WO2021172922A1 - 헤테로사이클릭아민 유도체의 제조 방법 - Google Patents

헤테로사이클릭아민 유도체의 제조 방법 Download PDF

Info

Publication number
WO2021172922A1
WO2021172922A1 PCT/KR2021/002440 KR2021002440W WO2021172922A1 WO 2021172922 A1 WO2021172922 A1 WO 2021172922A1 KR 2021002440 W KR2021002440 W KR 2021002440W WO 2021172922 A1 WO2021172922 A1 WO 2021172922A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound represented
reaction
manufacturing
ethyl acetate
Prior art date
Application number
PCT/KR2021/002440
Other languages
English (en)
French (fr)
Inventor
김월영
이경일
엄덕기
현해정
박준석
Original Assignee
주식회사 대웅제약
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210025655A external-priority patent/KR102531088B1/ko
Application filed by 주식회사 대웅제약 filed Critical 주식회사 대웅제약
Priority to MX2022010391A priority Critical patent/MX2022010391A/es
Priority to JOP/2022/0199A priority patent/JOP20220199A1/ar
Priority to BR112022016729A priority patent/BR112022016729A2/pt
Priority to JP2022551582A priority patent/JP7447291B2/ja
Priority to CN202180015867.2A priority patent/CN115151537A/zh
Priority to EP21761001.3A priority patent/EP4112617A4/en
Priority to US17/799,774 priority patent/US20230094404A1/en
Publication of WO2021172922A1 publication Critical patent/WO2021172922A1/ko
Priority to CONC2022/0011593A priority patent/CO2022011593A2/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings

Definitions

  • the present invention relates to a process for the preparation of heterocyclic amine derivatives.
  • Interleukin-2 Tyrosine Kinase (ITK) and Bruton's Tyrosine Kinase (BTK) belong to the TEC family along with tyrosine kinase expressed in hepatocellular carcinoma (Tec), Resting Lymphocyte Kinase (RLK) and BMX (Bone-Marrow tyrosine kinase gene on chromosome X). It is a type of tyrosine kinase that does not have a receptor and acts on various immune responses.
  • ITK is expressed not only on T cells but also on NK cells and mast cells, and produces important cytokines such as IL-2, IL-4, IL-5, IL-10, IL-13 and IL-17 and T-cell proliferation.
  • T cells are activated by TCR signaling, and activated T cells produce inflammatory cytokines, activate B cells and macrophages to induce autoimmune diseases such as RA (Sahu N. et al. Curr Top Med Chem. 2009, 9, 690).
  • RA disease is caused by activation of T cells as Th1 cells, but recently it has been reported that Th1 cells as well as Th17/Treg act as the etiology of RA (J Leipe J. et al. Arthritis Rheum. 2010, 62). , 2876).
  • ITK has been previously developed as a target for immunotherapeutic drugs such as asthma, but has not been developed as an RA treatment (Lo H. Y Expert Opin Ther Pat. 2010, 20, 459).
  • RA treatment Li H. Y Expert Opin Ther Pat. 2010, 20, 459
  • BTK functions as a regulator of early B-cell development as well as mature B-cell activation, signaling and survival.
  • a signal is transmitted to the B-cells by a B-cell receptor (BCR) that recognizes an antigen attached to the surface of an antigen-presenting cell, and is activated as a mature antibody-producing cell.
  • BCR B-cell receptor
  • aberrant signal transduction by BCR leads to abnormal B-cell proliferation and formation of pathological autoantibodies, which may lead to cancer, autoimmune and/or inflammatory diseases.
  • signal transduction by BCR may be blocked when BTK is deficient. Accordingly, inhibition of BTK can block B-cell mediated disease processes, so the use of BTK inhibitors may be a useful approach for the treatment of B-cell mediated diseases.
  • BTK can also be expressed by other cells that may be associated with disease in addition to B-cells.
  • BTK is an important component of Fc-gamma signaling in bone marrow cells, and is expressed by mast cells.
  • BTK-deficient bone marrow-derived mast cells exhibit impaired antigen-induced degranulation, and inhibition of BTK activity is known to be useful for treating pathological mast cell responses such as allergy and asthma (Iwaki et al. J. Biol). Chem. 2005 280:40261).
  • monocytes from XLA patients without BTK activity have reduced TNF alpha production following stimulation, thereby suppressing TNF alpha-mediated inflammation by BTK inhibitors (Horwood et al. J. Exp. Med. 197: 1603, 2003).
  • WO2008/039218 has disclosed a 4-aminopyrazolo[3,4-d]pyrimidinylpiperidine derivative
  • WO2015/ 061247 discloses hetero compounds such as pyridine, pyrimidine, pyrazine and pyridazine compounds
  • WO2014/055934 discloses pyrimidinylphenylacrylamide derivatives.
  • WO2005/066335 discloses aminobenzimidazole
  • WO2005/056785 discloses pyridone
  • WO2002050071 discloses aminothiazole derivatives
  • WO2014/036016 discloses benzimidazole derivatives.
  • the present inventors have confirmed that a heterocyclic amine derivative having a different chemical structure from the BTK and ITK inhibitors reported to date can exhibit an excellent effect of inhibiting the dual activity of BTK and ITK. Accordingly, as a result of intensive research on a preparation method capable of preparing a novel heterocyclic amine derivative, when the preparation method described later is used, mass production is possible commercially, and furthermore, the overall yield is improved and impurities are reduced. By confirming the present invention was completed.
  • the present invention is to provide a method for preparing a heterocyclic amine derivative.
  • the present invention provides a manufacturing method as shown in Scheme 1 below, and more specifically provides a manufacturing method comprising the following steps:
  • the compound represented by Formula 1 may be understood as a concept encompassing all of the following three types of compounds according to chirality.
  • Step 1 is a step of reacting a compound represented by Formula 1-1 with a compound represented by Formula 1-2 to prepare a compound represented by Formula 1-3, wherein the reaction is an amine substitution reaction. It is carried out in the presence of a palladium catalyst and a base.
  • the compound represented by Formula 1-1 and the compound represented by Formula 1-2 may be used in a molar ratio of 1:0.1 to 1:2.
  • the compound represented by Formula 1-1 and the compound represented by Formula 1-2 are in a molar ratio of 1:0.5 to 1:1.7, 1:0.7 to 1:1.5, or 1:0.9 to 1:1.5. can be used
  • the palladium catalyst may be a palladium (0) catalyst having a valency of 0 of palladium (Pd) in the compound, or a palladium (II) catalyst having a valency of +2.
  • a palladium catalyst tris(dibenzylideneacetone)dipalladium(0), tetrakis(triphenylphosphine)palladium(O), bis[tris(2-methylphenyl)phosphine]palladium and palladium(II) ) at least one selected from the group consisting of acetate may be used.
  • the base used in the reaction of step 1 may be at least one selected from the group consisting of cesium carbonate, potassium carbonate, sodium carbonate, sodium tert-butoxide and potassium tert-butoxide. Among them, it is preferable to use cesium carbonate in terms of reaction rate and yield.
  • the reaction may be performed in the presence of a phosphine-based compound together with the palladium catalyst and the base.
  • a phosphine-based compound 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl, 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, 2-( Dicyclohexylphosphino)-3,6-dimethoxy-2,4'6'-triisopropyl-1,1'-biphenyl and dicyclohexylphosphino-2',6'-diisopropoxybi At least one selected from the group consisting of phenyl may be used.
  • a solvent for the reaction a solvent that is inert to the amine substitution reaction may be used.
  • solvents such as toluene, dioxane, dimethylformamide (DMF), butyl alcohol, or dimethylacetamide (DMA C ) may be used, but in terms of reaction rate and yield, toluene and dimethylacetamide (DMA C ) desirable.
  • the solvent is 10 to 30 times the volume of the compound represented by Formula 1-1 (mL/g), more specifically, 15 to 25 times the volume (mL/g) ) can be used as
  • the reaction may be carried out at a temperature of 80 to 150 °C for 3 hours to 15 hours.
  • the reaction may not proceed sufficiently, and thus the production yield may be lowered.
  • the reaction may be performed at a temperature of 90 to 130° C. for 4 hours to 12 hours, preferably 4 hours to 10 hours, more preferably 6 hours to 10 hours.
  • step 1) may be applied as a process for mass production of the compound represented by Formula 1 above.
  • steps 1 and 2 to be described later are performed in-situ (In) in the same reaction vessel. -situ) can be done.
  • the method for preparing the compound represented by Formula 1 including Step 1 may be advantageous in terms of industrial mass production of the compound.
  • Step 2 is a step of reacting the compound represented by Formula 1-3 in the presence of an acid to prepare a compound represented by Formula 1-4, wherein the blood of the compound represented by Formula 1-3 is prepared in the presence of an acid. This is a step of removing the tert-butyloxycarbonyl group, which is a protecting group substituted on the peridine ring.
  • hydrochloric acid As the acid used in the reaction of step 2), hydrochloric acid, acetic acid, trichloroacetic acid, or trifluoroacetic acid may be used. Among them, hydrochloric acid is preferably used in consideration of yield and cost.
  • a solvent for the reaction a solvent such as ethyl acetate, methyl alcohol, dioxane, or toluene may be used.
  • the reaction may be performed at room temperature for 30 minutes to 20 hours, preferably 30 minutes to 4 hours.
  • Removal of the tert-butyloxycarbonyl group, which is a protecting group corresponds to a reaction that occurs easily without additional heat treatment and may be performed at room temperature.
  • the reaction time is less than 30 minutes, the reaction may not proceed sufficiently, and when the reaction time exceeds 20 hours, the production yield does not substantially increase, so the above-described reaction time is preferable.
  • step 2 a crystallized compound represented by Formula 1-4 is prepared by using a crystallization solvent in the product of the reaction.
  • step 2) may be performed by reacting the compound represented by Formula 1-3 in the presence of an acid and then crystallizing the product of the reaction to prepare the compound represented by Formula 1-4.
  • the crystallization step may be performed by primary crystallization with water and secondary crystallization with methanol.
  • the product of the reaction generated after the completion of the reaction in step 2) is sequentially crystallized with water and methanol, the palladium catalyst, ligand, aminothiazole residue, etc., which are by-products remaining after the reaction, can be effectively removed. have. Accordingly, a compound of high purity can be obtained in high yield compared to the process of purification in the form of a slurry using a solvent such as ethyl acetate.
  • the primary crystallization process with water may be performed by adding water to the product of the reaction and stirring at a temperature of about 0 to 5° C. for 10 minutes to 2 hours.
  • the crystallization is preferably performed in the presence of a base such as sodium hydroxide while maintaining the pH of the reactant at 11 or more, or 12 or more.
  • a base such as sodium hydroxide
  • the reaction solution is filtered under reduced pressure after completion of the reaction to obtain crystals.
  • the water is in an amount of 5 to 30 times the volume of the compound represented by Formula 1-1 (mL/g), more specifically, in an amount of 5 to 25 times the volume (mL/g). ) can be used as
  • a secondary crystallization process with methanol may be performed.
  • the secondary crystallization process using methanol may be performed by adding methanol to the obtained crystals and stirring at a temperature of about 50 to 80° C. for 10 minutes to 2 hours.
  • the methanol is 5 to 40 times the volume of the compound represented by Formula 1-1 (mL/g), more specifically, 10 to 35 times the volume (mL/g) ) can be used as
  • Step 3 is a step of preparing the compound represented by Formula 1 by reacting the compound represented by Formula 1-4 with the compound represented by Formula 1-5.
  • the reaction is preferably performed in the presence of a base as an amidation reaction.
  • the compound represented by Formula 1-4 and the compound represented by Formula 1-5 may be used in a molar ratio of 1:0.5 to 1:2.0. Specifically, the compound represented by Formula 1-4 and the compound represented by Formula 1-5 are in a molar ratio of 1:0.5 to 1:1.5, 1:0.7 to 1:1.3, or 1:0.9 to 1:1.1. can be used
  • Examples of the base used in the reaction of step 3 include potassium carbonate, sodium hydroxide, lithium hydroxide, potassium hydroxide, triethylamine, diisopropylamine, diisopropylethylamine, sodium hydrogen carbonate, potassium hydrogen carbonate, cesium carbonate, At least one selected from the group consisting of sodium carbonate, sodium methylate and potassium butyrate may be used. Among them, it is preferable to use potassium carbonate, sodium carbonate, sodium hydrogen carbonate, or potassium hydrogen carbonate from the viewpoint of completion of the reaction and generation of by-products.
  • a mixed solvent of tetrahydrofuran (THF) and water may be used.
  • the tetrahydrofuran may be used in an amount (mL/g) of 10 to 40 times the weight of the compound represented by Formula 1-4
  • the water is the compound represented by Formula 1-4 It can be used in an amount (mL/g) of 2 to 10 times the volume of the weight.
  • the compound represented by Formula 1-5 may be added in a mixed state with N,N-diisopropylethylamine or triethylamine.
  • the compound represented by Formula 1-5 acryloyl chloride, a small amount of hydrochloric acid remaining in the compound is present. Accordingly, the hydrochloric acid participates in the reaction, and as a by-product, impurities such as a compound in which HCl is added to a double bond of the compound represented by Formula 1 and a compound in which HCl is added to a double bond of acrylamide (hereinafter, impurity C (ImpC)) ) to produce, there was a problem of reducing the purity of the final compound.
  • impurity C impurity C
  • N N,N-diisopropylethylamine
  • DIPEA N,N-diisopropylethylamine
  • the N,N-diisopropylethylamine is compared to 1 mole of the compound represented by Formula 1-5 It may be included in 0.01 to 0.2 mole. Within the above range, hydrochloric acid in the compound represented by Formula 1-5 may be effectively removed.
  • the reaction may be carried out at a temperature of -10 °C to 10 °C, preferably at a temperature of 0 °C or less, more preferably at a temperature of -10 °C or more and less than 0 °C.
  • a dimer (hereinafter, impurity B (ImpB)) of the compound represented by Formula 1 may be prepared by the reaction, and generation of such impurity B may be minimized when the reaction proceeds at a low temperature.
  • a reaction temperature of -10 to 0° C. more specifically, a reaction temperature of -8 to -3° C., is preferable in terms of impurity reduction and production yield. Accordingly, it is preferable to use the reactants and organic solvents used after cooling to a temperature of 0° C. or less, which are used to suppress the increase in the reaction temperature during the reaction.
  • the compound represented by Formula 1 may be isolated and purified, if necessary, including at least one of extraction, purification by vacuum concentration, and crystallization of the reaction product. In order to prepare a compound of high purity, it is preferable to sequentially perform all of the steps of extracting, purifying, and crystallizing the reaction product.
  • the step of extracting the product of the reaction using ethyl acetate may be further included.
  • the product of the reaction may be extracted using ethyl acetate and water. That is, the compound represented by Formula 1 may be extracted using ethyl acetate and water after completion of the reaction.
  • impurities having a relative retention time of less than 1.0 separated by high-performance liquid chromatography (HPLC) are removed. It can be effectively removed with a layer of water.
  • the extraction step with ethyl acetate may be performed at a pH of 6.5 to 7.5.
  • the pH is lower than 6.5, there is a risk of a decrease in yield, and when the pH is higher than 7.5, it may be difficult to remove impurities.
  • the extraction process with ethyl acetate may be carried out in the range of pH 7.0 to 7.5.
  • the step 3 dissolving the product of the reaction in tetrahydrofuran; mixing a solution containing phosphoric acid with the prepared solution; And it may further include a purification step of filtering the prepared mixture and then concentrating the filtrate under reduced pressure.
  • This vacuum concentration step is preferably performed after the extraction process with ethyl acetate.
  • the purification step may include dissolving the product extracted with ethyl acetate in tetrahydrofuran to prepare a solution; mixing a solution containing phosphoric acid with the solution to prepare a mixture in which a phosphate salt is produced; and filtering the mixture in which the phosphate is produced and then concentrating the filtrate under reduced pressure.
  • the phosphoric acid-containing solution phosphoric acid is dissolved in a tetrahydrofuran solvent, and in this case, the phosphoric acid may be dissolved in an amount of 0.05 to 0.5 moles relative to 1 mole of the compound represented by Formula 1-4.
  • the compound represented by Formula 1 and the compound represented by Formula 1-4 are combined (hereinafter, Impurity A (ImpA)) reacts with a phosphate anion (PO 4 3- ) to produce a phosphate, and the produced phosphate can be easily removed by filtration. content may be lowered.
  • step 3 may further include crystallizing the product of the reaction with ethyl acetate. This crystallization step is preferably performed after the purification process.
  • the crystallization step may be performed by adding ethyl acetate to the product concentrated under reduced pressure after the purification process and stirring at a temperature of about 20 to 40° C. for 30 minutes to 4 hours.
  • the reaction solution is dried under reduced pressure after completion of the reaction to obtain a final product, a compound represented by Chemical Formula 1-1.
  • Step 3 may proceed as follows:
  • the production method according to the present invention has the advantage that a heterocyclic amine derivative having a reduced impurity content can be prepared in high yield.
  • 2,6-dichloroisonicotinic acid (10.0 g, 1.0 eq) was dissolved in dimethylformamide (100.0 mL), and 1,1-carbonyldiimidazole (1.0 g, 1.2 eq) was added thereto. After stirring at room temperature (25-30 °C) for 1 hour under nitrogen gas, morpholine (5.4 mL, 1.2 eq) was added thereto, followed by stirring at the same temperature for 2 hours to complete the reaction. Ethyl acetate (200.0 mL) and water (200.0 mL) were added for extraction, and the aqueous layer was re-extracted three times using ethyl acetate (200.0 mL).
  • step a The compound represented by Formula 1-a (10.0 g, 1.0 eq) obtained in step a was dissolved in dichloromethane (100.0 mL), and then cooled to 0 to 10 °C under nitrogen gas.
  • 1M borane-tetrahydrofuran 115.0 mL, 3.0 eq
  • 6N-hydrochloric acid aqueous solution 256.0 mL, 20.0 eq
  • step b After dissolving the compound of formula 1-b obtained in step b (1.0 g, 1.0 eq) in 1,4-dioxane (10.0 mL), tris(dibenzylideneacetone)dipalladium(0)(465.8 mg) , 0.2 eq) and xanphos (1.5 g, 0.4 eq) were added.
  • the compound represented by Formula 1-1 (50.0 g, 1.0 eq), the compound represented by Formula 1-2 (16.7 g, 1.2 eq), and tris(dibenzylideneacetone)dipalladium obtained in Preparation Example in a flask (0) (11.1 g, 0.1 eq), 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (2,2′-bis(diphenylphosphino)-1,1′-binaphthyl; BINAP) (30.3 g, 0.4 eq), cesium carbonate (118.9 g, 3.0 eq), and 1000 mL of toluene 20 times the weight of the compound represented by Formula 1-1 were added and stirred at room temperature for 10 minutes.
  • the reaction was completed by stirring at a temperature range of 105 to 111 °C for 8 hours.
  • the catalyst and the formed inorganic salt were removed from the obtained residue through celite filtration.
  • the organic layer was concentrated under reduced pressure, 250 mL of purified water in a volume 5 times the weight of the compound represented by Formula 1-1, and ethyl acetic acid in a volume 20 times the weight of the compound represented by Formula 1-1 1000 mL was added to extract the organic layer.
  • the aqueous layer generated here was discarded.
  • the organic layer was concentrated under reduced pressure at 40-45° C. to prepare a compound represented by Chemical Formula 1-3, which was used subsequent to step 2 without further purification.
  • EA Ethyl acetate
  • 6N-HCl 250 mL, 5.0 eq
  • the aqueous layer was extracted, and 1000 mL of purified water (20 times the volume of the compound represented by Formula 1-1 (mL/g)) was added to the organic layer for secondary extraction.
  • 1000 mL of purified water (20 times the volume of the compound represented by Formula 1-1 (mL/g)) was added to the organic layer for secondary extraction.
  • N,N-diisopropylethylamine N,N-Diisopropylethylamine; DIPEA
  • DIPEA diisopropylethylamine
  • the formula 1-5 in 5 mL of THF cooled to -8 to -3 ° C.
  • a solution of the compound (1.1 mL, 1.05 eq) was added dropwise at an internal temperature of -8 to -3°C. This was stirred at -8 to -3 °C for 0.5 hours to complete the reaction.
  • the compound represented by Formula 1-3 (500.0 mg, 1.0 eq) obtained in Step 1 was dissolved in dichloromethane (10.0 mL), and then cooled to 0-10°C.
  • trichloroacetic acid (1.6 mL, 20.0 eq) was slowly added dropwise, followed by stirring for 1 hour.
  • the separated dichloromethane layer was dried over anhydrous sodium sulfate, and then concentrated under reduced pressure.
  • ethyl artesate (10.0 mL) was added to form crystals for 30 minutes.
  • the resulting crystals were filtered and dried to obtain 357.5 mg of the compound represented by Formula 1-4 (yield: 90.0%).
  • the compound represented by Formula 1-4 obtained in step 2 (350.0 mg, 1.0 eq) was dissolved in tetrahydrofuran (7.0 mL), water (7.0 mL) was added, and sodium bicarbonate (226.8 mg, 3.0 eq) was added. After addition, it was cooled to 0-10 °C.
  • the compound represented by Formula 1-4 obtained in step 2 (350.0 mg, 1.0 eq) was dissolved in tetrahydrofuran (7.0 mL), water (7.0 mL) was added, and sodium bicarbonate (226.8 mg, 3.0 eq) was added. After addition, it was cooled to 0-10 °C.
  • the compound represented by Formula 1-5 (73.1 ⁇ l. 1.0 eq) was slowly added dropwise, followed by stirring for 30 minutes to complete the reaction. This was layer-separated using dichloromethane, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • Ethyl acetate was added to the obtained residue in an amount (mL/g) 20 times the weight of the residue, followed by stirring at room temperature for 3 hours to form crystals. After filtration, the resulting crystals were dried under reduced pressure at room temperature, and dimethoxyethane was added thereto in an amount (mL/g) 15 times the weight of the crystals, dissolved under reflux, cooled slowly to room temperature, and stirred for 2 hours to form crystals. After filtration, it was dried under reduced pressure at room temperature to obtain 0.12 g of the compound represented by Formula 1 as the 6th material (yield 30.0%).
  • Ethyl acetate 5760.0 mL (amount of 20 times the volume of the compound represented by Formula 1-4 (mL/g)) and H 2 O 2880.0 mL (a volume of 10 times the weight of the compound represented by Formula 1-4) (mL/g)) was added, the pH was adjusted to 7.0-7.5 with 1N-HCl solution, and then the layers were separated twice. The separated organic layers were collected and dried over Na 2 SO 4 , and then concentrated under reduced pressure at an external temperature of 40°C.
  • THF 5184.0 mL (the amount of 18 times the volume of the compound represented by Formula 1-4 (mL/g) relative to the weight of the compound) was added thereto and dissolved. Thereafter, a solution of H 3 PO 4 (6.8 g, 0.095 eq) in 288.0 mL of THF was added dropwise, followed by stirring for 30 minutes. After removing salts by filtration with Celite, a solution of H 3 PO 4 (6.1 g, 0.085 eq) dissolved in THF 288.0 mL was added dropwise to the filtrate, followed by stirring for 30 minutes. The obtained residue was filtered through Celite to remove salt, and then concentrated under reduced pressure at an external temperature of 40°C.
  • N,N-diisopropylethylamine N,N-Diisopropylethylamine; DIPEA
  • DIPEA diisopropylethylamine
  • the inhibitory activity against BTK and ITK of the compound represented by Formula 1 prepared in the above Example was measured as follows.
  • Inhibitory activity evaluation for BTK was evaluated using Promega's 'ADP-GloTM + BTK Kinase enzyme system' kit.
  • 10 ⁇ l of BTK enzyme prepared to have a final concentration of 10 ng/ml and a final concentration of 1 uM for a single concentration evaluation of a compound, 1000, 200, 40, 8, 1.6, 0.32 for an IC 50 evaluation
  • 5 ⁇ l of nM concentration of the compound was mixed and reacted at room temperature for 15 minutes.
  • 5 ⁇ l of substrate and 5 ⁇ l of ATP prepared to have a final concentration of 10 uM were added to the reaction plate, and then reacted at 30° C. for 1 hour.
  • ITK Kinase enzyme system' kit 10 ⁇ l of the ITK enzyme prepared to have a final concentration of 4 ng/ml and a final concentration of 1 uM for single concentration evaluation and 1000, 200, 40, 8, 1.6, 0.32 nM for IC 50 evaluation 5 ⁇ l of the compound was mixed and reacted at room temperature for 15 minutes. 5 ⁇ l of substrate and 5 ⁇ l of ATP prepared to a final concentration of 25 uM were added to the reaction plate, and then reacted at 30° C. for 1 hour.
  • the inhibitory activity (BTK IC 50 ) of the compound represented by Formula 1 prepared in Examples was 0.4 nM to 1.4 nM, and the inhibitory activity to ITK (ITK IC 50 ) was 1.0 nM to 1.7 nM . Accordingly, it can be confirmed that the compound represented by Formula 1 exhibits an excellent effect of inhibiting the dual activity of BTK and ITK.
  • Impurity A having an RRT of 1.17 (ImpA): a compound represented by Formula 1 and a compound represented by Formula 1-4 combined)
  • Impurity B having an RRT of 1.37 (ImpB): a dimer of the compound represented by Formula 1
  • Impurity C having an RRT of 1.18 a compound in which HCl is added to a double bond of the compound represented by Formula 1, and a compound in which HCl is added to a double bond of acrylamide
  • Step 1 & 2 Step 3 total yield final purity transference number water transference number water
  • Reference Example 1 58.5% - 60.0% 98.00% 35.1% 98.00%
  • Reference Example 2 58.5% - 30.0% 98.00% 17.6% 98.00%
  • step 1 And Step 2 is made in-situ, and separation and purification of the compound are performed through crystallization, which is advantageous for industrial production, and it is confirmed that there is no decrease in yield compared to the process of Reference Example 1.
  • Example 1 in order to increase the final purity of the compound, compared to the process of Reference Example 2, in which the separation and purification of the compound by primary and secondary crystallization after the process of Reference Example 1 is additionally performed, the final yield is significantly higher. It can be seen that compounds can be prepared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

본 발명은 헤테로사이클릭아민 유도체의 제조 방법에 관한 것으로, 본 발명에 따른 제조 방법은, 불순물 함량이 저감된 헤테로사이클릭아민 유도체를 높은 수율로 제조할 수 있다는 이점이 있다.

Description

헤테로사이클릭아민 유도체의 제조 방법
관련 출원(들)과의 상호 인용
본 출원은 2020년 2월 26일자 한국 특허 출원 제10-2020-0023899호 및 2021년 2월 25일자 한국 특허 출원 제10-2021-0025655호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 헤테로사이클릭아민 유도체의 제조 방법에 관한 것이다.
ITK(Interleukin-2 Tyrosine Kinase)와 BTK(Bruton's Tyrosine Kinase)는 Tec(tyrosine kinase expressed in hepatocellular carcinoma), RLK(Resting Lymphocyte Kinase) 및 BMX(Bone-Marrow tyrosine kinase gene on chromosome X)와 함께 TEC 계열의 수용체를 가지지 않는 티로신 키나아제의 일종으로 다양한 면역 반응에 작용한다.
ITK는 T세포 뿐만 아니라 NK 세포와 mast세포에서 발현되며, IL-2, IL-4, IL-5, IL-10, IL-13 및 IL-17과 같은 중요한 사이토 카인의 생산 및 T- 세포 증식에 중요한 역할을 한다(Schaeffer et al. Nat. Immune 2001,2, 1183; Fowell et al. Immunity, 1999, 11, 399). T 세포는 TCR 신호전달에 의하여 활성화되며 활성화된 T세포는 염증성 사이토카인 생성, B 세포 및 마크로파지를 활성화시켜 RA와 같은 자가면역 질환을 유발한다(Sahu N. et al. Curr Top Med Chem. 2009, 9, 690). 기존에는 T세포가 Th1 세포로 활성화되어 RA 질환이 유발되는 것으로 알려졌으나 최근에 Th1 세포뿐만 아니라 Th17/Treg가 RA의 병인으로 작용된다고 보고되었다(J Leipe J. et al. Arthritis Rheum. 2010, 62, 2876). 또한 ITK는 기존에 천식 등 면역치료 약물 타겟으로 개발된 사례가 있으나 RA 치료제로 개발된 사례는 없다(Lo H. Y Expert Opin Ther Pat. 2010, 20, 459). 하지만 최근 ITK-/- 마우스를 통하여 Th17과 Treg 세포를 발생을 조절하는 것이 보고되어 RA 치료 타겟으로 충분한 가능성을 가지고 있다(Gomez-Rodriguez J. et al. J. Exp. Med. 2014, 211, 529).
ITK 저해제 PRN694을 이용한 연구에서, RA 질환의 대표적 염증성 사이토카인인 TNF-α가 감소하는 연구 등이 보고되어 ITK 저해를 통하여 Th17 발현을 조절하여 RA 치료제로 개발 가능성을 확인할 수 있었다(Zhong Y. ey al. THE JOURNAL OF BIOLOGICAL CHEMISTRY 2015, 290, 5960).
BTK는 초기 B-세포의 발달뿐만 아니라 성숙한 B-세포 활성화, 신호전달 및 생존의 조절제로서 기능한다. 상기 B-세포는 항원제시 세포(antigen-presenting cell)의 표면에 붙어 있는 항원을 인지하는 B 세포 수용체(B cell receptor; BCR)에 의해 신호가 전달되고 성숙한 항체 생성 세포로 활성화된다. 그러나, BCR에 의한 비정상적인 신호 전달은 비정상적인 B-세포 증식 및 병리학적 자가항체의 형성을 야기하게 되고, 이에 따라 암, 자가면역 및/또는 염증성 질환을 유도할 수 있다. 따라서, 비정상적인 B-세포의 증식에서, BTK가 결핍되는 경우 BCR에 의한 신호 전달이 차단될 수 있다. 이에 따라, BTK의 저해는 B-세포 매개 질병 과정을 차단할 수 있어, BTK 저해제의 사용은 B-세포 매개 질병의 치료를 위한 유용한 접근일 수 있다.
또한, BTK는 B-세포 외에도 질병과 관련될 수 있는 다른 세포들에 의해서도 발현될 수 있다. 일 예로, BTK는 골수 세포에서 Fc-감마 신호전달의 중요 구성 성분으로, 비만 세포(mast cell)에 의해 발현된다. 구체적으로 BTK-결핍 골수 유도된 비만 세포는 손상된 항원 유도된 탈과립을 나타내어, BTK 활성의 저해는 알레르기 및 천식과 같은 병리학적인 비만 세포 반응을 치료하는 데 유용한 것으로 알려져 있다(Iwaki et al. J. Biol. Chem. 2005 280:40261). 또한, BTK 활성이 없는 XLA 환자의 단핵구는 자극에 뒤따르는 TNF 알파 생성이 줄어들어, BTK 저해제에 의해 TNF 알파 매개 염증을 억제할 수 있음이 알려져 있다(Horwood et al. J. Exp. Med. 197:1603, 2003 참조).
현재 BTK 및 ITK를 이중 저해하는 물질로 개발된 사례는 없으나, BTK 저해제로서, WO2008/039218은 4-아미노피라졸로[3,4-d]피리미디닐피페리딘 유도체를 개시한 바 있으며, WO2015/061247은 피리딘, 피리미딘, 피라진 및 피리다진 화합물과 같은 헤테로 화합물을 개시한 바 있으며, WO2014/055934는 피리미디닐페닐아크릴아미드 유도체를 개시한 바 있다. ITK 저해제로서 WO2005/066335은 아미노벤즈이미다졸, WO2005/056785은 피리돈, WO2002050071은 아미노티아졸 유도체를 개시하였으며, 최근에 WO2014/036016는 벤즈이미다졸 유도체를 개시한 바 있다.
이에 본 발명자들은, 현재까지 보고된 BTK, ITK 저해제와는 상이한 화학 구조를 가진 헤테로사이클릭아민 유도체가 우수한 BTK 및 ITK 이중 활성 저해 효과를 나타낼 수 있음을 확인한 바 있다. 이에 신규한 헤테로사이클릭 아민 유도체를 제조할 수 있는 제조 방법을 예의 연구한 결과, 후술할 제조 방법을 사용하는 경우, 상업적으로 대량 생산이 가능하고, 나아가 전체적으로 수율이 향상되면서 불순물이 저감되는 제조 방법을 확인하여 본 발명을 완성하였다.
본 발명은 헤테로사이클릭아민 유도체의 제조 방법을 제공하기 위한 것이다.
상기 과제를 해결하기 위하여, 본 발명은 하기 반응식 1과 같은 제조 방법을 제공하며, 보다 구체적으로 하기의 단계를 포함하는 제조 방법을 제공한다:
1) 하기 화학식 1-1로 표시되는 화합물과 하기 화학식 1-2로 표시되는 화합물을 팔라듐 촉매 및 염기의 존재 하에 반응시켜, 하기 화학식 1-3으로 표시되는 화합물을 제조하는 단계;
2) 하기 화학식 1-3으로 표시되는 화합물을 산 존재 하에 반응시켜, 하기 화학식 1-4로 표시되는 화합물을 제조하는 단계; 및
3) 하기 화학식 1-4로 표시되는 화합물과 하기 화학식 1-5로 표시되는 화합물을 염기의 존재 하에 반응시켜, 하기 화학식 1로 표시되는 화합물을 제조하는 단계.
[반응식 1]
Figure PCTKR2021002440-appb-img-000001
이때, 상기 화학식 1로 표시되는 화합물은 Chirality에 따른 하기 3종의 화합물을 모두 포괄하는 개념으로 이해될 수 있다.
(1) (S)-1-(3-((6-((5-메틸티아졸-2-일)아미노)-4-(몰폴리노메틸)피리딘-2-일)아미노)피페리딘-1-일)프로프-2-엔-1-온
Figure PCTKR2021002440-appb-img-000002
(2) (R)-1-(3-((6-((5-메틸티아졸-2-일)아미노)-4-(몰폴리노메틸)피리딘-2-일)아미노)피페리딘-1-일)프로프-2-엔-1-온
Figure PCTKR2021002440-appb-img-000003
(3) 1-(3-((6-((5-메틸티아졸-2-일)아미노)-4-(몰폴리노메틸)피리딘-2-일)아미노)피페리딘-1-일)프로프-2-엔-1-온
Figure PCTKR2021002440-appb-img-000004
.
이하, 각 단계 별로 본 발명을 상세히 설명한다.
(단계 1)
상기 단계 1은, 상기 화학식 1-1로 표시되는 화합물과, 상기 화학식 1-2로 표시되는 화합물을 반응시켜, 상기 화학식 1-3으로 표시되는 화합물을 제조하는 단계로, 상기 반응은 아민 치환 반응으로 팔라듐 촉매 및 염기의 존재 하에서 수행된다.
이때, 상기 화학식 1-1로 표시되는 화합물 및 상기 화학식 1-2로 표시되는 화합물은 1:0.1 내지 1:2의 몰비로 사용될 수 있다. 구체적으로, 상기 화학식 1-1로 표시되는 화합물과 상기 화학식 1-2로 표시되는 화합물은 1:0.5 내지 1:1.7, 1:0.7 내지 1:1.5, 또는 1:0.9 내지 1:1.5의 몰비로 사용될 수 있다.
또한, 상기 팔라듐 촉매는 화합물 내 팔라듐(Pd)의 원자가(valency)가 0인 팔라듐(0) 촉매, 또는 원자가(valency)가 +2인 팔라듐(II) 촉매일 수 있다. 예를 들어, 상기 팔라듐 촉매로 트리스(디벤질리덴아세톤)디팔라듐(0), 테트라키스(트리페닐포스핀)팔라듐(O), 비스[트리스(2-메틸페닐)포스핀]팔라듐 및 팔라듐(II) 아세테이트로 구성되는 군으로부터 선택되는 1종 이상이 사용될 수 있다.
또한, 상기 단계 1의 반응에 사용되는 염기는 탄산세슘, 탄산 칼륨, 탄산 나트륨, 소듐 터트-부톡사이드 및 칼륨 터트-부톡사이드로 구성되는 군으로부터 선택되는 1종 이상일 수 있다. 이 중, 반응속도 및 수율 측면에서 탄산세슘을 사용하는 것이 바람직하다.
또한, 상기 반응은, 상기 팔라듐 촉매 및 상기 염기와 함께 포스핀계 화합물의 존재 하에서 수행될 수 있다. 상기 포스핀계 화합물로는 2,2'-비스(디페닐포스피노)-1,1'-비나프틸, 4,5-비스(디페닐포스피노)-9,9-디메틸잔텐, 2-(디사이클로헥실포스피노)-3,6-디메톡시-2,4'6'-트리이소프로필-1,1'-비페닐 및 디사이클로헥실포스피노-2',6'-디이소프로폭시비페닐로 구성되는 군으로부터 선택되는 1종 이상이 사용될 수 있다.
그리고, 상기 반응의 용매로는 아민 치환 반응에 대해 비활성을 나타내는 용매를 사용할 수 있다. 예를 들어, 톨루엔, 다이옥산, 디메틸포름아미드(DMF), 부틸알콜, 또는 디메틸아세트아미드(DMA C) 등의 용매가 사용될 수 있으나, 반응속도 및 수율 측면에서 톨루엔 및 디메틸아세트아미드(DMA C)가 바람직하다.
이때, 상기 용매는 상기 화학식 1-1로 표시되는 화합물의 중량 대비 10 배 내지 30 배의 부피의 양(mL/g), 보다 구체적으로는, 15 배 내지 25 배의 부피의 양(mL/g)으로 사용될 수 있다.
또한, 상기 반응은 80 내지 150℃의 온도에서 3 시간 내지 15 시간 동안 수행될 수 있다. 상술한 범위보다 낮은 온도 조건 및/또는 짧은 반응 시간 동안 반응을 수행하는 경우 반응이 충분히 진행되지 않아 제조 수율이 낮아질 수 있다. 또한, 상술한 범위보다 높은 온도 조건 및/또는 긴 반응 시간 동안 반응을 수행하더라도 제조 수율이 실질적으로 증가하지 않아, 공정 비용 측면에서 바람직하지 않다. 보다 구체적으로, 상기 반응은 90 내지 130℃의 온도에서 4 시간 내지 12 시간, 바람직하게는, 4 시간 내지 10 시간, 보다 바람직하게는 6 시간 내지 10 시간 동안 수행될 수 있다.
또한, 상기 반응은 상술한 팔라듐 촉매, 염기 및 포스핀계 화합물의 조합을 사용하는 경우에 마이크로웨이브 반응기의 사용 없이 통상적으로 알려진 반응기에서 진행될 수 있다. 이에 따라, 상기 화학식 1로 표시되는 화합물을 대량 생산하기 위한 공정으로 상기 단계 1)을 적용할 수 있다.
한편, 상기 반응이 종결된 이후에, 제조된 상기 화학식 1-3으로 표시되는 화합물을 정제하거나 분리하는 공정 없이, 단계 1과 후술하는 단계 2까지의 공정이 동일한 반응 용기 내에서 인-시츄(In-situ)로 이루어질 수 있다. 이와 같이, 상기 단계 1에서 화합물의 정제 및 분리 공정을 요하지 않으므로, 상기 단계 1을 포함하는 상기 화학식 1로 표시되는 화합물의 제조 방법은, 화합물의 산업적 대량 생산 측면에서 유리할 수 있다.
(단계 2)
상기 단계 2는, 상기 화학식 1-3으로 표시되는 화합물을 산 존재 하에 반응시켜, 상기 화학식 1-4로 표시되는 화합물을 제조하는 단계로, 산 존재 하에서 상기 화학식 1-3으로 표시되는 화합물의 피페리딘 고리에 치환되어 있는 보호기인, tert-부틸옥시카르보닐기를 제거시키는 단계이다.
상기 단계 2)의 반응에 사용되는 산으로는, 염산, 아세트산, 트리클로로아세트산, 또는 트리플루오로아세트산 등이 사용될 수 있다. 이 중, 수율 및 원가를 고려할 때 염산을 사용하는 것이 바람직하다.
상기 반응의 용매로는 아세트산에틸, 메틸알콜, 다이옥산, 또는 톨루엔 등의 용매가 사용될 수 있다.
또한, 상기 반응은 실온(room temperature)에서 30 분 내지 20 시간, 바람직하게는 30분 내지 4 시간 동안 수행될 수 있다. 보호기인 tert-부틸옥시카르보닐기의 제거 반응은 추가적인 열처리 없이도 쉽게 일어나는 반응에 해당하여 실온에서 진행될 수 있다. 다만, 반응 시간이 30 분 미만인 경우에는 반응이 충분히 진행되지 않을 수 있고, 반응 시간이 20 시간을 초과하는 경우에는 제조 수율이 실질적으로 증가하지 않아 상술한 반응 시간이 바람직하다.
한편, 상기 반응이 종결된 이후, 필요에 따라, 상기 화학식 1-4로 표시되는 화합물을 정제하기 위하여, 상기 반응의 생성물을 결정화하는 단계를 더 포함할 수 있다. 상기 결정화 단계에서는, 상기 반응의 생성물에 결정화 용매를 사용하여 결정화된 상기 화학식 1-4로 표시되는 화합물을 제조한다. 다시 말하여, 단계 2)는 상기 화학식 1-3으로 표시되는 화합물을 산 존재 하에 반응시킨 다음 반응의 생성물을 결정화하여, 상기 화학식 1-4로 표시되는 화합물을 제조하는 단계로 수행될 수 있다.
구체적으로, 상기 결정화 단계는 물에 의한 1차 결정화 및 메탄올에 의한 2차 결정화로 수행될 수 있다. 이와 같이, 상기 단계 2)의 반응 종결 후에 생성된 반응의 생성물을 물 및 메탄올에 의해 순차적으로 결정화하는 경우, 반응 후 남아있는 부산물인 팔라듐 촉매, 리간드, 아미노티아졸 잔류물 등을 효과적으로 제거할 수 있다. 이에 따라, 에틸 아세테이트와 같은 용매를 이용하여 슬러리 형태로 정제하는 공정이 비해, 고순도의 화합물을 높은 수율로 얻을 수 있다.
상기 물에 의한 1차 결정화 공정은, 상기 반응의 생성물에 물을 투입하여 약 0 내지 5℃ 온도에서 10분 내지 2 시간 동안 교반하여 수행될 수 있다. 또한, 상기 결정화는 수산화나트륨과 같은 염기의 존재하에, 반응물의 pH를 11 이상, 또는 12 이상으로 유지하면서 수행하는 것이 바람직하다. 상기 조건 하에서 결정이 생성되면, 반응 종료 후 반응액을 감압 여과하여 결정을 얻을 수 있다.
이때, 상기 물은 상기 화학식 1-1로 표시되는 화합물의 중량 대비 5 배 내지 30 배의 부피의 양(mL/g), 보다 구체적으로는, 5 배 내지 25 배의 부피의 양(mL/g)으로 사용될 수 있다.
다음으로, 얻어진 결정을 건조한 다음, 메탄올에 의한 2차 결정화 공정이 수행될 수 있다. 상기 메탄올에 의한 2차 결정화 공정은, 얻어진 결정에 메탄올을 투입하여 약 50 내지 80℃ 온도에서 10분 내지 2 시간 동안 교반하여 수행될 수 있다.
이때, 상기 메탄올은 상기 화학식 1-1로 표시되는 화합물의 중량 대비 5 배 내지 40 배의 부피의 양(mL/g), 보다 구체적으로는, 10 배 내지 35 배의 부피의 양(mL/g)으로 사용될 수 있다.
(단계 3)
상기 단계 3은, 상기 화학식 1-4로 표시되는 화합물과 상기 화학식 1-5로 표시되는 화합물을 반응시켜, 상기 화학식 1로 표시되는 화합물을 제조하는 단계이다. 상기 반응은 아미드화 반응으로 염기의 존재 하에서 수행하는 것이 바람직하다.
이때, 상기 화학식 1-4로 표시되는 화합물 및 상기 화학식 1-5로 표시되는 화합물은 1:0.5 내지 1:2.0의 몰비로 사용될 수 있다. 구체적으로, 상기 화학식 1-4로 표시되는 화합물과 상기 화학식 1-5로 표시되는 화합물은 1:0.5 내지 1:1.5, 1:0.7 내지 1:1.3, 또는 1:0.9 내지 1:1.1의 몰비로 사용될 수 있다.
상기 단계 3의 반응에 사용되는 염기로는, 탄산칼륨, 수산화나트륨, 수산화리튬, 수산화칼륨, 트리에틸아민, 디이소프로필아민, 디이소프로필에틸아민, 탄산수소나트륨, 탄산수소칼륨, 탄산세슘, 탄산나트륨, 메틸산나트륨 및 부티르산칼륨으로 구성되는 군으로부터 선택되는 1종 이상이 사용할 수 있다. 이 중, 반응 완결 및 부산물 생성 측면에서, 탄산칼륨, 탄산나트륨, 탄산수소나트륨, 또는 탄산수소칼륨을 사용하는 것이 바람직하다.
이러한 반응의 용매로는 테트라하이드로퓨란(THF) 및 물의 혼합 용매를 사용할 수 있다. 이때, 상기 테트라하이드로퓨란은 상기 화학식 1-4로 표시되는 화합물의 중량 대비 10 배 내지 40 배의 부피의 양(mL/g)으로 사용될 수 있고, 상기 물은 상기 화학식 1-4로 표시되는 화합물의 중량 대비 2 배 내지 10 배의 부피의 양(mL/g)으로 사용될 수 있다.
한편, 상기 화학식 1-5로 표시되는 화합물은 N,N-디이소프로필에틸아민 또는 트리에틸아민과 혼합된 상태로 투입될 수 있다. 상기 화학식 1-5로 표시되는 화합물인 아크릴로일 클로라이드는 화합물 내 잔류하는 소량의 염산이 존재한다. 이에 따라, 상기 염산이 반응에 참여하여 부산물로 화학식 1로 표시되는 화합물의 이중결합에 HCl이 첨가된 화합물 및 아크릴아미드의 이중결합에 HCl이 첨가된 화합물과 같은 불순물(이하, 불순물 C(ImpC))을 생성시켜, 최종 화합물의 순도를 저하시킨다는 문제점이 있었다. 그러나, 상기 화학식 1-5로 표시되는 화합물을 상기 N,N-디이소프로필에틸아민(N,N-Diisopropylethylamine; DIPEA)과 함께 테트라하이드로퓨란과 같은 용매에 용해시킨 용액 상태로 사용하는 경우, N,N-디이소프로필에틸아민또는 트리에틸아민에 의해 상기 화학식 1-5로 표시되는 화합물 내 잔류하는 소량의 염산이 미리 제거될 수 있어, 상기 불순물 C가 생성되지 않을 수 있다.
이때, 상기 화학식 1-5로 표시되는 화합물과 N,N-디이소프로필에틸아민이 혼합된 용액 내에, 상기 N,N-디이소프로필에틸아민은 상기 화학식 1-5로 표시되는 화합물 1몰 대비 0.01 내지 0.2 몰로 포함되어 있을 수 있다. 상술한 범위에서, 상기 화학식 1-5로 표시되는 화합물 내 염산이 효과적으로 제거될 수 있다.
또한, 상기 반응은 -10℃ 내지 10℃의 온도, 바람직하게는 0℃ 이하의 온도, 보다 바람직하게는 -10℃ 이상 0℃ 미만의 온도에서 수행될 수 있다. 상기 반응으로 화학식 1로 표시되는 화합물의 이합체(이하, 불순물 B(ImpB))가 제조될 수 있는데 저온으로 반응 진행시 이러한 불순물 B가 생성되는 것을 최소화할 수 있다. 구체적으로는, -10 내지 0℃의 반응 온도, 보다 구체적으로는 -8 내지 -3℃의 반응 온도가 불순물 저감 및 제조 수율 측면에서 바람직하다. 이에 따라, 상기 반응 중 반응 온도가 상승을 억제하기 위해 사용되는 반응물 및 유기용매 등 반응 시약은 모두 0℃ 이하의 온도로 냉각한 다음 사용하는 것이 바람직하다.
한편, 상기 반응이 종결된 이후, 필요에 따라, 반응 생성물을 추출, 감압 농축에 의한 정제 및 결정화하는 단계 중 적어도 하나를 포함하여, 상기 화학식 1로 표시된 화합물을 분리 및 정제할 수 있다. 높은 순도의 화합물의 제조를 위해서는, 상기 반응 생성물을 추출, 정제 및 결정화하는 단계 모두를 순차적으로 수행하는 것이 바람직하다.
구체적으로, 상기 단계 3의 반응이 종결된 이후, 상기 반응의 생성물을 에틸아세테이트를 이용하여 추출하는 단계를 더 포함할 수 있다. 구체적으로, 상기 반응의 생성물을 에틸아세테이트와 물을 이용하여 추출할 수 있다. 즉, 상기 화학식 1로 표시되는 화합물은 반응 종결 이후 에틸아세테이트 및 물을 이용하여 추출된 것일 수 있다. 이와 같이 추출하는 경우, 메틸렌클로라이드/물 혼합 용매를 사용하여 추출하는 경우에 비해, 고성능 액체 크로마토그래피(high-performance liquid chromatography; HPLC)로 분리되는 상대보존시간(relative retention time)이 1.0 미만인 불순물들을 물층으로 효과적으로 제거할 수 있다.
그리고, 상기 에틸아세테이트에 의한 추출 단계는 pH 6.5 내지 7.5에서 수행될 수 있다. 상기 pH가 6.5보다 낮은 경우, 수율이 저하되는 저하될 우려가, pH가 7.5보다 높은 경우 불순물의 제거가 어려울 수 있다. 보다 구체적으로는 상기 에틸아세테이트에 의한 추출 공정은 pH 7.0 내지 7.5의 범위에서수행될 수 있다
또한, 상기 단계 3은, 상기 반응의 생성물을 테트라하이드로퓨란에 용해시키는 단계; 제조된 용액에 인산 함유 용액을 혼합하는 단계; 및 제조된 혼합물을 여과후 여과물을 감압 농축하는 정제 단계를 더 포함할 수 있다. 이러한 감압 농축 단계는 상기 에틸아세테이트에 의한 추출 공정 이후 수행하는 것이 바람직하다.
다시 말하여, 상기 정제 단계는, 상기 에틸아세테이트에 의해 추출된 생성물을 테트라하이드로퓨란에 용해시켜 용액을 제조하는 단계; 상기 용액에 인산 함유 용액을 혼합하여, 인산염이 생성된 혼합물을 제조하는 단계; 및 상기 인산염이 생성된 혼합물을 여과후 여과물을 감압 농축하는 단계로 이루어질 수 있다.
상기 인산 함유 용액은, 테트라하이드로퓨란 용매에 인산이 용해되어 있는 것으로, 이때, 상기 인산은 상기 화학식 1-4로 표시되는 화합물 1몰 대비 0.05 내지 0.5 몰로 용해되어 있을 수 있다. 상술한 범위의 인산이 포함된 인산 함유 용액을 생성물에 투입하는 경우, 반응 중 생성되는 화학식 1로 표시되는 화합물과 화학식 1-4로 표시되는 화합물이 결합된 화합물(이하, 불순물 A(ImpA))가 인산 음이온(PO 4 3-)과 반응하여 인산염을 생성시키게 되는 데, 생성된 인산염은 여과하여 손쉽게 제거될 수 있어, 최종 제조되는 화학식 1로 표시되는 화합물 내의 불순물 A의 함량이 낮아질 수 있다.
또한, 상기 단계 3은, 상기 반응의 생성물을 에틸아세테이트에 의해 결정화하는 단계를 더 포함할 수 있다. 이러한 결정화 단계는 상기 정제 공정 이후 수행하는 것이 바람직하다.
다시 말하여, 상기 결정화 단계는, 상기 정제 공정 이후, 감압 농축된 생성물에 에틸아세테이트를 투입하여 약 20 내지 40℃ 온도에서 30 분 내지 4 시간 동안 교반하여 수행될 수 있다. 상기 조건 하에서 결정이 생성되면, 반응 종료 후 반응액을 감압 건조하여, 최종 생성물인 화학식 1-1로 표시되는 화합물을 얻을 수 있다.
즉, 상기 단계 3의 반응 생성물을 추출, 정제 및 결정화하는 단계 모두를 순차적으로 수행하여 상기 화학식 1로 표시되는 화합물을 제조하는 경우, 상기 단계 3은 하기와 같은 단계로 진행될 수 있다:
상기 화학식 1-4로 표시되는 화합물과 하기 화학식 1-5로 표시되는 화합물을 염기의 존재 하에 반응시키는 단계;
상기 반응 생성물을 에틸아세테이트를 이용하여 추출하는 단계;
상기 에틸아세테이트에 의해 추출된 생성물을 테트라하이드로퓨란에 용해시켜 용액을 제조하는 단계, 상기 용액에 인산 함유 용액을 혼합하여, 인산염이 생성된 혼합물을 제조하는 단계, 및 상기 인산염이 생성된 혼합물을 여과 후 여과물을 감압 농축하는 단계; 및
상기 감압 농축물을 에틸아세테이트에 의해 결정화하는 단계.
이와 같이, 반응 이후 추가적인 추출, 정제 및 결정화하는 단계를 거치는 경우, RRT가 1.0 미만인 불순물(RRT<1.0), 불순물 A(ImpA), 불순물 B(ImpB) 및 불순물 C(ImpC)의 함량이 현저히 낮은 고순도의 화학식 1로 표시되는 화합물을 제조할 수있고, 이는 후술하는 실시예 및 참조예의 비교에서 확인 가능하다.
상술한 바와 같이, 본 발명에 따른 제조 방법은, 불순물 함량이 저감된 헤테로사이클릭아민 유도체를 높은 수율로 제조할 수 있다는 이점이 있다.
이하, 하기 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다. 또한, 하기에서 당량(eq)은 각 단계에서 진행되는 반응에서의 출발 물질 대비 몰 수를 의미하는 것으로 이해될 수 있다.
제조예: 화학식 1-1로 표시되는 화합물((S)-tert-부틸 3-((6-클로로-4-(몰폴리노메틸)피리딘-2-일)아미노)피페리딘-1-카복실레이트)의 제조
Figure PCTKR2021002440-appb-img-000005
(단계 a)
2,6-디클로로이소니코틴산(10.0 g, 1.0 eq)을 디메틸포름아미드(100.0 mL)에 용해시킨 후, 1,1-카보닐디이미다졸(1.0 g, 1.2 eq)을 가하였다. 질소 가스 하에서 1시간 실온(25~30 ℃) 교반한 후, 몰폴린(5.4 mL, 1.2 eq)을 가하고 2시간 동일 온도에서 교반하여 반응을 완결시켰다. 에틸아세테이트(200.0 mL)와 물(200.0 mL)을 가하여 추출하고 물층을 에틸아세테이트(200.0 mL)를 이용해서 3회 재추출하였다. 에틸아세테이트층은 무수황산나트륨상에서 건조한 다음, 감압 농축하였다. 얻어진 잔사를 컬럼 크로마토그래피(에틸아세테이트:헥산 = 1:5)로 정제하여 화학식 1-a로 표시되는 화합물인, (2,6-디클로로피리딘-4-일)(몰폴리노)메탄온(13.0 g, 93.0 %)을 수득하였다.
1H-NMR (500 MHz, CDCl 3): 7.27(s, 2H), 3.77(m, 4H) 3.65(m, 2H), 3.37(m, 2H)
(단계 b)
단계 a에서 수득한 화학식 1-a로 표시되는 화합물(10.0 g, 1.0 eq)을 디클로로메탄(100.0 mL)에 용해시킨 후, 질소 가스 하에서 0 내지 10 ℃로 냉각하였다. 여기에, 1M 보란-테트로하이드로퓨란(115.0 mL, 3.0 eq)을 천천히 적가한 후, 실온에서 12 시간 교반하여 반응을 완결시켰다. 반응액을 0 ~ 10 ℃ 로 냉각한 후, 6N-염산 수용액(256.0 mL, 20.0 eq)을 천천히 적가한 후, 같은 온도에서 1시간 교반하였다. 10N-수산화나트륨 수용액을 이용하여 pH 9 내지 pH 12 로 조절한 후, 디클로로메탄으로 2회 추출하였다. 디클로로메탄층은 분리하여 무수황산나트륨상에서 건조한 다음, 감압 농축하였다. 얻어진 잔사를 컬럼 크로마토그래피(에틸아세테이트:헥산 = 1:1)로 정제하여 화학식 1-b로 표시되는 화합물인, 4-((2,6-디클로로피리딘-4-일)메틸)몰폴린(8.1 g, 수율 90.0 %)을 수득하였다.
1H-NMR (500 MHz, CDCl 3): 7.27(s, 2H), 3.72(m, 4H) 3.46(s, 2H), 2.45(m, 4H)
(단계 c)
단계 b에서 수득한 화학식 1-b로 표시되는 화합물(1.0 g, 1.0 eq)을 1,4-다이옥산(10.0 mL)에 용해시킨 후, 트리스(디벤질리덴아세톤)디팔라듐(0)(465.8 mg, 0.2 eq) 및 잔포스(1.5 g, 0.4 eq)를 투입하였다. 여기에, 화학식 1-c로 표시되는 화합물인 (S)-tert-부틸 3-아미노피페리딘-1-카르복실레이트(780.0 ㎕, 1.0 eq)을 가한 후, 탄산나트륨(1.3 g, 3.0 eq)을 투입한 후, 12시간 환류하여 반응을 완결시켰다. 이를 30℃ 이하로 냉각한 후, 물(20.0 mL)와 에틸아세테이트(20.0 mL)를 가한 후, 층분리하였다. 에틸아세테이트층은 무수황산나트륨상에서 건조한 다음, 감압 농축하였다. 얻어진 잔사를 컬럼 크로마토그래피(에틸아세테이트:헥산 = 1:1)로 정제하여 화학식 1-1로 표시되는 화합물인, (S)-tert-부틸 3-((6-클로로-4-(몰폴리노메틸)피리딘-2-일)아미노)피페리딘-1-카복실레이트(900.0 mg, 수율 54.1 %)를 수득하였다.
1H-NMR (500 MHz, CDCl 3): 6.63(s, 1H), 6.31(s, 1H), 4.66-4.65(m,1H), 3.84-3.82(m, 1H) 3.75-3.70(m, 5H), 3.59-3.54(m, 1H), 3.37(s, 2H), 3.27-3.23(m, 2H), 2.46(t, 4H), 1.98-1.94(m, 1H), 1.73(s, 1H), 1.63-1.56(m, 2H), 1.50(s, 9H)
실시예: (S)-1-(3-((6-((5-메틸티아졸-2-일)아미노)-4-(몰폴리노메틸)피리딘-2-일)아미노)피페리딘-1-일)프로프-2-엔-1-온의 제조
Figure PCTKR2021002440-appb-img-000006
(단계 1)
플라스크에 제조예에서 수득한 상기 화학식 1-1로 표시되는 화합물(50.0 g, 1.0 eq), 상기 화학식 1-2로 표시되는 화합물(16.7 g, 1.2 eq), 트리스(디벤질리덴아세톤)디팔라듐(0) (11.1 g, 0.1 eq), 2,2′-비스(디페닐포스피노)-1,1′-비나프틸(2,2′-bis(diphenylphosphino)-1,1′-binaphthyl; BINAP)(30.3 g, 0.4 eq), 탄산세슘(118.9 g, 3.0 eq) 및 상기 화학식 1-1로 표시되는 화합물의 중량 대비 20 배의 부피의 톨루엔 1000 mL를 투입하고 실온에서 10분간 교반하였다. 상기 플라스크 내부온도를 110℃로 승온한 후 105~111℃ 온도 범위에서 8 시간 교반하여 반응을 완결하였다. 얻어진 잔사에서 celite 여과를 통해 촉매 및 생성된 무기염을 제거하였다. 이후, 유기층을 감압 농축하고, 여기에 상기 화학식 1-1로 표시되는 화합물의 중량 대비 5 배의 부피의 정제수 250 mL, 상기 화학식 1-1로 표시되는 화합물의 중량 대비 20 배의 부피의 에틸 아세트산 1000 mL를 투입하여 유기층을 추출하였다. 여기서 발생된 수층은 폐기하였다. 그 다음, 40~45℃에서 유기층을 감압 농축하여, 상기 화학식 1-3으로 표시되는 화합물을 제조하였고, 이를 추가 정제 없이 하기 단계 2에 이어서 사용하였다.
1H-NMR (500 MHz, DMSO): 10.51(s, 1H), 6.93(s, 1H) 6.40(s, 1H), 6.06(s, 1H), 5.98(s, 1H), 4.01(s, 2H), 3.55(s, 5H), 3.21(s, 4H), 2.32(s, 4H), 2.24(s, 3H), 1.97(s, 1H), 1.72(s, 1H), 1.32(br s, 2H),1.15(s, 9H)
(단계 2)
상기 단계 1에서 제조한 화학식 1-3으로 표시되는 화합물에 에틸아세테이트(Ethyl acetate; EA) 500 mL 및 6N-HCl(250 mL, 5.0 eq)을 투입한 후 실온에서 2 시간 교반하여, 반응을 완결시켰다.
물 및 메탄올에 의한 결정화 공정
이어서, 물층을 추출하고, 유기층에 정제수 1000 mL(화학식 1-1로 표시되는 화합물의 중량 대비 20 배의 부피의 양(mL/g))를 투입하여 2차 추출하였다. 1차 및 2차에서 얻어진 물층을 합쳐서 ice-bath를 사용하여 내부온도 0~5 ℃를 유지하며, 약 30 분간 4N-NaOH 700 mL(화학식 1-1로 표시되는 화합물의 중량 대비 14 배의 부피의 양(mL/g))을 투입하여 pH 12 이상을 유지한 상태에서 30분 동안 교반하였다. 이에 따라 생성된 결정을 감압 여과하고, 그 여과물을 정제수 500 mL(화학식 1-1로 표시되는 화합물의 중량 대비 10 배의 부피의 양(mL/g))를 및 헥산 500 mL(화학식 1-1로 표시되는 화합물의 중량 대비 10 배의 부피의 양(mL/g))로 세척하였다. 이때 세척된 여과물을 건조기에 넣은 후, 40~45℃의 온도에서 12 시간 이상 진공 건조한 다음 메탄올 1.65 L(화학식 1-1로 표시되는 화합물의 중량 대비 33 배의 부피의 양(mL/g))에 투입하여 내부온도 65℃에서 약 30분간 교반후 실온으로 냉각하였다. 이에 따라 생성된 결정을 감압 여과하고 얻어진 여과물을 건조기에 넣은 후, 40~45℃의 온도에서 12시간 이상 진공 건조하여, 상기 화학식 1-4로 표시되는 화합물 28.5 g을 수득하였다(수율: 60.3%(단계 1 및 2 포함)).
1H-NMR (500 MHz, DMSO): 10.47 (s, 1H), 6.93(s, 1H) 6.28(d, 1H), 6.02(s, 1H), 5.94(s, 1H), 3.91(s, 1H), 3.56 (s, 4H), 3.20 (s, 2H), 3.06 (d, 1H), 2.79 (d, 1H), 2.44-2.42 (m, 1H), 2.37-2.34 (m, 1H), 2.32(s, 3H), 2.28(s, 4H), 2.03-2.01(m, 2H), 1.63-1.60(m, 1H), 1.44-1.42 (m, 1H), 1.30-1.28 (m, 1H)
(단계 3)
상기 단계 2에서 제조한 화학식 1-4로 표시되는 화합물(5.0 g, 1.0 eq)에 THF 90.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 18 배의 부피의 양(mL/g)) 및 H 2O 20.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 4 배의 부피의 양(mL/g))을 가하여 실온에서 용액을 제조하였다. 이후, 외부 온도 -8~-5℃ bath(ice, H 2O, MeOH 혼합)를 이용하여 내부 온도를 -8~-3℃ 로 냉각시킨 후, K 2CO 3(2.6 g, 1.5 eq)을 가하여 용해시켰다. 여기에, -8~-3℃ 로 냉각한 THF 5 mL에 N,N-디이소프로필에틸아민(N,N-Diisopropylethylamine; DIPEA)(111.5 ㎕. 0.05 eq)과 상기 화학식 1-5로 표시되는 화합물(1.1 mL, 1.05 eq)을 혼합한 용액을 내부 온도 -8~-3℃에서 적가하였다. 이를, -8~-3℃에서 0.5시간 교반하여 반응을 완결시켰다.
에틸아세테이트에 의한 추출 공정
반응이 완결된 반응 용기에, -8~-3℃ 온도의 에틸아세테이트 100.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 20 배의 부피의 양(mL/g))와 포화된 NH 4Cl 수용액 50.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 10 배의 부피의 양(mL/g))을 가한 후, 층분리하여 유기층만을 분리하였다. 이후, 수층에 -8~-3℃ 온도의 에틸아세테이트 50.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 10 배의 부피의 양(mL/g))를 가하여 재추출한 후, 유기층만을 모아 외부 온도 35℃에서 감압 농축하였다. -8~-3℃ 온도의 에틸아세테이트 100.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 20 배의 부피의 양(mL/g))와 0~5℃ 온도의 H 2O 50.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 10 배의 부피의 양(mL/g))를 가한 후, 1N-HCl 용액으로 pH 7.0~7.5가 되도록 조절한 후, 2회 층분리하였다. 분리된 유기층을 모아 Na 2SO 4 로 건조한 후, 외부 온도 35℃에서 감압 농축하였다.
인산(H 3PO 4) 에 의한 정제 공정
여기에, -8~-3℃ 온도의 THF 90.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 18 배의 부피의 양(mL/g))를 투입하고 용해되도록 하였다. 이후, H 3PO 4(9.3 g, 0.095 eq)를 -8~-3℃ 온도의 THF 5.0 mL에 용해시킨 용액을 -8~-3℃ 온도에서 적가한 다음, 이를 30분동안 교반하였다. Celite 여과하여 염을 제거한 후, 여액에 H 3PO 4(8.3 g, 0.085 eq)를 -8~-3℃ 온도의 THF 5.0 mL에 용해시킨 용액을 적가한 다음, 이를 -8~-3℃ 에서 30분 동안 교반하였다. 얻어진 잔사를 Celite 여과하여 염을 제거한 후, 여과물을 외부 온도 35℃에서 감압 농축하였다. -8~-3℃ 온도의 메틸렌 클로라이드(MC) 25.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 5 배의 부피의 양(mL/g))와 0~5℃ 온도의 H 2O 10.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 2 배의 부피의 양(mL/g))를 가하여 pH 9.0~9.5로 조절한 다음 유기층을 분리하였다. 분리된 유기층에 Na 2SO 4를 가하여 건조한 후, 외부 온도 35℃에서 감압 농축하였다.
에틸아세테이트에 의한 결정화 공정
여기에, 에틸아세테이트 75.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 15 배의 부피의 양(mL/g))를 가한 후, 결정이 생성되면, 20~30℃에서 2시간 교반하고 여과하였다. 여과물을 실온에서 12 시간 동안 감압 건조하여, 상기 화학식 1로 표시되는 화합물인, (S)-1-(3-((6-((5-메틸티아졸-2-일)아미노)-4-(몰폴리노메틸)피리딘-2-일)아미노)피페리딘-1-일)프로프-2-엔-1-온 3.4 g을 수득하였다(수율 60.0%).
1H NMR(500 MHz, DMSO): 10.57(m, 1H), 6.91-6.90(m, 1H), 6.80-6.85(m, 0.5H), 6.70-6.40(m, 1.5H), 6.10-5.96(m, 3H), 5.65-5.63(d, 0.5H), 5.42-5.40(d, 0.5H), 4.42-4.40(m, 0.5H), 4.10-4.0(m, 1H), 3.90-3.87(m, 1.5H), 3.56(m, 4H), 3.20(s, 2H), 3.14-3.10(m, 1H), 2.68-2.63(m, 0.5H), 2.32(m, 4H), 2.19(s, 3H), 1.90-2.0(m, 1H), 1.80(m, 1H), 1.50-1.40(m, 2.5H)
참조예 1
Figure PCTKR2021002440-appb-img-000007
(단계 1)
제조예에서 수득한 상기 화학식 1-1로 표시되는 화합물(730.0 mg, 1.0 eq)을 1,4-다이옥산(14.0 mL)에 용해하였다. 팔라듐아세테이트(40.0 mg, 0.1 eq), 잔포스(204.7 mg, 0.2 eq), 상기 화학식 1-2로 표시되는 화합물(203.6 mg, 1.0 eq), 탄산세슘(1.7 g, 3.0 eq)를 차례로 가하였다. 마이크로웨이브 반응기에서 150 ℃, 30분 반응시켰다. 30℃ 이하로 냉각한 후, 물(15.0 mL)과 에틸아세테이트(15.0 mL)를 가한 후, 층분리하였다. 에틸아세테이트층은 무수황산나트륨상에서 건조한 다음, 감압 농축하였다. 얻어진 잔사를 컬럼 크로마토그래피(EA 100%)로 정제하여 상기 화학식 1-3으로 표시되는 화합물 564.0 mg을 수득하였다(수율 65.0 %).
1H-NMR (500 MHz, DMSO): 10.51(s, 1H), 6.93(s, 1H) 6.40(s, 1H), 6.06(s, 1H), 5.98(s, 1H), 4.01(s, 2H), 3.55(s, 5H), 3.21(s, 4H), 2.32(s, 4H), 2.24(s, 3H), 1.97(s, 1H), 1.72(s, 1H), 1.32(br s, 2H),1.15(s, 9H)
(단계 2)
상기 단계 1에서 수득한 화학식 1-3으로 표시되는 화합물(500.0 mg, 1.0 eq)을 다이클로로메탄(10.0 mL)에 용해한 후, 0~10℃로 냉각하였다. 여기에, 트리클로로아세트산(1.6 mL, 20.0 eq)을 천천히 적가한 후, 1시간 동안 교반하였다. 이후, 12N-수산화나트륨 수용액을 이용하여 pH 9~12로 조절한 후, 분리된 다이클로로메탄층은 무수황산나트륨상에서 건조한 다음, 감압 농축하였다. 얻어진 잔사에 에틸아테세이트(10.0 mL)를 가하여 30분 동안 결정을 생성시켰다. 생성된 결정을 여과한 후, 건조하여 상기 화학식 1-4로 표시되는 화합물 357.5 mg을 수득하였다(수율: 90.0 %).
1H-NMR (500 MHz, DMSO): 10.47 (s, 1H), 6.93(s, 1H) 6.28(d, 1H), 6.02(s, 1H), 5.94(s, 1H), 3.91(s, 1H), 3.56 (s, 4H), 3.20 (s, 2H), 3.06 (d, 1H), 2.79 (d, 1H), 2.44-2.42 (m, 1H), 2.37-2.34 (m, 1H), 2.32(s, 3H), 2.28(s, 4H), 2.03-2.01(m, 2H), 1.63-1.60(m, 1H), 1.44-1.42 (m, 1H), 1.30-1.28 (m, 1H)
(단계 3)
상기 단계 2에서 수득한 화학식 1-4로 표시되는 화합물(350.0 mg, 1.0 eq)을 테트라하이드로퓨란(7.0 mL)에 용해한 후, 물(7.0 mL)을 가하고 중탄산 나트륨(226.8 mg, 3.0 eq)을 가한 후, 0~10℃로 냉각하였다. 상기 화학식 1-5로 표시되는 화합물(73.1 ㎕. 1.0 eq )을 천천히 적가한 후, 30분 동안 교반하여 반응을 완결시켰다. 이를, 다이클로로메탄을 사용하여 층분리한 후, 무수황산나트륨상에서 건조하고 감압 농축하였다. 얻어진 잔사를 컬럼 크로마토그래피(다이클로로메탄:메탄올 = 15:1)로 정제하여 상기 화학식 1로 표시되는 화합물 318.0 mg을 수득하였다(수율: 60.0%).
1H NMR(500 MHz, DMSO): 10.57(m, 1H), 6.91-6.90(m, 1H), 6.80-6.85(m, 0.5H), 6.70-6.40(m, 1.5H), 6.10-5.96(m, 3H), 5.65-5.63(d, 0.5H), 5.42-5.40(d, 0.5H), 4.42-4.40(m, 0.5H), 4.10-4.0(m, 1H), 3.90-3.87(m, 1.5H), 3.56(m, 4H), 3.20(s, 2H), 3.14-3.10(m, 1H), 2.68-2.63(m, 0.5H), 2.32(m, 4H), 2.19(s, 3H), 1.90-2.0(m, 1H), 1.80(m, 1H), 1.50-1.40(m, 2.5H)
참조예 2
Figure PCTKR2021002440-appb-img-000008
(단계 1 및 2)
상기 실시예에서 제조한 단계 1 및 2와 동일한 방법을 사용하여, 상기 화학식 1-4로 표시되는 화합물을 제조하였다.
(단계 3)
상기 단계 2에서 수득한 화학식 1-4로 표시되는 화합물(350.0 mg, 1.0 eq)을 테트라하이드로퓨란(7.0 mL)에 용해한 후, 물(7.0 mL)을 가하고 중탄산 나트륨(226.8 mg, 3.0 eq)을 가한 후, 0~10℃로 냉각하였다. 상기 화학식 1-5로 표시되는 화합물(73.1 ㎕. 1.0 eq )을 천천히 적가한 후, 30분 동안 교반하여 반응을 완결시켰다. 이를, 다이클로로메탄을 사용하여 층분리한 후, 무수황산나트륨상에서 건조하고 감압 농축하였다. 얻어진 잔사에 에틸아세테이트를 잔사 중량 대비 20 배의 부피의 양(mL/g)만큼 가한 후, 실온에서 3시간 교반하여 결정을 생성시켰다. 생성된 결정을 여과 후, 실온에서 감압 건조한 다음, 여기에 디메톡시에탄을 결정 중량 대비 15배의 부피의 양(mL/g)만큼 가한 후, 환류하여 용해하고 실온으로 서서히 냉각 후, 2시간 교반하여 결정을 생성시켰다. 이를 여과 후, 실온 감압 건조하여 6번 물질을 상기 화학식 1로 표시되는 화합물 0.12 g을 수득하였다(수율 30.0%)
1H NMR(500 MHz, DMSO): 10.57(m, 1H), 6.91-6.90(m, 1H), 6.80-6.85(m, 0.5H), 6.70-6.40(m, 1.5H), 6.10-5.96(m, 3H), 5.65-5.63(d, 0.5H), 5.42-5.40(d, 0.5H), 4.42-4.40(m, 0.5H), 4.10-4.0(m, 1H), 3.90-3.87(m, 1.5H), 3.56(m, 4H), 3.20(s, 2H), 3.14-3.10(m, 1H), 2.68-2.63(m, 0.5H), 2.32(m, 4H), 2.19(s, 3H), 1.90-2.0(m, 1H), 1.80(m, 1H), 1.50-1.40(m, 2.5H)
참조예 3
Figure PCTKR2021002440-appb-img-000009
(단계 1 및 2)
상기 실시예에서 제조한 단계 1 및 2와 동일한 방법을 사용하여, 상기 화학식 1-4로 표시되는 화합물을 제조하였다.
(단계 3)
상기 단계 2에서 제조한 화학식 1-4로 표시되는 화합물(2.34 g, 1.0 eq)에 THF 46.8 mL(화학식 1-4로 표시되는 화합물의 중량 대비 20 배의 부피의 양(mL/g)) 및 H 2O 9.4 mL(화학식 1-4로 표시되는 화합물의 중량 대비 4 배의 부피의 양(mL/g))을 가하여 실온에서 용액을 제조하였다. 이후, 외부 온도 0~5℃ bath(ice, H 2O 혼합)를 이용하여 내부 온도를 0~5℃로 냉각시킨 후, NaHCO 3(1.51 g, 3.0 eq)을 가하여 용해시켰다. 여기에, 상기 화학식 1-5로 표시되는 화합물(0.51 mL, 1.05 eq)를 혼합한 용액을 내부 온도 0~5℃에서 적가하였다. 이를, 0~5℃에서 0.5시간 교반하여 반응을 완결시켰다.
에틸아세테이트에 의한 추출 공정
반응이 완결된 반응 용기에, 에틸아세테이트 46.8 mL(화학식 1-4로 표시되는 화합물의 중량 대비 20 배의 부피의 양(mL/g))와 H 2O 23.4 mL(화학식 1-4로 표시되는 화합물의 중량 대비 10 배의 부피의 양(mL/g))을 가한 후, 층분리하여 유기층만을 분리하였다. 이후, 수층에 에틸아세테이트 23.4 mL(화학식 1-4로 표시되는 화합물의 중량 대비 10 배의 부피의 양(mL/g))를 가하여 재추출한 후, 유기층만을 모아 외부 온도 40℃에서 감압 농축하였다. 에틸아세테이트 46.8 mL(화학식 1-4로 표시되는 화합물의 중량 대비 20 배의 부피의 양(mL/g))와 H 2O 23.4 mL(화학식 1-4로 표시되는 화합물의 중량 대비 10 배의 부피의 양(mL/g))를 가한 후, 1N-HCl 용액으로 pH 7.0~7.5이 되도록 조절한 후, 2회 층분리하였다. 분리된 유기층을 모아 Na 2SO 4 로 건조한 후, 외부 온도 40℃에서 감압 농축하였다.
에틸아세테이트에 의한 결정화 공정
여기에, 에틸아세테이트 46.8 mL(화학식 1-4로 표시되는 화합물의 중량 대비 20 배의 부피의 양(mL/g))를 가한 후, 결정이 생성되면, 20~30℃ 에서 2시간 교반하고 여과하였다. 여과물을 실온에서 12 시간 동안 감압 건조하여, 상기 화학식 1로 표시되는 화합물인, (S)-1-(3-((6-((5-메틸티아졸-2-일)아미노)-4-(몰폴리노메틸)피리딘-2-일)아미노)피페리딘-1-일)프로프-2-엔-1-온 1.75 g을 수득하였다(수율 68.9%).
디메톡시에탄에 의한 결정화 공정
에틸아세테이트에 의한 결정 0.5 g 에 디메톡시에탄 7.5 mL(에틸아세테이트에 의한 결정의 중량 대비 15 배의 부피의 양(mL/g))를 가한 후, 50~60℃ 에서 용해시킨 후, 20~30℃ 로 자연 냉각 시켜 결정을 생성시켰다. 결정 생성 후, 20~30℃ 에서 2시간 교반하고 여과하였다. 여과물은 여과물을 실온에서 12 시간 동안 감압 건조하여, 상기 화학식 1로 표시되는 화합물인, (S)-1-(3-((6-((5-메틸티아졸-2-일)아미노)-4-(몰폴리노메틸)피리딘-2-일)아미노)피페리딘-1-일)프로프-2-엔-1-온 0.25 g을 수득하였다(수율 35%).
1H NMR(500 MHz, DMSO): 10.57(m, 1H), 6.91-6.90(m, 1H), 6.80-6.85(m, 0.5H), 6.70-6.40(m, 1.5H), 6.10-5.96(m, 3H), 5.65-5.63(d, 0.5H), 5.42-5.40(d, 0.5H), 4.42-4.40(m, 0.5H), 4.10-4.0(m, 1H), 3.90-3.87(m, 1.5H), 3.56(m, 4H), 3.20(s, 2H), 3.14-3.10(m, 1H), 2.68-2.63(m, 0.5H), 2.32(m, 4H), 2.19(s, 3H), 1.90-2.0(m, 1H), 1.80(m, 1H), 1.50-1.40(m, 2.5H)
참조예 4
Figure PCTKR2021002440-appb-img-000010
(단계 1 및 2)
상기 실시예에서 제조한 단계 1 및 2와 동일한 방법을 사용하여, 상기 화학식 1-4로 표시되는 화합물을 제조하였다.
(단계 3)
상기 단계 2에서 제조한 화학식 1-4로 표시되는 화합물(288.0 g, 1.0 eq)에 THF 5760.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 20 배의 부피의 양(mL/g)) 및 H 2O 1152.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 4 배의 부피의 양(mL/g))을 가하여 실온에서 용액을 제조하였다. 이후, 외부 온도 0~5℃ bath(ice, H 2O 혼합)를 이용하여 내부 온도를 0~5℃로 냉각시킨 후, NaHCO 3(186.0 g, 3.0 eq)을 가하여 용해시켰다. 여기에, 상기 화학식 1-5로 표시되는 화합물(63.0 mL, 1.05 eq)를 혼합한 용액을 내부 온도 0~5℃에서 적가하였다. 이를, 0~5℃에서 0.5 시간 교반하여 반응을 완결시켰다.
에틸아세테이트에 의한 추출 공정
반응이 완결된 반응 용기에, 에틸아세테이트 5760.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 20 배의 부피의 양(mL/g))와 H 2O 2880.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 10 배의 부피의 양(mL/g))을 가한 후, 층분리하여 유기층만을 분리하였다. 이후, 수층에 에틸아세테이트 1440.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 5 배의 부피의 양(mL/g))를 가하여 재추출한 후, 유기층만을 모아 외부 온도 40℃에서 감압 농축하였다. 에틸아세테이트 5760.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 20 배의 부피의 양(mL/g))와 H 2O 2880.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 10 배의 부피의 양(mL/g))를 가한 후, 1N-HCl 용액으로 pH 7.0~7.5이 되도록 조절한 후, 2회 층분리하였다. 분리된 유기층을 모아 Na 2SO 4 로 건조한 후, 외부 온도 40℃에서 감압 농축하였다.
인산(H 3PO 4) 에 의한 정제 공정
여기에 THF 5184.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 18 배의 부피의 양(mL/g))를 투입하고 용해되도록 하였다. 이후, H 3PO 4(6.8 g, 0.095 eq)를 THF 288.0 mL에 용해시킨 용액을 적가한 다음, 이를 30 분동안 교반하였다. Celite 여과하여 염을 제거한 후, 여액에 H 3PO 4(6.1 g, 0.085 eq)을 THF 288.0 mL에 용해시킨 용액을 적가한 다음, 이를 30분 동안 교반하였다. 얻어진 잔사를 Celite 여과하여 염을 제거한 후, 외부 온도 40℃에서 감압 농축하였다.
에틸아세테이트에 의한 결정화 공정
여기에, 에틸아세테이트 5760.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 20 배의 부피의 양(mL/g))를 가한 후, 결정이 생성되면, 20~30℃ 에서 2시간 교반하고 여과하였다. 여과물을 실온에서 12 시간 동안 감압 건조하여, 상기 화학식 1로 표시되는 화합물인, (S)-1-(3-((6-((5-메틸티아졸-2-일)아미노)-4-(몰폴리노메틸)피리딘-2-일)아미노)피페리딘-1-일)프로프-2-엔-1-온 195.5 g을 수득하였다(수율 60.0%).
1H NMR(500 MHz, DMSO): 10.57(m, 1H), 6.91-6.90(m, 1H), 6.80-6.85(m, 0.5H), 6.70-6.40(m, 1.5H), 6.10-5.96(m, 3H), 5.65-5.63(d, 0.5H), 5.42-5.40(d, 0.5H), 4.42-4.40(m, 0.5H), 4.10-4.0(m, 1H), 3.90-3.87(m, 1.5H), 3.56(m, 4H), 3.20(s, 2H), 3.14-3.10(m, 1H), 2.68-2.63(m, 0.5H), 2.32(m, 4H), 2.19(s, 3H), 1.90-2.0(m, 1H), 1.80(m, 1H), 1.50-1.40(m, 2.5H)
참조예 5
Figure PCTKR2021002440-appb-img-000011
(단계 1 및 2)
상기 실시예에서 제조한 단계 1 및 2와 동일한 방법을 사용하여, 상기 화학식 1-4로 표시되는 화합물을 제조하였다.
(단계 3)
상기 단계 2에서 제조한 화학식 1-4로 표시되는 화합물(15.0 g, 1.0 eq)에 THF 270.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 18배의 부피의 양(mL/g)) 및 H 2O 60.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 4 배의 부피의 양(mL/g))을 가하여 실온에서 용액을 제조하였다. 이후, 외부 온도 0~5℃bath(ice, H 2O 혼합)를 이용하여 내부 온도를 0~5℃로 냉각시킨 후, K 2CO 3(8.0 g, 1.5 eq)을 가하여 용해시켰다. 여기에, 0~5℃로 냉각한 THF에 N,N-디이소프로필에틸아민 (N,N-Diisopropylethylamine; DIPEA)(334.4㎕. 0.05 eq)과 상기 화학식 1-5로 표시되는 화합물(3.3 mL, 1.05 eq)을 혼합한 용액을 내부 온도 0~5℃에서 적가하였다. 이를, 0~5℃에서 0.5 시간 교반하여 반응을 완결시켰다.
에틸아세테이트에 의한 추출 공정
반응이 완결된 반응 용기에, 0~5℃ 온도의 에틸아세테이트 300.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 20 배의 부피의 양(mL/g))와 0~5℃ 온도의 H 2O 150.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 10 배의 부피의 양(mL/g))을 가한 후, 층분리하여 유기층만을 분리하였다. 이후, 수층에 에틸아세테이트 75.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 5 배의 부피의 양(mL/g))를 가하여 재추출한 후, 유기층만을 모아 외부 온도 40℃에서 감압 농축하였다. 0~5℃ 온도의 에틸아세테이트 300.0 mL (화학식 1-4로 표시되는 화합물의 중량 대비 20 배의 부피의 양(mL/g))와 H 2O 150.0 mL (화학식 1-4로 표시되는 화합물의 중량 대비 10 배의 부피의 양(mL/g))를 가한 후, 1N-HCl 용액으로 pH 7.0~7.5이 되도록 조절한 후, 2회 층분리하였다. 분리된 유기층을 모아 Na 2SO 4 로 건조한 후, 외부 온도 35℃ 에서 감압 농축하였다.
인산(H 3PO 4) 에 의한 정제 공정
여기에 0~5℃ THF 270.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 18 배의 부피의 양(mL/g))를 투입하고 용해되도록 하였다. 이후, H 3PO 4(0.36 g, 0.095 eq)를 THF 15.0 mL에 용해시킨 용액을 적가한 다음, 이를 30분동안 교반하였다. Celite 여과하여 염을 제거한 후, 여액에 H 3PO 4(0.32 g, 0.085 eq)을 THF 15.0 mL에 용해시킨 용액을 적가한 다음, 이를 30분 동안 교반하였다. 얻어진 잔사를 Celite 여과하여 염을 제거한 후, 외부 온도 35℃에서 감압 농축하였다.
에틸아세테이트에 의한 결정화 공정
여기에, 에틸아세테이트 225.0 mL(화학식 1-4로 표시되는 화합물의 중량 대비 15 배의 부피의 양(mL/g))를 가한 후, 결정이 생성되면, 20~30℃ 에서 2시간 교반하고 여과하였다. 여과물을 실온에서 12 시간 동안 감압 건조하여, 상기 화학식 1로 표시되는 화합물인, (S)-1-(3-((6-((5-메틸티아졸-2-일)아미노)-4-(몰폴리노메틸)피리딘-2-일)아미노)피페리딘-1-일)프로프-2-엔-1-온 10.2g을 수득하였다(수율 60.0%).
1H NMR(500 MHz, DMSO): 10.57(m, 1H), 6.91-6.90(m, 1H), 6.80-6.85(m, 0.5H), 6.70-6.40(m, 1.5H), 6.10-5.96(m, 3H), 5.65-5.63(d, 0.5H), 5.42-5.40(d, 0.5H), 4.42-4.40(m, 0.5H), 4.10-4.0(m, 1H), 3.90-3.87(m, 1.5H), 3.56(m, 4H), 3.20(s, 2H), 3.14-3.10(m, 1H), 2.68-2.63(m, 0.5H), 2.32(m, 4H), 2.19(s, 3H), 1.90-2.0(m, 1H), 1.80(m, 1H), 1.50-1.40(m, 2.5H)
BTK 및 ITK에 대한 저해 활성
상기 실시예에서 제조된 화학식 1로 표시되는 화합물의 BTK 및 ITK에 대한 저해 활성을 다음과 같이 측정하였다.
BTK에 대한 저해활성 평가는 Promega사의 'ADP-Glo™ + BTK Kinase enzyme system' kit를 사용하여 평가하였다. White 96-well plate에서 최종농도가 10 ng/㎖ 이 되도록 준비한 BTK 효소 10 ㎕와 화합물의 단일 농도 평가일 경우 최종농도가 1 uM, IC 50 평가일 경우 1000, 200, 40, 8, 1.6, 0.32 nM 농도의 화합물 5 ㎕를 섞은 뒤 상온에서 15분 반응시켰다. 반응이 끝난 plate에 substrate 5 ㎕와 최종 농도가 10 uM이 되도록 준비한 ATP 5 ㎕를 넣은 뒤, 30℃에서 1시간 반응시켰다. 반응이 끝난 plate의 모든 well에 ADP-Glo™ reagent를 25 ㎕ 처리하여 30℃에서 40분 반응시켰다. 그 뒤, 모든 well에 kinase detection buffer를 50 ㎕ 처리한 뒤, 빛을 차단하여 실온에서 30분 반응시켰다. 모든 반응이 끝난 plate는 luminescence를 측정하여 결과를 산출하였다. 평가는 duplicate로 진행하였으며, 화합물의 처리 없이 효소의 첨가 여부에 따라 negative control과 positive control을 산출하여, 그 값을 기준으로 IC 50을 계산하였다.
또한, ITK에 대한 저해활성 평가는 Promega사의 'ADP-Glo™ + ITK Kinase enzyme system' kit를 사용하여 평가하였다. White 96-well plate에서 최종농도가 4 ng/㎖ 가 되도록 준비한 ITK 효소 10 ㎕와 단일 농도 평가일 경우 최종농도가 1 uM, IC 50 평가일 경우 1000, 200, 40, 8, 1.6, 0.32 nM 농도의 화합물 5 ㎕를 섞은 뒤 상온에서 15분 반응시켰다. 반응이 끝난 plate에 substrate 5 ㎕와 최종 농도가 25 uM이 되도록 준비한 ATP 5 ㎕를 넣은 뒤, 30℃에서 1시간 반응시켰다. 반응이 끝난 plate의 모든 well에 ADP-Glo™ reagent를 25 ㎕ 처리하여 30℃에서 40분 반응시켰다. 그 뒤, 모든 well에 kinase detection buffer를 50 ㎕ 처리한 뒤, 빛을 차단하여 실온에서 30분 반응시켰다. 모든 반응이 끝난 plate는 luminescence를 측정하여 결과를 산출하였다. 평가는 duplicate로 진행하였으며, 화합물의 처리 없이 효소의 첨가 여부에 따라 negative control과 positive control을 산출하여, 그 값을 기준으로 IC 50을 계산하였다.
계산 결과, 실시예에서 제조된 화학식 1로 표시되는 화합물의 BTK에 대한 저해 활성(BTK IC 50)은 0.4 nM ~ 1.4 nM이었고, ITK에 대한 저해 활성(ITK IC 50)은 1.0 nM ~ 1.7 nM이었다. 이로써, 상기 화학식 1로 표시되는 화합물이 우수한 BTK 및 ITK 이중 활성 저해 효과를 나타냄을 확인할 수 있다.
실시예 및 참조예 2 내지 5의 비교
상기 실시예 및 참조예 2 내지 5의 제조방법에서 제조되는 최종 화합물인 상기 화학식 1로 표시되는 화합물 제조 시 같이 생성되는 불순물을 확인하기 위하여, 고성능 액체 크로마토그래피(HPLC)를 사용하여 하기 표 1과 같은 조건으로 상대보존시간(relative retention time; RRT)에 따라 불순물을 분리하였고, 그 결과를 단계 3의 수율과 함께 하기 표 2에 나타내었다.
column Capcell Pak C18, 250 x 4.6 mm, 5 ㎛
Mobile phase A 20 mM Ammonium acetate
Mobile phase B 100 % Acetonitrile
UV 280 nm
column temp. 30℃
Flaw rate 1 ml/min
Sample preparation 화학식 1로 표시되는 화합물 10 mg / MeOH 25ml
Gradient
Figure PCTKR2021002440-appb-img-000012

1) RRT가 1.0 미만인 불순물(RRT<1.0)
2) RRT가 1.17인 불순물 A(ImpA): 화학식 1로 표시되는 화합물과 화학식 1-4로 표시되는 화합물이 결합된 화합물)
3) RRT가 1.37인 불순물 B(ImpB): 화학식 1로 표시되는 화합물의 dimer
4) RRT가 1.18인 불순물 C(ImpC): 화학식 1로 표시되는 화합물의 이중결합에 HCl이 첨가된 화합물 및 아크릴아미드의 이중결합에 HCl이 첨가된 화합물
단계 3
수율
순도 RRT<1.0 ImpA ImpB ImpC
실시예 60% 99.74% < 0.1% < 0.1% < 0.1% 0%
참조예 2 30% 98.00% 0.5% 0.5% - 0.4%
참조예 3 35% 98.00% < 0.1% 0.6% 0.13% 0.08%
참조예 4 60% 99.00% < 0.1% < 0.1% 0.30% 0.50%
참조예 5 60% 99.39% < 0.1% < 0.1% 0.30% 0%
상기 표 2에서 나타난 바와 같이, 상기 실시예 공정에 의해 화합물 제조 시, 상술한 참조예 1 공정에 추가적으로 1차 및 2차 결정화에 의한 화합물의 분리 및 정제를 실시한 참조예 2 공정 대비, 모든 종류의 불순물이 저감된 고순도의 화합물을 높은 수율로 제조할 수 있음을 알 수 있다.
또한, 상기 실시예 공정에 의해 화합물 제조 시, 실시예 공정에서의 단계 3에서의 일부 공정을 변경하여 화학식 1로 표시되는 화합물을 제조한 참조예 3 내지 5 공정 대비, 불순물이 저감된 고품질의 화합물을 제조할 수 있음을 확인하였다.
구체적으로, (1) 단계 3의 반응에서 N,N-디이소프로필에틸아민(DIPEA)을 사용하면서, (2) 단계 3의 반응 온도를 -8 내지 -3℃로 조절하고, (3) 에틸아세테이트(EA)에 의한 결정화를 통해 최종 화합물을 분리한 실시예 공정에 따라 제조된 화합물은,
(1) 단계 3의 반응에서 N,N-디이소프로필에틸아민(DIPEA)을 사용하지 않고, (2) 단계 3의 반응 온도를 0 내지 5℃로 조절하면서, (3) 에틸아세테이트(EA) 및 디메톡시에탄(DME)에 의한 결정화를 통해 최종 화합물을 분리한 참조예 3 공정에 따라 제조된 화합물 대비, 불순물 A(ImpA), 불순물 B(ImpB) 및 불순물 C(ImpC)의 함량이 낮음을 알 수 있고,
(1) 단계 3의 반응에서 N,N-디이소프로필에틸아민(DIPEA)을 사용하지 않고, (2) 단계 3의 반응 온도를 0 내지 5℃로 조절하면서, (3) 에틸아세테이트(EA)에 의한 결정화를 통해 최종 화합물을 분리한 참조예 4 공정에 따라 제조된 화합물 대비, 불순물 B(ImpB) 및 불순물 C(ImpC)의 함량이 낮음을 알 수 있고,
(1) 단계 3의 반응에서 N,N-디이소프로필에틸아민(DIPEA)을 사용하였으나, (2) 단계 3의 반응 온도를 0 내지 5℃로 조절하고, (3) 에틸아세테이트(EA)에 의한 결정화를 통해 최종 화합물을 분리한 참조예 5 공정에 따라 제조된 화합물 대비, 불순물 B(ImpB)의 함량이 낮음을 알 수 있다.
실시예, 참조예 1 및 참조예 2의 비교
상기 실시예, 참조예 1 및 참조예 2의 제조 방법의 각 단계의 수율을 하기 표 3에 나타내었다.
단계 1 & 2 단계 3 총수율 최종순도
수율 순도 수율 순도
실시예 60.3% 99.8% 60.0% 99.74% 36.0% 99.74%
참조예 1 58.5% - 60.0% 98.00% 35.1% 98.00%
참조예 2 58.5% - 30.0% 98.00% 17.6% 98.00%
상기 표 3에서 나타난 바와 같이, 상기 실시예 공정에 의해 화학식 1로 표시되는 화합물 제조 시, 마이크로웨이브 기기가 요구되고 제조되는 화합물의 분리 및 정제가 컬럼을 통해 이루어지는 참조예 1 공정과 달리, 단계 1 및 단계 2가 인-시츄(In-situ)하게 이루어지고, 결정화를 통해 화합물의 분리 및 정제가 이루어져 산업적으로 생산에 유리하면서도, 참조예 1 공정 대비 수율의 저하가 없음이 확인된다.
또한, 상기 실시예 공정은, 화합물의 최종 순도를 높이기 위해 참조예 1 공정 이후 1차 및 2차 결정화에 의해 화합물의 분리 및 정제를 추가로 실시하는 참조예 2 공정에 비해서도, 현저히 높은 수율로 최종 화합물을 제조할 수 있음을 알 수 있다.
이에 따라, 본 발명에 따른 실시예 공정에 의해, 고품질을 갖는 화학식 1로 표시되는 화합물을 산업적 대량 생산할 수 있음을 확인하였다 .

Claims (17)

1) 하기 화학식 1-1로 표시되는 화합물과 하기 화학식 1-2로 표시되는 화합물을 팔라듐 촉매 및 염기의 존재 하에 반응시켜, 하기 화학식 1-3으로 표시되는 화합물을 제조하는 단계;
2) 하기 화학식 1-3으로 표시되는 화합물을 산 존재 하에 반응시켜, 하기 화학식 1-4로 표시되는 화합물을 제조하는 단계; 및
3) 하기 화학식 1-4로 표시되는 화합물과 하기 화학식 1-5로 표시되는 화합물을 염기의 존재 하에 반응시켜, 하기 화학식 1로 표시되는 화합물을 제조하는 단계를 포함하는,
하기 화학식 1로 표시되는 화합물의 제조 방법:
[화학식 1]
Figure PCTKR2021002440-appb-img-000013
[화학식 1-1]
Figure PCTKR2021002440-appb-img-000014
[화학식 1-2]
Figure PCTKR2021002440-appb-img-000015
[화학식 1-3]
Figure PCTKR2021002440-appb-img-000016
[화학식 1-4]
Figure PCTKR2021002440-appb-img-000017
[화학식 1-5]
Figure PCTKR2021002440-appb-img-000018
.
제1항에 있어서,
상기 단계 1)에서, 상기 화학식 1-1로 표시되는 화합물 및 상기 화학식 1-2로 표시되는 화합물은 1:0.1 내지 1:2의 몰비로 사용되는,
제조 방법.
제1항에 있어서,
상기 단계 1)에서, 상기 팔라듐 촉매는 트리스(디벤질리덴아세톤)디팔라듐(0), 테트라키스(트리페닐포스핀)팔라듐(O), 비스[트리스(2-메틸페닐)포스핀]팔라듐 및 팔라듐(II) 아세테이트로 구성되는 군으로부터 선택되는 1종 이상인,
제조 방법.
제1항에 있어서,
상기 단계 1)에서, 상기 염기는 탄산세슘, 탄산칼륨, 탄산나트륨, 소듐 터트-부톡사이드 및 칼륨 터트-부톡사이드로 구성되는 군으로부터 선택되는 1종 이상인,
제조 방법.
제1항에 있어서,
상기 단계 1)의 반응은, 80℃ 내지 150℃의 온도에서 3 시간 내지 15 시간 동안 수행되는,
제조 방법.
제1항에 있어서,
상기 단계 2)에서, 상기 산은 염산인,
제조 방법.
제1항에 있어서,
상기 단계 2)에서, 상기 반응의 생성물을 결정화하는 단계를 더 포함하는,
제조 방법.
제7항에 있어서,
상기 결정화 단계는 물에 의한 1차 결정화 및 메탄올에 의한 2차 결정화로 수행되는,
제조 방법.
제1항에 있어서,
상기 단계 3)에서, 상기 화학식 1-4로 표시되는 화합물 및 상기 화학식 1-5로 표시되는 화합물은 1:0.5 내지 1:2.0의 몰비로 사용되는,
제조 방법.
제1항에 있어서,
상기 단계 3)에서, 상기 염기는 탄산칼륨, 수산화나트륨, 수산화리튬, 수산화칼륨, 트리에틸아민, 디이소프로필아민, 디이소프로필에틸아민, 탄산수소나트륨, 탄산수소칼륨, 탄산세슘, 탄산나트륨, 메틸산나트륨 및 부티르산칼륨으로 구성되는 군으로부터 선택되는 1종 이상인,
제조 방법.
제1항에 있어서,
상기 단계 3)에서, 상기 화학식 1-5로 표시되는 화합물은 N,N-디이소프로필에틸아민 또는 트리에틸아민과 혼합된 상태로 투입되는,
제조 방법.
제1항에 있어서,
상기 단계 3)의 반응은 -10℃ 내지 10℃의 온도에서 수행되는,
제조 방법.
제1항에 있어서,
상기 단계 3)에서, 상기 반응의 생성물을 에틸아세테이트를 이용하여 추출하는 단계를 더 포함하는
제조 방법.
제13항에 있어서,
상기 추출 단계는 pH 6.5 내지 7.5에서 수행되는,
제조 방법.
제1항에 있어서,
상기 단계 3)은, 상기 반응의 생성물을 테트라하이드로퓨란에 용해시키는 단계; 제조된 용액에 인산 함유 용액을 혼합하는 단계; 및 제조된 혼합물을 여과 후 여과물을 감압 농축하는 단계를 더 포함하는,
제조 방법.
제15항에 있어서,
상기 인산 함유 용액은, 상기 화학식 1-4로 표시되는 화합물 1몰 대비 0.05 내지 0.5 몰의 인산이 테트라하이드로퓨란에 용해된 것인,
제조 방법.
제1항에 있어서,
상기 단계 3)은, 상기 반응의 생성물을 에틸아세테이트에 의해 결정화하는 단계를 더 포함하는,
제조 방법.
PCT/KR2021/002440 2020-02-26 2021-02-26 헤테로사이클릭아민 유도체의 제조 방법 WO2021172922A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2022010391A MX2022010391A (es) 2020-02-26 2021-02-26 Metodo de preparacion de derivados de amina heterociclica.
JOP/2022/0199A JOP20220199A1 (ar) 2020-02-26 2021-02-26 طريقة لتحضير مشتقات أمين حلقي غير متجانس
BR112022016729A BR112022016729A2 (pt) 2020-02-26 2021-02-26 Método para preparação de derivados de heterociclicamina
JP2022551582A JP7447291B2 (ja) 2020-02-26 2021-02-26 ヘテロサイクリックアミン誘導体の製造方法
CN202180015867.2A CN115151537A (zh) 2020-02-26 2021-02-26 制备杂环胺衍生物的方法
EP21761001.3A EP4112617A4 (en) 2020-02-26 2021-02-26 PROCESS FOR PREPARING HETEROCYCLIC AMINE DERIVATIVES
US17/799,774 US20230094404A1 (en) 2020-02-26 2021-02-26 Method for preparation of heterocyclicamine derivatives
CONC2022/0011593A CO2022011593A2 (es) 2020-02-26 2022-08-17 Método de preparación de derivados de amina heterocíclica

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200023899 2020-02-26
KR10-2020-0023899 2020-02-26
KR1020210025655A KR102531088B1 (ko) 2020-02-26 2021-02-25 헤테로사이클릭아민 유도체의 제조 방법
KR10-2021-0025655 2021-02-25

Publications (1)

Publication Number Publication Date
WO2021172922A1 true WO2021172922A1 (ko) 2021-09-02

Family

ID=77490106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002440 WO2021172922A1 (ko) 2020-02-26 2021-02-26 헤테로사이클릭아민 유도체의 제조 방법

Country Status (9)

Country Link
US (1) US20230094404A1 (ko)
EP (1) EP4112617A4 (ko)
JP (1) JP7447291B2 (ko)
CN (1) CN115151537A (ko)
BR (1) BR112022016729A2 (ko)
CO (1) CO2022011593A2 (ko)
JO (1) JOP20220199A1 (ko)
MX (1) MX2022010391A (ko)
WO (1) WO2021172922A1 (ko)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002050071A1 (en) 2000-12-21 2002-06-27 Bristol-Myers Squibb Company Thiazolyl inhibitors of tec family tyrosine kinases
WO2005056785A2 (en) 2003-12-05 2005-06-23 Vertex Pharmaceuticals, Inc. Crystal structure of interleukin-2 tyrosine kinase (itk) and binding pockets thereof
WO2005066335A1 (en) 2003-12-30 2005-07-21 Boehringer Ingelheim Pharmaceuticals, Inc. Crystal structure of the interleukin-2-inducible cell kinase (itk) kinase domain
WO2008039218A2 (en) 2006-09-22 2008-04-03 Pharmacyclics, Inc. Inhibitors of bruton's tyrosine kinase
WO2012035055A1 (en) * 2010-09-17 2012-03-22 Glaxo Group Limited Novel compounds
WO2014036016A1 (en) 2012-08-31 2014-03-06 Principia Biopharma Inc. Benzimidazole derivatives as itk inhibitors
WO2014055934A2 (en) 2012-10-04 2014-04-10 University Of Utah Research Foundation Substituted n-(3-(pyrimidin-4-yl)phenyl)acrylamide analogs as tyrosine receptor kinase btk inhibitors
WO2015061247A2 (en) 2013-10-21 2015-04-30 Merck Patent Gmbh Heteroaryl compounds as btk inhibitors and uses thereof
CN104628657A (zh) * 2013-11-06 2015-05-20 韩冰 一类治疗缺血性脑损伤的化合物及其用途
US20170233411A1 (en) * 2014-10-22 2017-08-17 Dana-Farber Cancer Institute, Inc. Thiazolyl-containing compounds for treating proliferative diseases
KR20190040773A (ko) * 2017-10-11 2019-04-19 주식회사 대웅제약 신규한 페닐피리딘 유도체 및 이를 포함하는 약학 조성물
KR20200024111A (ko) * 2018-08-27 2020-03-06 주식회사 대웅제약 신규한 헤테로사이클릭아민 유도체 및 이를 포함하는 약학 조성물

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002050071A1 (en) 2000-12-21 2002-06-27 Bristol-Myers Squibb Company Thiazolyl inhibitors of tec family tyrosine kinases
WO2005056785A2 (en) 2003-12-05 2005-06-23 Vertex Pharmaceuticals, Inc. Crystal structure of interleukin-2 tyrosine kinase (itk) and binding pockets thereof
WO2005066335A1 (en) 2003-12-30 2005-07-21 Boehringer Ingelheim Pharmaceuticals, Inc. Crystal structure of the interleukin-2-inducible cell kinase (itk) kinase domain
WO2008039218A2 (en) 2006-09-22 2008-04-03 Pharmacyclics, Inc. Inhibitors of bruton's tyrosine kinase
WO2012035055A1 (en) * 2010-09-17 2012-03-22 Glaxo Group Limited Novel compounds
WO2014036016A1 (en) 2012-08-31 2014-03-06 Principia Biopharma Inc. Benzimidazole derivatives as itk inhibitors
WO2014055934A2 (en) 2012-10-04 2014-04-10 University Of Utah Research Foundation Substituted n-(3-(pyrimidin-4-yl)phenyl)acrylamide analogs as tyrosine receptor kinase btk inhibitors
WO2015061247A2 (en) 2013-10-21 2015-04-30 Merck Patent Gmbh Heteroaryl compounds as btk inhibitors and uses thereof
CN104628657A (zh) * 2013-11-06 2015-05-20 韩冰 一类治疗缺血性脑损伤的化合物及其用途
US20170233411A1 (en) * 2014-10-22 2017-08-17 Dana-Farber Cancer Institute, Inc. Thiazolyl-containing compounds for treating proliferative diseases
KR20190040773A (ko) * 2017-10-11 2019-04-19 주식회사 대웅제약 신규한 페닐피리딘 유도체 및 이를 포함하는 약학 조성물
KR20200024111A (ko) * 2018-08-27 2020-03-06 주식회사 대웅제약 신규한 헤테로사이클릭아민 유도체 및 이를 포함하는 약학 조성물

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
FOWELL ET AL., IMMUNITY, vol. 11, 1999, pages 399
GOMEZ-RODRIGUEZ J ET AL., J. EXP. MED., vol. 211, 2014, pages 529
HARLING JOHN D., DEAKIN ANGELA M., CAMPOS SÉBASTIEN, GRIMLEY RACHEL, CHAUDRY LAIQ, NYE CATHERINE, POLYAKOVA OXANA, BESSANT CHRISTI: "Discovery of Novel Irreversible Inhibitors of Interleukin (IL)-2-inducible Tyrosine Kinase (Itk) by Targeting Cysteine 442 in the ATP Pocket", JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY, US, vol. 288, no. 39, 9 August 2013 (2013-08-09), US, pages 28195 - 28206, XP055841724, ISSN: 0021-9258, DOI: 10.1074/jbc.M113.474114 *
HORWOOD ET AL., J. EXP. MED., vol. 197, 2003, pages 1603
IWAKI ET AL., J. BIOL CHEM.
J LEIPE J ET AL., ARTHRITIS RHEUM., vol. 62, 2010, pages 2876
LO H. Y, EXPERT OPIN THER PAT., vol. 20, 2010, pages 459
SAHU N. ET AL., CURR TOP MED CHEM., vol. 9, 2009, pages 690
SCHAEFFER ET AL., NAT. IMMUNE, vol. 2, 2001, pages 1183
See also references of EP4112617A4
ZHONG Y. ET AL., THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 290, 2015, pages 5960

Also Published As

Publication number Publication date
CN115151537A (zh) 2022-10-04
JP2023515197A (ja) 2023-04-12
EP4112617A1 (en) 2023-01-04
BR112022016729A2 (pt) 2022-10-11
CO2022011593A2 (es) 2022-08-30
US20230094404A1 (en) 2023-03-30
EP4112617A4 (en) 2024-03-13
JOP20220199A1 (ar) 2023-01-30
JP7447291B2 (ja) 2024-03-11
MX2022010391A (es) 2022-09-05

Similar Documents

Publication Publication Date Title
WO2021112538A1 (en) Glp-1 receptor agonist
WO2017026718A1 (ko) Ret 키나아제 저해제인 신규 3-(이속사졸-3-일)-피라졸로[3,4-디]피리미딘-4-아민 화합물
WO2019078522A1 (ko) 세레브론 단백질의 분해 유도 화합물, 이의 제조방법 및 이를 유효성분으로 함유하는 암의 예방 또는 치료용 약학적 조성물
WO2020149723A1 (ko) 피롤로피리미딘 유도체 및 이를 유효성분으로 함유하는 단백질 키나아제 관련 질환의 예방 또는 치료용 약학적 조성물
WO2017034245A1 (ko) 야누스 키나제 1 선택적 억제제 및 그 의약 용도
WO2023018237A1 (en) Novel plk1 degradation inducing compound
WO2021172922A1 (ko) 헤테로사이클릭아민 유도체의 제조 방법
WO2018139883A1 (ko) 다중 표적 키나아제 저해제로서 융합피리미딘 유도체
AU2020360000B2 (en) N-(1H-imidazol-2-yl)benzamide compound and pharmaceutical composition comprising the same as active ingredient
WO2018124644A1 (ko) 싸이에노피리미딘 화합물의 신규 제조방법 및 중간체
WO2020017878A1 (en) Novel catechol derivatives or salt thereof, processes for preparing the same, and pharmaceutical compositions comprising the same
WO2021182914A1 (ko) 신규한 cdk7 억제 화합물 및 이의 약제학적으로 허용가능한 염
WO2020050470A1 (ko) 메로시아닌 화합물, 이의 이성질체를 포함하는 dsrna 검출용 조성물 및 dsrna 발현 분석을 이용한 암 진단을 위한 정보 제공 방법
WO2019022444A1 (ko) 혈관생성 저해 효과를 가지는 알칼로이드 유도체 및 그를 포함하는 약제학적 조성물
WO2022220613A1 (ko) 스핑고신-1-인산 수용체 효능제의 신규한 제조방법
WO2021145641A1 (ko) 혈관생성 저해 효과를 가지는 n-페닐벤조티아졸-2-아민 화합물 및 그를 포함하는 약제학적 조성물
WO2022203332A1 (en) Novel indoleamine 2,3-dioxygenase inhibitors, processes for the preparation thereof and pharmaceutical compositions comprising the same
WO2023277583A1 (ko) 신규 plk1 단백질 분해 유도 화합물
WO2021107590A1 (ko) 신규한 트리아졸로피리딘 유도체 및 이를 포함하는 약학 조성물
WO2014098410A1 (ko) 보센탄 일수화물의 제조방법, 이에 사용되는 신규 중간체 및 이의 제조방법
WO2023055181A1 (ko) PIKfyve 키나아제 억제제
WO2020045941A1 (ko) 신규한 헤테로사이클릭아민 유도체 및 이를 포함하는 약학 조성물
WO2023101048A1 (ko) 트리아졸로피리미디논 유도체의 제조방법
WO2022220611A1 (ko) 스핑고신-1-인산 수용체 효능제의 신규한 제조방법
WO2024080792A1 (en) Novel heterobicyclic compound for inhibiting yap-tead interaction and pharmaceutical composition comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551582

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022016729

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2022121656

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021761001

Country of ref document: EP

Effective date: 20220926

ENP Entry into the national phase

Ref document number: 112022016729

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220822

WWE Wipo information: entry into national phase

Ref document number: 522440264

Country of ref document: SA