る耐火断熱ボードの形状は、特に限定するものではないが、縦500~1000mm、横1000~2000mm、厚さ10~100mmの範囲が好ましい。サイズがこの範囲であれば、重くなりすぎず設置時の作業性が良好である。
 本発明の実施形態に係る耐火断熱ボードの密度は、耐火性及び断熱性を損なわない範囲で調整でき、例えば250~800kg/m3が好ましく、300~600kg/m3がより好ましい。密度が250kg/m3以上であると、十分な耐火性を確保できるため好ましい。密度が800kg/m3以下であると十分な断熱性能が得られるため好ましい。
 或る実施形態では、上述した耐火断熱ボードを用いて、建築物に使用可能な耐火構造体も提供できる。そうした耐火構造体としては例えば、外壁側からの層構成で示せば、サイディングボード、透湿防水シート、耐火断熱ボード、構造用合板、耐火断熱ボードの順の層からなり、構造用合板と耐火断熱ボードの間は間柱で100mm程度の空間(グラスウール等の断熱材が収まる空間)を設けた構造が挙げられる。サイディングボードと透湿防水シートの間は胴縁を設けてもよい(図2参照)。
 耐火構造体を構築する際には、必要とする耐火仕様に応じて、耐火断熱ボードを複数枚重ねて貼り付けてもよく、あるいは耐火断熱ボードを強化石膏ボードやケイ酸カルシウム板等と併用して使用してもよい。
 以下、実施例、比較例を挙げて更に詳細に内容を説明するが、本発明はこれらに限定されるものではない。
「実験例1」
 連続空隙を有する発泡樹脂成形体(サイズ:縦20cm×横20cm×厚み5cm)の下表面全体に表1に示す無機繊維を適用して補強を施し、更にその上からポリエチレン製不織布を重ねた。これを振動含浸装置にセットし、当該樹脂成形体の上表面に、後述のように調製したスラリー(水和物を生成するスラリー)を流し込み、60ヘルツの振動を1分間与え空隙内にスラリーを含浸させて耐火断熱ボードを製造した。スラリーは、粉体原料と水を混合した、充填後に水和物を生成するスラリーである。スラリー充填後、装置から耐火断熱ボードを取り外し、7日間常温で養生し、水和物が有する結晶水の含有量、耐火性、形状保持性、形状保持率、及び熱伝導率を評価した。結果を表1に示す。
(使用材料)
発泡樹脂成形体A2:市販されているポリスチレン樹脂発泡ビーズ(直径1~5mm)を成形機(株式会社ダイセン工業製:VS-500)に充填し、スチームにより加熱して、発泡粒子間に空隙を有する状態で発泡粒子同士を融着させることにより、連続気泡を有する発泡樹脂成形体を製造した。連続空隙率は加圧度合いを調整することで制御した。後述するスラリーを充填する前の発泡樹脂成形体は、連続空隙率36.8体積%、発泡樹脂成形体の密度10.5kg/m3、熱伝導率0.033W/(m・K)であった。なお、発泡樹脂成形体の密度は、発泡樹脂成形体の質量と外形寸法を求め、該質量を該外形寸法から得られる見かけの体積で割って求めた。
スラリー原料粉体1(RM1):カルシウムアルミネート(CA1)100質量部と石膏(CS1)120質量部との混合物、生成水和物:エトリンガイト100%。なお、エトリンガイトの生成率は、X線回折により求めた。
カルシウムアルミネート(CA1):CaO:43質量%、Al23:53質量%となるように調製し、電気炉で溶融・急冷した非晶質カルシウムアルミネート、ブレーン比表面積値6100cm2/g、ガラス化率:95%
石膏(CS1):天然無水石膏粉砕品、ブレーン比表面積値4600cm2/g、pH8以下
無機繊維1(IF1):GBF Basalt Fiber社製バサルトファイバークロス、製品名:BCGM120、繊維使用量:100g/m2
無機繊維2(IF2):GBF Basalt Fiber社製バサルト短繊維、製品名:KV13、平均繊維長:5mm、繊維使用量:150g/m2
無機繊維3(IF3):Zircar Ceramics社製アルミナペーパー、製品名:Alumina Type AL25/1700、製品厚み:1mm、繊維使用量:40g/m2
無機繊維4(IF4):ニチビアルフ社製アルミナチョップドファイバー、製品名:ニチビアルフ、平均繊維長:5mm、繊維使用量:100g/m2
ガラス繊維1(G1):日本電気硝子社製グラスファイバークロス、製品名:ARG TG10x10、繊維使用量:150g/m2
(スラリーの調製と仕込み量)
粉体(スラリー原料粉体1)100質量部と水(水道水)100質量部を加え、5分間攪拌し、水和物を生成するスラリーを調製した。調製したスラリーは810cm3(樹脂成形体空隙量に対して1.1倍)となるように発泡樹脂成形体上面に流し込んだ。
(測定方法)
連続空隙率:発泡樹脂成形体の連続空隙率を求めた。温度23℃、相対湿度50%の環境下で24時間以上放置した発泡樹脂成形体からサンプルを切り出し、該サンプルの外形寸法(縦10cm×横10cm×厚さ5cm)より見かけ体積(Va)を求め、該サンプルを温度23℃のエタノールの入ったメスシリンダー中に金網を使用して沈め、軽い振動等を加えることにより成形体中の空隙に存在している空気を脱気する。軽い振動は、メスシリンダーを軽い力で叩くことにより付与した。軽い振動は、該サンプルの体積が一定に達するまで続けた。そして、金網の体積を考慮して水位上昇分を読み取り、該サンプルの真の体積(Vb)を測定する。求められたサンプルの見かけ体積(Va)と真の体積(Vb)から、次式により連続空隙率(V)を求めた。
 連続空隙率V(%)=〔(Va-Vb)/Va〕×100
結晶水の含有量(結晶水量):耐火断熱ボードから20gサンプリングし、アセトンで硬化体中の自由水と発泡体を溶解し、ろ過後、残渣物をよくアセトンで洗浄し、25℃の環境下、デシケータ中で48時間真空乾燥した。乾燥した硬化物を熱分析装置(昇温速度:10℃/分、空気中)で50~200℃の範囲の質量減少量を測定することにより、結晶水量を算出した。なお、ここでいう結晶水は、アセトン等の乾燥によって除去できる自由水を除く、該耐火断熱ボード中に含まれる化学的あるいは物理的に結合された水のことをいう。
耐火性:小型ガスバーナーと熱電対を用いて図1~2に示すように耐火性を簡易的に評価した。縦10cm×横10cm×厚さ5cmの試験体を用いて試験体の表面温度が900℃となるようにガスバーナーの距離を調整して、裏面の温度を熱電対によって測定し、100℃に到達するまでの時間を計測した。すなわち100℃に到達する時間が長いほど耐火性に優れる。
熱伝導率:耐火断熱ボードから得られた縦10cm×横5cm×厚み5cmの試験体を用いて、迅速熱伝導率計(ボックス式プローブ法)により熱伝導率を測定した。
形状保持性:耐火性試験後の試験体に亀裂、割れ、崩壊、欠損箇所がない場合をGood(良好)、亀裂、割れ、崩壊、欠損箇所が確認された場合をNG(不適)とした。
形状保持率:試験体を電気炉の中に入れ900℃まで加熱し、1時間経過した後の試験体の体積を測定し、加熱前の試験体の体積と比較して形状保持率を算出した。
Figure JPOXMLDOC01-appb-T000001
 表1より、所定の条件を満たす無機繊維を使用して耐火断熱ボードを補強することで、耐火性と形状保持性が大きく向上していることがわかる。
「実験例2」
 表2に示す種類と量の無機繊維を使用してボードを作製したこと以外は実験例1と同様に行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示した使用量の無機繊維により、耐火断熱ボードの耐火性と形状保持性が大きく向上していることがわかる。
「実験例3」
 以下の表3に示す種類のスラリー原料粉体を使用してボードを作製したこと以外は実験例1と同様に行った。結果を表3に示す。
(使用材料)
スラリー原料粉体2(RM2):カルシウムアルミネート(CA2)100部と石膏(CS1)100部の混合物 生成水和物:エトリンガイト82%、水酸化アルミニウム:8%、その他:10%
カルシウムアルミネート(CA2):CaO:34質量%、ブレーン比表面積値4500cm2/g、ガラス化率15%
スラリー原料粉体3(RM3):アウインビーライトセメント(BUZZI社製、製品名:BUZZI NEXT BASE) 生成水和物:エトリンガイト90%、その他:10%
スラリー原料粉体4(RM4):β型半水石膏(ノリタケカンパニー社製、製品名:FT-2、平均粒子径15μm) 生成水和物:二水石膏100%
合成エトリンガイト1(ET1):消石灰と硫酸アルミニウム及び石膏を出発原料とし、水熱合成したものをろ過、乾燥し得られたエトリンガイト粉末、結晶水率:46%
Figure JPOXMLDOC01-appb-T000003
 表3より、充填後に水和反応によって水和物を生成する原料粉体を使用することで、優れた耐火性、形状保持性、断熱性を示すことが分かる。一方で、合成エトリンガイトを使用した比較例である実験No.3-4は、実験No.3-3よりも結晶水量が多いにもかかわらず、優れた性能は示さなかった。これは、スラリーを調製する際に加えた水が水和反応に消費されることなく自由水として存在するため、経時乾燥や加熱を受けるとその自由水が容易に失われてしまい、試験体の緻密性が失われてしまったためである。
「実験例4」
 粉体(スラリー原料粉体1)100質量部に対して水を表4に示すように加え、スラリーを作製したこと以外は実験例1と同様に行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
水は、粉体100質量部に対する質量部。
 表4より、適切な水の使用量で耐火断熱組成物スラリーを調製することで、優れた耐火性、形状保持性、及び断熱性を示すことがわかる。
「実験例5」
 無機繊維として無機繊維1(IF1)を用い、スラリー原料粉体としてスラリー原料粉体1を用い、発泡樹脂成形体として表5に示す発泡樹脂成形体を用いたこと以外は実験例1と同様に行った。結果を表5に示す。ここでは、得られた耐火断熱ボードの密度を測定し、ボード密度とした。
(使用材料)
発泡樹脂成形体A(A1~A4):市販されている発泡ポリスチレン樹脂ビーズ(粒径1~5mm)を成形機(株式会社ダイセン工業製:VS-500)に充填し、スチームにより加熱して、発泡粒子間に空隙を有する状態で発泡粒子同士を融着させることにより、連続気泡を有する発泡樹脂成形体を製造した。連続気泡率は加圧度合いを調整することにより制御した。不燃材スラリー未充填の発泡樹脂成形体の熱伝導率は0.033W/(m・K)
発泡樹脂成形体B(B1~B4):市販されている発泡硬質ポリウレタン樹脂成形体を砕き、粒径1~5mmの粒状物に調整した。得られた粒状物を成形機(株式会社ダイセン工業製:VS-500)に充填し、スチームにより加熱して、発泡粒子間に空隙を有する状態で発泡粒子同士を融着させることにより、連続気泡を有する発泡樹脂成形体を製造した。連続気泡率は加圧度合いを調整することにより制御した。不燃材スラリー未充填の発泡樹脂成形体の熱伝導率は0.027W/(m・K)
発泡樹脂成形体C(C1~C4):市販されているポリエチレンフォームを砕き、粒径1~5mmの粒状物に調整した。得られた粒状物を成形機(株式会社ダイセン工業製:VS-500)に充填し、スチームにより加熱して、発泡粒子間に空隙を有する状態で発泡粒子同士を融着させることにより、連続気泡を有する発泡樹脂成形体を製造した。連続気泡率は加圧度合いを調整することにより制御した。不燃材スラリー未充填の発泡樹脂成形体の熱伝導率は0.030W/(m・K)
発泡樹脂成形体D(D1~D4):市販されているフェノール樹脂フォームを砕き、粒径1~5mmの粒状物に調整した。得られた粒状物を成形機(株式会社ダイセン工業製:VS-500)に充填し、スチームにより加熱して、発泡粒子間に空隙を有する状態で発泡粒子同士を融着させることにより、連続気泡を有する発泡樹脂成形体を製造した。連続気泡率は加圧度合いを調整することにより制御した。不燃材スラリー未充填の発泡樹脂成形体の熱伝導率は0.022W/(m・K)
Figure JPOXMLDOC01-appb-T000005
 表5より、適切な連続空隙を有する発泡樹脂成形体を用いることで、優れた不燃性、形状保持性、及び断熱性を示すことがわかる。
「実験例6」
 実験No.1-1、1-2、2-5及び5-2の耐火断熱組成物で耐火断熱ボード(縦1000mm×横1000mm×厚さ25mm)を作製し、図1~2に示す耐火構造体の構造になるように組み上げて耐火炉に設置した。耐火構造体のサイズは横2200mm×縦1200mmとした。試験は、耐火断熱ボードの耐火断熱組成物の種類と厚みを変えて試験終了後の耐火構造体の燃焼状態を確認した。なお、厚みを変えてボードを設置する場合は設置枚数を変えることで行った。結果を表6に示す。
(耐火試験方法)
 図1の側面図及び図2の上面図に示すように、耐火構造体を耐火炉に設置し、加熱は内壁を模擬した内装側で行い、ガスバーナー(トータル5基)から加炎し、ISO 834に準拠した標準加熱曲線で耐火構造体を1時間加熱した。その後、加熱を止めて耐火炉に設置した状態を3時間維持した。耐火炉から構造体を取り外し、耐火断熱ボードを剥がして柱の燃焼状態を確認した。
Figure JPOXMLDOC01-appb-T000006
 表6より、本発明の実施例に係る耐火断熱ボードで耐火構造体を作ると、耐火性が向上していることがわかる。特に、耐火断熱ボードを2枚重ね貼りすることで、木材部分の燃焼がまったくなく優れた耐火性を示すことがわかる。
 本実施形態に係る耐火断熱組成物及びそのスラリーを用いることで、耐火性と断熱性を持った耐火断熱ボードを得ることができる。本実施形態に係る耐火断熱ボードを用いて壁や柱等の構造体を構築することにより、火炎を受けても形状を維持できるので、火災時の延焼を阻止する効果を有する。よって本実施形態の耐火断熱構造体は、防火安全性の高い建築物、車両、航空機、船舶、冷凍、及び冷蔵設備の建造に寄与できる。

Claims (6)

  1. 連続空隙を有する発泡樹脂成形体にスラリーを充填して構成され、充填した前記スラリーが充填後に水和反応によって結晶水を50kg/m3以上含有した水和物を生成し、表面の少なくとも一部をバサルトファイバー及びセラミックファイバーからなる群から選択される1種以上の無機繊維で補強した耐火断熱ボード。
  2. 前記水和物が、二水石膏及びエトリンガイトからなる群から選択される1種以上を50質量%以上含有する請求項1に記載の耐火断熱ボード。
  3. 前記発泡樹脂成形体が、発泡ポリウレタン樹脂、発泡ポリスチレン樹脂、発泡ポリオレフィン樹脂、及び発泡フェノール樹脂からなる群から選択される1種以上を含む請求項1又は2に記載の耐火断熱ボード。
  4. 前記発泡樹脂成形体の連続空隙率が25~70体積%である請求項1から3のうちのいずれか一項に記載の耐火断熱ボード。
  5. 密度が250~800kg/m3である請求項1から4のうちのいずれか一項に記載の耐火断熱ボード。
  6. 請求項1から5のいずれか一項に記載の耐火断熱ボードを含んだ耐火断熱構造体。
PCT/JP2021/008276 2020-03-04 2021-03-03 耐火断熱ボード及び耐火断熱構造体 WO2021177378A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022504439A JPWO2021177378A1 (ja) 2020-03-04 2021-03-03
CA3170397A CA3170397A1 (en) 2020-03-04 2021-03-03 Fireproof heat insulating board and fireproof heat insulating structure
US17/909,098 US20240209622A1 (en) 2020-03-04 2021-03-03 Fireproof heat insulating board and fireproof heat insulating structure
EP21765165.2A EP4116279A4 (en) 2020-03-04 2021-03-03 REFRACTORY THERMAL INSULATION BOARD AND REFRACTORY THERMAL INSULATION STRUCTURE
CN202180009020.3A CN114981509A (zh) 2020-03-04 2021-03-03 耐火隔热板及耐火隔热结构体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-037244 2020-03-04
JP2020037244 2020-03-04

Publications (1)

Publication Number Publication Date
WO2021177378A1 true WO2021177378A1 (ja) 2021-09-10

Family

ID=77613009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008276 WO2021177378A1 (ja) 2020-03-04 2021-03-03 耐火断熱ボード及び耐火断熱構造体

Country Status (6)

Country Link
US (1) US20240209622A1 (ja)
EP (1) EP4116279A4 (ja)
JP (1) JPWO2021177378A1 (ja)
CN (1) CN114981509A (ja)
CA (1) CA3170397A1 (ja)
WO (1) WO2021177378A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115448675A (zh) * 2022-09-16 2022-12-09 河南安筑新材料科技有限公司 一种漂珠耐火隔热复合板及其制备方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241774A (ja) 1985-08-15 1987-02-23 株式会社アスク 不焼成耐火断熱材
JPH06193158A (ja) * 1992-12-25 1994-07-12 Akota:Kk 耐火間仕切りパネル
JPH0748153A (ja) 1993-08-02 1995-02-21 Denki Kagaku Kogyo Kk 耐火被覆材
JPH0761841A (ja) 1993-08-23 1995-03-07 Suchiraito Kogyo Kk 耐火被覆用組成物
JPH0892555A (ja) 1993-11-08 1996-04-09 Denki Kagaku Kogyo Kk 硬化性組成物
JPH1067576A (ja) 1996-08-26 1998-03-10 Denki Kagaku Kogyo Kk 断熱材料、その製造方法、及びそれを用いた施工方法
WO1999016984A1 (fr) * 1997-09-26 1999-04-08 Ibiden Co., Ltd. Materiau de construction refractaire composite, son procede fabrication, plaque de platre et composition resineuse
JP2001329629A (ja) 2000-05-24 2001-11-30 Hitachi Chem Co Ltd 断熱性被覆粒体
JP2012102305A (ja) 2010-11-05 2012-05-31 Hironori Hatano 無機物含有合成樹脂発泡体とその製造方法
JP4983967B2 (ja) 2010-08-05 2012-07-25 金山化成株式会社 発泡樹脂複合構造体およびその製造方法
JP2015199945A (ja) 2014-03-31 2015-11-12 株式会社ジェイエスピー 複合成形体
JP2016065360A (ja) 2014-09-22 2016-04-28 ニチアス株式会社 耐火構造及びその使用方法
JP3208176U (ja) * 2016-10-14 2016-12-28 吉野石膏株式会社 不燃性積層体
JP2017077994A (ja) 2015-10-21 2017-04-27 デンカ株式会社 組成物及び不燃材
JP2018178046A (ja) * 2017-04-20 2018-11-15 デンカ株式会社 不燃性建材及び不燃断熱性建材

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW350894B (en) * 1994-08-02 1999-01-21 Stylite Kogyo Co Ltd Refractory coating components, building siding panels and the siding structure
JP2000120195A (ja) * 1998-08-10 2000-04-25 Toray Ind Inc 構造体およびそれよりなる屋根又は壁および耐火断熱タイル
KR100943228B1 (ko) * 2009-11-04 2010-02-18 주식회사 부일세이프텍 불연성 단열패널
CN104847026B (zh) * 2015-06-03 2017-04-19 哈尔滨工业大学(威海) 玄武岩纤维布增强聚氨酯硬质泡沫复合保温板及其制备方法
CN109423043A (zh) * 2017-08-24 2019-03-05 尤尼吉可株式会社 发泡成型用聚酰胺树脂组合物、发泡用聚酰胺树脂颗粒混合物和发泡成型体
CN110117991A (zh) * 2018-02-07 2019-08-13 石河子大学 一种设有玄武岩纤维中空织物一体化保温板
CN108706953B (zh) * 2018-06-29 2019-07-23 南京红宝丽新材料有限公司 一种匀质低导热无机保温板及其制备方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241774A (ja) 1985-08-15 1987-02-23 株式会社アスク 不焼成耐火断熱材
JPH06193158A (ja) * 1992-12-25 1994-07-12 Akota:Kk 耐火間仕切りパネル
JPH0748153A (ja) 1993-08-02 1995-02-21 Denki Kagaku Kogyo Kk 耐火被覆材
JPH0761841A (ja) 1993-08-23 1995-03-07 Suchiraito Kogyo Kk 耐火被覆用組成物
JPH0892555A (ja) 1993-11-08 1996-04-09 Denki Kagaku Kogyo Kk 硬化性組成物
JPH1067576A (ja) 1996-08-26 1998-03-10 Denki Kagaku Kogyo Kk 断熱材料、その製造方法、及びそれを用いた施工方法
WO1999016984A1 (fr) * 1997-09-26 1999-04-08 Ibiden Co., Ltd. Materiau de construction refractaire composite, son procede fabrication, plaque de platre et composition resineuse
JP2001329629A (ja) 2000-05-24 2001-11-30 Hitachi Chem Co Ltd 断熱性被覆粒体
JP4983967B2 (ja) 2010-08-05 2012-07-25 金山化成株式会社 発泡樹脂複合構造体およびその製造方法
JP2012102305A (ja) 2010-11-05 2012-05-31 Hironori Hatano 無機物含有合成樹脂発泡体とその製造方法
JP2015199945A (ja) 2014-03-31 2015-11-12 株式会社ジェイエスピー 複合成形体
JP2016065360A (ja) 2014-09-22 2016-04-28 ニチアス株式会社 耐火構造及びその使用方法
JP2017077994A (ja) 2015-10-21 2017-04-27 デンカ株式会社 組成物及び不燃材
JP3208176U (ja) * 2016-10-14 2016-12-28 吉野石膏株式会社 不燃性積層体
JP2018178046A (ja) * 2017-04-20 2018-11-15 デンカ株式会社 不燃性建材及び不燃断熱性建材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4116279A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115448675A (zh) * 2022-09-16 2022-12-09 河南安筑新材料科技有限公司 一种漂珠耐火隔热复合板及其制备方法

Also Published As

Publication number Publication date
CA3170397A1 (en) 2021-09-10
EP4116279A1 (en) 2023-01-11
CN114981509A (zh) 2022-08-30
JPWO2021177378A1 (ja) 2021-09-10
EP4116279A4 (en) 2023-08-09
US20240209622A1 (en) 2024-06-27

Similar Documents

Publication Publication Date Title
TWI706074B (zh) 石膏內芯及用於製作彼之漿料
AU2012222183B2 (en) Low weight and density fire-resistant gypsum panel
CN1817976B (zh) 防火和吸音涂覆组合物
US12012361B2 (en) Geopolymer cement
CN109982987A (zh) 耐火涂料和高强度、密度可控的冷融合混凝土的水泥基喷涂防火
JP2004504508A (ja) 石膏プラスターボードおよびその製造方法
KR20100079863A (ko) 마감성을 보유한 고강도 콘크리트시멘트계 고밀도 내화피복재 조성물
KR20160083009A (ko) 실리카 겔을 포함하는 석고 제품
JP6953171B2 (ja) 不燃性建材及び不燃断熱性建材
WO2020247876A1 (en) Fire resistant compositions and articles and methods of preparation and use thereof
CA2418235A1 (en) Plasterboard composition, preparation of this composition and manufacture of plasterboards
KR100473347B1 (ko) 경량골재를 이용한 내화성 판재조성물
JP6556017B2 (ja) 組成物及び不燃材
WO2020137987A1 (ja) 耐火断熱組成物、耐火断熱組成物スラリー、耐火断熱ボード及び耐火断熱構造体
WO2021177378A1 (ja) 耐火断熱ボード及び耐火断熱構造体
KR0144583B1 (ko) 내화 및 흡음용 피복 조성물 및 이의 시공 방법
KR20200075205A (ko) 내화보드 및 이의 제조방법
WO2022004750A1 (ja) 耐火断熱組成物、耐火断熱組成物スラリー、耐火断熱ボード及び耐火断熱構造体
WO2022004749A1 (ja) 耐火断熱組成物、耐火断熱組成物スラリー、耐火断熱ボード及び耐火断熱構造体
JP6681273B2 (ja) 組成物及び不燃材
KR101019980B1 (ko) 내화 불연성 스티로폼의 제조방법
JPH081854A (ja) 耐火ボード
JP2023146922A (ja) 耐火断熱組成物、耐火断熱組成物スラリー、耐火断熱板及び耐火断熱構造体
KR800000415B1 (ko) 입상내화물(造粒耐火物)의 제조방법
CZ36694U1 (cs) Laminát ve tvaru stavebního prvku nebo dlaždice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21765165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504439

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3170397

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 17909098

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021765165

Country of ref document: EP

Effective date: 20221004