WO2021177124A1 - 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法 - Google Patents

導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法 Download PDF

Info

Publication number
WO2021177124A1
WO2021177124A1 PCT/JP2021/007001 JP2021007001W WO2021177124A1 WO 2021177124 A1 WO2021177124 A1 WO 2021177124A1 JP 2021007001 W JP2021007001 W JP 2021007001W WO 2021177124 A1 WO2021177124 A1 WO 2021177124A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent material
material layer
tin
atomic
conductive laminate
Prior art date
Application number
PCT/JP2021/007001
Other languages
English (en)
French (fr)
Inventor
若生 仁志
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to EP21764394.9A priority Critical patent/EP4116084A4/en
Priority to US17/908,263 priority patent/US20230119906A1/en
Priority to CN202180017242.XA priority patent/CN115210066A/zh
Priority to KR1020227029039A priority patent/KR20220131310A/ko
Publication of WO2021177124A1 publication Critical patent/WO2021177124A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/50Forming devices by joining two substrates together, e.g. lamination techniques
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3671Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use as electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/326Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising gallium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • C03C2217/944Layers comprising zinc oxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/364Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]

Definitions

  • the present technology relates to a conductive laminate used for, for example, a touch panel, a dimming element, an electrophoretic optical element, a light emitting element, an antenna, and the like.
  • a conductive laminate used for, for example, a touch panel, a dimming element, an electrophoretic optical element, a light emitting element, an antenna, and the like.
  • a touch panel that is stacked on an image element device and detects the pressed position due to a change in capacitance, or dimming that electrically and variably adjusts strong external light using an electrochromism phenomenon.
  • the electrodes used in these optical devices are required to be optically transparent, and it is necessary to increase the electrical conductivity due to operational problems. Therefore, a transparent material with low electrical resistance is required.
  • ITO Indium Tin Oxide
  • ITO already occupies a large position in the market.
  • ITO has a low resistance value, and in order to improve transparency, it is necessary to apply heat treatment after film formation or film formation at a high temperature, and there is a problem when it is used for a substrate and an element which are sensitive to heat.
  • Zn-O, In-Zn-O (IZO), Al-Zn-O (AZO), Sn-Zn-O (ZTO) have been developed.
  • IZO In-Zn-O
  • AZO Al-Zn-O
  • ZTO Sn-Zn-O
  • AZO and ZTO are more preferred because they do not contain indium, which is feared to affect the human body.
  • the transparent conductive film having both transparency and conductivity can be considered, but further low resistance and high transmittance are required to realize power saving and high-speed operation of the above-mentioned element.
  • metal oxides such as ITO
  • the composite oxide of tin and zinc is chemically stable and has excellent water vapor barrier performance. Therefore, deterioration of the silver thin film can be suppressed, and stable characteristics can be obtained.
  • the indium-tin composite oxide used as a conductive film is a rare material, and it is desired not to use indium, which is also concerned about the influence on the human body.
  • this technology was made in view of such problems, and its purpose is to have a conductive laminate having low electrical resistance and high transmittance for a long period of time, various optical elements provided with the conductive laminate, and a conductive laminate. To provide a method of manufacturing the body.
  • the present inventor has made a conductive layer in which a first transparent material layer, a metal layer containing silver as a main component, and a second transparent material layer are sequentially laminated from the transparent substrate side.
  • the first transparent material layer is composed of a composite metal oxide containing at least zinc and tin and containing a predetermined amount of tin
  • the second transparent material layer contains zinc and tin. It has been found that high permeability and low electrical resistance can be achieved at the same time when the content is composed of a metal oxide having a predetermined amount or less, and the present invention has been completed.
  • a first transparent material layer, a metal layer containing silver as a main component, and a second transparent material layer are laminated in this order from the transparent substrate side on at least one surface of the transparent substrate.
  • the first transparent material layer is composed of a composite metal oxide containing at least zinc and tin and containing 10 atomic% or more and 90 atomic% or less of tin, and the second transparent material.
  • the layer is composed of a metal oxide containing zinc and having a tin content of 10 atomic% or less.
  • the optical device uses the above-mentioned conductive laminate as at least one electrode of the electrode.
  • a first transparent material layer, a metal layer containing silver as a main component, and a second transparent material layer are formed on at least one surface of the transparent substrate. It has a step of laminating in this order from the side, and the first transparent material layer is composed of a composite metal oxide containing at least zinc and tin and containing 10 atomic% or more and 90 atomic% or less of tin.
  • the second transparent material layer is composed of a metal oxide containing zinc and having a tin content of 10 atomic% or less.
  • the formation of a light absorbing layer at each interface of the conductive laminate can be suppressed, it is possible to provide a conductive laminate having low electrical resistance and high transmittance for a long period of time, and such conductivity can be provided.
  • the sex laminate can be applied as an electrode of various optical devices such as a power-saving, high-performance touch panel, a dimming element, an antenna, an electrophoresis element, and a light emitting element.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of a conductive laminate to which the present technology is applied.
  • FIG. 2 is a perspective view showing an example of the internal configuration of the thin film forming apparatus.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of the conductive laminate 1 to which the present technology is applied.
  • the conductive laminate 1 has a first transparent material layer 3, a metal layer 4 containing silver as a main component, and a second transparent material layer 5 on at least one surface of the transparent substrate 2.
  • the transparent substrate 2 is laminated in this order from the side.
  • the first transparent material layer 3 is composed of a composite metal oxide containing at least zinc and tin and containing 10 atomic% or more and 90 atomic% or less of tin.
  • the second transparent material layer 5 contains zinc and is composed of a metal oxide having a tin content of 10 atomic% or less.
  • the first transparent material contained a composite oxide containing zinc and tin and containing 10 atomic% or more and 90 atomic% or less of tin. Light absorption can be suppressed by using it as layer 3, and low electrical resistance over a long period of time by using a metal oxide containing zinc and a tin content of 10 atomic% or less as the second transparent material layer 5. I found that I could maintain.
  • a light absorption layer is formed when silver is formed by sputtering after the zinc oxide is formed. That is, when the silver atom that jumps out from the target at high speed reaches the transparent substrate 2, it loses kinetic energy and is fixed on the surface of the transparent substrate 2. At that time, if the silver atom that jumps out from the target at high speed and the metal constituting the first transparent material 3 have a strong interaction, the silver atom is alloyed on the first transparent material layer 3 side. , A light absorption layer is formed. Further, zinc has a wide solid solution region with silver constituting the metal layer 4, and is an element having a strong interaction with silver constituting the metal layer 4, so that a light absorption layer can be easily formed.
  • the tin content in the first transparent material layer 3 is 10 atomic% or more with respect to the total amount of zinc and tin.
  • the reaction with silver constituting the metal layer 4 can be suppressed to form a thin film due to the chemical stability of the composite oxide of zinc and tin.
  • the second transparent material layer 5 When the second transparent material layer 5 is formed, if a material having a low interaction with silver constituting the metal layer 4 is used, the second transparent material layer 5 does not sufficiently wet and spread, and many small voids are formed at the interface. Is formed, where light absorption occurs.
  • a zinc-containing metal oxide is used as the second transparent material layer 5, the wettability on the surface is improved and a good interface can be formed.
  • zinc since the bond between zinc and oxygen is strong, zinc forms an oxide film before forming an alloy with silver constituting the metal layer 4, so that the formation of a light absorption layer by the alloy layer can be suppressed more effectively.
  • the conductive oxide that can be practically used for the second transparent material layer 5 include zinc oxide and zinc alloy composite oxide.
  • Zinc oxide and zinc alloy composite oxides are preferred because they have good contact resistance when the charge is substantially transferred from the outside to the surface of the conductive laminate 1.
  • a composite oxide of zinc and tin is used for the second transparent material layer 5
  • it tends to be difficult to obtain electrical conductivity in the stable phase due to strong bonding.
  • it is conceivable to intentionally deplete the oxygen content in the composite oxide from the stoichiometric composition and adjust the amount of oxygen introduced during sputtering.
  • the composite oxide of zinc and tin obtains electrical conductivity immediately after film formation, if it is held for a long time, oxidation proceeds due to oxygen in the atmosphere and the electrical conductivity tends to be lost.
  • the required characteristics of the first transparent material layer 3 and the second transparent material 5 are different. That is, chemical stability is required in the first transparent material layer 3, and electrical conductivity is not so important, while electrical conductivity is important in the second transparent material layer 5.
  • chemical stability is required in the first transparent material layer 3, and electrical conductivity is not so important, while electrical conductivity is important in the second transparent material layer 5.
  • tin oxide to zinc oxide
  • the chemical stability is increased, but at the same time, the electrical conductivity is deteriorated. Therefore, if the composition of the first transparent material layer 3 and the second transparent material layer 5 are the same, it is difficult to obtain the effect of the present technology.
  • a first transparent material composed of a composite metal oxide containing at least zinc and tin and containing 10 atomic% or more and 90 atomic% or less of tin on at least one surface of the transparent substrate 2.
  • the transparent substrate 2 is composed of a layer 3, a metal layer 4 containing silver as a main component, and a second transparent material layer 5 containing zinc and a metal oxide having a tin content of 10 atomic% or less.
  • the surface resistance (electrical resistance) can be lowered and the total light transmittance can be increased.
  • the conductive laminate 1 has a surface resistance of 20 ⁇ / ⁇ or less and a total light transmittance of 90% or more.
  • the method for measuring surface resistance and total light transmittance is synonymous with the measuring method for Examples described later.
  • the commonly used ITO (indium tin composite oxide) film or the like often has a surface resistance of 100 ⁇ / ⁇ and a total light transmittance of 88%, although it varies depending on the film thickness of ITO.
  • the present technology uses a power-saving, high-performance optical device using at least one conductive laminate 1, for example, a touch panel, a dimming element, and electricity using the conductive laminate as at least one electrode. It can be applied to traveling optical elements, light emitting elements, antennas and the like.
  • the first transparent material layer 3, the silver-based metal layer 4, and the second transparent surface are placed on at least one surface of the transparent substrate 2.
  • the material layers 5 are laminated in this order from the transparent substrate 2 side.
  • any one made of a glass base material or a resin film can be used.
  • a transparent substrate 2 made of a resin film it can be manufactured by the roll-to-roll method, so that the production efficiency can be improved.
  • the material of such a resin film is not particularly limited, but for example, polyethylene terephthalate (PET: Polyethylene Terephthalate), polyethylene naphthalate (PEN: Polyethylene Naphthalate), polyaramid, polyimide, polycarbonate, polyethylene, polypropylene, bird.
  • PET Polyethylene Terephthalate
  • PEN Polyethylene Naphthalate
  • polyaramid Polyimide
  • polycarbonate polyethylene
  • polypropylene bird.
  • Acetylcellulose Triacetylcellulose
  • COC Cyclic Olefin Copolymer
  • COP Cyclic Olefin Copolymer
  • the thickness of the transparent substrate 2 is not particularly limited, but is preferably 20 ⁇ m or more and 200 ⁇ m or less in consideration of ease of handling during manufacturing when a resin film is used and thinning of the member.
  • the transparent substrate 2 does not need to have a light transmittance of 100%, and may be transparent within a range in which the effect of the present technology is exhibited. For example, when the light transmittance is 88% or more. It is preferable to have.
  • thin films made of, for example, an acrylic resin can be formed on both sides of the transparent substrate 2 by applying a solution.
  • the first transparent material layer 3 is composed of a composite oxide of zinc and tin as described above, and the ratio of tin is 10 atomic% or more and 90 atomic% or less with respect to the total amount of zinc and tin. Further, the first transparent material layer 3 may contain one or more elements other than zinc and tin within a range not exceeding 50 atomic% with respect to the total amount of zinc and tin.
  • the thickness of the first transparent material layer 3 is not particularly limited, and can be set to the film thickness having the highest transmittance depending on the material composition.
  • the specific thickness of the first transparent material layer 3 can be in the range of 30 to 80 nm.
  • the method for forming the first transparent material layer 3 is not particularly limited, and it is preferable to use the sputtering method from the viewpoint of improving the production efficiency and making the film thickness distribution uniform.
  • the first transparent material layer 3 may be formed by dividing it into a plurality of layers from the viewpoint of moisture resistance and the like.
  • the transparent material layer in contact with at least the metal layer 4 contains zinc and tin, and is a composite metal containing 10 atomic% or more and 90 atomic% or less of tin. It is composed of oxides.
  • the metal layer 4 laminated on the first transparent material layer 3 is a metal layer containing silver as a main component.
  • the metal layer 4 may contain 90 atomic% or more of silver and may contain additive elements in a range not exceeding 10 atomic% as a whole. That is, the metal layer 4 can be composed of 90 atomic% or more of silver or sterling silver.
  • the thickness of the metal layer 4 is preferably 5 nm or more.
  • the film thickness of the metal layer 4 is 5 nm or more, it becomes easy to form as a continuous film, and the absorption caused by the island-like formation of silver constituting the metal layer 4 can be suppressed.
  • the film thickness of the metal layer 4 is thinner than 5 nm, an island-shaped film is easily formed, which may impair light transmission.
  • the upper limit of the film thickness of the metal layer 4 is not particularly limited, but is preferably less than 15 nm. By setting the film thickness of the metal layer 4 to less than 15 nm, it is possible to more effectively suppress the light absorption inside the silver layer constituting the metal layer 4 from becoming larger than the absorption at the interface.
  • the method for forming the metal layer 4 is not particularly limited, but it is preferable to form the second transparent material layer 5 continuously after the formation of the metal layer 4, and the film thickness distribution is made uniform from the viewpoint of improving the production efficiency. From the viewpoint of making the mixture, it is preferable to use the sputtering method.
  • the second transparent material layer 5 laminated on the metal layer 4 is composed of a metal oxide containing zinc and having a tin content of 10 atomic% or less as described above.
  • the tin content in the second transparent material layer 5 is preferably smaller than the tin content in the first transparent material layer 3.
  • the lower limit of the tin content in the second transparent material layer 5 is not particularly limited, and may be 0 atomic%, 1 atomic% or more, or 4 atomic% or more. It may be 6 atomic% or more, and may be 8 atomic% or more.
  • the second transparent material layer 5 may contain one or more elements other than zinc within a range not exceeding 50 atomic%. ..
  • the second transparent material layer 5 preferably contains at least one of aluminum and gallium in an amount of 2 atomic% or more, and more preferably contains aluminum or gallium in an amount of 2 atomic% or more.
  • the electric conductivity of the second transparent material layer 5 can be further improved.
  • the upper limit of the total amount of aluminum and gallium is not particularly limited and can be, for example, 15 atomic% or less. It can be atomic% or less, 10 atomic% or less, 8 atomic% or less, or 5 atomic% or less.
  • the thickness of the second transparent material layer 5 is not particularly limited, and can be set to the film thickness having the highest transmittance depending on the material composition.
  • the specific thickness of the second transparent material layer 5 can be, for example, in the range of 30 to 70 nm.
  • the method for forming the second transparent material layer 5 is not particularly limited, but it is preferable to form the second transparent material layer 5 continuously after the formation of the metal layer 4, from the viewpoint of improving production efficiency and making the film thickness distribution uniform. It is preferable to use the sputtering method.
  • the second transparent material layer 5 may be formed by dividing it into a plurality of layers from the viewpoint of scratch resistance and the like.
  • the transparent material layer in contact with at least the metal layer 4 is composed of a metal oxide containing zinc and having a tin content of 10 atomic% or less, and has 50 atoms. It may contain one kind or a plurality of kinds of elements within a range not exceeding%.
  • a transparent oxide having electrical conductivity is used among the plurality of second transparent material layers 5, in order to maintain good electrical conductivity in layers other than the transparent material layer in contact with the metal layer 4, a transparent oxide having electrical conductivity is used. It is preferable to have.
  • the first transparent material layer 3, the metal layer 4 and the second transparent material layer 5 are laminated on one surface of the transparent substrate 2, but the transparent substrate 2
  • the first transparent material layer 3, the metal layer 4, and the second transparent material layer 5 may be laminated on the other surface or both sides of the transparent substrate 2.
  • the first transparent material layer 3, the metal layer 4 containing silver as a main component, and the second transparent material layer 5 are placed on at least one surface of the transparent substrate 2 on the transparent substrate 2 side. It can be manufactured by the process of laminating in this order.
  • the first transparent material layer 3, the metal layer 4, and the second transparent material layer 5 can be formed by using, for example, the thin film forming apparatus described in Japanese Patent Application Laid-Open No. 2014-34701.
  • FIG. 2 is a perspective view showing the internal configuration of the thin film forming apparatus described in Japanese Patent Application Laid-Open No. 2014-34701.
  • This thin film forming apparatus performs film formation by sputtering on a film substrate by a roll-to-roll method, and can set a plurality of sputtering targets, and once the rolls are set, they differ while maintaining a vacuum atmosphere. It is possible to form a plurality of types of materials.
  • oxygen gas can be introduced into the plasma in addition to argon gas which is a sputtering gas at the time of sputtering, whereby the oxide of the target material can be formed on the film substrate.
  • This thin film forming apparatus includes a measuring unit in which the base film is continuously supplied in the longitudinal direction and measures the optical characteristics in the width direction of the thin film formed on the base film, and a plurality of measuring units in the width direction of the base film.
  • a gas nozzle is provided, and a supply unit that supplies reactive gas near the target and a control unit that controls the flow rate of the reactive gas ejected from each gas nozzle based on the optical characteristics in the width direction of the measuring unit are provided. It is possible to form a thin film having a uniform thickness in the direction and the width direction.
  • a film forming section having a supply section, a sputtering electrode for applying a voltage to the target, and a plasma measuring section for measuring the emission spectrum of plasma in the width direction of the base film during film forming is provided. It is preferable to prepare.
  • the control unit can control the flow rate of the reactive gas ejected from each gas nozzle and the voltage applied to the target based on the optical characteristics in the width direction of the measurement unit and the emission spectrum of the plasma measurement unit. It is possible to form a thin film having a uniform thickness depending on the direction.
  • a thin film is formed by an unwinding portion for unwinding the base film in the longitudinal direction, a film forming unit in which a plurality of film forming portions are arranged in the longitudinal direction of the base film, and a film forming unit. It is preferable to provide a winding portion for winding the formed base film. As a result, a multilayer thin film can be formed from unwinding to winding of the base film.
  • the measuring unit is preferably installed after the film forming unit, but is preferably installed at least after the last film forming unit, that is, between the film forming unit and the winding unit. Thereby, the optical characteristics of both the single-layer thin film and the multi-layer thin film can be measured.
  • the thin film forming apparatus shown in FIG. 2 runs a base film, which is a base film, while being wound around a can roll, and forms a thin film on the surface of the base film by sputtering.
  • This thin film forming apparatus supplies the base film 10 (transparent substrate 2) from the unwinding roll 11 which is the unwinding portion, and winds the base film 10 on which the thin film is formed by the winding roll 12 which is the winding portion. Further, a first film forming chamber unit and a second film forming chamber unit, which are film forming units, are provided in the vacuum chamber.
  • the vacuum chamber is connected to a vacuum pump that discharges air and can be adjusted to a predetermined degree of vacuum.
  • the first film forming chamber unit and the second film forming chamber unit are provided with a first can roll 21 and a second can roll 22, respectively, and the film forming portion is opposed to the outer peripheral surfaces of the can rolls 21 and 22.
  • a plurality of sputter chambers SP1 to SP1 to 10 are arranged. In each of the sputtering chambers SP1 to SP10, a predetermined target is mounted on the electrode, and a supply unit having a plurality of gas nozzles in the width direction of the base film 10 is provided.
  • the thin film forming apparatus includes an optical monitor 31 which is a measuring unit for measuring optical characteristics between the first film forming chamber unit and the second film forming chamber unit, that is, after film formation by the sputter chamber SP5.
  • an optical monitor 32 which is a measuring unit for measuring optical characteristics after the second film forming chamber unit, that is, after forming a film in the sputter chamber SP10, is provided. This makes it possible to confirm the quality of film formation of the final product after the second film formation chamber unit.
  • the optical monitors 31 and 32 measure the optical characteristics of the thin film formed on the base film 10 in the width direction by an optical head capable of scanning in the width direction.
  • the optical thickness distribution in the width direction can be obtained by, for example, measuring the peak wavelength of the reflectance as an optical characteristic with the optical monitors 31 and 32 and converting it into an optical thickness.
  • the thin film forming apparatus having such a structure unwinds the base film 10 from the unwinding roll 11, forms a thin film on the base film 10 when the first can roll 21 and the second can roll 22 are conveyed, and winds up the base film 10.
  • a multi-layered thin film can be obtained.
  • the optical characteristics of the thin film formed on the base film 10 in the width direction are measured by the optical monitors 31 and 32, and the flow rate of the reactive gas from each gas nozzle provided in the width direction is based on the optical characteristics.
  • Example 1 Using the thin film forming apparatus described in JP-A-2014-34701 shown in FIG. 2, a first transparent material layer, a metal layer, and a second transparent material layer were sequentially formed on a transparent substrate. A COP film having a thickness of 50 ⁇ m was used as the transparent substrate.
  • the thin film forming apparatus can sequentially stack thin films of a plurality of materials at the same time, and in this embodiment, 50 atomic% tin-containing zinc oxide (hereinafter, “50 atm% Sn—Zn—O”” is used from the side closer to the film unwinding side.
  • 50 atomic% tin-containing zinc oxide hereinafter, “50 atm% Sn—Zn—O”
  • the targets of silver and zinc oxide were arranged in this order.
  • Each target is connected to an independent power source and can be charged with any power to discharge. Further, each target is housed in an independent container, and the partition wall separating the targets has only a slight gap near the can roll, so that it is possible to realize a substantially different gas atmosphere. ..
  • argon gas is applied to the first cathode portion where 50 atm% Sn—Zn—O is installed so as to have a flow rate of 150 sccm.
  • the film was introduced into the first cathode portion of the vacuum chamber while being adjusted by a mass flow controller, and a power was applied to the 50 atm% Sn—Zn—O target to discharge it, and a film was formed by sputtering.
  • 6 sccm of oxygen was added in order to suppress the light absorption of 50 atm% Sn—Zn—O due to lack of oxygen to form a transparent oxide layer.
  • the running speed of the film at this time was 3 m / min.
  • the electric power was adjusted so that 50 atm% Sn—Zn—O having a thickness of 64 nm could be formed at a traveling speed of 3 m / min after measuring the relationship between the electric power and the film thickness in advance.
  • a silver thin film was formed at the second cathode portion.
  • argon gas is introduced into the second cathode part of the vacuum chamber while adjusting the flow rate of argon gas to 450 sccm with a mass flow controller, and power is applied to the silver target to discharge and sputter.
  • the film was formed by.
  • two adjacent cathodes are used, but it is not always necessary to use two adjacent cathodes.
  • one cathode chamber may not be used, and the entire cathode chamber may be used as a partition wall.
  • the electric power was adjusted so that a silver thin film having a thickness of 7 nm could be formed at a traveling speed of 3 m / min after measuring the relationship between the electric power and the film thickness in advance.
  • zinc oxide was formed at the third cathode portion.
  • argon gas is introduced into the third cathode portion of the vacuum chamber while adjusting the flow rate of argon gas to the third cathode portion with a mass flow controller so as to have a flow rate of 150 sccm, and power is applied to the zinc oxide target to discharge the zinc oxide target.
  • a film was formed by sputtering.
  • a small amount of oxygen is introduced while adjusting with a mass flow controller separately from argon gas, and the amount of oxygen is adjusted so as not to cause poor conductivity due to lack of oxygen or excess oxygen, and a good transparent conductive oxide.
  • two adjacent cathodes are used, but it is not always necessary to use two adjacent cathodes.
  • one cathode chamber may not be used, and the entire cathode chamber may be used as a partition wall.
  • the electric power was adjusted so that zinc oxide having a thickness of 46 nm could be formed at a traveling speed of 3 m / min after measuring the relationship between the electric power and the film thickness in advance.
  • the film was continuously wound, and after winding the film having the configuration shown in FIG. 1, the atmosphere was introduced into the entire apparatus and the sample was taken out and used as a sample.
  • Example 2 Same as Example 1 except that the target installed in the third cathode portion was changed from zinc oxide to zinc oxide containing 10 atomic% tin and the discharge conditions were adjusted so that the film forming rate was the same as that of zinc oxide. A sample was prepared under the conditions of.
  • Example 3 The target to be installed in the first cathode portion is changed from 50 atomic% tin-containing zinc oxide to 10 atomic% tin-containing zinc oxide, and the discharge conditions are set so that the film formation rate is the same as that of 50 atomic% tin-containing zinc oxide.
  • a sample was prepared under the same conditions as in Example 1 except for the adjustment.
  • Example 4 The target installed in the first cathode portion was changed from 50 atomic% tin-containing zinc oxide to 90 atomic% tin-containing zinc oxide, the discharge conditions were adjusted so that the film thickness was 55 nm, and the third cathode was also used. A sample was prepared under the same conditions as in Example 1 except that the discharge conditions were adjusted so that the thickness of zinc oxide formed in the portion was 51 nm.
  • Example 5 The discharge conditions are adjusted so that the film thickness of the 50 atomic% tin-containing zinc oxide formed on the first cathode portion is 63 nm, and the target to be installed on the third cathode portion is 5 atomic% aluminum from zinc oxide.
  • a sample was prepared under the same conditions as in Example 1 except that the discharge conditions were adjusted so that the thickness was changed to zinc oxide and the film thickness was 46 nm.
  • Example 6> The discharge conditions are adjusted so that the film thickness of the 50 atomic% tin-containing zinc oxide formed on the first cathode portion is 63 nm, and the target to be installed on the third cathode portion is 10 atomic% gallium from zinc oxide.
  • a sample was prepared under the same conditions as in Example 1 except that the discharge conditions were adjusted so that the thickness was changed to zinc oxide and the film thickness was 43 nm.
  • Example 1 Same as Example 1 except that the target installed in the third cathode portion was changed from zinc oxide to zinc oxide containing 15 atomic% tin and the discharge conditions were adjusted so that the film forming rate was the same as that of zinc oxide. A sample was prepared under the conditions of.
  • ⁇ Comparative example 2> The discharge conditions are adjusted so that the film thickness of the 50 atomic% tin-containing zinc oxide formed on the first cathode portion is 65 nm, and the target to be installed on the third cathode portion is 50 atomic% tin from zinc oxide.
  • a sample was prepared under the same conditions as in Example 1 except that the discharge conditions were adjusted so that the thickness was changed to zinc oxide and the film thickness was 47 nm.
  • Example 3 A sample was prepared under the same conditions as in Example 1 except that the target to be installed in the first cathode portion was changed from zinc oxide containing 50 atomic% tin to zinc oxide.
  • ⁇ Comparative example 4> The target to be installed on the first cathode portion is changed from zinc oxide containing 50 atomic% tin to tin oxide, the discharge conditions are adjusted so that the film thickness is 47 nm, and the film is formed on the third cathode portion.
  • a sample was prepared under the same conditions as in Example 1 except that the discharge conditions were adjusted so that the thickness of the zinc oxide was 56 nm.
  • Example 5 A sample was prepared under the same conditions as in Example 1 except that the target to be installed in the first cathode portion was changed from zinc oxide containing 50 atomic% tin to zinc oxide containing 5 atomic% tin.
  • Example 6 The target to be installed on the first cathode is changed from zinc oxide containing 50 atomic% tin to zinc oxide containing 95 atomic% tin, and the discharge conditions are adjusted so that the film thickness is 52 nm, and the third cathode is also used. A sample was prepared under the same conditions as in Example 1 except that the discharge conditions were adjusted so that the thickness of the zinc oxide formed in the portion was 51 nm.
  • the surface resistance was measured in accordance with "JIS K-7194" using a contact-type resistance measuring instrument "Loresta GP (registered trademark) (manufactured by Dia Instruments Co., Ltd.)".
  • the surface resistance is the resistance before and after exposing each sample to an environment with a temperature of 65 ° C. and a relative humidity of 90 RH% for 240 hours in order to evaluate the stability of each sample over a long period of time, that is, the initial resistance.
  • the resistance value and the resistance value after exposure to an environment of 65 ° C. and a relative humidity of 90 RH% for 240 hours were measured. At that time, it was judged that the practicality could not be withstood if the surface resistance was not less than 20 ⁇ / ⁇ , which is an index.
  • Table 1 The results are shown in Table 1.
  • Light absorption For light absorption, the transmittance and reflectance at an incident angle of 5 ° were measured using a spectroscope, "U-4100 (manufactured by Hitachi High-Technologies Co., Ltd.)", and the following formula (1) was used for each value at a wavelength of 550 nm. ) Is defined as the amount of light absorption.
  • Light absorption (%) 100 (%)-(transmittance (%) + reflectance (%)) ... (1)
  • Example 1 The sample of Example 1 has a surface resistance of 20 ⁇ / ⁇ or less and a total light transmittance of 90% or more, and the resistance value does not change significantly even in a high temperature and high humidity environment, and is used for a long period of time. It shows that it can withstand.
  • Example 2 The sample of Example 2 in which 10 atomic% of tin was added to the second transparent material of Example 1 had a surface resistance of 20 ⁇ , although the resistance value increased when placed in a high temperature and high humidity environment as compared with the sample of Example 1. Below / ⁇ , it maintains a total light transmittance of 90% or more, indicating that it can withstand long-term use.
  • Examples 3 and 4 The samples of Examples 3 and 4 in which the tin concentration of the first transparent material in Example 1 was changed to 10 atomic% or 90 atomic% had increased light absorption at a wavelength of 550 nm as compared with the sample of Example 1. Although the resistance value increased when placed in a high temperature and high humidity environment, the surface resistance was 20 ⁇ / ⁇ or less and the total light transmittance was 90% or more, indicating that it can withstand long-term use.
  • Examples 5 and 6 The samples of Examples 5 and 6 in which aluminum or gallium was added to the second transparent material in Example 1 had a surface resistance of 20 ⁇ / ⁇ or less, a total light transmittance of 90% or more, and high temperature and high humidity. No significant change was observed in the resistance value even in the environment, indicating that it can withstand long-term use.
  • the resistance values of the samples of Examples 5 and 6 were slightly reduced as compared with the samples of Example 1. It is considered that this is because the conductivity of the second transparent material was increased by adding aluminum or gallium to the second transparent material.
  • the current flows through the second transparent material layer on the surface of the measuring terminal in contact with the measuring terminal, flows through the metal layer, and returns to the measuring terminal via the second transparent material layer for measurement.
  • the resistivity value is considered to be determined by the value in the metal layer, but the resistance value is only 100 nm or less, but the second transparent material layer is oxidized in a high temperature and high humidity environment, and the insulating property becomes extremely high. It is highly probable that it could no longer be measured by the contact resistivity meter.
  • Comparative Examples 3 to 6 The samples of Comparative Examples 3 to 6 in which the tin content ratio of the first transparent material in Example 1 was changed were stable even in a high temperature and high humidity environment, but the total light transmittance was significantly reduced. It is considered that the cause of this is that the tin content of the first transparent material layer did not satisfy 10 atomic% or more and 90 atomic% or less, so that the light absorption increased and the transmittance decreased by the amount of the increased light absorption. .. Further, it is presumed that this light absorption is due to the formation of an absorption layer between the first transparent material layer and the metal layer (silver) as described above.

Abstract

長期間にわたって低電気抵抗で、高透過率を有する導電性積層体及びこれを備えた各種光学素子、導電性積層体の製造方法の提供。導電性積層体1は、透明基板2と、透明基板2の少なくとも1面上に、第1の透明材料層3、銀を主成分とする金属層4、第2の透明材料層5が、透明基板2側からこの順に積層されている。第1の透明材料層3は、少なくとも亜鉛と錫を含有し、かつ、錫を10原子%以上90原子%以下含有する複合金属酸化物で構成されている。第2の透明材料層5は、亜鉛を含有するとともに錫の含有率が10原子%以下の金属酸化物で構成されている。

Description

導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法
 本技術は、例えばタッチパネル、調光素子、電気泳動型光学素子、発光素子、アンテナなどに用いられる導電性積層体に関する。本出願は、日本国において2020年3月3日に出願された日本特許出願番号特願2020-035784を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 従来から、透明で導電性のある材料は、種々の光学装置に利用されてきた。例えば、画像素子デバイス上に積層され、静電容量の変化などで押された位置を検出するタッチパネルや、エレクトロクロミズム現象を利用して外光の強い光を電気的に可変的に調整する調光素子、エレクトロルミネッセンス現象を利用した発光素子、液中に分散させた電荷をもつ微粒子を電界にて操作する電気泳動型光学素子、窓などに貼っても眺望性を損じることのないアンテナなどが挙げられる。
 これらの光学装置に用いる電極は光学的に透明であることが求められており、且つ、動作上の課題から電気伝導度を高める必要がある。そのため、透明で電気抵抗の少ない材料が求められている。この種の材料としては、一般にはインジウムと錫の複合酸化物であるITO(Indium Tin Oxide)が広く使われている。ITOは、すでに市場において大きな位置を占めている。しかし、ITOは抵抗値を低く、透明性を高めるためには高温での成膜もしくは成膜後に熱処理を加える必要があり、熱に弱い基板及び素子に用いる場合には課題があった。
 そのため、非加熱で抵抗値が低く、透明性の高い材料の開発が進められ、Zn-O、In-Zn-O(IZO)、Al-Zn-O(AZO)、Sn-Zn-O(ZTO)などの亜鉛系酸化物をITOの代替材料として用いることが検討されている。これらの亜鉛系酸化物のうち、AZO、ZTOは、人体に影響があると懸念されているインジウムを含まないため、より好まれている。
 ところで、プラズマテレビなどでは、装置の構成上、画面より電磁波が放出されてしまう。その電磁波を吸収するために各種透明材料が開発されてきたが、非常に薄い銀薄膜を高屈折率の透明材料で挟んだ積層体が非常に効果的であることが分かり幅広く研究、開発が行われた。この積層体は、銀で導電性を付与し、高屈折率の材料と銀との間での光干渉効果で表面反射を抑制して透過率を高めることで高透過、低抵抗を実現している。そして、この積層体を上述の光学装置などに応用する例もみられている。
 このように、透過性と導電性を併せ持つ透明導電膜は、様々な応用例が考えられるが、上記素子の省電力、高速動作の実現には、さらなる低抵抗・高透過率が求められる。ITOなどの金属酸化物では、抵抗値を下げるために膜の厚みを厚くする必要があり、膜を厚くすると透過率が下がってしまい、十分な特性を得ることが難しかった。そのため、金属の両側を透明材料で挟んだ積層体が非常に有益であると考えられる。特に、特許文献2に例示される錫と亜鉛の複合酸化物を透明材料として銀の両側を挟んだ積層体は、錫と亜鉛の複合酸化物が化学的に安定であり、優れた水蒸気バリア性能を有するため、銀薄膜の劣化を抑制することができ、安定した特性を得ることができる。
特許第4820738号公報 特許第4961786号公報
Appl.Phys.A(2014) 116:1287-1291
 しかし、実際に導電薄膜として錫と亜鉛の複合酸化物を透明材料として銀の両側を挟んだ導電性積層体を、高温高湿度の加速環境下で保存すると、透過率の性能を保持するものの、表面抵抗が急激に増大して導電膜として利用することが難しい傾向にあることが分かった。このことは、導電性積層体の長期間での使用に課題があることを示している。
 そのため、高透過率であり、高温高湿度の加速環境下で保存した後も低電気抵抗を維持できる導電性積層体が望まれている。また、導電膜として使用されているインジウム・錫複合酸化物は、レアマテリアルであり、また、人体への影響も懸念されているインジウムを使用しないことが望まれている。
 そこで、本技術は、かかる問題点を鑑みてなされたもので、その目的は、長期間にわたって低電気抵抗で、高透過率を有する導電性積層体及びこれを備えた各種光学素子、導電性積層体の製造方法を提供することにある。
 本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、透明基板側より第1の透明材料層、銀を主成分とする金属層、第2の透明材料層を順次積層させた導電性積層体において、第1の透明材料層が少なくとも亜鉛と錫を含有し、かつ、錫を所定量含有する複合金属酸化物で構成され、第2の透明材料層が亜鉛を含有するとともに錫の含有率が所定量以下の金属酸化物で構成されていることが、高透過率と低電気抵抗を両立しうることを見出し、本発明を完成するに至った。
 すなわち、本技術は、透明基板の少なくとも1面上に、第1の透明材料層、銀を主成分とする金属層、第2の透明材料層が、透明基板側からこの順に積層された導電性積層体において、第1の透明材料層が、少なくとも亜鉛と錫を含有し、かつ、錫を10原子%以上、90原子%以下含有する複合金属酸化物で構成されており、第2の透明材料層が、亜鉛を含有するとともに錫の含有率が10原子%以下の金属酸化物で構成されている。
 また、本技術に係る光学装置は、上述の導電性積層体を電極の少なくとも一方の極として用いたものである。
 また、本技術に係る導電性積層体の製造方法は、透明基板の少なくとも1面上に、第1の透明材料層、銀を主成分とする金属層、第2の透明材料層を、透明基板側からこの順に積層する工程を有し、第1の透明材料層が、少なくとも亜鉛と錫を含有し、かつ、錫を10原子%以上、90原子%以下含有する複合金属酸化物で構成されており、第2の透明材料層が、亜鉛を含有するとともに錫の含有率が10原子%以下の金属酸化物で構成されている。
 本技術によれば、導電性積層体の各界面での光吸収層の生成を抑制できるため、長期間にわたって低電気抵抗で、高透過率を有する導電性積層体を提供でき、このような導電性積層体を、省電力、高性能のタッチパネル、調光素子、アンテナ、電気泳動素子、発光素子などの各種光学装置の電極として適用することができる。
図1は、本技術が適用された導電性積層体の構成例を模式的に示す断面図である。 図2は、薄膜形成装置の内部構成例を示す斜視図である。
 以下、本技術が適用された導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法について、図面を参照しながら詳細に説明する。なお、本技術は、以下の実施形態のみに限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 [導電性積層体]
 図1は、本技術が適用された導電性積層体1の構成例を模式的に示す断面図である。導電性積層体1は、図1に示すように、透明基板2の少なくとも1面上に、第1の透明材料層3、銀を主成分とする金属層4、第2の透明材料層5が、透明基板2側からこの順に積層されている。また、導電性積層体1は、第1の透明材料層3が少なくとも亜鉛と錫を含有し、かつ、錫を10原子%以上、90原子%以下含有する複合金属酸化物で構成されており、第2の透明材料層5が亜鉛を含有するとともに錫の含有率が10原子%以下の金属酸化物で構成されている。
 導電性積層体1の上記各層3~5を成膜する上では、例えば、真空成膜技術の一つであるスパッタリングを用いることができる。本発明者は、スパッタリングで各種透明材料と銀を積層させ検討したところ、亜鉛と錫を含有し、かつ、錫を10原子%以上、90原子%以下含有する複合酸化物を第1の透明材料層3として用いることで光吸収を抑制でき、また、亜鉛を含有するとともに錫の含有率が10原子%以下の金属酸化物を第2の透明材料層5として用いることで長期間にわたって低電気抵抗を維持できることを見出した。
 ここで、第1の透明材料層3として酸化亜鉛を用いると、酸化亜鉛を成膜した後に銀をスパッタリングにて成膜する際に、光吸収層が生じてしまう。すなわち、ターゲットから高速で飛び出した銀原子が透明基板2に到達すると、運動エネルギーを失い透明基板2の表面に定着する。その際、ターゲットから高速で飛び出した銀原子と、第1の透明材料3を構成する金属との間で相互作用が強い場合は、銀原子が第1の透明材料層3側で合金化してしまい、光吸収層が生じてしまう。また、亜鉛は、金属層4を構成する銀との間に広い固溶領域を持ち、金属層4を構成する銀との相互作用が強い元素であるため、容易に光吸収層を形成する。
 しかし、本技術のように、第1の透明材料層3が錫を含有する場合、特に、第1の透明材料層3中の錫の含有率が亜鉛と錫の総和に対して10原子%以上90原子%以下であることにより、亜鉛と錫の複合酸化物の化学的安定性のために、金属層4を構成する銀との反応を抑制して薄膜を形成できる。
 第2の透明材料層5を形成する際に、金属層4を構成する銀と相互作用の低い材料を用いると、第2の透明材料層5が十分に濡れ広がらず、界面に多数の小さな空隙を形成し、そこで光吸収が生じてしまう。第2の透明材料層5として亜鉛を含有する金属の酸化物を用いると、表面での濡れ性が向上し、良好な界面を形成することができる。しかも、亜鉛と酸素の結合が強いため、亜鉛が金属層4を構成する銀と合金を形成する前に酸化被膜となるため、合金層による光吸収層の形成もより効果的に抑制できる。第2の透明材料層5に実用可能な導電性酸化物としては、亜鉛酸化物および亜鉛合金複合酸化物が挙げられる。外部から導電性積層体1の表面に電荷を実質的に移動させる際に、酸化亜鉛および亜鉛合金複合酸化物は、良好な接触抵抗を有するため好ましい。しかし、第2の透明材料層5に、亜鉛と錫の複合酸化物を用いた場合、強固な結合により安定相において電気伝導性を得ることが難しい傾向にある。一般的に、良好な電気伝導性を得るためには、複合酸化物中の酸素含有率を化学量論組成から意図的に欠損させ、スパッタリングの際の酸素導入量を調整することが考えられる。しかし、亜鉛と錫の複合酸化物は、成膜直後に電気伝導性が得られるものの、長時間保持すると大気中の酸素により酸化が進行し電気伝導性が失われてしまう傾向にある。
 このように、第1の透明材料層3と、第2の透明材料5とでは、必要とされる特性が異なる。すなわち、第1の透明材料層3では化学的安定性が求められ、電気伝導性はそれ程重要ではく、一方、第2の透明材料層5では、電気伝導性が重要である。ここで、酸化亜鉛に酸化錫を加えることにより、化学的安定性が増していくが、同時に電気伝導性の劣化をもたらす。そのため、第1の透明材料層3と、第2の透明材料層5の組成を同一にすると、本技術の効果を得ることが困難である。
 本技術では、透明基板2の少なくとも1面上に、少なくとも亜鉛と錫を含有し、かつ、錫を10原子%以上、90原子%以下含有する複合金属酸化物で構成された第1の透明材料層3と、銀を主成分とする金属層4と、亜鉛を含有するとともに錫の含有率が10原子%以下の金属酸化物で構成された第2の透明材料層5とを、透明基板2側からこの順で積層することにより、各界面での光吸収を抑制することができる。これにより、インジウムを使用しなくても、長期間にわたって低電気抵抗で、高透過率を有する導電性積層体1を得ることができる。
 また、本技術の導電性積層体1によれば、表面抵抗(電気抵抗)を低くでき、全光線透過率を高くすることができる。例えば、導電性積層体1は、表面抵抗が20Ω/□以下であり、かつ、全光線透過率が90%以上とすることができる。表面抵抗及び全光線透過率の測定方法は、後述する実施例の測定方法と同義である。なお、一般的に使われているITO(インジウム錫複合酸化物)フィルムなどは、ITOの膜厚によっても異なるが、表面抵抗が100Ω/□、全光線透過率が88%となることが多い。
 したがって、本技術は、導電性積層体1を少なくとも1枚用いた省電力、高性能の光学装置、例えば、導電性積層体を電極の少なくとも一方の極として用いた、タッチパネル、調光素子、電気泳動型光学素子、発光素子、アンテナなどに適用することができる。
 以下、導電性積層体1を構成する各層について詳細に説明する。上述したように、本技術が適用された導電性積層体1は、透明基板2の少なくとも1面上に、第1の透明材料層3、銀を主成分とする金属層4、第2の透明材料層5が、透明基板2側からこの順に積層されている。
 <透明基板>
 透明基板2としては、ガラス基材、樹脂フィルムのいずれからなるものを用いることができる。透明基板2として樹脂フィルムからなるものを用いる場合には、ロールツーロール法によって製造することができるので、生産効率を向上させることができる。
 このような樹脂フィルムの材料としては、特に限定されることはないが、例えばポリエチレンテレフタレート(PET:Polyethylene Terephthalate)、ポリエチレンナフタレート(PEN:Polyethylene Naphthalate)、ポリアラミド、ポリイミド、ポリカーボネート、ポリエチレン、ポリプロピレン、トリアセチルセルロース(TAC:Triacetylcellulose)、ポリシクロオレフィン(COC:Cyclic Olefin Copolymer、COP:Cyclic Olefin Copolymer)等を用いることができる。
 透明基板2の厚みは、特に限定されないが、樹脂フィルムを用いたときの製造時の取り扱いの容易さと部材の薄型化を考慮して、20μm以上200μm以下とすることが好ましい。
 導電性積層体1において、透明基板2は、光透過率が100%であることを必要とせず、本技術の効果を奏する範囲で透明であればよく、例えば、光透過率が88%以上であることが好ましい。
 なお、透明基板2の耐擦過性を向上させる観点から、透明基板2の両面に、例えばアクリル系樹脂による薄膜を、溶液塗布により形成することもできる。
 <第1の透明材料層>
 第1の透明材料層3は、上述のように亜鉛と錫の複合酸化物で構成されており、錫の比率が亜鉛と錫の合計量に対して10原子%以上90原子%以下である。また、第1の透明材料層3は、亜鉛と錫の合計量に対して50原子%を超えない範囲で、亜鉛と錫以外の他の元素を1種又は複数種含有してもよい。
 第1の透明材料層3の厚みは、特に限定されず、材料構成に応じて最も透過率が高くなる膜厚に設定することができる。第1の透明材料層3の具体的な厚みとしては、30~80nmの範囲とすることができる。
 第1の透明材料層3の形成方法については、特に限定されず、生産効率を向上させる観点、膜厚分布を均一化させる観点からは、スパッタリング法を用いることが好ましい。
 第1の透明材料層3は、防湿性などの観点から、複数の層に分けて形成してもよい。この場合、複数の第1の透明材料層3のうち、少なくとも金属層4に接する透明材料層が、亜鉛と錫を含有し、かつ、錫を10原子%以上、90原子%以下含有する複合金属酸化物で構成される。
 <金属層>
 第1の透明材料層3上に積層される金属層4は、銀を主成分とする金属層である。金属層4は、銀を90原子%以上含有するとともに、全体で10原子%を超えない範囲で添加元素を含んでもよい。すなわち、金属層4は、90原子%以上の銀又は純銀で構成することができる。
 金属層4の厚みは、5nm以上であることが好ましい。金属層4の膜厚が5nm以上であることにより、連続膜として形成しやすくなり、金属層4を構成する銀が島状化することによって生じる吸収を抑制することもできる。換言すると、金属層4の膜厚が5nmよりも薄いと、容易に島状の膜が形成されてしまい、光透過性が阻害されるおそれがある。金属層4の膜厚の上限は、特に限定されないが、15nm未満が好ましい。金属層4の膜厚を15nm未満とすることにより、界面での吸収よりも金属層4を構成する銀の層内部での光吸収が大きくなることをより効果的に抑制することができる。
 金属層4の形成方法は、特に限定されないが、金属層4の形成後、連続して第2の透明材料層5を形成することが好ましく、生産効率を向上させる観点、膜厚分布を均一化させる観点からは、スパッタリング法を用いることが好ましい。
 <第2の透明材料層>
 金属層4上に積層される第2の透明材料層5は、上述のように亜鉛を含有するとともに錫の含有率が10原子%以下の金属酸化物で構成される。特に、本技術の効果をより高める観点から、第2の透明材料層5中の錫の含有率は、第1の透明材料層3中の錫の含有率よりも少ないことが好ましい。第2の透明材料層5中の錫の含有率の下限値は、特に限定されず、0原子%であってもよく、1原子%以上であってもよく、4原子%以上であってもよく、6原子%以上であってもよく、8原子%以上であってもよい。
 第2の透明材料層5は、光学特性、電気伝導性、化学的安定性の観点から、50原子%を超えない範囲で、亜鉛以外の他の元素を1種類又は複数種類含有してもよい。特に、第2の透明材料層5は、アルミニウム及びガリウムの少なくとも1種を2原子%以上含有することが好ましく、アルミニウム又はガリウムを2原子%以上含有することがより好ましい。これにより、第2の透明材料層5の電気伝導性をより向上させることができる。第2の透明材料層5が、アルミニウム及びガリウムの少なくとも1種を含有する場合、アルミニウム及びガリウムの合計量の上限値は、特に限定されず、例えば、15原子%以下とすることができ、12原子%以下とすることもでき、10原子%以下とすることもでき、8原子%以下とすることもでき、5原子%以下とすることもできる。
 第2の透明材料層5の厚みは、特に限定されず、材料構成に応じて最も透過率が高くなる膜厚に設定することができる。第2の透明材料層5の具体的な厚みとしては、例えば30~70nmの範囲とすることができる。
 第2の透明材料層5の形成方法は、特に限定されないが、金属層4の形成後に、連続して形成することが好ましく、生産効率を向上させる観点、膜厚分布を均一化させる観点から、スパッタリング法を用いることが好ましい。
 第2の透明材料層5は、耐擦傷性などの観点から、複数の層に分けて形成してもよい。この場合、複数の第2の透明材料層5のうち、少なくとも金属層4に接する透明材料層が、亜鉛を含有するとともに錫の含有率が10原子%以下の金属酸化物で構成され、50原子%を超えない範囲で1種類もしくは複数種類の元素を含有してもよい。また、複数の第2の透明材料層5のうち、金属層4に接する透明材料層以外の他の層においても、良好な電気伝導性を保持するために、電気伝導性を有する透明酸化物であることが好ましい。
 なお、図1に示す導電性積層体1は、透明基板2の一方の面に第1の透明材料層3、金属層4及び第2の透明材料層5が積層されているが、透明基板2の他方の面、あるいは透明基板2の両面に第1の透明材料層3、金属層4及び第2の透明材料層5が積層されていてもよい。
 [導電性積層体の製造方法]
 上述した導電性積層体1は、透明基板2の少なくとも1面上に、第1の透明材料層3、銀を主成分とする金属層4、第2の透明材料層5を、透明基板2側からこの順に積層する工程により製造できる。
 第1の透明材料層3、金属層4、第2の透明材料層5の成膜は、例えば特開2014-34701号公報に記載された薄膜形成装置を用いて形成することができる。図2は、特開2014-34701号公報に記載の薄膜形成装置の内部構成を示す斜視図である。この薄膜形成装置は、ロールツーロール法によってフィルム基材上にスパッタリングによる成膜を行うもので、複数のスパッタリングターゲットを設置することができ、しかも、一旦ロールをセットすると真空雰囲気を維持したまま異なる複数種類の材料を成膜することが可能である。
 さらに、この薄膜形成装置では、スパッタリング時にスパッタガスであるアルゴンガスの他に酸素ガスをプラズマ中に導入することができ、それによりターゲット材料の酸化物をフィルム基材上に形成することができる。
 以下、薄膜形成装置の構成を詳述する。この薄膜形成装置は、基材フィルムが長手方向に連続的に供給され、基材フィルム上に形成された薄膜の幅方向の光学特性を測定する測定部と、基材フィルムの幅方向に複数のガスノズルが設けられ、ターゲット近傍に反応性ガスを供給する供給部と、測定部における幅方向の光学特性に基づいて、各ガスノズルから噴出する反応性ガスの流量を制御する制御部とを備え、長手方向及び幅方向に均一な厚みの薄膜を形成可能としたものである。
 また、具体的な構成として、供給部と、ターゲットに電圧を印加するスパッタ電極と、成膜中における基材フィルムの幅方向のプラズマの発光スペクトルを測定するプラズマ測定部とを有する成膜部を備えることが好ましい。これにより、制御部は、測定部における幅方向の光学特性及びプラズマ測定部における発光スペクトルに基づいて、各ガスノズルから噴出する反応性ガスの流量及びターゲットに印加する電圧を制御することができ、幅方向により均一な厚みの薄膜を形成することが可能となる。
 また、具体的な構成として、基材フィルムを長手方向に巻き出す巻出部と、成膜部が基材フィルムの長手方向に複数配置された成膜ユニットと、成膜ユニットにて薄膜が形成された基材フィルムを巻き取る巻取部とを備えることが好ましい。これにより、基材フィルムの巻き出しから巻き取りまでに、多層の薄膜を形成することができる。また、測定部は、成膜部の後にそれぞれ設置されることが好ましいが、少なくとも最後の成膜部の後、すなわち成膜ユニットと巻取部との間に設置されることが好ましい。これにより、単層の薄膜又は多層の薄膜の両者の光学特性を測定することができる。
 図2に示す薄膜形成装置は、基材フィルムであるベースフィルムをキャンロールに巻付けながら走行させ、スパッタリングによってベースフィルム表面に薄膜を形成するものである。
 この薄膜形成装置は、巻出部である巻出ロール11からベースフィルム10(透明基板2)を供給し、薄膜が形成されたベースフィルム10を巻取部である巻取ロール12によって巻き取る。また、真空チャンバー内に成膜ユニットである第1の成膜室ユニット及び第2の成膜室ユニットを備える。真空チャンバーは、空気の排出を行う真空ポンプと接続され、所定の真空度に調整可能である。
 第1の成膜室ユニット及び第2の成膜室ユニットは、それぞれ第1のキャンロール21及び第2のキャンロール22を備え、キャンロール21、22の外周面に対向するように成膜部であるスパッタ室SP1~10を複数配置する。各スパッタ室SP1~10には、電極上に所定のターゲットが取り付けられるとともに、ベースフィルム10の幅方向に複数のガスノズルを有する供給部が設けられる。
 また、薄膜形成装置は、第1の成膜室ユニットと第2の成膜室ユニットとの間、すなわちスパッタ室SP5による成膜後に、光学特性を測定する測定部である光学モニター31を備える。これにより、第1の成膜室ユニット後の中間品の成膜を制御することができるとともに、単層による調整時の調整時間を削減することができる。また、第2の成膜室ユニットの後、すなわちスパッタ室SP10による成膜後に光学特性を測定する測定部である光学モニター32を備える。これにより、第2の成膜室ユニット後の最終品の成膜の品質を確認することができる。
 光学モニター31、32は、後述するように、幅方向にスキャン可能な光学ヘッドにより、ベースフィルム10上に形成された薄膜の幅方向の光学特性を測定する。この光学モニター31、32により、例えば、光学特性として反射率のピーク波長を測定し、光学厚みに換算することにより、幅方向の光学厚み分布を得ることができる。
 このような構成からなる薄膜形成装置は、巻出ロール11からベースフィルム10を繰出し、第1のキャンロール21及び第2のキャンロール22の搬送時にベースフィルム10上に薄膜を形成し、巻取ロール12によって巻取ることにより、多層の薄膜を得ることができる。ここで、光学モニター31、32によって、ベースフィルム10上に形成された薄膜の幅方向の光学特性を測定し、光学特性に基づいて、幅方向に設けられた各ガスノズルからの反応性ガスの流量を制御することにより、長手方向及び幅方向に均一な厚みの薄膜を形成することができる。
 以下、実施例及び比較例を挙げて本技術を具体的に説明するが、本技術は以下の実施例に限定されるものではない。
 <実施例1>
 図2に示す特開2014-34701号公報記載の薄膜形成装置を用い、透明基板上に第1の透明材料層、金属層、第2の透明材料層を順次形成した。透明基板としては厚さ50μmのCOPフィルムを用いた。
 薄膜形成装置は、複数の材料の薄膜を同時に順次積層することができ、本実施例ではフィルム巻き出し側に近い側より50原子%錫含有酸化亜鉛(以下、「50atm%Sn-Zn-O」などという)、銀、酸化亜鉛のターゲットをこの順に配置した。それぞれのターゲットは、独立した電源に接続されており、任意の電力を投入して放電することが可能である。また、それぞれのターゲットは、それぞれ独立した容器内に収納されており、ターゲットを隔てる隔壁がキャンロール付近にわずかな隙間を有するのみであり、実質的に異なるガス雰囲気を実現することが可能である。
 この薄膜形成装置の真空槽内全体を1×10-3Pa以下に真空排気した後、50atm%Sn-Zn-Oが設置された第1のカソード部にアルゴンガスを150sccmの流量となるようにマスフローコントローラーにて調整しながら真空槽の第1のカソード部に導入し、50atm%Sn-Zn-Oターゲットに電力を印加して放電させ、スパッタリングによる成膜を行った。この際、酸素不足による50atm%Sn-Zn-Oの光吸収を抑制するために6sccmの酸素を添加し、透明な酸化物層を形成した。このときのフィルムの走行速度は、3m/minであった。電力は、予め、電力と膜厚との関係を測定した後、3m/minの走行速度で64nmの厚みの50atm%Sn-Zn-Oが形成できるように調整した。
 第1のカソード部で50atm%Sn-Zn-Oを形成した後、第2のカソード部で銀薄膜を形成した。具体的に、第2のカソード部にアルゴンガスを450sccmの流量となるようにマスフローコントローラーにて調整しながら真空槽の第2のカソード部に導入し、銀ターゲットに電力を印加して放電させスパッタリングによる成膜を行った。本実施例では、隣接する2つのカソードを使用したが、必ずしも隣接した2つのカソードを使用する必要はない。装置構成によっては1つのカソード室を使用せず、カソード室全体を隔壁としてもよい。電力はあらかじめ電力と膜厚との関係を測定したのち3m/minの走行速度で7nmの厚みの銀薄膜が形成できるように調整した。
 第2のカソード部で銀薄膜を形成したのち、第3のカソード部で酸化亜鉛を形成した。具体的に、第3のカソード部にアルゴンガスを150sccmの流量となるようにマスフローコントローラーにて調整しながら真空槽の第3のカソード部に導入し、酸化亜鉛ターゲットに電力を印加して放電させスパッタリングによる成膜を行った。この際、アルゴンガスとは別に微量の酸素をマスフローコントローラーにて調整しながら導入して、酸素不足・酸素過多による導電性不良を起こさないように酸素量を調整して良好な透明導電性酸化物を得た。本実施例では、隣接する2つのカソードを使用したが、必ずしも隣接した2つのカソードを使用する必要はない。装置構成によっては1つのカソード室を使用せず、カソード室全体を隔壁としてもよい。電力はあらかじめ電力と膜厚との関係を測定したのち3m/minの走行速度で46nmの厚みの酸化亜鉛が形成できるように調整した。
 3層を成膜したのち、フィルムを連続的に巻き取り、図1の構成となるフィルムを巻き取ったのち、装置全体に大気を導入して試料を取り出しサンプルとした。
 <実施例2>
 第3のカソード部に設置するターゲットを、酸化亜鉛から10原子%錫含有酸化亜鉛に変更し、酸化亜鉛と同一の成膜速度になるように放電条件を調整した以外は、実施例1と同一の条件で試料を作成した。
 <実施例3>
 第1のカソード部に設置するターゲットを、50原子%錫含有酸化亜鉛から10原子%錫含有酸化亜鉛に変更し、50原子%錫含有酸化亜鉛と同一の成膜速度になるように放電条件を調整した以外は、実施例1と同一の条件で試料を作成した。
 <実施例4>
 第1のカソード部に設置するターゲットを、50原子%錫含有酸化亜鉛から90原子%錫含有酸化亜鉛に変更し、膜厚が55nmとなるように放電条件を調整し、また、第3のカソード部で成膜する酸化亜鉛の膜厚が51nmとなるように放電条件を調整した以外は、実施例1と同一の条件で試料を作成した。
 <実施例5>
 第1のカソード部で成膜する50原子%錫含有酸化亜鉛の膜厚を63nmとなるように放電条件を調整し、また、第3のカソード部に設置するターゲットを酸化亜鉛から5原子%アルミニウム含有酸化亜鉛に変更するとともに膜厚が46nmとなるように放電条件を調整した以外は、実施例1と同一の条件で試料を作成した。
 <実施例6>
 第1のカソード部で成膜する50原子%錫含有酸化亜鉛の膜厚を63nmとなるように放電条件を調整し、また、第3のカソード部に設置するターゲットを酸化亜鉛から10原子%ガリウム含有酸化亜鉛に変更するとともに膜厚が43nmとなるように放電条件を調整した以外は、実施例1と同一の条件で試料を作成した。
 <比較例1>
 第3のカソード部に設置するターゲットを、酸化亜鉛から15原子%錫含有酸化亜鉛に変更し、酸化亜鉛と同一の成膜速度になるように放電条件を調整した以外は、実施例1と同一の条件で試料を作成した。
 <比較例2>
 第1のカソード部で成膜する50原子%錫含有酸化亜鉛の膜厚を65nmとなるように放電条件を調整し、また、第3のカソード部に設置するターゲットを酸化亜鉛から50原子%錫含有酸化亜鉛に変更するとともに膜厚が47nmとなるように放電条件を調整した以外は、実施例1と同一の条件で試料を作成した。
 <比較例3>
 第1のカソード部に設置するターゲットを、50原子%錫含有酸化亜鉛から酸化亜鉛に変更した以外は実施例1と同一の条件で試料を作成した。
 <比較例4>
 第1のカソード部に設置するターゲットを、50原子%錫含有酸化亜鉛から酸化錫に変更するとともに膜厚が47nmとなるように放電条件を調整し、また、第3のカソード部で成膜する亜鉛酸化物の膜厚を56nmとなるように放電条件を調整した以外は、実施例1と同一の条件で試料を作成した。
 <比較例5>
 第1のカソード部に設置するターゲットを、50原子%錫含有酸化亜鉛から5原子%錫含有酸化亜鉛に変更した以外は、実施例1と同一の条件で試料を作成した。
 <比較例6>
 第1のカソード部に設置するターゲットを、50原子%錫含有酸化亜鉛から95原子%錫含有酸化亜鉛に変更するとともに膜厚が52nmとなるように放電条件を調整し、また、第3のカソード部で成膜する亜鉛酸化物の膜厚を51nmとなるように放電条件を調整した以外は、実施例1と同一の条件で試料を作成した。
 [評価結果]
 各試料は、任意のサイズに切り出した後、測定・評価を行った。
 <表面抵抗>
 表面抵抗は「JIS K-7194」に準拠して、接触式の抵抗測定器である「ロレスタGP(登録商標)(株式会社ダイアインスツルメンツ製)」を用いて測定を行った。具体的に、表面抵抗は、各試料の長期間での安定性の評価のため、各試料を温度65℃、相対湿度90RH%の環境下に240時間暴露する前後での抵抗、すなわち、初期の抵抗値と、65℃、相対湿度90RH%の環境下に240時間暴露した後の抵抗値をそれぞれ測定した。その際、表面抵抗の指標である20Ω/□以下とならないものについては、実用性に耐えられないと判断した。結果を表1に示す。
 <全光線透過率>
 全光線透過率は、「JIS K-7105」に準拠して「NDH5000(日本電色工業株式会社製)」を用いて測定を行った。結果を表1に示す。
 <光吸収>
 光吸収は、分光器、「U-4100(株式会社日立ハイテクノロジーズ製)」を用いて、入射角度5°の透過率及び反射率を測定し、波長550nmでのそれぞれの値について下記式(1)の式にて示される量を光吸収量として定義した。
光吸収(%)=100(%)-(透過率(%)+反射率(%)) ・・・・(1)
 すなわち、反射も透過もしていないものは、薄膜及び基材内部で熱に変換されている(吸収している)とした。実際には、散乱などにより実質的な透過率および反射率が低下し見かけ上では光吸収が増えて見えることがあるが、本発明で使用した基材は極めて吸収が小さく表面も平滑なため、式(1)で求めた光吸収はほぼ積層した膜による吸収とみなしてよい。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 <実施例1>
 実施例1のサンプルは、表面抵抗20Ω/□以下、全光線透過率90%以上を保持しており、また、高温高湿環境下においても抵抗値に大きな変化が見られず、長期間の使用にも耐えうることを示している。
 <実施例2>
 実施例1における第2の透明材料に錫を10原子%加えた実施例2のサンプルは、高温高湿環境下におくと実施例1のサンプルと比べて抵抗値が増大したものの、表面抵抗20Ω/□以下、全光線透過率90%以上を保持しており、長期間の使用にも耐えうることを示している。
 <実施例3,4>
 実施例1における第1の透明材料の錫の濃度を10原子%又は90原子%に変更した実施例3,4のサンプルは、実施例1のサンプルと比べて波長550nmでの光吸収が増大し、高温高湿環境下におくと抵抗値が増大したものの、表面抵抗20Ω/□以下、全光線透過率90%以上を保持しており、長期間の使用にも耐えうることを示している。
 <実施例5,6>
 実施例1における第2の透明材料にアルミニウム又はガリウムを加えた実施例5,6のサンプルは、表面抵抗20Ω/□以下、全光線透過率90%以上を保持しており、また、高温高湿環境下においても抵抗値に大きな変化が見られず、長期間の使用にも耐えうることを示している。なお、実施例5,6のサンプルは、実施例1のサンプルと比べて抵抗値が微減した。これは、第2の透明材料にアルミニウム又はガリウムを加えたことにより、第2の透明材料の導電率が増大したためと考えられる。
 <比較例1,2>
 実施例1における第2の透明材料に錫を15原子%又は50原子%加えた比較例1,2のサンプルは、初期の抵抗値はいずれも指標を満たしたが、高温高湿環境下において抵抗値が大きく増大した。なお、比較例1,2のサンプルについて、上述の接触式の抵抗測定器ではなく、別の非接触式抵抗率計で表面抵抗を測定したところ、高温高湿環境下においても、初期とほぼ変わらない抵抗値を示すことが分かった。この理由は次のように考えられる。本技術の構成上、電流は、測定端子の接触する表面の第2の透明材料層を経て、金属層内を流れ、また第2の透明材料層を介して測定端子に戻り計測される。抵抗値は、ほぼ金属層内の値で決まると考えられるが、僅か100nm以下ではあるが第2の透明材料層が高温高湿環境下で酸化が進行し、極めて絶縁性が高くなったために、接触式抵抗率計で測定できなくなったものと推定される。
 <比較例3~6>
 実施例1おける第1の透明材料の錫の含有比率を変えた比較例3~6のサンプルは、抵抗値が高温高湿環境下でも安定していたが、全光線透過率が大きく低下した。この原因として、第1の透明材料層の錫の含有率が10原子%以上90原子%以下を満たさなかったため光吸収が増大し、光吸収が増大した分、透過率が減少したことが考えられる。また、この光吸収は、上述のように、第1の透明材料層と、金属層(銀)との間に吸収層が形成されたことによるものと推定される。
 以上説明したように、実施例及び比較例の結果から、本技術の効果を実証することができた。なお、本技術は、上述した例に限定されるものではなく、本技術の属する分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範囲内において、各種の変更例または修正例に想到し得ることは明らかである。
1 導電性積層体、2 透明基板、3 第1の透明材料層、4 金属層、5 第2の透明材料層、10 ベースフィルム、11 巻出ロール、12 巻取ロール、21 第1のキャンロール、22 第2のキャンロール、31 光学モニター、32 光学モニター、SP スパッタ室

Claims (12)

  1.  透明基板の少なくとも1面上に、第1の透明材料層、銀を主成分とする金属層、第2の透明材料層が、上記透明基板側からこの順に積層された導電性積層体において、
     上記第1の透明材料層が、少なくとも亜鉛と錫を含有し、かつ、錫を10原子%以上、90原子%以下含有する複合金属酸化物で構成されており、
     上記第2の透明材料層が、亜鉛を含有するとともに錫の含有率が10原子%以下の金属酸化物で構成されている、導電性積層体。
  2.  上記第2の透明材料層が、アルミニウム及びガリウムの少なくとも1種を2原子%以上含有する、請求項1に記載の導電性積層体。
  3.  上記金属層が、銀を90原子%以上含有する、請求項1又は2に記載の導電性積層体。
  4.  上記金属層の厚みが5nm以上である、請求項1~3のいずれか1項に記載の導電性積層体。
  5.  上記透明基板が、ガラス、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリアラミド、ポリイミド、ポリカーボネート、ポリエチレン、ポリプロピレン、トリアセチルセルロース(TAC)、ポリシクロオレフィン(COC、COP)のいずれか若しくはその積層体からなる、請求項1~4のいずれか1項に記載の導電性積層体。
  6.  上記第2の透明材料層中の錫の含有率が、上記第1の透明材料層中の錫の含有率よりも少ない、請求項1~5のいずれか1項に記載の導電性積層体。
  7.  請求項1~6のいずれか1項に記載の導電性積層体を電極の少なくとも一方の極として用いた、タッチパネル。
  8.  請求項1~6のいずれか1項に記載の導電性積層体を電極の少なくとも一方の極として用いた、調光素子。
  9.  請求項1~6のいずれか1項に記載の導電性積層体を電極の少なくとも一方の極として用いた、電気泳動型光学素子。
  10.  請求項1~6のいずれか1項に記載の導電性積層体を電極の少なくとも一方の極として用いた、発光素子。
  11.  請求項1~6のいずれか1項に記載の導電性積層体を少なくとも1枚用いた、アンテナ。
  12.  透明基板の少なくとも1面上に、第1の透明材料層、銀を主成分とする金属層、第2の透明材料層を、上記透明基板側からこの順に積層する工程を有し、
     上記第1の透明材料層が、少なくとも亜鉛と錫を含有し、かつ、錫を10原子%以上、90原子%以下含有する複合金属酸化物で構成されており、
     上記第2の透明材料層が、亜鉛を含有するとともに錫の含有率が10原子%以下の金属酸化物で構成されている、導電性積層体の製造方法。
PCT/JP2021/007001 2020-03-03 2021-02-25 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法 WO2021177124A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21764394.9A EP4116084A4 (en) 2020-03-03 2021-02-25 ELECTRICALLY CONDUCTIVE LAMINATE, OPTICAL DEVICE USING THE SAME AND METHOD FOR PRODUCING THE ELECTRICALLY CONDUCTIVE LAMINATE
US17/908,263 US20230119906A1 (en) 2020-03-03 2021-02-25 Conductive laminate, optical device using same, and method for producing conductive laminate
CN202180017242.XA CN115210066A (zh) 2020-03-03 2021-02-25 导电性层叠体及使用其的光学装置、导电性层叠体的制造方法
KR1020227029039A KR20220131310A (ko) 2020-03-03 2021-02-25 도전성 적층체 및 이것을 사용한 광학 장치, 도전성 적층체의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020035784A JP2021137993A (ja) 2020-03-03 2020-03-03 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法
JP2020-035784 2020-03-03

Publications (1)

Publication Number Publication Date
WO2021177124A1 true WO2021177124A1 (ja) 2021-09-10

Family

ID=77614242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007001 WO2021177124A1 (ja) 2020-03-03 2021-02-25 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法

Country Status (7)

Country Link
US (1) US20230119906A1 (ja)
EP (1) EP4116084A4 (ja)
JP (1) JP2021137993A (ja)
KR (1) KR20220131310A (ja)
CN (1) CN115210066A (ja)
TW (1) TW202200809A (ja)
WO (1) WO2021177124A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250430A (ja) * 2006-03-17 2007-09-27 Sumitomo Metal Mining Co Ltd 透明導電膜、およびこれを用いた透明導電性フィルム
JP4820738B2 (ja) 2003-08-25 2011-11-24 旭硝子株式会社 電磁波遮蔽積層体およびこれを用いたディスプレイ装置
JP2014034701A (ja) 2012-08-08 2014-02-24 Dexerials Corp 薄膜形成装置及び薄膜形成方法
JP2016506037A (ja) * 2012-12-13 2016-02-25 サン−ゴバン グラス フランス Oledデバイスのための導電性支持体及びそれを組み込んだoledデバイス
JP2020035784A (ja) 2018-08-27 2020-03-05 オムロン株式会社 光センサ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3592380A (en) 1969-05-28 1971-07-13 Jiffy Mfg Co Cushioned shipping bag
FR2998564B1 (fr) * 2012-11-23 2016-12-23 Saint Gobain Substrat muni d'un empilement a couche metallique partielle, vitrage, utilisation et procede.
JP6048529B2 (ja) * 2014-06-02 2016-12-21 Tdk株式会社 透明導電性フィルム及びタッチパネル
JP6601199B2 (ja) * 2015-12-11 2019-11-06 Tdk株式会社 透明導電体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4820738B2 (ja) 2003-08-25 2011-11-24 旭硝子株式会社 電磁波遮蔽積層体およびこれを用いたディスプレイ装置
JP2007250430A (ja) * 2006-03-17 2007-09-27 Sumitomo Metal Mining Co Ltd 透明導電膜、およびこれを用いた透明導電性フィルム
JP4961786B2 (ja) 2006-03-17 2012-06-27 住友金属鉱山株式会社 透明導電膜、およびこれを用いた透明導電性フィルム
JP2014034701A (ja) 2012-08-08 2014-02-24 Dexerials Corp 薄膜形成装置及び薄膜形成方法
JP2016506037A (ja) * 2012-12-13 2016-02-25 サン−ゴバン グラス フランス Oledデバイスのための導電性支持体及びそれを組み込んだoledデバイス
JP2020035784A (ja) 2018-08-27 2020-03-05 オムロン株式会社 光センサ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPL. PHYS. A, vol. 116, 2014, pages 1287 - 1291
See also references of EP4116084A4

Also Published As

Publication number Publication date
TW202200809A (zh) 2022-01-01
EP4116084A4 (en) 2024-04-03
EP4116084A1 (en) 2023-01-11
KR20220131310A (ko) 2022-09-27
JP2021137993A (ja) 2021-09-16
CN115210066A (zh) 2022-10-18
US20230119906A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
JP5432501B2 (ja) 透明導電フィルム及びその製造方法
KR100726747B1 (ko) 전자파 차폐 적층체 및 이를 이용한 디스플레이 장치
TWI558571B (zh) Inorganic film and layered body
TW201342684A (zh) 用於有機發光裝置的反射陽極電極及其製造方法
JP2011138135A (ja) 透明導電膜及びそれを含むディスプレイフィルタ
JP3034218B2 (ja) 透明積層体及びそれを用いた調光体及びディスプレイ用フィルター
CN113299426B (zh) 一种透明导电阻隔薄膜、其制备方法及应用
WO2021177124A1 (ja) 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法
JP6713079B2 (ja) 電界駆動型調光素子用透明導電性フィルム、調光フィルム、および電界駆動型調光素子
WO2021002295A1 (ja) 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法
Lin et al. The electro-optical characteristics of AZO/Mo/AZO transparent conductive film
WO2022050045A1 (ja) 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法
WO2015125558A1 (ja) 透明導電体の製造方法及び透明導電体
JP2022043998A (ja) 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法
JP3466001B2 (ja) 透明導電性積層体
KR101968215B1 (ko) 전도성 구조체 및 이를 포함하는 전자 소자
WO2015133007A1 (ja) 透明導電体の製造方法
JP2016169420A (ja) 透明導電部材の製造装置、及び、透明導電部材の製造方法
Kim et al. Effect of O2 Flow Rate on Properties of Mn–SnO2/Ag/Mn–SnO2 Multilayer Film
JPH09277424A (ja) 透明導電性積層体とそれを用いたエレクトロルミネッセンス面発光体
JPH04249006A (ja) 透明導電性積層体
KR20200127426A (ko) 질소 도핑 산화물 기반 투명 전도성 산화물 박막 및 그 제조방법
CN116023697A (zh) 具有组分梯度无机层的薄膜、其制造方法和显示装置
JPH0483635A (ja) 透明導電性積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227029039

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021764394

Country of ref document: EP

Effective date: 20221004