WO2022004750A1 - 耐火断熱組成物、耐火断熱組成物スラリー、耐火断熱ボード及び耐火断熱構造体 - Google Patents

耐火断熱組成物、耐火断熱組成物スラリー、耐火断熱ボード及び耐火断熱構造体 Download PDF

Info

Publication number
WO2022004750A1
WO2022004750A1 PCT/JP2021/024629 JP2021024629W WO2022004750A1 WO 2022004750 A1 WO2022004750 A1 WO 2022004750A1 JP 2021024629 W JP2021024629 W JP 2021024629W WO 2022004750 A1 WO2022004750 A1 WO 2022004750A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
heat insulating
parts
fire
calcium aluminate
Prior art date
Application number
PCT/JP2021/024629
Other languages
English (en)
French (fr)
Inventor
和人 田原
浩徳 長崎
航平 水田
正憲 三本
芳範 下條
博伸 吉川
Original Assignee
デンカ株式会社
株式会社ジェイエスピー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社, 株式会社ジェイエスピー filed Critical デンカ株式会社
Priority to JP2022534061A priority Critical patent/JPWO2022004750A1/ja
Publication of WO2022004750A1 publication Critical patent/WO2022004750A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/10Clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/14Minerals of vulcanic origin
    • C04B14/16Minerals of vulcanic origin porous, e.g. pumice
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/10Acids or salts thereof containing carbon in the anion
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • C04B24/06Carboxylic acids; Salts, anhydrides or esters thereof containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation

Definitions

  • the present invention relates to a fire-resistant heat insulating composition, a fire-resistant heat insulating composition slurry, a fire-resistant heat insulating board, and a fire-resistant heat insulating structure for constructing a fire-resistant heat insulating structure of a building.
  • heat insulating materials and fireproof materials are used in buildings, and polyurethane foam, polystyrene foam, phenol foam, etc., which are resin foams with high heat insulating effect, light weight, and good workability, are used as heat insulating materials.
  • polyurethane foam, polystyrene foam, phenol foam, etc. which are resin foams with high heat insulating effect, light weight, and good workability, are used as heat insulating materials.
  • inorganic fiber aggregates such as glass wool and rock wool, which are inexpensive in terms of cost.
  • the resin foam is an organic substance, it burns in the event of a fire and often causes the damage to spread due to the spread of fire, so countermeasures are desired.
  • inorganic fiber aggregates such as glass wool and rock wool are mainly composed of non-combustible materials, but they tend to have higher thermal conductivity than resin foams and are inferior in heat insulation, and fibers.
  • the workability was inferior due to the piercing feeling due to the shape.
  • the method of packing the fiber aggregate in a plastic bag at the time of construction and fitting it between the pillar and the outer wall of the house has been adopted, but a gap may occur or it may fall off over time. There was a problem such as.
  • a heat insulating material that imparts nonflammability to a resin foam is already on the market.
  • a non-combustible heat insulating board having a structure in which one side or both sides of a phenolic foam board is laminated with aluminum foil, aluminum hydroxide paper, a sekko-based plate material or the like which is a non-combustible material can be mentioned.
  • these conventional non-combustible heat insulating boards do not burn on the surface facing the flame in the event of a fire, the heat melts the phenolic foam inside and creates cavities, and the problem that the board itself falls off and spreads the fire can be solved.
  • it is not a material that satisfies the fireproof structural specifications stipulated by the Building Standards Act.
  • foams are formed with alkali metal carbonates, isocyanates, water and reaction catalysts.
  • Technology related to heat insulating materials Patent Document 1 and hydroxides, oxides, carbonates, sulfates, nitrates, aluminates, hoe, which are selected from the group consisting of lithium, sodium, potassium, boron, and aluminum.
  • a curable composition consisting of one or more kinds of inorganic compounds selected from the group consisting of salts and phosphates, water and isocyanates, and a technique mainly for an injection material for improving the ground of a tunnel (Patent Document). 2) is known.
  • Patent Document 2 was developed for ground improvement and is not intended to obtain heat insulating properties.
  • Patent Document 1 in the conventional method of reacting an aqueous solution of alkali metal carbonate of 30% or more with isocyanates, a large amount of unreacted water remains due to the use of a large amount of water, so that a heat insulating material is used. It is considered that the heat insulating property is not large because it needs to be dried in order to be used as an aqueous solution and the bubble size of the obtained foam is large.
  • foam particles of a synthetic resin formed a coating composed of sepiolite and an aqueous organic binder containing a water-soluble resin as a main component and subjected to surface treatment.
  • a technique relating to a heat-insulating coated granule that is further coated with a coating material consisting of an aqueous inorganic binder containing an inorganic powder and water glass containing an alkali metal silicate as a main component and dried and cured Patent Document 3).
  • the bubble structure on the surface of at least a part of the synthetic resin foam was filled with a silica-based inorganic substance consisting of one or a mixture of calcium silicate, magnesium silicate, aluminum silicate, and aluminosilicate.
  • a technique relating to an inorganic-containing synthetic resin foam is disclosed.
  • Patent Document 5 a technique relating to a foamed resin composite structure in which a packing material made of an organic substance having an oxygen index of greater than 21 is filled in communication voids formed between the foamed beads.
  • Patent Document 6 a technique for a composite molded body in which the voids of a thermoplastic resin foamed particle molded article having communicating voids and a void ratio of 5 to 60% are filled with a cured product of cement or gypsum containing smectite.
  • Patent Document 5 since the communication void is filled with a filling material which is an organic substance, improvement in combustion resistance at a non-combustible level cannot be expected.
  • Patent Document 5 is intended for expanded polystyrene foam having a very solid void in the foam having a void ratio of about 3%, and it cannot be said that the void can be effectively used.
  • Patent Document 6 preferably contains ettringite in the cured product as a cement, and exemplifies the cement containing ettringite by a trade name, and describes that it contains smectite, which is considered to be one of the material separation reducing materials. There is.
  • Patent Document 7 contains calcium aluminate having a CaO content of 40% by mass or more, sucrose, an inorganic powder having a hollow structure with an average particle size of 20 to 60 ⁇ m, and a waste glass foam powder having an average particle size of 20 to 130 ⁇ m. The composition is described. It is considered that the material described in Patent Document 8 is used for the purpose of covering the surface of the steel frame and protecting it from a fire, and does not have a large heat insulating property.
  • Compositions for use are also known.
  • Patent Document 10 discloses non-firing fireproof heat insulating materials consisting of heat-resistant aggregates, lightweight aggregates, alumina-based binders, silicon carbide, and reinforcing fibers. It is described (Patent Document 10).
  • an alumina cement composition (Patent Document 11) containing calcium aluminate, ⁇ -alumina, an additive, and a curing accelerator is known, and a lithium compound is described as a curing accelerator.
  • a setting retarder for alumina cement composed of citric acid, alkali metal citrate, and alkali metal carbonate is known (Patent Document 12). All of these patent documents are expected to have separate hydration-promoting effects and delayed curing of alkali metal carbonates or lithium compounds, and further effects, crystal water volume, and fire resistance due to the synergistic effect of the combined use of two or more types. It is not intended for improvement.
  • Patent Documents 11 and 12 do not show sufficient fire resistance as the height of wooden buildings increases.
  • a method for adjusting the condensation time, developing strength, and generating the amount of crystalline water during manufacturing has not been established, and there are many problems in manufacturing. Therefore, there has been a demand for a method capable of solving problems such as having better fire resistance and heat resistance. From the above, it is an object of the present invention to provide a refractory heat insulating composition capable of achieving both good heat insulating properties and fire resistance.
  • the present inventors have obtained the finding that a composition having good heat insulating properties and fire resistance can be obtained by solving the above-mentioned problems by using a specific composition.
  • the invention was completed. That is, the present invention is as follows.
  • a fire-resistant heat insulating composition containing 0.1 to 2 parts by mass of a portion and a setting agent.
  • a refractory heat insulating board formed by filling the voids of a resin molded body having a continuous void ratio of 25 to 70% by volume with the refractory heat insulating composition slurry according to [4] and solidifying the slurry.
  • a refractory heat insulating structure including the refractory heat insulating board according to [5].
  • a refractory heat insulating composition capable of achieving both good heat insulating properties and fire resistance. Therefore, by using the refractory heat insulating composition of the present invention and its slurry, a refractory heat insulating board having both fire resistance and heat insulating property can be obtained.
  • composition contains 70 to 70 parts by mass of calcium aluminate having a CaO content of 34% by mass or more. Including 250 parts by mass, (A) lithium carbonate, (B) potassium carbonate and / or sodium carbonate in a mass ratio [(A) / (B)] to a total of 100 parts by mass of calcium aluminate and the sequel. It contains 0.5 to 5 parts by mass of a hydration accelerator mixed in the range of 1/20 to 1/1 and 0.1 to 2 parts by mass of a coagulation adjuster.
  • the calcium aluminate is a hydration activity containing CaO and Al 2 O 3 as main components, which are obtained by mixing a calcia raw material and an alumina raw material and firing them in a kiln or melting and cooling them in an electric furnace. It is a general term for substances having.
  • the calcium aluminate is not particularly limited, but an amorphous calcium aluminate that has been rapidly cooled after melting is preferable from the viewpoint of developing initial strength after curing.
  • the CaO content of calcium aluminate is 34% or more, preferably 40% or more, in terms of reaction activity. If the CaO content is less than 34%, sufficient fire resistance is not exhibited.
  • the CaO content of calcium aluminate is preferably 60% or less, more preferably 50% or less.
  • the Al 2 O 3 content of calcium aluminate is preferably 40% or more, more preferably 45% or more.
  • the Al 2 O 3 content of calcium aluminate is preferably 80% or less, more preferably 65% or less.
  • some of the calcium aluminate CaO and Al 2 O 3 are alkali metal oxides, alkaline earth metal oxides, silicon oxide, titanium oxide, iron oxide, alkali metal halides, and alkaline soil.
  • the vitrification rate of calcium aluminate is preferably 8% or more, preferably 50% or more, and most preferably 90% or more.
  • the vitrification rate of calcium aluminate can be calculated by the following method.
  • the main peak area S of the crystalline mineral was measured in advance by the powder X-ray diffraction method, then heated at 1000 ° C. for 2 hours, slowly cooled at a cooling rate of 1 to 10 ° C./min, and then powdered X-ray.
  • the main peak area S 0 of the crystalline mineral after heating by the diffraction method is obtained, and further, using these S 0 and S values, the vitrification rate ⁇ is calculated using the following equation.
  • Vitrification rate ⁇ (%) 100 ⁇ (1-S / S 0 )
  • the particle size of calcium aluminate is preferably a brain specific surface area of 3,000 cm 2 / g or more, and more preferably 5,000 cm 2 / g or more in terms of initial strength development. When it is 3,000 cm 2 / g or more, the initial strength development is improved.
  • the brain specific surface area is a value measured in accordance with JIS R5201: 2015 (physical test method for cement).
  • anhydrous gypsum As the gypsum contained in the present composition, any of anhydrous gypsum, semi-water gypsum, and dihydrate gypsum can be used, and the gypsum is not particularly limited.
  • the anhydrous gypsum is a generic name of the compound represented by the molecular formula comprising CaSO 4 with calcium sulfate anhydrite
  • the hemihydrate gypsum is a general term for CaSO 4 ⁇ 1 / 2H 2 O comprising molecular compound represented by the formula
  • gypsum and is a generic name of the compound represented by CaSO 4 ⁇ 2H 2 O made molecular formula.
  • the particle size of gypsum is preferably 1 to 30 ⁇ m, more preferably 5 to 25 ⁇ m, in terms of nonflammability, initial strength development, and appropriate working time.
  • the average particle size is a value measured in a dispersed state using a measuring laser diffraction type particle size distribution meter and an ultrasonic device.
  • the content of gypsum in this composition is 70 to 250 parts by mass, preferably 100 to 200 parts by mass, with respect to 100 parts by mass of calcium aluminate. If the amount of gypsum is less than 70 parts by mass or more than 300 parts by mass, sufficient fire resistance cannot be imparted.
  • the hydration accelerator contained in the present composition is a substance that promotes the hydration of the present composition, increases the amount of crystalline water, and improves the fire resistance.
  • the mixture of (A) lithium carbonate and (B) potassium carbonate and / or sodium carbonate as a hydration accelerator is not particularly limited, and either anhydrous or hydrous material can be used.
  • the mixing ratio ((A) / (B)) of (A) lithium carbonate and (B) potassium carbonate and / or sodium carbonate in the hydration accelerator is in the range of 1/20 to 1/1 by mass ratio. , 1/10 to 1/2 are preferable. If it is less than 1/20, a sufficient effect cannot be expected, and if it exceeds 1/1, no further effect can be expected.
  • the composition may further contain a hydration promoter other than lithium carbonate, sodium carbonate, potassium carbonate.
  • the hydration accelerator is a substance that promotes the reaction between calcium aluminate and gypsum to increase the amount of crystalline water and improve the fire resistance, and is not particularly limited.
  • Examples of the hydration accelerator include hydroxides such as calcium hydroxide, alkali metal silicates, aluminum sulfate such as anhydrous aluminum sulfate, alkali metal carbonates such as sodium carbonate, nitrates, nitrites, and ordinary Portland cement.
  • Various Portland cements, various inorganic filler fine powders and the like can be mentioned, and one or more of these can be used.
  • the content of the hydration accelerator is 0.5 to 5 parts by mass, preferably 0.7 to 2 parts by mass, based on 100 parts by mass of the total of calcium aluminate and gypsum. If it is less than 0.5 parts by mass, a sufficient effect cannot be expected, and if it exceeds 5 parts by mass, no further effect can be expected.
  • the coagulation regulator contained in the present composition is a substance that adjusts the pot life of the refractory heat insulating composition slurry.
  • the coagulation adjusting agent include an inorganic coagulation adjusting agent and an organic coagulation adjusting agent.
  • the inorganic coagulation adjuster include phosphate, silicate, copper hydroxide, boric acid or a salt thereof, zinc oxide, zinc chloride, zinc carbonate and the like.
  • organic setting retarder examples include oxycarboxylic acids (citric acid, gluconic acid, malic acid, tartaric acid, glucoheptonic acid, oxymalonic acid, lactic acid, etc.) or salts thereof (sodium salt, potassium salt, etc.), and sugar. Examples include sugars and the like. One or more of these can be used. Further, a mixture of an inorganic setting retarder such as bicarbonate, nitrate, hydroxide, silicate and the like and the above oxycarboxylic acids or salts thereof can also be used. Among these, oxycarboxylic acids or salts thereof alone or a mixture of an inorganic condensation retarder and oxycarboxylic acids or salts thereof is preferable.
  • oxycarboxylic acids citric acid, gluconic acid, malic acid, tartaric acid, glucoheptonic acid, oxymalonic acid, lactic acid, etc.
  • salts thereof sodium salt, potassium salt, etc.
  • sugar examples
  • the content of the coagulation adjuster is 0.1 to 2 parts by mass, preferably 0.3 to 1 part by mass with respect to 100 parts by mass of the total of calcium aluminate and gypsum. If it is less than 0.1 part by mass, it becomes difficult to adjust to the required pot life, and if it exceeds 2.0 parts by mass, the curing time becomes long and curing failure may occur.
  • the setting retarder shall exclude the above-mentioned calcium aluminate, sucrose, lithium carbonate, potassium carbonate and sodium carbonate.
  • the fibrous inorganic clay mineral contained in the present composition (hereinafter, may be simply referred to as “fibrous mineral”) preferably has a water content of at least 5% or more in order to obtain heat insulating properties and fire resistance. ..
  • the fibrous inorganic clay mineral gives the composition a material separation reducing effect and also improves the fire resistance.
  • FIG. 1 shows a schematic diagram of the crystal structure of a fibrous inorganic clay mineral (sepiolite in FIG. 1) (according to the structural models of Brauner and Preisinger, see JP-A-2004-59347 and JP-A-2002-338236).
  • the fibrous mineral is a kind of hydrous magnesium silicate mineral, and is a fibrous clay mineral characterized by having a crystal structure as shown in FIG. 1 and having pores inside the crystal. , Water of crystallization exists in the pores in the form of bound water or silicate water.
  • two-dimensional crystal structures form fibrous crystal structures that are alternately stacked like bricks.
  • this unit crystal structure contains four hydroxyl groups bonded to Mg atoms, four bound water bonded to Mg atoms, and eight zeolite waters.
  • FIG. 1 shows that there are eight zeolite waters in the unit structure.
  • the fibrous mineral has a specific surface area of 50 to 500 m 2 / g, an average fiber length of 0.1 to 50 ⁇ m, and an aspect ratio indicated by an average fiber length / average fiber diameter of 5, although it varies depending on the type. It is preferably about 5000.
  • the specific surface area is a value measured according to the BET method, JIS Z8830: 2013.
  • the average fiber length and the average fiber diameter are the values obtained by image analysis of the SEM photograph taken.
  • the fibrous minerals are not particularly limited, but typical ones are sepiolite ((OH 2 ) 4 (OH) 4 Mg 8 Si 12 O 30 / 6-8H 2 O) and parigolite (atapaljite) ((OH). 2 ) 4 (OH) 2 Mg 5 Si 8 O 20 ⁇ 4H 2 O), wollastonite, loglinite and the like. Among these, one or more selected from sepiolite and parigolite (atapaljite) are preferable.
  • the water content of the fibrous mineral is more preferably 7% or more, further preferably 9% or more, from the viewpoint of good fire resistance and heat insulating properties.
  • the upper limit of the water content is not particularly limited, but is preferably 30% or less, for example.
  • the fibrous mineral was heated from 30 ° C to 200 ° C by a thermogravimetric analyzer (TGA), and the mass X before the temperature rise and the reduced mass (mass decreased when the temperature was raised from 30 ° C to 200 ° C) X1 were used.
  • the content of the fibrous mineral in this composition is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the total of calcium aluminate and gypsum from the viewpoint of obtaining good fire resistance and heat insulating properties. Parts by mass are more preferred.
  • the fibrous mineral may be premixed with calcium aluminate or gypsum in advance, or may be dispersed in water in advance for use.
  • the composition may further contain an inorganic powder having pores (hereinafter, may be simply referred to as “inorganic powder”).
  • the inorganic powder is not particularly limited as long as it is a powder of an inorganic material having pores, and any powder can be used.
  • Typical examples of inorganic powder having pores are inorganic powder obtained from foam formed by heating volcanic deposits such as silas balloon at high temperature, and fly ash balloon generated from thermal power plant.
  • examples thereof include inorganic powder obtained by firing black stone, pearl rock, or shale, and waste glass foam powder (recycled glass balloon) whose grain size is adjusted by firing after crushing waste such as glass bottles.
  • waste glass foam powder recycled glass balloon
  • the inorganic powder excludes the above-mentioned calcium aluminate, gypsum, and fibrous inorganic clay mineral.
  • one or more of the group consisting of Shirasu balloon, fly ash balloon, and waste glass foam powder is preferable because the heat insulating property is not easily impaired when the open cells of the foamed resin molded product are filled.
  • the particle size of the inorganic powder is preferably an average particle diameter of 1 to 150 ⁇ m, more preferably 15 to 100 ⁇ m.
  • the average particle size is a value measured in a dispersed state using a measuring laser diffraction type particle size distribution meter and an ultrasonic device.
  • the amount of the inorganic powder used in the present composition is preferably 2 to 100 parts by mass, more preferably 5 to 80 parts by mass, based on 100 parts by mass of the total of calcium aluminate and gypsum.
  • the amount of the inorganic powder is 2 parts by mass or more, the heat insulating property is improved, and when the amount is 100 parts by mass or less, the fire resistance is improved.
  • the content of calcium aluminate in the refractory heat insulating composition according to the embodiment of the present invention is preferably 30 to 50%, more preferably 40 to 50% from the viewpoint of fire resistance.
  • the refractory heat insulating composition slurry according to the embodiment of the present invention is made by mixing the above-mentioned refractory heat insulating composition and water. That is, a refractory heat insulating composition slurry can be prepared by using water (tap water or the like) for the refractory heat insulating composition according to the embodiment of the present invention.
  • the amount of water when preparing the slurry is not particularly limited, but is preferably 40 to 300 parts by mass, more preferably 80 to 250 parts by mass with respect to 100 parts by mass of the total of calcium aluminate and gypsum.
  • the amount of water is 40 parts by mass or more, the filling into the void becomes uniform and the fire resistance is improved, and when it is 300 parts by mass or less, the ettringite content in the cured body in the void increases and the fire resistance is improved. Sex improves.
  • the refractory heat insulating board according to the embodiment of the present invention is solidified by filling the voids of the resin molded body having a continuous void ratio of 25 to 70% by volume with the refractory heat insulating composition slurry according to the embodiment of the present invention. ..
  • the fire-resistant heat insulating composition slurry according to the embodiment of the present invention is filled in the voids of a resin molded product having a continuous void ratio of 25 to 70% by volume (hereinafter, may be simply referred to as “resin molded product”) and solidified. It is possible to manufacture a fireproof insulation board.
  • the resin molded product is a resin having continuous voids and has voids that can be filled with the slurry.
  • the type of resin include foamed polyvinyl alcohol resin, foamed polyurethane resin, foamed polystyrene resin, foamed polyolefin resin, foamed phenol resin and the like.
  • Granular foams having closed cells and having a diameter of several mm, which are made of these resins, are packed in a mold and heat-pressed to form a resin molded body so that continuous voids are formed between the granular foams. can get.
  • the continuous void ratio of the resin molded product can be adjusted by the degree of pressurization during manufacturing.
  • polystyrene resin a resin molded body having continuous voids can be manufactured according to the method for manufacturing polystyrene foam by the bead method.
  • expanded polystyrene resin molded products are preferable from the viewpoint of versatility.
  • the continuous void ratio V of the resin molded product can be obtained by, for example, the following method. First, a rectangular parallelepiped sample is cut out from a resin molded body left in an environment of a temperature of 23 ° C.
  • the slurry filled in the continuous voids produces a hydration product due to the hydration reaction and solidifies (cures).
  • the continuous voids in the resin molding are filled with the hydration product.
  • the hydration product include ettringite produced by the reaction of calcium aluminate and gypsum. Since ettringite has a large amount of water in the molecule as water of crystallization, it dehydrates by heating, exhibits a fire extinguishing effect, and imparts nonflammability to the resin molded product. In the embodiment of the present invention, by using calcium aluminate having a CaO content of 34% or more, ettringite is positively produced and the nonflammability of the resin molded product is improved.
  • the method for filling the resin molded product with the fire-resistant heat insulating composition slurry is not particularly limited, but the method is to press-fit with compressed air, depressurize with a vacuum pump and fill by suction, or install the resin molded product on a vibration table.
  • Examples thereof include a method of filling the voids while applying a vibration of 30 to 60 hertz. Among these, from the viewpoint of quality stability, a method of filling the voids while applying vibration is preferable.
  • the method for curing the refractory heat insulating board after filling the voids with the refractory heat insulating composition slurry is not particularly limited, but after filling, the refractory heat insulating board can be cured in the air at room temperature, or the board surface can be covered with a plastic film at room temperature. Examples include a method of curing in the air.
  • the refractory insulation board may be cured at a temperature of 30 to 50 ° C. in order to shorten the curing time.
  • the entire board may be further covered with a non-woven fabric, a reinforcing material such as a lattice-shaped fiber sheet may be arranged on one side or both sides of the board, or the non-woven fabric and the fiber sheet may be used in combination.
  • a reinforcing material such as a lattice-shaped fiber sheet may be arranged on one side or both sides of the board, or the non-woven fabric and the fiber sheet may be used in combination.
  • the shape of the refractory heat insulating board of the present invention is not particularly limited, but is preferably 500 to 1000 mm in length, 1000 to 2000 mm in width, and 10 to 100 mm in thickness.
  • the thickness is more preferably 50 to 100 mm. The smaller the size, the lighter the fireproof insulation board and the better the workability during installation.
  • one or more of various additives can be used in the preparation of the present refractory heat insulating composition slurry as long as the performance is not affected.
  • additives include surfactants, air entrainers, carbonization accelerators, flame retardant-imparting agents, fire spread inhibitors, inorganic substances, rust inhibitors, antifreeze agents, shrinkage reducing agents, clay minerals, anion exchangers and the like. Can be mentioned.
  • the density of the refractory heat insulating board according to the embodiment of the present invention is preferably 100 to 800 kg / m 3 and more preferably 200 to 500 kg / m 3 in that the fire resistance and the heat insulating property are not impaired.
  • it is 100 kg / m 3 or more, sufficient fire resistance can be ensured, and when it is 800 kg / m 3 or less, sufficient heat insulating property can be obtained.
  • the fireproof heat insulating structure according to the embodiment of the present invention includes a fireproof heat insulating board. That is, the fireproof structure of the building can be constructed by using the fireproof heat insulating board described above.
  • a fireproof structure includes, for example, a siding board, a moisture permeable waterproof sheet, a fireproof heat insulating board, a structural plywood, and a fireproof heat insulating board in the order of the layer structure from the outer wall side, and the structural plywood and the fireproof structure.
  • An example is a structure in which a space of about 100 mm (a space in which a heat insulating material such as glass wool can be accommodated) is provided between studs (studs in FIG. 3) between the heat insulating boards.
  • a furring strip may be provided between the siding board and the breathable waterproof sheet (see FIG. 3).
  • a fireproof heat insulating structure including a fireproof heat insulating board can be obtained.
  • a plurality of the fireproof heat insulating boards may be stacked and attached, or the fireproof heat insulating board may be used in combination with the reinforced gypsum board.
  • Example 1 The foamed resin molded body A (size: length 20 cm ⁇ width 20 cm ⁇ thickness 5 cm) having continuous voids was reinforced with alkali-resistant glass fiber at the lower portion in the thickness direction, and a polyester non-woven fabric was further layered. This is set in a vibration impregnation device, a refractory heat insulating composition slurry having the composition shown in Table 1 is poured onto the upper surface of the molded body, vibration of 60 hertz is applied for 1 minute, and the void is impregnated with the refractory heat insulating composition slurry to impregnate the fire resistant heat insulating composition board. Manufactured.
  • the refractory heat insulating board was taken out from the apparatus and cured at room temperature for 3 days.
  • the cured fireproof heat insulating board was evaluated for water of crystallization content, fire resistance, shape retention, shape retention and thermal conductivity. The results are shown in Table 1.
  • Foamed resin molded body A Commercially available polystyrene foam beads (diameter 1 to 5 mm) are filled in a molding machine (manufactured by Daisen Kogyo Co., Ltd .: VS-500) and heated by steam to have voids between the foamed particles. It was manufactured by fusing the foamed particles together in this state. The continuous void ratio was controlled by adjusting the degree of pressurization. Continuous void ratio 36.8%, density of polystyrene foam beads 10.5 kg / m 3 , thermal conductivity of polystyrene foam bead molded body 0.033 W / (m ⁇ K)
  • Calcium aluminate 1 (CA1): CaO: 43 %, Al 2 O 3: 53% and adjusted to, amorphous calcium aluminate was melted and quenched in an electric furnace, vitrification ratio of 98% or more, the Blaine specific Surface area 6050 cm 2 / g
  • Gypsum 1 Type II anhydrous gypsum manufactured by Noritake Company, trade name D-101A, purity 95%, average particle diameter 20 ⁇ m
  • Condensation adjuster (R1) Reagent 1st grade tartaric acid water: Tap water
  • a mixture was prepared by adding 120 parts by mass of sekkou (CS1) to 100 parts by mass of calcium aluminate (CA1), and lithium carbonate, potassium carbonate and sodium carbonate were added to 100 parts by mass of the mixture as shown in Table 1. 1 part by mass of the amount and the setting agent (R1) and 100 parts by mass of water were added, and the mixture was stirred for 5 minutes to prepare a slurry (fireproof heat insulating composition slurry).
  • the prepared slurry was poured onto the upper surface of the foamed resin molded body so as to have a size of 810 cm 3 (1.1 times the amount of voids in the resin molded body).
  • the continuous void ratio of the foamed resin molded product was determined.
  • the apparent volume (Va) was obtained from the external dimensions (length 10 cm x width 10 cm x thickness 5 cm) of the foamed resin molded body left in an environment with a temperature of 23 ° C. and a relative humidity of 50% for 24 hours, and the sample was subjected to a temperature of 23 ° C. It is submerged in a graduated cylinder containing ethanol using a wire mesh tool, and the air existing in the voids in the molded body is degassed by applying a light vibration. Then, the water level rise is read in consideration of the volume of the wire mesh tool, and the true volume (Vb) of the sample is measured. From the obtained apparent volume (Va) and true volume (Vb) of the sample, the continuous void ratio (V) was obtained by the following equation.
  • water of crystallization (water of crystallization): 20 g was sampled from a fire-resistant heat insulating board, free water and foam in the cured product were dissolved with acetone, filtered, and the residue was thoroughly washed with acetone to create an environment of 25 ° C. Below, vacuum dried in a desiccator for 48 hours. The amount of crystalline water was determined by measuring the mass reduction rate (%) of the dried cured product (residue) in the range of 50 to 200 ° C. with a thermal analyzer (heating rate: 10 ° C./min, in air).
  • the water of crystallization in the present specification refers to chemically or physically bonded water contained in the fireproof heat insulating board, excluding free water that can be removed by drying such as acetone.
  • Gelling time The prepared refractory heat insulating composition slurry was placed in a polybeaker, placed in a heat insulating container, and a resistance temperature detector was inserted. The time at which the temperature rose by 2 ° C. due to the heat generated by the curing of the mortar with respect to the temperature immediately after the kneading was completed by the recorder was defined as the gelling time.
  • 2-hour bending strength The bending fracture load after 2 hours was measured according to JIS A 6901.
  • Fire resistance A heat generation test using a cone calorie meter shown in ISO-5660-1: 2002 was carried out, and the fire resistance was simply evaluated. Using a test piece of 10 cm in length ⁇ 10 cm in width ⁇ 5 cm in thickness obtained from a refractory heat insulating board, the total calorific value when the heating time is 20 minutes is 8 MJ / m 2 or less, which is fire resistance (non-combustible). ), Which is preferable.
  • Thermal conductivity Measured with a rapid thermal conductivity meter (box type probe method) using a test piece having a length of 10 cm, a width of 5 cm, and a thickness of 5 cm obtained from a refractory heat insulating board. It can be said that the lower the thermal conductivity, the higher the heat insulating property.
  • the thermal conductivity is preferably 0.070 W / mK or less.
  • Shape retention If there are no cracks, cracks, collapses, defects, or shrinkage in the test piece after the combustion test (fire resistance test) using a cone calorie meter, ⁇ , if cracks, cracks, collapses, or defects are confirmed. It was marked as x.
  • Shape retention By comparing the volume of the test piece after the combustion test (fire resistance test) with the cone calorimeter with the volume of the test piece before the test, the shape retention ((volume of the test piece after the test / volume before the test) The volume of the test piece) ⁇ 100 (%)) was measured.
  • the amount of the hydration accelerator in Table 1 is a mass portion based on 100 parts by mass of a mixture of calcium aluminate (CA) and gypsum (CS).
  • the mixing ratio in Table 1 above refers to the mixing ratio of the hydration accelerator.
  • Example 2 A mixture was prepared by adding sequel to 100 parts by mass of the calcium aluminate of the type shown in Table 2 in the type and amount shown in Table 2, and lithium carbonate and potassium carbonate were added to 100 parts by mass of the mixture in a mass ratio of 1/2. 2 parts by mass of the hydration accelerator, 1 part by mass of the coagulation adjuster, and 100 parts by mass of water mixed in the above were added, and the mixture was stirred for 5 minutes to prepare a fire-resistant composition slurry. The prepared slurry was poured onto the upper surface of the foamed resin molded body so as to have a size of 810 cm 3 (1.1 times the amount of voids in the resin molded body). In addition, Experiment No.
  • a fire-resistant composition slurry was prepared by stirring for 5 minutes. The prepared slurry was poured onto the upper surface of the foamed resin molded body so as to have a size of 810 cm 3 (1.1 times the amount of voids in the resin molded body).
  • Gypsum 2 (CS2): ⁇ -type half-water gypsum manufactured by Noritake Company, trade name FT-2, purity 95%, average particle size 20 ⁇ m
  • Gypsum 3 (CS3): Nisui Gypsum manufactured by Noritake Company, trade name P52B, purity 95%, average particle diameter 20 ⁇ m
  • the amount of gypsum (CS) in Table 2 above is a mass portion with respect to 100 parts by mass of calcium aluminate (CA).
  • Example 3 A mixture was prepared by adding minerals (CS1) to 100 parts by mass of calcium aluminate (CA1) in the amounts shown in Table 1, and lithium carbonate and potassium carbonate were mixed at a mass ratio of 1/2 with respect to 100 parts by mass of the mixture. Add 2 parts by mass of the hydration accelerator, 1 part of the coagulation adjuster (R1), 100 parts by mass of fibrous minerals and water of the type and amount shown in Table 3, and stir for 5 minutes to withstand fire in the same manner as in Experimental Example 1. An adiabatic composition slurry was prepared and its performance was evaluated. The results are shown in Table 3.
  • Fibrous mineral (F1) Sepiolite manufactured by TORSA, trade name: PANGEL AD, water content: 13.2%, average fiber length 5 ⁇ m, average fiber diameter 0.1 ⁇ m, specific surface area 320 m 2 / g Fibrous mineral (F2): Parisolskite (Attapulsite) manufactured by Active Military International, trade name: MIN-U-GEL 200, water content: 9.8%, average fiber length 5 ⁇ m, average fiber diameter 0.1 ⁇ m, specific surface area 270 m. 2 / g
  • the amount of the fibrous mineral (F) in Table 3 above is a mass part with respect to 100 parts by mass of a mixture of calcium aluminate (CA) and gypsum (CS).
  • the amount of crystalline water is further increased by further containing the fibrous mineral in the refractory heat insulating composition, and the bending strength, fire resistance, and shape retention are improved for 2 hours while maintaining the gelation time and heat insulating property. I understand.
  • Example 4" A mixture was prepared by adding 120 parts by mass of sekkou (CS1) to 100 parts by mass of calcium aluminate (CA1), and lithium carbonate and potassium carbonate were mixed at a mass ratio of 1/2 with respect to 100 parts by mass of the mixture. Add 2 parts by mass of the accelerator, 1 part of the coagulation adjuster (R1), the type and amount of the inorganic powder shown in Table 4, and 100 parts by mass of water, and stir for 5 minutes to stir the fire-resistant heat insulating composition slurry in the same manner as in Experimental Example 1. Was prepared and its performance was evaluated. The results are shown in Table 4.
  • Inorganic powder 1 (Material used) Inorganic powder 1 (P1): Shirasu balloon manufactured by AXYZ Chemical Co., Ltd., trade name: MSB-301, average particle diameter 50 ⁇ m
  • Inorganic powder 2 (P2): Shirasu balloon manufactured by AXYZ Chemical Co., Ltd., trade name: ISM-F015, average particle diameter 22 ⁇ m
  • Inorganic powder 3 (P3): Shirasu balloon manufactured by AXYZ Chemical Co., Ltd., trade name: MSB-5011, average particle diameter 96 ⁇ m
  • Inorganic powder 4 (P4): Fly ash balloon manufactured by Tomoe Engineering Co., Ltd., trade name: Senolite SA, average particle diameter 80 ⁇ m
  • Inorganic powder 5 (P5): Waste glass foam powder manufactured by DENNERT PORAVER GMBH, trade name: Traveler (0.04-0.125 mm particle size product), average particle diameter 90 ⁇ m
  • the amount of the inorganic powder (P) is a part by mass with respect to 100 parts by mass of the mixture of calcium aluminate (CA) and gypsum (CS).
  • the inorganic powder (P1) and 7 parts by mass of the inorganic powder (P4) were mixed and used with respect to 100 parts by mass of the mixture of calcium aluminate (CA) and gypsum (CS). ..
  • the refractory heat insulating composition further contains an inorganic powder to improve shape retention and heat insulating properties while maintaining excellent fire resistance.
  • Example 5" A mixture was prepared by adding 120 parts by mass of sekkou (CS1) to 100 parts by mass of calcium aluminate (CA1), and lithium carbonate and potassium carbonate were mixed at a mass ratio of 1/2 with respect to 100 parts by mass of the mixture. 2 parts by mass of the accelerator, 100 parts by mass of the coagulation adjuster of the type and amount shown in Table 5, and 100 parts by mass of water were added, and the mixture was stirred for 5 minutes to prepare a fire-resistant heat insulating composition slurry in the same manner as in Experimental Example 1, and the performance was evaluated. .. The results are shown in Table 5.
  • the amount of the setting retarder (R) is a part by mass with respect to 100 parts by mass of the mixture of calcium aluminate (CA) and gypsum (CS).
  • 0.5 parts by mass of the coagulation adjuster (R1) and 0.5 parts by mass of the inorganic powder (R2) were added to 100 parts by mass of the mixture of calcium aluminate (CA) and gypsum (CS). Used as a mixture.
  • the pot life can be adjusted while maintaining excellent 2-hour bending strength, fire resistance, shape retention, and heat insulation by the refractory heat insulating composition containing a predetermined range of the setting retarder.
  • Example 6 A mixture was prepared by adding 120 parts by mass of sekkou (CS1) to 100 parts by mass of calcium aluminate (CA1), and lithium carbonate and potassium carbonate were mixed at a mass ratio of 1/2 with respect to 100 parts by mass of the mixture. Add 2 parts by mass of the accelerator, 1 part by mass of the coagulation adjuster (R1), and the amount of water shown in Table 6 and stir for 5 minutes to prepare a fire-resistant heat insulating composition slurry in the same manner as in Experimental Example 1, and evaluate the performance. did. The results are shown in Table 6.
  • the amount of water is the mass part with respect to 100 parts by mass of the mixture of calcium aluminate (CA) and gypsum (CS).
  • Example 7 A mixture was prepared by adding 120 parts by mass of sekkou (CS1) to 100 parts by mass of calcium aluminate (CA1), and lithium carbonate and potassium carbonate were mixed at a mass ratio of 1/2 with respect to 100 parts by mass of the mixture. 2 parts by mass of the accelerator, 1 part by mass of the coagulation adjuster (R1), and 100 parts by mass of water were added, and the mixture was stirred for 5 minutes to prepare a fire-resistant heat insulating composition slurry in the same manner as in Experimental Example 1, and the voids of the foamed resin molded body were prepared. The performance was evaluated in the same manner as in Experimental Example 1 by changing the rate as shown in Table 7. The results are shown in Table 7.
  • Foamed resin molded body B Commercially available polystyrene foam beads (diameter 1 to 5 mm) are filled in a molding machine (manufactured by Daisen Kogyo Co., Ltd .: VS-500) and heated by steam to have voids between the foamed particles. It was manufactured by fusing the foamed particles together in this state. The continuous void ratio was controlled by adjusting the degree of pressurization. Continuous void ratio 25.3%, density of polystyrene foam beads 10.5 kg / m 3 , thermal conductivity of polystyrene foam bead molded body 0.033 W / m ⁇ K
  • Foamed resin molded body C Commercially available polystyrene foam beads (diameter 1 to 5 mm) are filled in a molding machine (manufactured by Daisen Kogyo Co., Ltd .: VS-500) and heated by steam to have voids between the foamed particles. It was manufactured by fusing the foamed particles together in this state. The continuous void ratio was controlled by adjusting the degree of pressurization. Continuous void ratio 43.9%, density of polystyrene foam beads 10.5 kg / m 3 , thermal conductivity of polystyrene foam bead molded body 0.033 W / m ⁇ K
  • Foamed resin molded body D Commercially available polystyrene foam beads (diameter 1 to 5 mm) are filled in a molding machine (manufactured by Daisen Kogyo Co., Ltd .: VS-500) and heated by steam to have voids between the foamed particles. It was manufactured by fusing the foamed particles together in this state. The continuous void ratio was controlled by adjusting the degree of pressurization. Continuous void ratio 58.7%, density of polystyrene foam beads 10.5 kg / m 3 , thermal conductivity of polystyrene foam bead molded body 0.033 W / m ⁇ K
  • Foamed resin molded body E Commercially available polystyrene foam beads (diameter 1 to 5 mm) are filled in a molding machine (manufactured by Daisen Kogyo Co., Ltd .: VS-500) and heated by steam to have voids between the foamed particles. It was manufactured by fusing the foamed particles together in this state. The continuous void ratio was controlled by adjusting the degree of pressurization. Continuous void ratio 69.4%, density of polystyrene foam beads 10.5 kg / m 3 , thermal conductivity of polystyrene foam beads molded body 0.033 W / m ⁇ K
  • Example 8 Experiment No. Using the refractory heat insulating composition slurry of 1-5, 2-6, 3-5 and 4-4, a refractory heat insulating board (length 1000 mm ⁇ width 1000 mm ⁇ thickness 25 mm) was produced in the same manner as in Experimental Example 1. Using the prepared refractory heat insulating board, it was assembled into the refractory structure shown in FIGS. 2 and 3 and installed in the refractory furnace. As shown in FIG. 3, in the fireproof structure, a ceramic siding board is fixed to a laminated board composed of a moisture permeable waterproof sheet, a fireproof heat insulating board, and a structural plywood via a furring strip, and is used for the structure of the laminated board. It has a structure in which the plywood is fixed to the fireproof insulation board via columns. Then, this refractory structure was installed in a refractory furnace so that the ceramic siding board side was the heating surface.
  • the size of the fireproof structure was 2200 mm in width ⁇ 1200 mm in length.
  • the combustion state of the refractory structure after the test was confirmed by changing the type and thickness of the refractory heat insulating composition of the refractory heat insulating board. When installing the board with different thickness, the number of installed boards was changed. The results are shown in Table 8. The details of the materials used are as follows.
  • Ceramic siding board Nichiha, Moen siding, thickness 16 mm Breathable waterproof sheet: Super Airtex KD manufactured by Fukubi Chemical Co., Ltd.
  • Structural plywood Polyethylene type, JAS standard product, special type, thickness 9 mm Pillars (studs): wood (sugi), length 15 mm Furnace: wood (sugi), length 105 mm
  • the refractory structure is installed in the refractory furnace, and heating is performed on the ceramic siding board side simulating the outer wall, and gas burners (total of 5 units). ), And the refractory structure was heated for 1 hour with a standard heating curve compliant with ISO 834. After that, the heating was stopped and the state of being installed in the refractory furnace was maintained for 3 hours. The structure was removed from the refractory furnace, the refractory insulation board was peeled off, and the combustion state of the columns was confirmed.
  • a refractory heat insulating board having fire resistance and heat insulating properties can be obtained. Further, when a structure such as a wall or a pillar is constructed using the board, the shape can be maintained even if it receives a flame, so that it has an effect of preventing the spread of fire in the event of a fire. Therefore, the embodiment of the present invention can contribute to the construction of buildings, vehicles, aircraft, ships, refrigeration equipment, and refrigeration equipment having high fire prevention safety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Acoustics & Sound (AREA)
  • Building Environments (AREA)

Abstract

良好な断熱性と耐火性を両立できる耐火断熱組成物を提供する。 CaO含有量が34質量%以上のカルシウムアルミネート100質量部に対して、セッコウを70~250質量部含み、前記カルシウムアルミネートと前記セッコウの合計100質量部に対して、(A)炭酸リチウムと、(B)炭酸カリウム及び/又は炭酸ナトリウムを質量比[(A)/(B)]で1/20~1/1の範囲で混合した水和促進剤を0.5~5質量部及び凝結調整剤を0.1~2質量部含む耐火断熱組成物である。

Description

耐火断熱組成物、耐火断熱組成物スラリー、耐火断熱ボード及び耐火断熱構造体
 本発明は、建築物の耐火断熱構造体を構築するための耐火断熱組成物、耐火断熱組成物スラリー、耐火断熱ボード及び耐火断熱構造体に関する。
 建築物には、様々な断熱材や耐火材が使用されており、断熱材としては、断熱効果が高く軽量で作業性が良い樹脂発泡体であるポリウレタンフォーム、ポリスチレンフォーム、及びフェノールフォーム等が使われ、又コスト的に安価なグラスウールやロックウール等の無機系の繊維集合体も使われている。
 樹脂発泡体は有機物のため火災発生時には燃焼し、しばしば延焼による被害拡大の原因となるため、その対策が望まれている。
 一方、グラスウールやロックウール等の無機系の繊維集合体は燃えない素材を主体に構成されているが、樹脂発泡体に比べ熱伝導率が高い傾向があり断熱性の点で劣り、又、繊維状であるため穿刺感を感じ、作業性に劣る問題もあった。更に従来、施工時には繊維集合体をプラスチック製の袋に収めた荷姿とし、これを住宅の柱と外壁の間にはめ込む方法が採られているが、隙間が生じたり、経年で脱落したりするといった課題があった。
 他方、樹脂発泡体に不燃性を付与した断熱材は既に市販されている。例えば、フェノールフォームのボードの片面或いは両面を不燃材であるアルミニウム箔、水酸化アルミニウム紙、セッコウ系板材等で積層した構造の不燃断熱ボードが挙げられる。しかしこうした従来の不燃断熱ボードは、火災時には火炎に面した表面は燃えないものの、その熱で内部のフェノールフォームが溶けて空洞ができ、ボード自体が脱落して延焼するという課題が解決できておらず、建築基準法で定められた耐火構造仕様を満足する資材とはなっていない。
 樹脂発泡体の耐燃焼性を向上する既往の技術を例示すると、例えば、ポリウレタンフォームの耐燃焼性を向上する技術としては、アルカリ金属炭酸塩、イソシアネート類、水及び反応触媒で発泡体を形成する断熱材料に関する技術(特許文献1)や、リチウム、ナトリウム、カリウム、ホウ素、及びアルミニウムからなる群より選ばれる金属の、水酸化物、酸化物、炭酸塩類、硫酸塩、硝酸塩、アルミン酸塩、ホウ酸塩、及びリン酸塩類からなる群より選ばれる一種又は二種以上の無機化合物と水とイソシアネート類とからなる硬化性組成物で、主にトンネルの地盤改良用の注入材に関する技術(特許文献2)が知られている。
 しかし特許文献2の従来技術は、地盤改良用に開発されたものであり断熱性を得ることを目的とするものではない。特に特許文献1のように、アルカリ金属炭酸塩の30%以上の水溶液とイソシアネート類を反応させる従来の手法では、多量の水を使用することにより未反応の水が多量に残ることから、断熱材として使用するためには乾燥する必要があり、しかも得られる発泡体の気泡サイズが大きくなることから断熱性は大きくないと考えられる。
 合成樹脂発泡体を被覆して耐燃焼性を向上する技術としては、セピオライトと水溶性樹脂を主成分とする水性有機バインダーとからなる被覆を形成して表面処理を施した合成樹脂の発泡体粒子に、無機粉体とアルカリ金属ケイ酸塩を主成分とする水ガラスを含む水性無機バインダーとからなるコーティング材を更に被覆し、乾燥硬化させる断熱性被覆粒体に関する技術(特許文献3)や、合成樹脂発泡体の少なくとも一部の表面の気泡構造内に、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸アルミニウム、アルミノケイ酸塩のうちの1種又は2種以上の混合物からなるシリカ系無機物が充填した無機物含有合成樹脂発泡体に関する技術(特許文献4)が開示されている。
 しかしこれらケイ酸塩類を用いる従来技術は、燃焼によって、樹脂発泡体が溶けて充填されたケイ酸塩自体の結合力も失われ粉化するため、断熱ボードとしての形状を保つことが難しいと考えられる。
 ビーズ法ポリスチレンフォームで形成された発泡樹脂において、発泡ビーズ間に形成された連通空隙に、酸素指数が21より大きい有機系物質からなる充填材料を充填した発泡樹脂複合構造体に関する技術(特許文献5)や、連通した空隙を有し、空隙率が5~60%である熱可塑性樹脂発泡粒子成形体の空隙に、スメクタイトを含有するセメント又は石膏の硬化物が充填されている複合成形体に関する技術(特許文献6)が知られている。
 しかし特許文献5では、連通空隙に有機系物質である充填材料を充填するため、不燃レベルの耐燃焼性の向上は期待できない。特許文献5は、発泡体の空隙率が3%程度の非常に密実な空隙を持つ発泡ポリスチレンフォームを対象にしているものであり、その空隙を有効に利用できているとは言い難い。特許文献6はセメントとしてその硬化物にエトリンガイトを含有することが好ましく、エトリンガイトを含有するセメントとして商品名で例示しており、材料分離低減材の一つと考えられるスメクタイトを含有することを記載している。
 特許文献7はCaO含有量が40質量%以上のカルシウムアルミネート、セッコウ、平均粒子径が20~60μmの中空構造を有する無機粉末、平均粒子径が20~130μmの廃ガラス発泡体粉末を含有する組成物を記載する。特許文献8に記載の材料は、鉄骨表面を被覆し火災から保護する目的で使用されるものであり、大きな断熱性を有していないと考えられる。
 エトリンジャイトを主たる成分として含有してなることを特徴とする耐火被覆用組成物であり、更に100~1000℃で不燃性ガスを放出する無機化合物粉粒体や酸化チタン粉粒体を含有する耐火被覆用組成物(特許文献9)も知られている。
 耐熱骨材、軽量骨材、アルミナ系結合材、炭化珪素、及び補強繊維からなる不焼成耐火断熱材に関する技術が開示されており、軽量骨材としてシラスバルーン、アルミナ系結合材としてカルシウムアルミネートが記述されている(特許文献10)。
 さらには、カルシウムアルミネート、α-アルミナ、添加剤、硬化促進剤を含有するアルミナセメント組成物(特許文献11)が知られており、硬化促進剤としてリチウム化合物が記述されている。また、クエン酸、アルカリ金属クエン酸塩、アルカリ金属炭酸塩からなるアルミナセメント用の凝結遅延剤が知られている(特許文献12)。これらの特許文献はいずれもアルカリ金属炭酸塩あるいはリチウム化合物それぞれ別々の水和促進効果、遅延硬化を期待するものであり、2種以上の併用による相乗効果により更なる効果や結晶水量と耐火性の向上を目的としたものではない。
特開平10-67576号公報 特開平8-92555号公報 特開2001-329629号公報 特開2012-102305号公報 特許第4983967号公報 特開2015-199945号公報 特開2017-77994号公報 特開平7-48153号公報 特開平7-61841号公報 特開昭62-41774号公報 特開平7-232968号公報 特開昭64-083543号公報
 しかし、上述した特許文献11及び12の従来技術でも、木造建築高層化が進む中で十分な耐火性を示さない。また、製造中に凝結時間の調整と強度発現、結晶水量の生成すべてを解決する手法は確立されておらず製造上の課題も多い。このため、より優れた耐火性と耐熱性を有するような課題を解決できる手法が求められていた。
 以上から、本発明は良好な断熱性と耐火性を両立できる耐火断熱組成物を提供することを目的とする。
 本発明者らは、種々検討を重ねた結果、特定の組成を用いることにより、前述のような課題を解決して良好な断熱性と耐火性を有する組成物が得られる知見を得て、本発明を完成するに至った。即ち、本発明は下記のとおりである。
[1] CaO含有量が34質量%以上のカルシウムアルミネート100質量部に対して、セッコウを70~250質量部含み、前記カルシウムアルミネートと前記セッコウの合計100質量部に対して、(A)炭酸リチウムと、(B)炭酸カリウム及び/又は炭酸ナトリウムを質量比[(A)/(B)]で1/20~1/1の範囲で混合した水和促進剤を0.5~5質量部及び凝結調整剤を0.1~2質量部含む耐火断熱組成物。
[2] 含水率が5質量%以上である繊維状無機粘土鉱物を、前記カルシウムアルミネートと前記セッコウの合計100質量部に対して、0.1~20質量部含む[1]記載の耐火断熱組成物。
[3] 空孔を有する無機粉末を含む[1]又は[2]に記載の耐火断熱組成物。
[4] [1]~[3]のいずれかに記載の耐火断熱組成物と水を混合した耐火断熱組成物スラリー。
[5] 連続空隙率が25~70体積%の樹脂成形体の空隙部に、[4]に記載の耐火断熱組成物スラリーが充填されて固化してなる耐火断熱ボード。
[6] [5]に記載の耐火断熱ボードを含む耐火断熱構造体。
 本発明によれば、良好な断熱性と耐火性を両立できる耐火断熱組成物を提供できる。
 したがって、本発明の耐火断熱組成物及びそのスラリーを用いることで、耐火性と断熱性を併せ持った耐火断熱ボードを得ることができる。
繊維状無機粘土鉱物(セピオライト)の結晶構造の模式図である。 耐火構造体の構造を示す側面図である。 耐火構造体の構造を示す上面図である。
 以下、本発明を詳細に説明する。尚、本明細書における部や%は、特に規定しない限り質量基準で示す。本明細書における数値範囲は、別段の定めがない限りはその上限値及び下限値を含むものとする。
 本発明の実施形態に係る耐火断熱組成物(以下、単に「組成物」ということもある。)は、CaO含有量が34質量%以上のカルシウムアルミネート100質量部に対して、セッコウを70~250質量部含み、カルシウムアルミネートと前記セッコウの合計100質量部に対して、(A)炭酸リチウムと、(B)炭酸カリウム及び/又は炭酸ナトリウムを質量比[(A)/(B)]で1/20~1/1の範囲で混合した水和促進剤を0.5~5質量部及び凝結調整剤を0.1~2質量部含む。
(カルシウムアルミネート)
 当該カルシウムアルミネートとは、カルシア原料とアルミナ原料等を混合して、キルンで焼成し、或いは、電気炉で溶融し冷却して得られるCaOとAlとを主成分とする水和活性を有する物質の総称である。カルシウムアルミネートは、特に限定されるものではないが、硬化後の初期強度発現性の点で、溶融後に急冷した非晶質カルシウムアルミネートが好ましい。カルシウムアルミネートのCaO含有量は反応活性の点で34%以上であり、40%以上が好ましい。CaO含有量が34%未満では十分な耐火性を示さない。
 カルシウムアルミネートのCaO含有量は60%以下が好ましく、50%以下がより好ましい。
 カルシウムアルミネートのAl含有量は40%以上が好ましく、45%以上がより好ましい。カルシウムアルミネートのAl含有量は80%以下が好ましく、65%以下がより好ましい。
 更に当該カルシウムアルミネートとして、カルシウムアルミネートのCaOやAlの一部が、アルカリ金属酸化物、アルカリ土類金属酸化物、酸化ケイ素、酸化チタン、酸化鉄、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、アルカリ金属硫酸塩、及びアルカリ土類金属硫酸塩等と置換した化合物も使用できるし、或いは、CaOとAlとを主成分とするものに、これらが少量固溶した化合物も使用できる。
 カルシウムアルミネートのガラス化率は、8%以上が好ましく、50%以上が好ましく、90%以上が最も好ましい。カルシウムアルミネートのガラス化率は、以下の手法で算出できる。加熱前のサンプルについて、粉末X線回折法により結晶鉱物のメインピーク面積Sを予め測定し、その後1000℃で2時間加熱後、1~10℃/分の冷却速度で徐冷し、粉末X線回折法による加熱後の結晶鉱物のメインピーク面積Sを求め、更に、これらのS及びSの値を用い、次の式を用いてガラス化率χを算出する。
 ガラス化率χ(%)=100×(1-S/S
 カルシウムアルミネートの粒度は、初期強度発現性の点で、ブレーン比表面積3,000cm/g以上が好ましく、5,000cm/g以上がより好ましい。3,000cm/g以上であると初期強度発現性が向上する。ここで、ブレーン比表面積とは、JIS R5201:2015(セメントの物理試験方法)に準拠して測定した値である。
(セッコウ)
 本組成物が含むセッコウとしては、無水セッコウ、半水セッコウ、二水セッコウのいずれも使用でき、特に限定されるものではない。無水セッコウとは硫酸カルシウム無水物でCaSOなる分子式で示される化合物の総称であり、半水セッコウとは、CaSO・1/2HOなる分子式で示される化合物の総称であり、二水セッコウとは、CaSO・2HOなる分子式で示される化合物の総称である。
 セッコウの粒度は、不燃性や初期強度発現性と適正な作業時間が得られる点で、平均粒子径1~30μmが好ましく、5~25μmがより好ましい。ここで、平均粒子径とは、測定レーザー回折式粒度分布計を用い、超音波装置を用いて分散させた状態で測定した値である。
 本組成物におけるセッコウの含有量は、カルシウムアルミネート100質量部に対して、70~250質量部であり、100~200質量部が好ましい。セッコウが70質量部未満又は300質量部を越えると、十分な耐火性を付与できない。
(水和促進剤)
 本組成物が含む水和促進剤とは、本組成物の水和を促進し、結晶水量を増大させ耐火性を向上する物質である。水和促進剤としての、(A)炭酸リチウムと、(B)炭酸カリウム及び/又は炭酸ナトリウムとの混合物において、これらは特に限定されるものではなく無水物、含水物いずれのものも使用できる。水和促進剤中の(A)炭酸リチウムと(B)炭酸カリウム及び/又は炭酸ナトリウムとの混合比((A)/(B))は質量比で1/20~1/1の範囲であり、1/10~1/2が好ましい。1/20未満では十分な効果が期待できず1/1を超えてもそれ以上の効果は期待できない。好ましい実施形態においては、本組成物が更に炭酸リチウム、炭酸ナトリウム、炭酸カリウム以外の水和促進剤を含んでいてもよい。当該水和促進剤とは、カルシウムアルミネートとセッコウの反応を促し結晶水量を増加させ耐火性を向上する物質であり、特に限定されるものではない。水和促進剤としては、例えば、水酸化カルシウム等の水酸化物、珪酸アルカリ金属塩、無水硫酸アルミニウム等の硫酸アルミニウム、炭酸ナトリウム等の炭酸アルカリ金属塩、硝酸塩、亜硝酸塩、普通ポルトランドセメント等の各種ポルトランドセメント、各種無機フィラー微粉末等が挙げられ、これらの1種以上が使用できる。
 水和促進剤の含有量は、カルシウムアルミネートとセッコウの合計100質量部に対して、0.5~5質量部であり、0.7~2質量部が好ましい。0.5質量部未満では十分な効果が期待できず5質量部を超えてもそれ以上の効果は期待できない。
(凝結調整剤)
 本組成物が含む該凝結調整剤とは、耐火断熱組成物スラリーの可使時間を調整する物質である。当該凝結調整剤としては、無機系凝結調整剤や有機系凝結調整剤等が挙げられる。無機系凝結調整剤としては、例えば、リン酸塩、ケイフッ化物、水酸化銅、ホウ酸又はその塩、酸化亜鉛、塩化亜鉛、炭酸化亜鉛等が挙げられる。有機系凝結遅延剤としては、例えば、オキシカルボン酸類(クエン酸、グルコン酸、リンゴ酸、酒石酸、グルコヘプトン酸、オキシマロン酸、乳酸等)又はその塩(ナトリウム塩、カリウム塩等)、砂糖に代表される糖類等が挙げられる。これらの1種以上が使用できる。更に、重炭酸塩、硝酸塩、水酸化物、ケイ酸塩等といった無機凝結遅延剤と、上記オキシカルボン酸類又はその塩とを、組み合わせた混合物も使用できる。これらの中では、オキシカルボン酸類又はその塩単独か、無機凝結遅延剤とオキシカルボン酸類又はその塩との混合物が好ましい。
 凝結調整剤の含有量は、カルシウムアルミネートとセッコウの合計100質量部に対して、0.1~2質量部であり、0.3~1質量部が好ましい。0.1質量部未満であると必要な可使時間に調整することが困難になり、2.0質量部を超えると硬化時間が長くなり、硬化不良を起こすおそれがある。本明細書においては、凝結遅延剤は上述したカルシウムアルミネート、セッコウ、炭酸リチウム、炭酸カリウム、炭酸ナトリウムを除くものとする。
(繊維状無機粘土鉱物)
 本組成物が含む繊維状無機粘土鉱物(以下、単に「繊維状鉱物」ということもある。)は、断熱性と耐火性を得る上で、その含水率が少なくとも5%以上であることが好ましい。繊維状無機粘土鉱物は、組成物に材料分離低減効果を与えるとともに耐火性をも向上させるものである。図1に繊維状無機粘土鉱物(図1では、セピオライト)の結晶構造の模式図を示す(Brauner及びPreisingerの構造モデルによる。特開2004-59347号公報、特開2002-338236号公報参照)。当該繊維状鉱物は、含水マグネシウムケイ酸塩鉱物の一種であって、図1に示すような結晶構造を持ち結晶内部に空孔が存在していることが特徴的な繊維状の粘土鉱物であり、その空孔内に結合水や沸石水の形態で結晶水が存在している。
 図1によると、二次元の結晶構造がレンガのように交互に積み重ねた繊維状の結晶構造を形成している。この単位結晶構造には、図1に示すとおり、Mg原子に結合した4個の水酸基、Mg原子に結合した4個の結合水、8個の沸石水が存在している。図1は、単位構造中の沸石水が8個のものとして示す。
 繊維状鉱物は、その種類によっても異なるが、比表面積が50~500m/gであり、平均繊維長が0.1~50μmであり、平均繊維長/平均繊維径で示されるアスペクト比が5~5000であることが好ましい。ここで、比表面積とは、BET法、JIS Z8830:2013に準じて測定した値である。平均繊維長、平均繊維径は、撮影したSEM写真を画像解析した値である。
 繊維状鉱物は特に限定されるものではないが代表的なものとしてはセピオライト((OH(OH)MgSi1230・6~8HO)、パリゴルスカイト(アタパルジャイト)((OH(OH) Mg Si O20・4HO)、ウォラストナイト、ログリナイト等が挙げられる。これらの中では、セピオライト、パリゴルスカイト(アタパルジャイト)から選ばれる1種以上が好ましい。
 上記繊維状鉱物の含水率は、良好な耐火性と断熱性の観点から、7%以上がより好ましく、9%以上がさらに好ましい。当該含水率の上限値は特に限定されないが、例えば、30%以下が好ましい。繊維状鉱物を熱重量分析装置(TGA)によって30℃から200℃まで昇温し、昇温前の質量Xと減少した質量(30℃から200℃まで昇温した時に減少した質量)X1を用いて下記式から含水率Wを算出できる。サンプル量は10mg、昇温速度5.0℃/min、空気雰囲気下の条件で測定した。
 含水率W(質量%)=(X1/X)×100
 本組成物における繊維状鉱物の含有量は、良好な耐火性と断熱性を得る観点から、カルシウムアルミネートとセッコウの合計100質量部に対して0.1~20質量部が好ましく、3~15質量部がより好ましい。該繊維状鉱物は予めカルシウムアルミネートやセッコウとともにプレミックスして使用してもよいし、予め水に分散させて使用することもできる。
(空孔を有する無機粉末)
 好ましい実施形態においては、本組成物が更に、空孔を有する無機粉末(以下、単に「無機粉末」ということもある。)を含んでいてもよい。当該無機粉末は、空孔を有する無機材料の粉末であれば特に限定されるものではなく、いかなるものでも使用できる。
 空孔を有する無機粉末の代表的なものとしては、シラスバルーンに代表される火山性堆積物を高温で加熱して作られる発泡体から得られる無機粉末や、火力発電所から発生するフライアッシュバルーンや、黒曜石、真珠岩、若しくは頁岩を焼成して得られた無機粉末や、ガラスビン等の廃棄物を粉砕した後に焼成し、粒度調整した廃ガラス発泡体粉末(リサイクルガラスバルーン)等が挙げられ、これらの1種以上を使用できる。フライアッシュバルーンを使用する場合は、強熱減量が5%以下のものを使用することが、未燃カーボンが少ない点で、好ましい。本明細書においては、無機粉末は、上述したカルシウムアルミネート、セッコウ、繊維状無機粘土鉱物を除くものとする。
 これらの中では、発泡樹脂成形体の連続気泡に充填した際に断熱性を損ないにくい点で、シラスバルーン、フライアッシュバルーン、及び廃ガラス発泡体粉末からなる群の1種以上が好ましい。
 無機粉末の粒度は、平均粒子径1~150μmが好ましく、15~100μmがより好ましい。ここで、平均粒子径とは、測定レーザー回折式粒度分布計を用い、超音波装置を用いて分散させた状態で測定した値である。
 本組成物における当該無機粉末の使用量は、カルシウムアルミネートとセッコウの合計100質量部に対して2~100質量部が好ましく、5~80質量部がより好ましい。無機粉末の量が2質量部以上であると断熱性が向上し、100質量部以下であると耐火性が向上する。
 本発明の実施形態に係る耐火断熱組成物中のカルシウムアルミネートの含有量は、耐火性の観点から、30~50%であることが好ましく、40~50%であることがより好ましい。
[耐火断熱組成物スラリー]
 本発明の実施形態に係る耐火断熱組成物スラリーは、既述の耐火断熱組成物と水を混合してなる。すなわち、本発明の実施形態に係る耐火断熱組成物に、水(水道水等)を使用することによって耐火断熱組成物スラリーを調製できる。当該スラリーを調製するときの水の量は、特に限定するものではないが、カルシウムアルミネートとセッコウの合計100質量部に対して40~300質量部が好ましく、80~250質量部がより好ましい。水の量が40質量部以上であると、空隙への充填が均一になり、耐火性が向上し、300質量部以下であると、空隙内の硬化体中のエトリンガイト含有量が増加し、耐火性が向上する。
[耐火断熱ボード]
 本発明の実施形態に係る耐火断熱ボードは、連続空隙率が25~70体積%の樹脂成形体の空隙部に、本発明の実施形態に係る耐火断熱組成物スラリーが充填されて固化してなる。
 本発明の実施形態に係る耐火断熱組成物スラリーを、連続空隙率が25~70体積%の樹脂成形体(以下、単に「樹脂成形体」ということもある。)の空隙に充填し固化させることで、耐火断熱ボードを製造できる。
 当該樹脂成形体とは、連続空隙を有する樹脂であり、スラリーが充填できる空隙を有するものを言う。樹脂の種類としては、例えば、発泡ポリビニルアルコール樹脂、発泡ポリウレタン樹脂、発泡ポリスチレン樹脂、発泡ポリオレフィン樹脂、発泡フェノール樹脂等が挙げられる。これらの樹脂からなる、独立気泡を有する直径数mmの粒状発泡体を、型に詰めて加熱加圧成形し、粒状発泡体間に連続空隙が生じるように成形することで、当該樹脂成形体を得られる。樹脂成形体の連続空隙率は、製造時の加圧の程度により調節できる。ポリスチレン樹脂についてはビーズ法ポリスチレンフォームの製造方法に準拠して連続空隙を有する樹脂成形体を製造できる。これらの中では、汎用性の点で、発泡ポリスチレン樹脂成形体が好ましい。連続空隙率が25体積%以上であると、得られるボードに十分な耐火性を付与でき、70体積%以下であると、ボード密度が小さくなり、熱伝導率が小さくなり、断熱性が向上する。
 樹脂成形体の連続空隙率Vは、例えば次のような方法により求めることができる。
 まず、温度23℃、相対湿度50%の環境下で24時間以上放置した樹脂成形体から直方体サンプルを切り出し、該サンプルの外形寸法より見かけ体積(Va)を求める。次いで該サンプルを温度23℃のエタノールの入ったメスシリンダー中に金網の道具を使用して沈め、軽い振動を加えることにより成形体中の空隙に存在している空気を脱気する。そして、金網の道具の体積を考慮して水位上昇分を読み取り、該サンプルの真の体積(Vb)を測定する。求められたサンプルの見かけ体積(Va)と真の体積(Vb)から、次式により連続空隙率(V)を求めることができる。
 連続空隙率V(%)=〔(Va-Vb)/Va〕×100
 連続空隙に充填したスラリーは、水和反応により水和生成物が生じ、固化(硬化)する。樹脂成形体内の連続空隙は、水和生成物で充填される。水和生成物としては、カルシウムアルミネートとセッコウの反応で生成するエトリンガイトが挙げられる。エトリンガイトは分子内に多量の水を結晶水として有するので、加熱により脱水し、消火作用を示し、樹脂成形体に不燃性を付与する。本発明の実施形態はCaO含有量が34%以上のカルシウムアルミネートを使用することにより、エトリンガイトを積極的に生成し、樹脂成形体の不燃性を向上する。
 樹脂成形体への耐火断熱組成物スラリーの充填方法は、特に限定するものではないが、圧搾空気による圧入や真空ポンプで減圧して吸引により充填する方法や、振動テーブルに樹脂成形体を設置し30~60ヘルツの振動を加えながら空隙内に充填する方法等が挙げられる。これらの中では、品質安定性の点で、振動を加えながら空隙内に充填する方法が好ましい。
 耐火断熱組成物スラリーを空隙部に充填した後の耐火断熱ボードの養生方法は、特に限定するものではないが、充填後、常温下で気中養生したり、ボード表面をプラスチックフィルムで覆い常温で気中養生したりする方法等が挙げられる。養生時間を短縮するために耐火断熱ボードを30~50℃の温度で養生してもよい。
 或る実施形態では、更に不織布でボード全体を被覆したり、格子状の繊維シート等の補強材をボードの片面或いは両面に配置したり、不織布と繊維シートを併用したりすることもできる。
 本発明の耐火断熱ボードの形状は、特に限定するものではないが、縦500~1000mm、横1000~2000mm、厚さ10~100mmが好ましい。厚さは50~100mmがより好ましい。サイズが小さいと耐火断熱ボードが軽くなり、設置時の作業性がよくなる。
 或る実施形態では、本耐火断熱組成物スラリーの調製にあたって更に、性能に影響を与えない範囲で各種添加剤を1種以上使用できる。そうした添加剤としては、例えば、界面活性剤、空気連行剤、炭化促進剤、難燃性付与剤、延焼防止剤、無機物、防錆剤、防凍剤、収縮低減剤、粘土鉱物、アニオン交換体等が挙げられる。
 本発明の実施形態に係る耐火断熱ボードの密度は、耐火性及び断熱性を損なわない点で、100~800kg/mが好ましく、200~500kg/mがより好ましい。100kg/m以上であると、十分な耐火性を確保でき、800kg/m以下であると十分な断熱性が得られる。
[耐火断熱構造体]
 本発明の実施形態に係る耐火断熱構造体は、耐火断熱ボードを含む。すなわち、上述した耐火断熱ボードを用いて、建築物の耐火構造体を構築できる。そうした耐火構造体としては、例えば、外壁側からの層構成で示せば、サイディングボード、透湿防水シート、耐火断熱ボード、構造用合板、耐火断熱ボードの順の層からなり、構造用合板と耐火断熱ボードの間は間柱(図3の間柱)で100mm程度の空間(グラスウール等の断熱材が収まる空間)を設けた構造体が挙げられる。サイディングボードと透湿防水シートの間に胴縁を設けても良い(図3参照)。
 本発明の実施形態により、耐火断熱ボードを含む耐火断熱構造体が得られる。
耐火構造体を構築する際、必要とする耐火仕様によっては、本耐火断熱ボードを複数枚重ねて貼り付けてもよく、本耐火断熱ボードを強化セッコウボードと併用して使用してもよい。
 以下、実施例、比較例を挙げて更に詳細に内容を説明するが、本発明はこれらに限定されるものではない。
「実験例1」
 連続空隙を有する発泡樹脂成形体A(サイズ:縦20cm×横20cm×厚み5cm)の厚み方向下部に耐アルカリ性ガラス繊維で補強を施し、更にポリエステル製不織布を重ねた。これを振動含浸装置にセットし、成形体上面に表1に示す配合の耐火断熱組成物スラリーを流し込み、60ヘルツの振動を1分間与え空隙内に耐火断熱組成物スラリーを含浸して耐火断熱ボードを製造した。充填後、装置から耐火断熱ボードを取り出し、3日間常温で養生した。養生した耐火断熱ボードについて、結晶水の含有量、耐火性、形状保持性、形状保持率及び熱伝導率を評価した。結果を表1に示す。
(使用材料)
 発泡樹脂成形体A:市販されているポリスチレン発泡ビーズ(直径1~5mm)を成形機(株式会社ダイセン工業製:VS-500)に充填し、スチームにより加熱して、発泡粒子間に空隙を有する状態で発泡粒子同士を融着させて製造した。連続空隙率は加圧度合いを調整することで制御した。連続空隙率36.8%、ポリスチレン発泡ビーズの密度10.5kg/m、ポリスチレン発泡ビーズ成形体の熱伝導率0.033W/(m・K)
 カルシウムアルミネート1(CA1):CaO:43%、Al:53%となるように調整し、電気炉で溶融・急冷した非晶質カルシウムアルミネート、ガラス化率98%以上、ブレーン比表面積6050cm/g
 セッコウ1(CS1):ノリタケカンパニー社製II型無水セッコウ、商品名D-101A、純度95%、平均粒子径20μm
 (A)炭酸リチウム(LC):試薬1級 無水物
 (B)炭酸カリウム(KC):試薬1級 無水物
 (B)炭酸ナトリウム(NC):試薬1級 1水和物
 凝結調整剤(R1):試薬1級 酒石酸
 水:水道水
(耐火断熱組成物スラリーの調製と仕込み量)
 カルシウムアルミネート(CA1)100質量部に対してセッコウ(CS1)を120質量部加えて混合物を調製し、前記混合物100質量部に対して炭酸リチウム、炭酸カリウム及び炭酸ナトリウムを表1に示す種類と量、凝結調整剤(R1)を1質量部、水100質量部を加え、5分間攪拌してスラリー(耐火断熱組成物スラリー)を調製した。調製したスラリーは810cm(樹脂成形体空隙量に対して1.1倍)となるように発泡樹脂成形体上面に流し込んだ。
(測定方法)
 連続空隙率:発泡樹脂成形体の連続空隙率を求めた。温度23℃、相対湿度50%の環境下で24時間放置した発泡樹脂成形体の外形寸法(縦10cm×横10cm×厚さ5cm)より見かけ体積(Va)を求め、該サンプルを温度23℃のエタノールの入ったメスシリンダー中に金網の道具を使用して沈め、軽い振動を加えることにより成形体中の空隙に存在している空気を脱気する。そして、金網の道具の体積を考慮して水位上昇分を読み取り、該サンプルの真の体積(Vb)を測定する。求められたサンプルの見かけ体積(Va)と真の体積(Vb)から、次式により連続空隙率(V)を求めた。
 連続空隙率V(%)=〔(Va-Vb)/Va〕×100
 結晶水の含有量(結晶水量):耐火断熱ボードから20gサンプリングし、アセトンで硬化体中の自由水と発泡体を溶解し、ろ過した後、残渣物をよくアセトンで洗浄し、25℃の環境下、デシケータ中で48時間真空乾燥した。乾燥した硬化物(残渣物)を熱分析装置(昇温速度:10℃/分、空気中)で50~200℃の範囲の質量減少率(%)を測定することで結晶水量とした。
 尚、本明細書における結晶水とは、アセトン等の乾燥によって除去できる自由水を除く、該耐火断熱ボード中に含まれる化学的或いは物理的に結合された水のことを言う。
 ゲル化時間:調製した耐火断熱組成物スラリーをポリビーカーに入れ、これを断熱容器に入れ、測温抵抗体を差し込んだ。記録計により混練を終了した直後の温度に対して、モルタルの硬化に伴う発熱によって2℃温度が上昇した時間を、ゲル化時間とした。
 2時間曲げ強度:JIS A 6901に準じて2時間後の曲げ破壊荷重を測定した。
 耐火性:ISO-5660-1:2002に示されたコーンカロリーメータによる発熱試験を実施し、耐火性を簡易的に評価した。耐火断熱ボードから得られた縦10cm×横10cm×厚さ5cmの試験体を用い、加熱時間が20分間のときの総発熱量が8MJ/m以下であることが、耐火性(不燃である)を有する点で、好ましい。
 熱伝導率:耐火断熱ボードから得られた縦10cm×横5cm×厚み5cmの試験体を用いて迅速熱伝導率計(ボックス式プローブ法)で測定した。
 なお、熱伝導率が低いほど断熱性が高いといえる。熱伝導率は0.070W/mK以下が好ましい。
 形状保持性:コーンカロリーメータによる燃焼試験(耐火性試験)後の試験体に亀裂、割れ、崩壊、欠損箇所、収縮がない場合を○、亀裂、割れ、崩壊、欠損箇所が確認された場合を×とした。
 形状保持率:コーンカロリーメータによる燃焼試験(耐火性試験)後の試験体の体積を試験前の試験体の体積と比較することで形状保持率((試験後の試験体の体積/試験前の試験体の体積)×100(%))を測定した。

 
Figure JPOXMLDOC01-appb-T000001
 上記表1中の水和促進剤の量は、カルシウムアルミネート(CA)とセッコウ(CS)の混合物100質量部に対する質量部である。
 上記表1中の混合比は水和促進剤の混合比をいう。例えば、実験No.1-2の混合比は、LC/KC=1/20であることをいう。
 表1より所定の条件を満たす混合比、添加量の水和促進剤を併用することで長い可使時間を確保しながら2時間曲げ強度と結晶水量を増加させることができ作業性、耐火性、断熱性、形状保持性、熱伝導率を向上できることがわかる。
「実験例2」
 表2に示す種類のカルシウムアルミネート100質量部に対してセッコウを表2に示す種類と量加えて混合物を調製し、前記混合物100質量部に対して炭酸リチウムと炭酸カリウムを質量比1/2で混合した水和促進剤を2質量部、凝結調整剤1部、水を100質量部加え、5分間攪拌して耐火組成物スラリーを調製した。調製したスラリーは810cm(樹脂成形体空隙量に対して1.1倍)となるように発泡樹脂成形体上面に流し込んだ。
 なお、合成エトリンガイト(ET1)を用いた実験No.2-12については、当該合成エトリンガイト100質量部に対して炭酸リチウムと炭酸カリウムを質量比1/2で混合した水和促進剤を2質量部、凝結調整剤1部、水を100質量部加え、5分間攪拌して耐火組成物スラリーを調製した。調製したスラリーは810cm(樹脂成形体空隙量に対して1.1倍)となるように発泡樹脂成形体上面に流し込んだ。
(使用材料)
 カルシウムアルミネート2(CA2):デンカ社製アルミナセメント1号、CaO:36%、ガラス化率15%、ブレーン比表面積4570cm/g
 カルシウムアルミネート3(CA3):AGCセラミックス社製アサヒフォンジュ、CaO:37%、ガラス化率12%、ブレーン比表面積3500cm/g
 カルシウムアルミネート4(CA4):デンカ社製デンカハイアルミナセメント、CaO:26%、ガラス化率13%、ブレーン比表面積4660cm/g
 エトリンガイト1(ET1):消石灰と硫酸アルミニウム及び石膏を出発原料とし、水熱合成したものをろ過、乾燥し得られたエトリンガイト粉末、結晶水率:46%
 セッコウ2(CS2):ノリタケカンパニー社製β型半水セッコウ、商品名FT-2、純度95%、平均粒子径20μm
 セッコウ3(CS3):ノリタケカンパニー社製二水セッコウ、商品名P52B、純度95%、平均粒子径20μm
Figure JPOXMLDOC01-appb-T000002
 上記表2中のセッコウ(CS)の量は、カルシウムアルミネート(CA)100質量部に対する質量部である。
 表2より、所定の条件を満たすカルシウムアルミネートと石膏を使用することで長い可使時間を確保しながら2時間曲げ強度と結晶水量を増加させることができ作業性、耐火性、断熱性、形状保持性、熱伝導率を向上できることがわかる。一方、合成エトリンガイトを使用した比較例では、繊維状鉱物の使用により結晶水量が増加していないことがわかる。当該比較例では、スラリーを調製する際に加えた水分の大半が結晶水では無く自由水として存在するため、経時乾燥や加熱を受けるとその自由水が容易に失われてしまい、実施例が奏する効果を得ることができないと考えられる。
「実験例3」
 カルシウムアルミネート(CA1)100質量部に対してセッコウ(CS1)を表1に示す量加えて混合物を調製し、前記混合物100質量部に対して炭酸リチウムと炭酸カリウムを質量比1/2で混合した水和促進剤を2質量部、凝結調整剤(R1)1部、表3に示す種類と量の繊維状鉱物、水を100質量部加え、5分間攪拌して実験例1と同様に耐火断熱組成物スラリーを調製し、性能を評価した。結果を表3に示す。
(使用材料)
 繊維状鉱物(F1):TOLSA社製セピオライト、商品名:PANGEL AD、含水率:13.2%、平均繊維長5μm、平均繊維径0.1μm、比表面積320m/g
 繊維状鉱物(F2):Active Minerals International社製パリゴルスカイト(アタパルジャイト)、商品名:MIN-U-GEL 200、含水率:9.8%、平均繊維長5μm、平均繊維径0.1μm、比表面積270m/g
Figure JPOXMLDOC01-appb-T000003
 上記表3中の繊維状鉱物(F)の量は、カルシウムアルミネート(CA)とセッコウ(CS)の混合物100質量部に対する質量部である。
 表3より、耐火断熱組成物が更に繊維状鉱物を含むことでさらに結晶水量が増加し、ゲル化時間、断熱性を維持しながら、2時間曲げ強度、耐火性、形状保持性を向上することが分かる。
「実験例4」
 カルシウムアルミネート(CA1)100質量部に対してセッコウ(CS1)120質量部加えて混合物を調製し、前記混合物100質量部に対して炭酸リチウムと炭酸カリウムを質量比1/2で混合した水和促進剤を2質量部、凝結調整剤(R1)1部、無機粉末を表4に示す種類と量、水を100質量部加え、5分間攪拌して実験例1と同様に耐火断熱組成物スラリーを調製し、性能を評価した。結果を表4に示す。
(使用材料)
 無機粉末1(P1):アクシーズケミカル社製シラスバルーン、商品名:MSB-301、平均粒子径50μm
 無機粉末2(P2):アクシーズケミカル社製シラスバルーン、商品名:ISM-F015、平均粒子径22μm
 無機粉末3(P3):アクシーズケミカル社製シラスバルーン、商品名:MSB-5011、平均粒子径96μm
 無機粉末4(P4):巴工業社製フライアッシュバルーン、商品名:セノライトSA、平均粒子径80μm
 無機粉末5(P5):DENNERT PORAVER GMBH社製廃ガラス発泡体粉末、商品名:Poraver(0.04-0.125mm粒度品)、平均粒子径90μm
Figure JPOXMLDOC01-appb-T000004
 上記表4中、無機粉末(P)の量は、カルシウムアルミネート(CA)とセッコウ(CS)の混合物100質量部に対する質量部である。
 実験No.4-13は、カルシウムアルミネート(CA)とセッコウ(CS)の混合物100質量部に対して、7質量部の無機粉末(P1)と7質量部の無機粉末(P4)を混合して使用した。
 表4より、耐火断熱組成物が更に無機粉末を含むことで、優れた耐火性を維持しながら形状保持性、断熱性を向上することが分かる。
「実験例5」
 カルシウムアルミネート(CA1)100質量部に対してセッコウ(CS1)120質量部加えて混合物を調製し、前記混合物100質量部に対して炭酸リチウムと炭酸カリウムを質量比1/2で混合した水和促進剤を2質量部、表5に示す種類と量の凝結調整剤、水を100質量部加え、5分間攪拌して実験例1と同様に耐火断熱組成物スラリーを調製し、性能を評価した。結果を表5に示す。
(使用材料)
 凝結遅延剤(R2):試薬1級 クエン酸ナトリウム
 凝結遅延剤(R3):試薬1級 グルコン酸ナトリウム
Figure JPOXMLDOC01-appb-T000005
 上記表5中、凝結遅延剤(R)の量は、カルシウムアルミネート(CA)とセッコウ(CS)の混合物100質量部に対する質量部である。
 実験No.5-7は、カルシウムアルミネート(CA)とセッコウ(CS)の混合物100質量部に対して、0.5質量部の凝結調整剤(R1)と0.5質量部の無機粉末(R2)を混合して使用した。
 表5より、耐火断熱組成物が所定の範囲の凝結遅延剤を含むことで、優れた2時間曲げ強度、耐火性、形状保持性、断熱性を維持しながら可使時間を調整できることが分かる。
「実験例6」
 カルシウムアルミネート(CA1)100質量部に対してセッコウ(CS1)120質量部加えて混合物を調製し、前記混合物100質量部に対して炭酸リチウムと炭酸カリウムを質量比1/2で混合した水和促進剤を2質量部、凝結調整剤(R1)1質量部、表6に示す量の水を加え、5分間攪拌して実験例1と同様に耐火断熱組成物スラリーを調製し、性能を評価した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 上記表6中、水の量は、カルシウムアルミネート(CA)とセッコウ(CS)の混合物100質量部に対する質量部である。
 表6より、適切な水の使用量で耐火断熱組成物スラリーを調製することで、優れた2時間曲げ強度、耐火性、形状保持性、及び断熱性を示すことがわかる。
「実験例7」
 カルシウムアルミネート(CA1)100質量部に対してセッコウ(CS1)120質量部加えて混合物を調製し、前記混合物100質量部に対して炭酸リチウムと炭酸カリウムを質量比1/2で混合した水和促進剤を2質量部、凝結調整剤(R1)1質量部、水100質量部を加え、5分間攪拌して実験例1と同様に耐火断熱組成物スラリーを調製し、発泡樹脂成形体の空隙率を表7に示すよう変えて実験例1と同様に性能を評価した。結果を表7に示す。
(使用材料)
 発泡樹脂成形体B:市販されているポリスチレン発泡ビーズ(直径1~5mm)を成形機(株式会社ダイセン工業製:VS-500)に充填し、スチームにより加熱して、発泡粒子間に空隙を有する状態で発泡粒子同士を融着させて製造した。連続空隙率は加圧度合いを調整することで制御した。連続空隙率25.3%、ポリスチレン発泡ビーズの密度10.5kg/m、ポリスチレン発泡ビーズ成形体の熱伝導率0.033W/m・K
 発泡樹脂成形体C:市販されているポリスチレン発泡ビーズ(直径1~5mm)を成形機(株式会社ダイセン工業製:VS-500)に充填し、スチームにより加熱して、発泡粒子間に空隙を有する状態で発泡粒子同士を融着させて製造した。連続空隙率は加圧度合いを調整することで制御した。連続空隙率43.9%、ポリスチレン発泡ビーズの密度10.5kg/m、ポリスチレン発泡ビーズ成形体の熱伝導率0.033W/m・K
 発泡樹脂成形体D:市販されているポリスチレン発泡ビーズ(直径1~5mm)を成形機(株式会社ダイセン工業製:VS-500)に充填し、スチームにより加熱して、発泡粒子間に空隙を有する状態で発泡粒子同士を融着させて製造した。連続空隙率は加圧度合いを調整することで制御した。連続空隙率58.7%、ポリスチレン発泡ビーズの密度10.5kg/m、ポリスチレン発泡ビーズ成形体の熱伝導率0.033W/m・K
 発泡樹脂成形体E:市販されているポリスチレン発泡ビーズ(直径1~5mm)を成形機(株式会社ダイセン工業製:VS-500)に充填し、スチームにより加熱して、発泡粒子間に空隙を有する状態で発泡粒子同士を融着させて製造した。連続空隙率は加圧度合いを調整することで制御した。連続空隙率69.4%、ポリスチレン発泡ビーズの密度10.5kg/m、ポリスチレン発泡ビーズ成形体の熱伝導率0.033W/m・K
Figure JPOXMLDOC01-appb-T000007
 表7より、適切な連続空隙を有する発泡樹脂成形体を用いることで、優れた2時間曲げ強度、耐火性、形状保持性、及び断熱性を示すことがわかる。
「実験例8」
 実験No.1-5、2-6、3-5及び4-4の耐火断熱組成物スラリーを用いて、実験例1と同様にして耐火断熱ボード(縦1000mm×横1000mm×厚さ25mm)を作製した。
 作製した耐火断熱ボードを用いて図2、図3に示す耐火構造体になるように組み上げて耐火炉に設置した。
 当該耐火構造体は、図3に示すように、窯業系サイディングボードが胴縁を介して、透湿防水シート、耐火断熱ボード及び構造用合板からなる積層板に固定され、当該積層板の構造用合板が柱を介して耐火断熱ボードと固定されている構造を有する。そして、この耐火構造体を、窯業系サイディングボード側が加熱面となるように耐火炉に設置した。
 耐火構造体のサイズは横2200mm×縦1200mmとした。試験は、耐火断熱ボードの耐火断熱組成物の種類と厚みを変えて試験終了後の耐火構造体の燃焼状態を確認した。尚、厚みを変えてボードを設置する場合は設置枚数を変えることで行った。結果を表8に示す。
 なお、使用材料の詳細は下記のとおりである。
(使用材料)
 窯業系サイディングボード:ニチハ社製、モエンサイディング、厚さ16mm
 透湿防水シート:フクビ化学社製、スーパーエアテックスKD
 構造用合板:ポリエチレン系、JAS規格品、特類、厚さ9mm
 柱(間柱):木材(杉)、長さ15mm
 胴縁:木材(杉)、長さ105mm
(耐火試験方法)
 内部構造を示す図2の側面図及び図3の上面図に示すように、耐火構造体を耐火炉に設置し、加熱は外壁を模擬した窯業系サイディングボード側で行い、ガスバーナー(トータル5基)から加炎し、ISO 834に準拠した標準過熱曲線で耐火構造体を1時間加熱した。その後、加熱を止めて耐火炉に設置した状態を3時間維持した。耐火炉から構造体を取り外し、耐火断熱ボードを剥がして柱の燃焼状態を確認した。
Figure JPOXMLDOC01-appb-T000008
 表8より、本発明の耐火断熱ボードで耐火構造体を作り耐火性を評価した結果、耐火性が向上していることがわかる。特に、耐火断熱ボードを2枚重ね貼りすることで、木材部分の燃焼が全くなく優れた耐火性を示すことがわかる。
 本発明の実施形態に係る耐火断熱組成物及びそのスラリーを用いることで、耐火性と断熱性を持った耐火断熱ボードを得ることができる。又、そのボードを用いて壁や柱等の構造体を構築した場合、火炎を受けても形状を維持できるので、火災時の延焼を阻止する効果を有する。よって、本発明の実施形態は、防火安全性の高い建築物、車両、航空機、船舶、冷凍設備、及び冷蔵設備の建造に寄与できる。

 

Claims (6)

  1.  CaO含有量が34質量%以上のカルシウムアルミネート100質量部に対して、セッコウを70~250質量部含み、
     前記カルシウムアルミネートと前記セッコウの合計100質量部に対して、(A)炭酸リチウムと、(B)炭酸カリウム及び/又は炭酸ナトリウムを質量比[(A)/(B)]で1/20~1/1の範囲で混合した水和促進剤を0.5~5質量部及び凝結調整剤を0.1~2質量部含む耐火断熱組成物。
  2.  含水率が5質量%以上である繊維状無機粘土鉱物を、前記カルシウムアルミネートと前記セッコウの合計100質量部に対して、0.1~20質量部含む請求項1記載の耐火断熱組成物。
  3.  空孔を有する無機粉末を含む請求項1又は2に記載の耐火断熱組成物。
  4.  請求項1~3のいずれか1項に記載の耐火断熱組成物と水を混合した耐火断熱組成物スラリー。
  5.  連続空隙率が25~70体積%の樹脂成形体の空隙部に、請求項4に記載の耐火断熱組成物スラリーが充填されて固化してなる耐火断熱ボード。
  6.  請求項5に記載の耐火断熱ボードを含む耐火断熱構造体。

     
PCT/JP2021/024629 2020-07-01 2021-06-29 耐火断熱組成物、耐火断熱組成物スラリー、耐火断熱ボード及び耐火断熱構造体 WO2022004750A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022534061A JPWO2022004750A1 (ja) 2020-07-01 2021-06-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-114481 2020-07-01
JP2020114481 2020-07-01

Publications (1)

Publication Number Publication Date
WO2022004750A1 true WO2022004750A1 (ja) 2022-01-06

Family

ID=79316579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024629 WO2022004750A1 (ja) 2020-07-01 2021-06-29 耐火断熱組成物、耐火断熱組成物スラリー、耐火断熱ボード及び耐火断熱構造体

Country Status (2)

Country Link
JP (1) JPWO2022004750A1 (ja)
WO (1) WO2022004750A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4876921A (ja) * 1972-01-14 1973-10-16
JP2007145652A (ja) * 2005-11-29 2007-06-14 Denki Kagaku Kogyo Kk 超速硬・高流動セメント組成物及びそれを用いたモルタル又はコンクリート
JP2014224040A (ja) * 2013-05-15 2014-12-04 カルツェム・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング アルミナセメント
JP2015120624A (ja) * 2013-12-25 2015-07-02 太平洋マテリアル株式会社 速硬性グラウト組成物
JP2017077994A (ja) * 2015-10-21 2017-04-27 デンカ株式会社 組成物及び不燃材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4876921A (ja) * 1972-01-14 1973-10-16
JP2007145652A (ja) * 2005-11-29 2007-06-14 Denki Kagaku Kogyo Kk 超速硬・高流動セメント組成物及びそれを用いたモルタル又はコンクリート
JP2014224040A (ja) * 2013-05-15 2014-12-04 カルツェム・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング アルミナセメント
JP2015120624A (ja) * 2013-12-25 2015-07-02 太平洋マテリアル株式会社 速硬性グラウト組成物
JP2017077994A (ja) * 2015-10-21 2017-04-27 デンカ株式会社 組成物及び不燃材

Also Published As

Publication number Publication date
JPWO2022004750A1 (ja) 2022-01-06

Similar Documents

Publication Publication Date Title
TWI706074B (zh) 石膏內芯及用於製作彼之漿料
KR101146220B1 (ko) 마감성을 보유한 고강도 콘크리트시멘트계 고밀도 내화피복재 조성물
CN1817976B (zh) 防火和吸音涂覆组合物
CN109982987A (zh) 耐火涂料和高强度、密度可控的冷融合混凝土的水泥基喷涂防火
CA3019760A1 (en) Geopolymer foam formulation
WO2017176736A1 (en) Fire retardant construction materials
CN105658881A (zh) 包含吸声体的混凝土元件
JP6953171B2 (ja) 不燃性建材及び不燃断熱性建材
JP6681272B2 (ja) 組成物及び不燃材
WO2021067920A1 (en) Geopolymer cement
US6010565A (en) Foamed material for fireproofing and/or insulating
WO2020247876A1 (en) Fire resistant compositions and articles and methods of preparation and use thereof
WO2020137987A1 (ja) 耐火断熱組成物、耐火断熱組成物スラリー、耐火断熱ボード及び耐火断熱構造体
JP6556017B2 (ja) 組成物及び不燃材
US20100180797A1 (en) Ceramic Fire Protection Panel and Method for Producing the Same
WO2021177378A1 (ja) 耐火断熱ボード及び耐火断熱構造体
WO2022004750A1 (ja) 耐火断熱組成物、耐火断熱組成物スラリー、耐火断熱ボード及び耐火断熱構造体
WO2022004749A1 (ja) 耐火断熱組成物、耐火断熱組成物スラリー、耐火断熱ボード及び耐火断熱構造体
KR20170085586A (ko) 황산 칼슘계 제품
JP6681273B2 (ja) 組成物及び不燃材
JPH07133147A (ja) ジオポリマー変性石膏ベース建材
US20240209622A1 (en) Fireproof heat insulating board and fireproof heat insulating structure
US12012361B2 (en) Geopolymer cement
JPH081854A (ja) 耐火ボード
KR102326873B1 (ko) 폐알루미늄 드로스 분말을 사용한 다공성 세라믹 단열재 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21831810

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534061

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21831810

Country of ref document: EP

Kind code of ref document: A1