WO2023101048A1 - 트리아졸로피리미디논 유도체의 제조방법 - Google Patents

트리아졸로피리미디논 유도체의 제조방법 Download PDF

Info

Publication number
WO2023101048A1
WO2023101048A1 PCT/KR2021/018043 KR2021018043W WO2023101048A1 WO 2023101048 A1 WO2023101048 A1 WO 2023101048A1 KR 2021018043 W KR2021018043 W KR 2021018043W WO 2023101048 A1 WO2023101048 A1 WO 2023101048A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound represented
reaction
chemical formula
preparing
Prior art date
Application number
PCT/KR2021/018043
Other languages
English (en)
French (fr)
Inventor
김경진
김욱일
방형태
이슬기
한시연
Original Assignee
에스티팜 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스티팜 주식회사 filed Critical 에스티팜 주식회사
Priority to KR1020247016745A priority Critical patent/KR20240090633A/ko
Priority to CN202180104443.3A priority patent/CN118284609A/zh
Priority to PCT/KR2021/018043 priority patent/WO2023101048A1/ko
Priority to CA3239086A priority patent/CA3239086A1/en
Publication of WO2023101048A1 publication Critical patent/WO2023101048A1/ko
Priority to IL312831A priority patent/IL312831A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for preparing a triazolopyrimidinone derivative exhibiting tankyrase inhibitory activity.
  • Tankyrase belongs to the poly(ADP-ribose) polymerase (PARP) protein family, which consists of 17 members that share a catalytic PARP domain. Recently, it has been reported that intracellular axin levels are influenced by the PARP enzyme family members, tankyrase-1 and tankyrase-2 (also known as PARP5a and PARP5b, respectively) (Huang et al., 2009, Nature, 461( 7264): 614-620).
  • PARP poly(ADP-ribose) polymerase
  • Inhibitors of tankyrase-1 and tankyrase-2 are used in various cancer diseases such as colorectal carcinoma, colon cancer, gastric cancer, hepatocellular carcinoma, breast cancer It is known to have therapeutic potential for solid cancers such as medulloblastoma, melanoma, non-small cell lung cancer, pancreas adenocarcinoma, and prostate cancer.
  • inhibitors of tankyrase-1 and tankyrase-2 are used to treat osteoporosis, osteoarthritis, polycystic kidney disease, pulmonary fibrosis, diabetes, schizophrenia, vascular disease, and cardiac disease. Disease), non-oncogenic proliferative disease, and neurodegenerative diseases such as Alzheimer's disease, etc.
  • triazolopyrimidinone derivatives of the following formula (I) are known as selective tankyrase inhibitors, and are being developed as a colorectal cancer treatment for patients with a colorectal cancer-inducing gene (KRAS) mutation genotype or patients who do not respond to Erbitux.
  • KRAS colorectal cancer-inducing gene
  • An object of the present invention is to provide a manufacturing method suitable for mass production through efficient process steps, which can produce triazolopyrimidinone derivatives with high purity and high yield, thereby reducing the production cost.
  • Another object of the present invention is to provide a novel intermediate used in the above production method.
  • the present invention provides a method for preparing a triazolopyrimidinone derivative represented by the following formula (I).
  • the triazolopyrimidinone derivative represented by Formula I can be prepared through the following synthesis route A or B.
  • Synthesis route A of the preparation method of the present invention includes the following steps (A-1) to (A-8).
  • (A-1) a first step of preparing a compound represented by the following Chemical Formula 2 from a compound represented by the following Chemical Formula 1 or a salt thereof by a protection reaction;
  • (A-4) a fourth step of preparing a compound represented by the following Chemical Formula 6 from the compound represented by Chemical Formula 5 by Dakin's reaction;
  • (A-7) a seventh step of preparing a compound represented by the following Chemical Formula (Ia) from the compound represented by Chemical Formula 3 and the compound represented by Chemical Formula 8 or a salt thereof by an amination reaction;
  • R is an O-protecting group
  • A is an N-protecting group.
  • step (A-1) is a step of preparing a compound represented by Chemical Formula 2 through a protection reaction using a triazolopyrimidinone derivative compound represented by Chemical Formula 1 or a salt thereof as a starting material (Scheme 1 ).
  • R is an O-protecting group.
  • the reaction proceeds to protect the triazolopyrimidinone derivative.
  • R may be C 1 -C 6 alkyl, acetyl, benzoyl, benzyl, p-methoxybenzyl, MOM (methoxymethyl acetal), THP (tetrahydropyran), or silyl ether.
  • the compound represented by Formula 2 may be prepared by reacting the compound of Formula 1 with an alkyl halide.
  • R may be isopropyl, and may be performed by an alkylation reaction with 2-iodopropane, but is not limited thereto.
  • Bases commonly used in protection reactions may be used for the reaction.
  • sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, sodium hydrogen carbonate, cesium carbonate or cesium fluoride may be used as the base.
  • cesium fluoride (CsF) may be used, but is not limited thereto.
  • organic solvents commonly used in protection reactions may be used.
  • the solvent acetonitrile, tetrahydrofuran, 1,4-dioxane, acetone, dimethylsulfoxide, dimethylacetamide, dimethylformamide, or a mixture thereof may be used.
  • dimethylformamide may be used, but is not limited thereto.
  • reaction may be performed at 30 to 110 °C, more specifically at 60 to 90 °C, but is not limited thereto.
  • one or more steps of separating or purifying the product may be additionally performed, but is not limited thereto.
  • a product of high purity was obtained by stirring the product of the reaction in isopropanol, an organic solvent.
  • step (A-2) is a step of preparing a compound represented by Chemical Formula 3 by an oxidation reaction using a triazolopyrimidine derivative compound represented by Chemical Formula 2 as a starting material (Scheme 2).
  • R is as defined above.
  • the reaction may be performed by an oxidation reaction in which the compound represented by Formula 2 is reacted with an oxidizing agent.
  • An oxidizing agent commonly used in an oxidation reaction may be used for the reaction.
  • hydrogen peroxide benzoyl peroxide, metachloroperbenzoic acid, or oxone may be used as the oxidizing agent.
  • oxone may be used, but is not limited thereto.
  • organic solvents commonly used in oxidation reactions may be used.
  • tetrahydrofuran, 1,4-dioxane, acetone, methanol, ethanol, isopropanol, water, or a mixture thereof may be used as the solvent.
  • a mixture of tetrahydrofuran and methanol may be used, but is not limited thereto.
  • reaction may be performed at 0 to 70 °C, more specifically at 30 to 50 °C, but is not limited thereto.
  • one or more steps of separating or purifying the product may be additionally performed, but is not limited thereto.
  • a product of high purity was obtained by stirring the product of the reaction in isopropanol, an organic solvent.
  • step (A-3) is a step of preparing a compound represented by Chemical Formula 5 through an amination reaction using a trifluorobenzaldehyde derivative represented by Chemical Formula 4 as a starting material (Scheme 3).
  • A is an N-protecting group.
  • the reaction may use a trifluorobenzaldehyde derivative and a protected piperazine derivative.
  • the A may be -Boc, -Cbz, -Fmoc, -benzyl, p-methoxybenzyl, trityl or DMT (dimethoxytrityl).
  • the reaction may be performed by an amination reaction in which 3,4,5-trifluorobenzaldehyde is reacted together with N-Boc-piperazine, but is not limited thereto.
  • Bases commonly used in amination reactions may be used for the above reaction.
  • the base lithium carbonate, sodium carbonate, potassium carbonate, sodium hydrogen carbonate or cesium carbonate may be used.
  • lithium carbonate may be used, but is not limited thereto.
  • organic solvents commonly used in amination reactions may be used.
  • the solvent acetonitrile, tetrahydrofuran, 1,4-dioxane, acetone, dimethylsulfoxide, dimethylacetamide, dimethylformamide, or a mixture thereof may be used.
  • dimethyl sulfoxide may be used, but is not limited thereto.
  • reaction may be performed at 80 to 150 °C, more specifically at 110 to 130 °C, but is not limited thereto.
  • one or more steps of separating or purifying the product may be additionally performed, but is not limited thereto.
  • step (A-4) is a step of preparing a compound represented by Chemical Formula 6 by Dakin reaction using a phenylpiperazine derivative represented by Chemical Formula 5 as a starting material (Scheme 4).
  • A is as defined above.
  • the reaction may be performed by adding an oxidizing agent to the compound represented by Formula 5.
  • oxidizing agent for the Dakin reaction, a commonly used oxidizing agent may be used.
  • hydrogen peroxide, ammonium persulfate, metachloroperbenzoic acid (mCPBA), or mixtures thereof may be used.
  • metachloroperbenzoic acid may be used, but is not limited thereto.
  • a base commonly used may be used.
  • lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium bicarbonate, sodium carbonate or calcium carbonate may be used as the base.
  • sodium hydroxide may be used, but is not limited thereto.
  • Solvents commonly used in the reaction may be used.
  • dichloromethane chloroform, tetrahydrofuran, 1,4-dioxane, acetone, methanol, ethanol, isopropanol, water, or a mixture thereof may be used.
  • dichloromethane may be used, but is not limited thereto.
  • reaction may be carried out at -20 to 30 °C, more specifically -15 to 15 °C, but is not limited thereto.
  • one or more steps of separating or purifying the product may be additionally performed, but is not limited thereto.
  • a product of high purity was obtained by stirring the product of the reaction in isopropanol, an organic solvent.
  • step (A-5) is a step of preparing a compound represented by Chemical Formula 7 through an alkylation reaction using a phenylpiperazine derivative compound represented by Chemical Formula 6 as a starting material (Scheme 5).
  • A is as defined above.
  • the reaction may be carried out by an alkylation reaction in which the compound of Formula 6 is reacted with 1-halo-2-methoxyethane (eg, 1-bromo-2-methoxyethane).
  • 1-halo-2-methoxyethane eg, 1-bromo-2-methoxyethane
  • organic solvents commonly used in alkylation reactions may be used.
  • the solvent acetonitrile, tetrahydrofuran, 1,4-dioxane, acetone, dimethylsulfoxide, dimethylacetamide, dimethylformamide, or a mixture thereof may be used.
  • acetonitrile may be used, but is not limited thereto.
  • reaction may be performed at 50 to 100 °C, more specifically at 75 to 85 °C, but is not limited thereto.
  • step (A-6) is a step of preparing a compound represented by Chemical Formula 8 or a salt thereof by a deprotection reaction using a phenylpiperazine derivative represented by Chemical Formula 7 as a starting material (Scheme 6) .
  • A is as defined above.
  • the reaction may be carried out by a deprotection reaction of the compound of Formula 7 under acidic conditions.
  • Solvents commonly used in deprotection reactions may be used for the reaction.
  • the solvent methanol, ethanol, isopropanol, tetrahydrofuran, acetonitrile, water, or a mixture thereof may be used.
  • methanol may be used, but is not limited thereto.
  • reaction may be performed at 0 to 60 °C, more specifically at 30 to 50 °C, but is not limited thereto.
  • a product of high purity was obtained by stirring the product of the reaction in an organic solvent such as dichloromethane, tert-butyl methyl ether, or a mixture thereof.
  • the step (A-7) is a step for preparing a compound represented by the following Chemical Formula 9 from a compound represented by Chemical Formula 3 and a compound represented by Chemical Formula 8 or a salt thereof by an amination reaction (Scheme 7 ).
  • R is as defined above.
  • the reaction is for example 7-isopropoxy-3-methyl-5-(methylsulfonyl)-3H-[1,2,3]triazolo[4,5-d] It can be carried out by an amination reaction using pyrimidine and 1-(2,6-difluoro-4-(2-methoxyethoxy)phenyl)piperazine hydrochloride.
  • Bases commonly used in amination reactions may be used for the above reaction.
  • the base is lithium carbonate, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, cesium carbonate, triethylamine, diisopropylethylamine or 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU) can be used.
  • DBU 1,8-diazabicyclo[5,4,0]undec-7-ene
  • diisopropylethylamine may be used, but is not limited thereto.
  • organic solvents commonly used in amination reactions may be used.
  • the solvent acetonitrile, tetrahydrofuran, 1,4-dioxane, acetone, dimethylsulfoxide, dimethylacetamide, dimethylformamide, methanol, ethanol, isopropanol, or mixtures thereof may be used.
  • ethanol may be used, but is not limited thereto.
  • reaction may be performed at 50 to 100 °C, more specifically at 60 to 80 °C, but is not limited thereto.
  • a product of high purity was obtained by stirring the product of the reaction in an organic solvent such as dichloromethane, diisopropyl ether, or a mixture thereof.
  • step (A-8) is a step of preparing a compound represented by Formula I from a compound represented by Formula 9 by a deprotection reaction (Scheme 8).
  • R is as defined above.
  • the reaction is for example 5-(4-(2,6-difluoro-4-(2-methoxyethoxy)phenyl)piperazin-1-yl)-7- from isopropoxy-3-methyl-3H-[1,2,3]triazolo[4,5-d]pyrimidine by a deprotection reaction.
  • an acid commonly used in a deprotection reaction may be used as a solvent.
  • acetic acid, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, or a mixture thereof may be used as the acid.
  • acetic acid, sulfuric acid, or a mixture thereof may be used, but is not limited thereto.
  • reaction may be performed at 30 to 80 °C, more specifically at 40 to 60 °C, but is not limited thereto.
  • one or more steps of separating or purifying the product may be additionally performed, but is not limited thereto.
  • a product of high purity was obtained by stirring the product of the reaction in acetone, water, or a mixture thereof.
  • Synthetic pathway B in the preparation method of the present invention includes the following steps (B-1) to (B-7).
  • (B-1) a first step of preparing a compound represented by the following Chemical Formula 2 from a compound represented by the following Chemical Formula 1 or a salt thereof by a protection reaction;
  • (B-2) a second step of preparing a compound represented by the following Chemical Formula 3 from the compound represented by the Chemical Formula 2 through an oxidation reaction;
  • (B-4) a fourth step of preparing a compound represented by the following Chemical Formula 10 from the compound represented by Chemical Formula 3 and the compound represented by Chemical Formula 9 or a salt thereof by an amination reaction;
  • R is an O-protecting group.
  • steps (B-1) to (B-7) will be separately described.
  • steps (B-1), (B-2) and (B-7) are the same as the above-mentioned steps (A-1), (A-2) and (A-8), respectively.
  • steps (B-3) to (B-6) are specifically looked at.
  • the step (B-3) is a step of preparing a compound represented by Chemical Formula 8 or a salt thereof by an amination reaction using a trifluorobenzaldehyde derivative compound represented by Chemical Formula 4 as a starting material (Scheme 9).
  • the reaction may use a trifluorobenzaldehyde derivative and piperazine.
  • Bases commonly used in amination reactions may be used for the above reaction.
  • the base lithium carbonate, sodium carbonate, potassium carbonate, sodium hydrogen carbonate or cesium carbonate may be used.
  • potassium carbonate may be used, but is not limited thereto.
  • organic solvents commonly used in amination reactions may be used.
  • the solvent includes acetonitrile, tetrahydrofuran, 1,4-dioxane, acetone, isopropyl alcohol, dimethyl sulfoxide, dimethylacetamide, dimethylformamide, ethylene glycol, diethylene glycol Lycol dimethyl ether, dimethoxyethane or mixtures thereof may be used. Specifically, dimethoxyethane may be used, but is not limited thereto.
  • reaction may be performed at 60 to 150 °C, more specifically at 70 to 90 °C, but is not limited thereto.
  • one or more steps of separating or purifying the product may be additionally performed, but is not limited thereto.
  • step (B-3) is a step for preparing a compound represented by the following formula 10 from a compound represented by formula 3 and a compound represented by formula 9 or a salt thereof by an amination reaction (Scheme 10 ).
  • R is as defined above.
  • the reaction is for example 7-isopropoxy-3-methyl-5-(methylsulfonyl)-3H-[1,2,3]triazolo[4,5-d] It can be carried out by an amination reaction using pyrimidine and 3,5-difluoro-4-(piperazin-1-yl)benzaldehyde.
  • Bases commonly used in amination reactions may be used for the above reaction.
  • the base is lithium carbonate, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, cesium carbonate, triethylamine, diisopropylethylamine or 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU) may be used, but is not limited thereto.
  • DBU 1,8-diazabicyclo[5,4,0]undec-7-ene
  • organic solvents commonly used in amination reactions may be used.
  • the solvent acetonitrile, tetrahydrofuran, 1,4-dioxane, acetone, dimethylsulfoxide, dimethylacetamide, dimethylformamide, methanol, ethanol, isopropanol, or mixtures thereof may be used.
  • dimethylacetamide may be used, but is not limited thereto.
  • reaction may be performed at 50 to 150 °C, more specifically at 80 to 120 °C, but is not limited thereto.
  • one or more steps of separating or purifying the product may be additionally performed, but is not limited thereto.
  • a product of high purity was obtained by stirring the product of the reaction in an organic solvent such as diethyl ether, isopropanol, or a mixture thereof.
  • step (B-5) is a step for preparing a compound represented by Chemical Formula 11 by Dakin reaction using a compound represented by Chemical Formula 10 as a starting material (Scheme 11).
  • R is as defined above.
  • the reaction may be performed by adding an oxidizing agent to the compound represented by Formula 10.
  • oxidizing agent for the Dakin reaction, a commonly used oxidizing agent may be used.
  • hydrogen peroxide, ammonium persulfate, metachloroperbenzoic acid (mCPBA), or mixtures thereof may be used.
  • metachloroperbenzoic acid may be used, but is not limited thereto.
  • a base commonly used may be used.
  • lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium bicarbonate, sodium carbonate or calcium carbonate may be used as the base.
  • sodium hydroxide may be used, but is not limited thereto.
  • Solvents commonly used in the reaction may be used.
  • dichloromethane chloroform, tetrahydrofuran, 1,4-dioxane, acetone, methanol, ethanol, isopropanol, water, or a mixture thereof may be used.
  • dichloromethane may be used, but is not limited thereto.
  • reaction may be carried out at -20 to 30 °C, more specifically -15 to 15 °C, but is not limited thereto.
  • one or more steps of separating or purifying the product may be additionally performed, but is not limited thereto.
  • a product of high purity was obtained by stirring the product of the above reaction with organic solvents such as isopropanol and tert-butyl methyl ether or a mixture thereof.
  • step (B-6) is a step of preparing a compound represented by Chemical Formula Ia through an alkylation reaction using the compound represented by Chemical Formula 11 as a starting material (Scheme 12).
  • the reaction may be carried out by an alkylation reaction in which the compound of Formula 11 is reacted with 1-halo-2-methoxyethane (eg, 1-bromo-2-methoxyethane).
  • 1-halo-2-methoxyethane eg, 1-bromo-2-methoxyethane
  • organic solvents commonly used in alkylation reactions may be used.
  • the solvent acetonitrile, tetrahydrofuran, 1,4-dioxane, acetone, dimethylsulfoxide, dimethylacetamide, dimethylformamide, or a mixture thereof may be used.
  • dimethylformamide may be used, but is not limited thereto.
  • reaction may be performed at 50 to 100 °C, more specifically at 60 to 80 °C, but is not limited thereto.
  • the compound represented by Formula I is prepared through an 11-step process.
  • it is not suitable for mass production because it uses microwaves or undergoes several column purification processes.
  • the number of steps in the synthesis route A or B is 8 or 7, and there is no need to go through many steps.
  • steps (A-1) to (A-8) of synthesis route A and steps (B-1) to (B-7) of synthesis route B do not go through microwave and column purification processes, and are efficient. It is suitable for mass production because it can produce high-yield, high-purity compounds.
  • the manufacturing method of the present invention has fewer processes than the conventional manufacturing method, and through efficient process development, it is possible to prepare a triazolopyrimidinone derivative compound in high purity and high yield through crystallization without column purification without using a microwave reaction. Therefore, it is economical because it can significantly lower the production cost and is suitable for mass production.
  • Example 1 of the present invention a triazolopyrimidinone derivative compound represented by Formula I was prepared according to Reaction Scheme I below.
  • the formed crystals were filtered through celite filtration, and 120 mL of 5% salt water was added to the filtrate and stirred for 10 minutes.
  • the organic layer was washed twice more with 120 mL of 5% brine.
  • the mixture was filtered and concentrated under reduced pressure.
  • 50 mL of isopropanol was added to the concentrated residue, and the mixture was heated to 40° C. and stirred for 30 minutes.
  • the precipitated crystals were stirred at 5 to 10 °C for 30 minutes, filtered, and dried under reduced pressure to obtain the title compound (11.3 g, 62%) as a pale yellow solid.
  • step 1 7-isopropoxy-3-methyl-5-(methylthio)-3H-[1,2,3]triazolo[4,5-d]pyrimidine prepared in step 1 (10 g, 41.8 mmol) was diluted in 70 mL of tetrahydrofuran, and stirred while cooling the internal temperature to 5 to 10 °C. After dissolving oxone (38.5 g, 125.3 mmol) in 200 mL of purified water, it was added dropwise to the reaction solution for 30 minutes. After completion of the dropwise addition, the internal temperature was raised to 35 to 40° C. and stirred for 2 hours. When the reaction was completed, the reaction solution was concentrated under reduced pressure, and 100 mL of dichloromethane was added and the organic layer was extracted.
  • Step 3 Preparation of tert-butyl 4-(2,6-difluoro-4-formylphenyl)piperazine-1-carboxylate
  • Step 4 Preparation of tert-butyl 4-(2,6-difluoro-4-hydroxyphenyl)piperazine-1-carboxylate
  • Step 5 Preparation of tert-butyl 4-(2,6-difluoro-4-(2-methoxyethoxy)phenyl)piperazine-1-carboxylate
  • Step 7 5-(4-(2,6-difluoro-4-(2-methoxyethoxy)phenyl)piperazin-1-yl)-7-isopropoxy-3-methyl-3H-[ Preparation of 1,2,3] triazolo [4,5-d] pyrimidine
  • step 2 7-isopropoxy-3-methyl-5-(methylsulfonyl)-3H-[1,2,3]triazolo[4,5-d]pyrimidine prepared in step 2 (10 g, 36.9 mmol) was diluted in 146 mL of ethanol, diisopropylethylamine (19.3 mL, 110.5 mmol) and 1-(2,6-difluoro-4-(2-methoxyethoxy)phenyl)pipette prepared in step 6.
  • Razine hydrochloride (13.1 g, 42.4 mmol) was added, the temperature was raised to 60 to 80 ° C, and the mixture was stirred under reflux for 3 hours.
  • reaction solution was concentrated under reduced pressure, and 150 mL of dichloromethane and 53 mL of water were added to the residue, followed by layer separation.
  • the aqueous layer was extracted twice with 50 mL of dichloromethane. After combining the organic layers, they were washed with 50 mL of 1N aqueous hydrochloric acid solution and 50 mL of 5% brine, dehydrated with anhydrous sodium sulfate, and filtered. 2 g of activated carbon was added to the filtrate and stirred for 30 minutes. Celite filtration was performed and the filtrate was concentrated under reduced pressure.
  • Step 8 5-(4-(2,6-difluoro-4-(2-methoxyethoxy)phenyl)piperazin-1-yl)-3-methyl-3,6-dihydro-7H- Preparation of [1,2,3]triazolo[4,5-d]pyrimidin-7-one
  • Example 2 of the present invention a triazolopyrimidinone derivative compound represented by Formula I was prepared according to Reaction Scheme II below.
  • reaction solution was cooled to room temperature, diluted with 75 mL of ethyl acetate and 30 mL of water, and then the organic layer was separated and washed with brine.
  • the organic layer was dehydrated with anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. 5 mL of isopropanol was added to the concentrated residue and stirred at room temperature for 30 minutes. The precipitated crystals were filtered, washed with isopropanol, and dried under reduced pressure to obtain the title compound (1.25 g, 81%) as a pale yellow solid.
  • Step 4 5-(4-(2,6-difluoro-4-(2-methoxyethoxy)phenyl)piperazin-1-yl)-7-isopropoxy-3-methyl-3H-[ Preparation of 1,2,3] triazolo [4,5-d] pyrimidine
  • Step 5 5-(4-(2,6-difluoro-4-(2-methoxyethoxy)phenyl)piperazin-1-yl)-3-methyl-3,6-dihydro-7H- Preparation of [1,2,3]triazolo[4,5-d]pyrimidin-7-one
  • the internal temperature was raised to 40 to 45 °C and stirred for 1 hour.
  • the reaction solution was slowly cooled to 5 to 10 °C and 7.5 mL of purified water was added thereto.
  • the precipitated crystals were stirred for 30 minutes, filtered, and dried under reduced pressure to obtain the title compound (575 mg, 84%) as a white solid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

본 발명은 탄키라제 억제 활성을 나타내는 트리아졸로피리미디논 유도체 및 중간체를 제조하는 방법에 관한 것이다. 본 발명의 제조방법은 효율적인 공정개발을 통해 반응 효율을 높이고 고순도 및 고수율로 트리아졸로피리미디논 유도체 화합물을 제조할 수 있으므로 경제적이며, 대량 생산에 적합하다.

Description

트리아졸로피리미디논 유도체의 제조방법
본 발명은 탄키라제 억제 활성을 나타내는 트리아졸로피리미디논 유도체를 제조하는 방법에 관한 것이다.
탄키라제(tankyrase)는 촉매적 PARP 도메인(catalytic PARP domain)을 공유하는 17개 멤버로 구성되는 폴리(ADP-리보오스) 중합효소(poly(ADP-ribose) polymerase; PARP) 단백질 패밀리에 속한다. 최근 세포 내 액신 수준이 PARP 효소 패밀리 구성원인 탄키라제-1 및 탄키라제-2(각각 PARP5a 및 PARP5b로도 알려짐)에 의해 영향을 받는다는 것이 보고되었다(Huang et al., 2009, Nature, 461(7264): 614-620).
탄키라제-1 및 탄키라제-2의 억제제는 다양한 암 질환 예컨대, 대장암(colorectal carcinoma), 결장암(colon cancer), 위암(gastric cancer), 간세포암(hepatocellular carcinoma), 유방암(breast cancer), 수모세포종(medulloblastoma), 흑색종(melanoma), 비소세포폐암(non-small cell lung cancer), 췌장선암(pancreas adenocarcinoma) 및 전립선암(prostate cancer) 등 고형암에 치료 가능성이 있을 것으로 알려져 있다. 또한, 탄키라제-1 및 탄키라제-2의 억제제는 골다공증, 골관절염, 다낭성신종(polycystic kidney disease), 폐섬유증, 당뇨병, 정신분열병(schizophrenia), 혈관질환(vascular disease), 심장질환(cardiac disease), 비종양성 증식성 질환(non-oncogenic proliferative disease) 및 알츠하이머병(Alzheimer's disease)과 같은 신경퇴행성 질환(neurodegenerative disease) 등을 포함하는 상기 암질환 이외에 다른 질환에도 치료 가능성이 존재한다.
위와 같이 암 및 과증식성 조건에 사용할 수 있는 신규한 치료제에 대한 요구가 지속되고 있고, 탄키라제 효소를 선택적으로 저해할 수 있는 신규한 약학적 화합물의 개발이 시도되고 있다. 특히, 하기 화학식 I의 트리아졸로피리미디논 유도체가 선택적인 탄키라제 저해제로 알려져 있으며, 대장암 유발 유전자(KRAS) 돌연변이 유전자형 환자 또는 얼비툭스(Erbitux) 무반응 환자의 대장암 치료제로 개발되고 있다.
[화학식 I]
Figure PCTKR2021018043-appb-img-000001
국제공개공보 WO 2016/006974는 상기 화학식 I의 화합물을 비롯한 트리아졸로피리미디논 유도체들의 제조방법을 개시하고 있다. 그러나, 상기 제조방법은 마이크로웨이브를 이용하는 반응의 공정과 컬럼 정제 등을 포함하고 있어 대량생산에 적합하지 않아 공정 개선이 필요하다.
따라서, 위와 같은 비효율적인 제조방법을 개선하고, 화학식 I의 트리아졸로피리미디논 유도체 화합물을 고순도로 제조할 수 있는 새로운 제조방법의 개발이 필요하다.
본 발명의 목적은 고순도 및 고수율로 트리아졸로피리미디논 유도체를 제조할 수 있어 생산 단가를 낮추고 효율적인 공정단계를 통해 대량생산에 적합한 제조방법을 제공하는 것이다.
또한, 본 발명의 다른 목적은 상기 제조방법에 사용되는 신규 중간체를 제공하는 것이다.
본 발명은 하기 화학식 I로 표시되는 트리아졸로피리미디논 유도체를 제조하는 방법을 제공한다.
[화학식 I]
Figure PCTKR2021018043-appb-img-000002
본 발명의 구체예에 따르면, 상기 화학식 I로 표시되는 트리아졸로피리미디논 유도체는 하기 합성 경로 A 또는 B를 통하여 제조할 수 있다.
합성 경로 A
본 발명의 제조방법 중 합성 경로 A는 하기 (A-1) 단계 내지 (A-8) 단계를 포함한다.
(A-1) 하기 화학식 1로 표시되는 화합물 또는 이의 염으로부터 프로텍션 반응에 의해 하기 화학식 2로 표시되는 화합물을 제조하는 제 1 단계;
(A-2) 상기 화학식 2로 표시되는 화합물로부터 산화 반응에 의해 하기 화학식 3으로 표시되는 화합물을 제조하는 제 2 단계;
(A-3) 하기 화학식 4로 표시되는 화합물로부터 아미네이션 반응에 의해 하기 화학식 5로 표시되는 화합물을 제조하는 제 3 단계;
(A-4) 상기 화학식 5로 표시되는 화합물로부터 Dakin 반응에 의해 하기 화학식 6으로 표시되는 화합물을 제조하는 제 4 단계;
(A-5) 상기 화학식 6으로 표시되는 화합물로부터 알킬레이션 반응에 의해 하기 화학식 7로 표시되는 화합물을 제조하는 제 5 단계;
(A-6) 상기 화학식 7로 표시되는 화합물로부터 디프로텍션 반응에 의해 하기 화학식 8로 표시되는 화합물 또는 이의 염을 제조하는 제 6 단계;
(A-7) 상기 화학식 3으로 표시되는 화합물과 상기 화학식 8로 표시되는 화합물 또는 이의 염으로부터 아미네이션 반응에 의해 하기 화학식 Ia로 표시되는 화합물을 제조하는 제 7 단계; 및
(A-8) 상기 화학식 Ia로 표시되는 화합물로부터 디프로텍션 반응에 의해 하기 화학식 I로 표시되는 화합물을 제조하는 제 8 단계;
[화학식 1]
Figure PCTKR2021018043-appb-img-000003
[화학식 2]
Figure PCTKR2021018043-appb-img-000004
[화학식 3]
Figure PCTKR2021018043-appb-img-000005
[화학식 4]
Figure PCTKR2021018043-appb-img-000006
[화학식 5]
Figure PCTKR2021018043-appb-img-000007
[화학식 6]
Figure PCTKR2021018043-appb-img-000008
[화학식 7]
Figure PCTKR2021018043-appb-img-000009
[화학식 8]
Figure PCTKR2021018043-appb-img-000010
[화학식 Ia]
Figure PCTKR2021018043-appb-img-000011
[화학식 I]
Figure PCTKR2021018043-appb-img-000012
상기 화학식에서,
R은 O-보호기이며;
A는 N-보호기이다.
이하에서는 상기 (A-1) 단계 내지 (A-8) 단계 각각을 나누어 설명하기로 한다.
(A-1) 단계
본 발명에 있어서, 상기 (A-1) 단계는 화학식 1로 표시되는 트리아졸로피리미디논 유도체 화합물 또는 이의 염을 출발물질로 하여 프로텍션 반응으로 화학식 2로 표시되는 화합물을 제조하는 단계이다(반응식 1).
[반응식 1]
Figure PCTKR2021018043-appb-img-000013
상기 화학식에서, R은 O-보호기이다.
본 발명의 구체예에 따르면, 상기 반응은 트리아졸로피리미디논 유도체의 프로텍션을 진행한다. 예컨대, 상기 R은 C1-C6알킬, 아세틸, 벤조일, 벤질, p-메톡시벤질, MOM(메톡시메틸 아세탈), THP(테트라하이드로피란) 또는 실릴에터일 수 있다. 본 발명의 구체예에 따르면, 상기 반응은 화학식 1의 화합물을 알킬할라이드와 반응시켜 화학식 2로 표시되는 화합물을 제조할 수 있다. 예컨대, R은 이소프로필일 수 있고, 2-아이오도프로판과 함께 반응시키는 알킬레이션 반응에 의해 수행할 수 있으나, 이에 제한되지 않는다.
상기 반응에는 프로텍션 반응에 통상적으로 사용되는 염기를 사용할 수 있다. 예컨대, 상기 염기로는 수산화나트륨, 수산화칼륨, 탄산칼륨, 탄산나트륨, 탄산수소나트륨, 탄산세슘 또는 플루오린화세슘을 사용할 수 있다. 구체적으로 플루오린화세슘(CsF)을 사용할 수 있으나, 이에 제한되지 않는다.
상기 반응에는 프로텍션 반응에 통상적으로 사용되는 유기용매를 사용할 수 있다. 예컨대, 상기 용매로는 아세토나이트릴, 테트라하이드로퓨란, 1,4-다이옥산, 아세톤, 다이메틸설폭사이드, 다이메틸아세트아마이드, 다이메틸포름아마이드 또는 이들의 혼합물을 사용할 수 있다. 구체적으로 다이메틸포름아마이드를 사용할 수 있으나, 이에 제한되지 않는다.
또한, 상기 반응은 30 내지 110 ℃에서 수행될 수 있고, 보다 구체적으로 60 내지 90 ℃에서 수행될 수 있으나, 이에 제한되지 않는다.
상기 반응 이후 생성물을 분리 또는 정제하는 단계 중 하나 이상을 추가로 수행할 수 있으나, 이에 제한되지 않는다. 본 발명의 실시예에서는 상기 반응의 생성물을 유기용매인 이소프로판올에 교반하여 높은 순도의 생성물을 수득하였다.
(A-2) 단계
본 발명에 있어서, 상기 (A-2) 단계는 화학식 2로 표시되는 트리아졸로피리미딘 유도체 화합물을 출발물질로 하여 산화 반응으로 화학식 3으로 표시되는 화합물을 제조하는 단계이다(반응식 2).
[반응식 2]
Figure PCTKR2021018043-appb-img-000014
상기 화학식에서, R은 위에서 정의한 바와 같다.
본 발명의 구체예에 따르면, 상기 반응은 화학식 2로 표시되는 화합물을 산화제와 함께 반응시키는 산화 반응에 의해 수행할 수 있다.
상기 반응에는 산화 반응에 통상적으로 사용되는 산화제를 사용할 수 있다. 예컨대, 상기 산화제로는 과산화수소, 벤조일퍼옥사이드, 메타클로로퍼벤조산 또는 옥손을 사용할 수 있다. 구체적으로 옥손을 사용할 수 있으나, 이에 제한되지 않는다.
상기 반응에는 산화 반응에 통상적으로 사용되는 유기용매를 사용할 수 있다. 예컨대, 상기 용매로는 테트라하이드로퓨란, 1,4-다이옥산, 아세톤, 메탄올, 에탄올, 이소프로판올, 물 또는 이들의 혼합물을 사용할 수 있다. 구체적으로 테트라하이드로퓨란과 메탄올 혼합물을 사용할 수 있으나, 이에 제한되지 않는다.
또한, 상기 반응은 0 내지 70 ℃에서 수행될 수 있고, 보다 구체적으로 30 내지 50 ℃에서 수행될 수 있으나, 이에 제한되지 않는다.
상기 반응 이후 생성물을 분리 또는 정제하는 단계 중 하나 이상을 추가로 수행할 수 있으나, 이에 제한되지 않는다. 본 발명의 실시예에서는 상기 반응의 생성물을 유기용매인 이소프로판올에 교반하여 높은 순도의 생성물을 수득하였다.
(A-3) 단계
본 발명에 있어서, 상기 (A-3) 단계는 화학식 4로 표시되는 트리플루오로벤즈알데하이드 유도체 화합물을 출발물질로 하여 아미네이션 반응으로 화학식 5로 표시되는 화합물을 제조하는 단계이다(반응식 3).
[반응식 3]
Figure PCTKR2021018043-appb-img-000015
상기 화학식에서, A는 N-보호기이다.
본 발명의 구체예에 따르면, 상기 반응은 트리플루오로벤즈알데하이드 유도체와 프로텍션된 피페라진 유도체들을 사용할 수 있다. 예컨대, 상기 A는 - Boc, -Cbz, -Fmoc, -벤질, p-메톡시벤질, 트리틸 또는 DMT(다이메톡시트리틸)일 수 있다. 본 발명의 구체예에 따르면, 상기 반응은 3,4,5-트리플루오로벤즈알데하이드를 N-Boc-피페라진과 함께 반응시키는 아미네이션 반응에 의해 수행할 수 있으나, 이에 제한되지 않는다.
상기 반응에는 아미네이션 반응에 통상적으로 사용되는 염기를 사용할 수 있다. 예컨대, 상기 염기로는 탄산리튬, 탄산나트륨, 탄산칼륨, 탄산수소나트륨 또는 탄산세슘을 사용할 수 있다. 구체적으로 탄산리튬을 사용할 수 있으나, 이에 제한되지 않는다.
상기 반응에는 아미네이션 반응에 통상적으로 사용되는 유기용매를 사용할 수 있다. 예컨대, 상기 용매로는 아세토나이트릴, 테트라하이드로퓨란, 1,4-다이옥산, 아세톤, 다이메틸설폭사이드, 다이메틸아세타마이드, 다이메틸포름아마이드 또는 이들의 혼합물을 사용할 수 있다. 구체적으로 다이메틸설폭사이드를 사용할 수 있으나, 이에 제한되지 않는다.
또한, 상기 반응은 80 내지 150 ℃에서 수행될 수 있고, 보다 구체적으로 110 내지 130 ℃에서 수행될 수 있으나, 이에 제한되지 않는다.
상기 반응 이후 생성물을 분리 또는 정제하는 단계 중 하나 이상을 추가로 수행할 수 있으나, 이에 제한되지 않는다.
(A-4) 단계
본 발명에 있어서, 상기 (A-4) 단계는 화학식 5로 표시되는 페닐피페라진 유도체 화합물을 출발물질로 하여 Dakin 반응으로 화학식 6으로 표시되는 화합물을 제조하는 단계이다(반응식 4).
[반응식 4]
Figure PCTKR2021018043-appb-img-000016
상기 화학식에서, A는 위에서 정의한 바와 같다.
본 발명의 구체예에 따르면, 상기 반응은 화학식 5로 표시되는 화합물에 산화제를 가하여 수행할 수 있다.
상기 Dakin 반응에는 통상적으로 사용되는 산화제를 사용할 수 있다. 예컨대, 과산화수소, 암모늄퍼설페이트, 메타클로로퍼벤조산(mCPBA), 또는 이들의 혼합물을 사용할 수 있다. 구체적으로 메타클로로퍼벤조산을 사용할 수 있으나, 이에 제한되지 않는다.
상기 반응을 진행한 후 얻어지는 중간체(페닐 포메이트)에서 가수분해를 진행할 시 통상적으로 사용되는 염기를 사용할 수 있다. 예컨대, 상기 염기로는 수산화리튬, 수산화나트륨, 수산화칼륨, 중탄산나트륨, 탄산나트륨 또는 탄산칼슘을 사용할 수 있다. 구체적으로 수산화나트륨을 사용할 수 있으나, 이에 제한되지 않는다.
상기 반응에는 통상적으로 사용되는 용매를 사용할 수 있다. 예컨대, 상기 용매로는 다이클로로메탄, 클로로포름, 테트라하이드로퓨란, 1,4-다이옥산, 아세톤, 메탄올, 에탄올, 이소프로판올, 물 또는 이들의 혼합물을 사용할 수 있다. 구체적으로 다이클로로메탄을 사용할 수 있으나, 이에 제한되지 않는다.
또한, 상기 반응은 -20 내지 30 ℃에서 수행될 수 있고, 보다 구체적으로 -15 내지 15 ℃에서 수행될 수 있으나, 이에 제한되지 않는다.
상기 반응 이후 생성물을 분리 또는 정제하는 단계 중 하나 이상을 추가로 수행할 수 있으나, 이에 제한되지 않는다. 예컨대, 본 발명의 실시예에서는 상기 반응의 생성물을 유기용매인 이소프로판올에 교반하여 높은 순도의 생성물을 수득하였다.
(A-5) 단계
본 발명에 있어서, 상기 (A-5) 단계는 화학식 6으로 표시되는 페닐피페라진 유도체 화합물을 출발물질로 하여 알킬레이션 반응으로 화학식 7로 표시되는 화합물을 제조하는 단계이다(반응식 5).
[반응식 5]
Figure PCTKR2021018043-appb-img-000017
상기 화학식에서, A는 위에서 정의한 바와 같다.
본 발명의 구체예에 따르면, 상기 반응은 화학식 6의 화합물을 1-할로-2-메톡시에탄(예, 1-브로모-2-메톡시에탄)과 함께 반응시키는 알킬레이션 반응에 의해 수행할 수 있다.
상기 반응에는 알킬레이션 반응에 통상적으로 사용되는 유기용매를 사용할 수 있다. 예컨대, 상기 용매로는 아세토나이트릴, 테트라하이드로퓨란, 1,4-다이옥산, 아세톤, 다이메틸설폭사이드, 다이메틸아세타마이드, 다이메틸포름아마이드 또는 이들의 혼합물을 사용할 수 있다. 구체적으로 아세토나이트릴을 사용할 수 있으나, 이에 제한되지 않는다.
또한, 상기 반응은 50 내지 100 ℃에서 수행될 수 있고, 보다 구체적으로 75 내지 85 ℃에서 수행될 수 있으나, 이에 제한되지 않는다.
(A-6) 단계
본 발명에 있어서, 상기 (A-6) 단계는 화학식 7로 표시되는 페닐피페라진 유도체 화합물을 출발물질로 하여 디프로텍션 반응으로 화학식 8로 표시되는 화합물 또는 이의 염을 제조하는 단계이다(반응식 6).
[반응식 6]
Figure PCTKR2021018043-appb-img-000018
상기 화학식에서, A는 위에서 정의한 바와 같다.
본 발명의 구체예에 따르면, 상기 반응은 화학식 7의 화합물을 산 조건 하에서 디프로텍션 반응에 의해 수행할 수 있다.
상기 반응에는 디프로텍션 반응에 통상적으로 사용되는 용매를 사용할 수 있다. 예컨대, 상기 용매로는 메탄올, 에탄올, 이소프로판올, 테트라하이드로퓨란, 아세토나이트릴, 물 또는 이들의 혼합물을 사용할 수 있다. 구체적으로 메탄올을 사용할 수 있으나, 이에 제한되지 않는다.
또한, 상기 반응은 0 내지 60 ℃에서 수행될 수 있고, 보다 구체적으로 30 내지 50 ℃에서 수행할 수 있으나, 이에 제한되지 않는다.
상기 반응 이후 생성물을 분리 또는 정제하는 단계 중 하나 이상을 추가로 수행할 수 있으나, 이에 제한되지 않는다. 본 발명의 실시예에서는 상기 반응의 생성물을 유기용매인 다이클로로메탄, 터트-부틸 메틸 에테르 또는 이들의 혼합물에 교반하여 높은 순도의 생성물을 수득하였다.
(A-7) 단계
본 발명에 있어서, 상기 (A-7) 단계는 화학식 3으로 표시되는 화합물과 화학식 8로 표시되는 화합물 또는 이의 염으로부터 아미네이션 반응에 의해 하기 화학식 9로 표시되는 화합물을 제조하는 단계이다(반응식 7).
[반응식 7]
Figure PCTKR2021018043-appb-img-000019
상기 화학식에서, R은 위에서 정의한 바와 같다.
본 발명의 구체예에 따르면, 상기 반응은 예를 들어 7-이소프로폭시-3-메틸-5-(메틸설포닐)-3H-[1,2,3]트리아졸로[4,5-d]피리미딘과 1-(2,6-다이플루오로-4-(2-메톡시에톡시)페닐)피페라진 염산염을 이용하여 아미네이션 반응에 의해 수행할 수 있다.
상기 반응에는 아미네이션 반응에 통상적으로 사용되는 염기를 사용할 수 있다. 예컨대, 상기 염기로는 탄산리튬, 탄산나트륨, 탄산칼륨, 탄산수소나트륨, 탄산세슘, 트리에틸아민, 다이이소프로필에틸아민 또는 1,8-디아자바이사이클로[5,4,0]언덱-7-엔(DBU)을 사용할 수 있다. 구체적으로 다이이소프로필에틸아민을 사용할 수 있으나, 이에 제한되지 않는다.
상기 반응에는 아미네이션 반응에 통상적으로 사용되는 유기용매를 사용할 수 있다. 예컨대, 상기 용매로는 아세토나이트릴, 테트라하이드로퓨란, 1,4-다이옥산, 아세톤, 다이메틸설폭사이드, 다이메틸아세타마이드, 다이메틸포름아마이드, 메탄올, 에탄올, 이소프로판올 또는 이들의 혼합물을 사용할 수 있다. 구체적으로 에탄올을 사용할 수 있으나, 이에 제한되지 않는다.
또한, 상기 반응은 50 내지 100 ℃에서 수행될 수 있고, 보다 구체적으로 60 내지 80 ℃에서 수행할 수 있으나, 이에 제한되지 않는다.
상기 반응 이후 생성물을 분리 또는 정제하는 단계 중 하나 이상을 추가로 수행할 수 있으나, 이에 제한되지 않는다. 본 발명의 실시예에서는 상기 반응의 생성물을 유기용매인 다이클로로메탄, 다이이소프로필에테르 또는 이들의 혼합물에 교반하여 높은 순도의 생성물을 수득하였다.
(A-8) 단계
본 발명에 있어서, 상기 (A-8) 단계는 화학식 9로 표시되는 화합물로부터 디프로텍션 반응에 의해 화학식 I로 표시되는 화합물을 제조하는 단계이다(반응식 8).
[반응식 8]
Figure PCTKR2021018043-appb-img-000020
상기 화학식에서, R은 위에서 정의한 바와 같다.
본 발명의 구체예에 따르면, 상기 반응은 예를 들어 5-(4-(2,6-다이플루오로-4-(2-메톡시에톡시)페닐)피페라진-1-일)-7-이소프로폭시-3-메틸-3H-[1,2,3]트리아졸로[4,5-d]피리미딘으로부터 디프로텍션 반응에 의해 수행할 수 있다.
상기 반응에는 디프로텍션 반응에 통상적으로 사용되는 산을 용매로 사용할 수 있다. 이때, 상기 산은 아세트산, 염산, 황산, 질산, 인산 또는 이들의 혼합물을 사용할 수 있다. 구체적으로 아세트산, 황산 또는 이들의 혼합물을 사용할 수 있으나, 이에 제한되지 않는다.
또한, 상기 반응은 30 내지 80 ℃에서 수행될 수 있고, 보다 구체적으로 40 내지 60 ℃에서 수행할 수 있으나, 이에 제한되지 않는다.
상기 반응 이후 생성물을 분리 또는 정제하는 단계 중 하나 이상을 추가로 수행할 수 있으나, 이에 제한되지 않는다. 본 발명의 실시예에서는 상기 반응의 생성물을 아세톤, 물 또는 이들의 혼합물에 교반하여 높은 순도의 생성물을 수득하였다.
합성 경로 B
본 발명의 제조방법 중 합성 경로 B는 하기 (B-1) 단계 내지 (B-7) 단계를 포함한다.
(B-1) 하기 화학식 1로 표시되는 화합물 또는 이의 염으로부터 프로텍션 반응에 의해 하기 화학식 2로 표시되는 화합물을 제조하는 제 1 단계;
(B-2) 상기 화학식 2로 표시되는 화합물로부터 산화 반응에 의해 하기 화학식 3으로 표시되는 화합물을 제조하는 제 2 단계;
(B-3) 하기 화학식 4로 표시되는 화합물로부터 아미네이션 반응에 의해 하기 화학식 9로 표시되는 화합물을 제조하는 제 3 단계;
(B-4) 상기 화학식 3으로 표시되는 화합물과 상기 화학식 9로 표시되는 화합물 또는 이의 염으로부터 아미네이션 반응에 의해 하기 화학식 10으로 표시되는 화합물을 제조하는 제 4 단계;
(B-5) 하기 화학식 10으로 표시되는 화합물로부터 Dakin 반응에 의해 하기 화학식 11로 표시되는 화합물을 제조하는 제 5 단계;
(B-6) 하기 화학식 11로 표시되는 화합물로부터 알킬레이션 반응에 의해 상기 화학식 Ia로 표시되는 화합물을 제조하는 제 6 단계; 및
(B-7) 상기 화학식 Ia로 표시되는 화합물로부터 디프로텍션 반응에 의해 하기 화학식 I로 표시되는 화합물을 제조하는 제 7 단계;
[화학식 1]
Figure PCTKR2021018043-appb-img-000021
[화학식 2]
Figure PCTKR2021018043-appb-img-000022
[화학식 3]
Figure PCTKR2021018043-appb-img-000023
[화학식 4]
Figure PCTKR2021018043-appb-img-000024
[화학식 9]
Figure PCTKR2021018043-appb-img-000025
[화학식 10]
Figure PCTKR2021018043-appb-img-000026
[화학식 11]
Figure PCTKR2021018043-appb-img-000027
[화학식 Ia]
Figure PCTKR2021018043-appb-img-000028
[화학식 I]
Figure PCTKR2021018043-appb-img-000029
상기 화학식에서,
R은 O-보호기이다.
이하에서는 상기 (B-1) 단계 내지 (B-7) 단계 각각을 나누어 설명하기로 한다. 이 중에서 (B-1) 단계, (B-2) 단계 및 (B-7) 단계는 각각 위에서 언급한 (A-1) 단계, (A-2) 단계 및 (A-8) 단계와 동일하며, (B-3) 단계 내지 (B-6) 단계에 대해서만 구체적으로 살핀다.
(B-3) 단계
본 발명에 있어서, 상기 (B-3) 단계는 화학식 4로 표시되는 트리플루오로벤즈알데하이드 유도체 화합물을 출발물질로 하여 아미네이션 반응으로 화학식 8로 표시되는 화합물 또는 이의 염을 제조하는 단계이다(반응식 9).
[반응식 9]
Figure PCTKR2021018043-appb-img-000030
본 발명의 구체예에 따르면, 상기 반응은 트리플루오로벤즈알데하이드 유도체와 피페라진을 사용할 수 있다.
상기 반응에는 아미네이션 반응에 통상적으로 사용되는 염기를 사용할 수 있다. 예컨대, 상기 염기로는 탄산리튬, 탄산나트륨, 탄산칼륨, 탄산수소나트륨 또는 탄산세슘을 사용할 수 있다. 구체적으로 탄산칼륨을 사용할 수 있으나, 이에 제한되지 않는다.
상기 반응에는 아미네이션 반응에 통상적으로 사용되는 유기용매를 사용할 수 있다. 예컨대, 상기 용매로는 아세토나이트릴, 테트라하이드로퓨란, 1,4-다이옥산, 아세톤, 이소프로필 알코올, 다이메틸설폭사이드, 다이메틸아세타마이드, 다이메틸포름아마이드, 에틸렌글라이콜, 다이에틸렌글라이콜 다이메틸에테르, 다이메톡시에탄 또는 이들의 혼합물을 사용할 수 있다. 구체적으로 다이메톡시에탄을 사용할 수 있으나, 이에 제한되지 않는다.
또한, 상기 반응은 60 내지 150 ℃에서 수행될 수 있고, 보다 구체적으로 70 내지 90 ℃에서 수행될 수 있으나, 이에 제한되지 않는다.
상기 반응 이후 생성물을 분리 또는 정제하는 단계 중 하나 이상을 추가로 수행할 수 있으나, 이에 제한되지 않는다.
(B-4) 단계
본 발명에 있어서, 상기 (B-3) 단계는 화학식 3으로 표시되는 화합물과 화학식 9로 표시되는 화합물 또는 이의 염으로부터 아미네이션 반응에 의해 하기 화학식 10으로 표시되는 화합물을 제조하는 단계이다(반응식 10).
[반응식 10]
Figure PCTKR2021018043-appb-img-000031
상기 화학식에서, R은 위에서 정의한 바와 같다.
본 발명의 구체예에 따르면, 상기 반응은 예를 들어 7-이소프로폭시-3-메틸-5-(메틸설포닐)-3H-[1,2,3]트리아졸로[4,5-d]피리미딘과 3,5-다이플루오로-4-(피페라진-1-일)벤즈알데하이드를 이용하여 아미네이션 반응에 의해 수행할 수 있다.
상기 반응에는 아미네이션 반응에 통상적으로 사용되는 염기를 사용할 수 있다. 예컨대, 상기 염기로는 탄산리튬, 탄산나트륨, 탄산칼륨, 탄산수소나트륨, 탄산세슘, 트리에틸아민, 다이이소프로필에틸아민 또는 1,8-디아자바이사이클로[5,4,0]언덱-7-엔(DBU)을 사용할 수 있으며, 이에 제한되지 않는다.
상기 반응에는 아미네이션 반응에 통상적으로 사용되는 유기용매를 사용할 수 있다. 예컨대, 상기 용매로는 아세토나이트릴, 테트라하이드로퓨란, 1,4-다이옥산, 아세톤, 다이메틸설폭사이드, 다이메틸아세트아마이드, 다이메틸포름아마이드, 메탄올, 에탄올, 이소프로판올 또는 이들의 혼합물을 사용할 수 있다. 구체적으로 다이메틸아세트아마이드를 사용할 수 있으나, 이에 제한되지 않는다.
또한, 상기 반응은 50 내지 150 ℃에서 수행될 수 있고, 보다 구체적으로 80 내지 120 ℃에서 수행할 수 있으나, 이에 제한되지 않는다.
상기 반응 이후 생성물을 분리 또는 정제하는 단계 중 하나 이상을 추가로 수행할 수 있으나, 이에 제한되지 않는다. 본 발명의 실시예에서는 상기 반응의 생성물을 유기용매인 다이에틸에테르, 이소프로판올 또는 이들의 혼합물에 교반하여 높은 순도의 생성물을 수득하였다.
(B-5) 단계
본 발명에 있어서, 상기 (B-5) 단계는 화학식 10으로 표시되는 화합물을 출발물질로 하여 Dakin 반응으로 화학식 11로 표시되는 화합물을 제조하는 단계이다(반응식 11).
[반응식 11]
Figure PCTKR2021018043-appb-img-000032
상기 화학식에서, R은 위에서 정의한 바와 같다.
본 발명의 구체예에 따르면, 상기 반응은 화학식 10으로 표시되는 화합물에 산화제를 가하여 수행할 수 있다.
상기 Dakin 반응에는 통상적으로 사용되는 산화제를 사용할 수 있다. 예컨대, 과산화수소, 암모늄퍼설페이트, 메타클로로퍼벤조산(mCPBA), 또는 이들의 혼합물을 사용할 수 있다. 구체적으로 메타클로로퍼벤조산을 사용할 수 있으나, 이에 제한되지 않는다.
상기 반응을 진행한 후 얻어지는 중간체(페닐 포메이트)에서 가수분해를 진행할 시 통상적으로 사용되는 염기를 사용할 수 있다. 예컨대, 상기 염기로는 수산화리튬, 수산화나트륨, 수산화칼륨, 중탄산나트륨, 탄산나트륨 또는 탄산칼슘을 사용할 수 있다. 구체적으로 수산화나트륨을 사용할 수 있으나, 이에 제한되지 않는다.
상기 반응에는 통상적으로 사용되는 용매를 사용할 수 있다. 예컨대, 상기 용매로는 다이클로로메탄, 클로로포름, 테트라하이드로퓨란, 1,4-다이옥산, 아세톤, 메탄올, 에탄올, 이소프로판올, 물 또는 이들의 혼합물을 사용할 수 있다. 구체적으로 다이클로로메탄을 사용할 수 있으나, 이에 제한되지 않는다.
또한, 상기 반응은 -20 내지 30 ℃에서 수행될 수 있고, 보다 구체적으로 -15 내지 15 ℃에서 수행될 수 있으나, 이에 제한되지 않는다.
상기 반응 이후 생성물을 분리 또는 정제하는 단계 중 하나 이상을 추가로 수행할 수 있으나, 이에 제한되지 않는다. 예컨대, 본 발명의 실시예에서는 상기 반응의 생성물을 유기용매인 이소프로판올과 터트-부틸 메틸 에테르 또는 이들의 혼합물에 교반하여 높은 순도의 생성물을 수득하였다.
(B-6) 단계
본 발명에 있어서, 상기 (B-6) 단계는 화학식 11로 표시되는 화합물을 출발물질로 하여 알킬레이션 반응으로 화학식 Ia로 표시되는 화합물을 제조하는 단계이다(반응식 12).
[반응식 12]
Figure PCTKR2021018043-appb-img-000033
본 발명의 구체예에 따르면, 상기 반응은 화학식 11의 화합물을 1-할로-2-메톡시에탄(예, 1-브로모-2-메톡시에탄)과 함께 반응시키는 알킬레이션 반응에 의해 수행할 수 있다.
상기 반응에는 알킬레이션 반응에 통상적으로 사용되는 유기용매를 사용할 수 있다. 예컨대, 상기 용매로는 아세토나이트릴, 테트라하이드로퓨란, 1,4-다이옥산, 아세톤, 다이메틸설폭사이드, 다이메틸아세트아마이드, 다이메틸포름아마이드 또는 이들의 혼합물을 사용할 수 있다. 구체적으로 디메틸포름아마이드를 사용할 수 있으나, 이에 제한되지 않는다.
또한, 상기 반응은 50 내지 100 ℃에서 수행될 수 있고, 보다 구체적으로 60 내지 80 ℃에서 수행될 수 있으나, 이에 제한되지 않는다.
국제공개공보 WO 2016/006974에 개시된 제조방법에 따르면, 상기 화학식 I로 표시되는 화합물을 11 단계 공정을 거쳐 제조하고 있다. 또한, 마이크로웨이브를 이용하거나 컬럼정제 공정을 여러 번 거치므로 대량생산에 적합하지 않았다. 그러나, 본 발명의 제조방법에 따르면, 합성 경로 A 또는 B 모두 공정의 수가 8단계 또는 7단계로 많은 공정을 거칠 필요가 없다. 또한 합성 경로 A의 상기 (A-1) 단계 내지 (A-8) 단계, 합성 경로 B의 상기 (B-1) 단계 내지 (B-7) 단계 모두 마이크로웨이브 및 컬럼정제공정을 거치지 않으며, 효율적으로 고수율, 고순도의 화합물을 제조할 수 있으므로 대량생산에 적합하다.
또한, 상기 (A-1) 단계 내지 (A-8) 단계, (B-1) 단계 내지 (B-7)단계에서 제조되고 사용된 화학식 1 내지 11 및 화학식 Ia로 표시되는 화합물들은 모두 화학식 I로 표시되는 트리아졸로피리미디논 유도체 화합물을 제조하는데 유용한 중간체들이다.
본 발명의 제조방법은 종래 제조방법과 비교하여 공정의 수가 적고, 효율적인 공정개발을 통해 마이크로웨이브 반응을 사용하지 않고 고순도 및 고수율로 트리아졸로피리미디논 유도체 화합물을 컬럼정제 없이 결정화를 통해 제조할 수 있으므로, 생산 단가를 크게 낮출 수 있어 경제적이며, 대량생산에 적합하다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
실시예 1
본 발명의 실시예 1에서는 하기 반응식 I에 따라 화학식 I로 표시되는 트리아졸로피리미디논 유도체 화합물을 제조하였다.
[반응식 I]
Figure PCTKR2021018043-appb-img-000034
단계 1: 7-이소프로폭시-3-메틸-5-(메틸싸이오)-3H-[1,2,3]트리아졸로[4,5-d]피리미딘의 제조
3-메틸-5-(메틸싸이오)-3,6-다이하이드로-7H-[1,2,3]트리아졸로[4,5-d]피리미딘-7-온(15 g, 76.1 mmol)을 다이메틸포름아마이드 76 mL에 희석하였다. 플루오린화세슘(46.2 g, 304.2 mmol), 이소프로필아이오다이드(38.1 g, 228.2 mmol)를 투입한 후, 내부 온도를 75 내지 80 ℃로 승온하고 2 시간 동안 교반하였다. 반응이 완료되면 상온으로 냉각하고, 에틸아세테이트 300 mL를 투입한 후 10 분간 교반하였다. 형성된 결정을 셀라이트 여과를 통해 여과하고, 여액에 5% 소금물 120 mL를 투입하고 10 분간 교반하였다. 유기층을 5% 소금물 120 mL로 두 번 더 세척하였다. 무수 황산나트륨으로 탈수 후 여과하고 감압농축하였다. 농축 잔사에 이소프로판올 50 mL를 투입하고, 40 ℃로 승온하여 30분간 교반하였다. 석출된 결정은 5 내지 10 ℃에서 30분 교반 후 여과하고 감압 건조하여 연노란색 고체의 표제 화합물(11.3 g, 62%)을 얻었다.
1H-NMR 400 Hz (DMSO-d 6): 5.62 (m, 1H), 4.15 (s, 3H), 2.61 (s, 3H), 1.44 (d, J = 8 Hz, 6H).
LCMS (ESI, m/z): 240.1 [M+H+].
단계 2: 7-이소프로폭시-3-메틸-5-(메틸설포닐)-3H-[1,2,3]트리아졸로[4,5-d]피리미딘의 제조
단계 1에서 제조된 7-이소프로폭시-3-메틸-5-(메틸싸이오)-3H-[1,2,3]트리아졸로[4,5-d]피리미딘(10 g, 41.8 mmol)을 테트라하이드로퓨란 70 mL에 희석하고, 내부 온도를 5 내지 10 ℃로 냉각하며 교반하였다. 옥손(38.5 g, 125.3 mmol)을 정제수 200 mL에 용해한 후, 반응액에 30분간 적가하였다. 적가가 완료된 후 내부 온도를 35 내지 40 ℃로 승온하고 2 시간 동안 교반하였다. 반응이 완결되면 반응액을 감압 농축하고, 다이클로로메탄 100 mL를 투입하고 유기층을 추출하였다. 수층에 다이클로로메탄 100 mL를 투입하여 추출하고 유기층을 합친 후, 무수 황산나트륨으로 탈수 및 여과하고 감압농축하였다. 농축 잔사에 이소프로판올 50 mL를 투입하고, 75 ℃로 승온하여 30 분간 교반하였다. 석출된 결정은 5 내지 10 ℃에서 30분간 교반 후, 여과하고 감압 건조하여 미백색 고체의 표제 화합물(9.9 g, 87%)을 얻었다.
1H-NMR 400 Hz (DMSO-d 6): 5.74 (m, 1H), 4.30 (s, 3H), 3.47 (s, 3H), 1.50 (d, J = 6.4 Hz, 6H).
LCMS (ESI, m/z): 272.0 [M+H+].
단계 3: 터트-부틸 4-(2,6-다이플루오로-4-포밀페닐)피페라진-1-카복실레이트의 제조
3,4,5-트리플루오로벤즈알데히드(5 g, 31.2 mmol)와 Boc-피페라진(5.8 g, 31.2 mmol), 탄산리튬(7.3 g, 94 mmol)을 다이메틸설폭사이드(25 mL)에 희석시킨 후, 내부 온도 115 내지 120 ℃에서 3 시간 동안 교반하였다. 반응이 완결되면 반응액을 상온으로 냉각하고, 차가운 물 125 mL와 에틸아세테이트 50 mL의 혼합액에 희석하여 10 분간 교반하였다. 녹지 않는 불용물을 셀라이트 여과를 통해 제거하였다. 여액의 유기층을 분리하여 무수 황산나트륨으로 탈수 후, 여과하고 감압농축하였다. 잔여물을 정제하지 않고 다음 반응을 진행하였다.
단계 4: 터트-부틸 4-(2,6-다이플루오로-4-하이드록시페닐)피페라진-1-카복실레이트의 제조
단계 3에서 제조된 터트-부틸 4-(2,6-다이플루오로-4-포밀페닐)피페라진-1-카복실레이트를 다이클로로메탄 102 mL에 용해한 후, 내부 온도 -15 내지 -10 ℃로 냉각하며 교반하였다. 메타클로로퍼벤조산(8.08 g, 46.8 mmol)을 천천히 나누어 적가한 후, 내부 온도 -10 내지 10 ℃을 유지하며 2 시간 동안 교반하였다. 반응액에 2N 수산화나트륨 수용액(78 mL, 156 mmol)을 적가한 후, 서서히 상온으로 올려 2 시간 동안 교반하였다. 반응이 완료되면 물층을 분리하고, 0 내지 5 ℃에서 1N 염산 수용액을 이용하여 pH 6으로 조절한 후, 터트-부틸 메틸 에테르 90 mL를 투입하고 10 분간 교반하였다. 유기층을 추출하고 탄산수소나트륨 수용액 30 mL로 세척하였다. 무수 황산나트륨으로 탈수, 여과하고 감압농축하였다. 잔유물에 이소프로판올 35 mL를 가한 후 3 시간 동안 상온에서 교반하였다. 여과하고 감압 건조하여 연한 노란색 고체의 표제 화합물(3.9 g, 40%)을 얻었다.
1H-NMR 400 Hz (MeOD): 6.33 (d, J = 8.2 Hz, 2H), 4.63 (S, 1H), 3.52 (S, 4H), 3.00 (S, 4H), 1.49 (S, 9H).
LCMS (ESI, m/z): 315.1 [M+H+].
단계 5: 터트-부틸 4-(2,6-다이플루오로-4-(2-메톡시에톡시)페닐)피페라진-1-카복실레이트의 제조
단계 4에서 제조된 터트-부틸 4-(2,6-다이플루오로-4-하이드록시페닐)피페라진-1-카복실레이트(20 g, 63.6 mmol)를 아세토나이트릴에 희석하였다. 탄산칼슘(26.4 g, 190.9 mmol), 1-브로모-2-메톡시에탄(13.3 g, 95.5 mmol)을 투입한 후, 75 내지 85 ℃로 승온하여 8 시간 동안 환류교반하였다. 반응이 완료된 후 반응액을 감압 농축하고, 잔류물에 정제수 140 mL, 에틸아세테이트 280 mL를 투입하고 15 분 동안 상온에서 교반하였다. 유기층을 분리하여 무수 황산나트륨으로 탈수 후, 여과하고 감압농축하였다. 잔여물을 정제하지 않고 다음 반응을 진행하였다.
단계 6: 1-(2,6-다이플루오로-4-(2-메톡시에톡시)페닐)피페라진 염산염의 제조
반응기에 메탄올 240 mL를 투입하고 내부온도 5 ℃ 이하로 냉각한 후, 아세틸클로라이드(31.3 mL, 439 mmol)을 천천히 투입하고 15 분간 교반하였다. 상기 단계 5에서 제조된 터트-부틸 4-(2,6-다이플루오로-4-(2-메톡시에톡시)페닐)피페라진-1-카복실레이트를 다이클로로메탄 64 mL에 용해한 후 반응기에 서서히 투입하고, 내부 온도를 40 내지 45 ℃로 승온하여 2 시간 동안 교반하였다. 반응이 완료된 후 반응액을 감압농축하고, 잔유물에 메탄올 60 mL을 투입하고 상온에서 교반하여 용해하였다. 내부 온도를 15 ~ 20 ℃로 냉각하고, 터트-부틸 메틸 에테르 180 mL를 적가하며 30 분간 교반하였다. 석출된 결정을 여과하고 감압 건조하여 미백색 고체의 표제 화합물(14.2 g, 72%)을 얻었다.
1H-NMR 400 Hz (DMSO-d 6): 9.25 (brs, 2H), 6.85-6.64 (m, 2H), 4.12-4.02 (m, 2H), 3.65-3.58 (m, 2H), 3.28 (s, 3H), 3.25-3.18 (m, 4 H), 3.17-3.09 (m, 4H).
LCMS (ESI, m/z): 273.0 [M+H+]. (Free form)
단계 7: 5-(4-(2,6-다이플루오로-4-(2-메톡시에톡시)페닐)피페라진-1-일)-7-이소프로폭시-3-메틸-3H-[1,2,3]트리아졸로[4,5-d]피리미딘의 제조
단계 2에서 제조된 7-이소프로폭시-3-메틸-5-(메틸설포닐)-3H-[1,2,3]트리아졸로[4,5-d]피리미딘(10 g, 36.9 mmol)을 에탄올 146 mL에 희석하고, 다이이소프로필에틸아민(19.3 mL, 110.5 mmol)과 단계 6에서 제조된 1-(2,6-다이플루오로-4-(2-메톡시에톡시)페닐)피페라진 염산염(13.1 g, 42.4 mmol)을 투입하고, 60 내지 80 ℃로 승온하여 3 시간 동안 환류교반하였다. 반응이 완료된 후 반응액을 감압농축하고 잔유물에 다이클로로메탄 150 mL와 물 53 mL를 투입하고 층 분리하였다. 수층을 다이클로로메탄 50 mL로 2번 추출하였다. 유기층을 합친 후 1N 염산 수용액 50 mL와 5% 소금물 50 mL로 세척하고, 무수 황산나트륨으로 탈수 후 여과하였다. 여액에 활성탄 2 g을 투입하고 30 분간 교반하였다. 셀라이트 여과를 진행하고 여액을 감압 농축하였다. 농축 잔사에 다이클로로메탄 30 mL를 투입하여 용해한 후, 다이이소프로필 에테르 200 mL를 적가하며 5 내지 10 ℃에서 1 시간 동안 교반하였다. 석출된 결정을 여과하고 감압 건조하여 미백색 고체의 표제 화합물(15.1 g, 89%)을 얻었다.
1H-NMR 400 Hz (DMSO-d 6): 6.77-6.69 (m, 2H), 5.55 (m, 1H), 4.09-4.06 (m, 2H), 3.99 (s, 3H), 3.93 (t, J = 4.8 Hz, 4H), 3.64-3.62 (m, 2H), 3.28 (s, 3H), 3.09 (t, J = 4.8 Hz, 4H), 1.42 (d, J = 6.4 Hz, 6H).
LCMS (ESI, m/z): 464.1 [M+H+].
단계 8: 5-(4-(2,6-다이플루오로-4-(2-메톡시에톡시)페닐)피페라진-1-일)-3-메틸-3,6-디히드로-7H-[1,2,3]트리아졸로[4,5-d]피리미딘-7-온의 제조
단계 7에서 제조된 5-(4-(2,6-다이플루오로-4-(2-메톡시에톡시)페닐)피페라진-1-일)-7-이소프로폭시-3-메틸-3H-[1,2,3]트리아졸로[4,5-d]피리미딘(15 g, 32.4 mmol)에 아세트산 92 mL과 황산 16.1 mL를 투입하고, 내부 온도 45 내지 50 ℃로 승온하여 3 시간 동안 교반하였다. 반응이 완결된 후 반응액을 상온으로 냉각하고, 정제수 230 mL를 30 분간 적가하며 교반하였다. 적가가 완료된 후, 내부 온도를 5 내지 10 ℃로 냉각하고 1 시간 동안 교반하였다. 석출된 결정을 여과하고 아세톤 150 mL에 희석한 후, 내부 온도를 40 내지 45 ℃로 승온하여 1 시간 동안 교반하였다. 반응액을 서서히 5 내지 10 ℃로 냉각하며 정제수 150 mL를 투입하였다. 석출된 결정을 30 분간 교반 후 여과하고 감압 건조하여 미백색 고체의 표제 화합물(11.5 g, 84%)을 얻었다.
1H-NMR 400 Hz (DMSO-d 6): 11.29 (brs, 1H), 6.74 (d, J = 11.2 Hz, 2H), 4.08 (t, J = 4.4 Hz, 2H), 3.92 (s, 3H), 3.82-3.76 (m, 4H), 3.62 (t, J = 4.4 Hz, 2H), 3.29 (s, 3H), 3.12-3.06 (m, 4H).
LCMS (ESI, m/z): 422.1 [M+H+].
실시예 2
본 발명의 실시예 2 에서는 하기 반응식 II에 따라 화학식 I로 표시되는 트리아졸로피리미디논 유도체 화합물을 제조하였다.
[반응식 II]
Figure PCTKR2021018043-appb-img-000035
단계 1: 3,5-다이플루오로-4-(피페라진-1-일)벤즈알데하이드의 제조
3,4,5-트리플루오로벤즈알데히드(4 g, 24.99 mmol)와 피페라진(6.46 g, 75 mmol), 탄산칼륨(6.91 g, 50 mmol)을 다이메톡시에탄(50 mL)에 희석시킨 후, 내부 온도 75 내지 80 ℃에서 20 시간 동안 교반하였다. 반응이 완결되면 반응액을 0 ~ 5 ℃로 냉각하고, 2N 염산 수용액을 가하여 pH 2로 조절하였다. 수층을 다이클로로메탄 50 mL로 2회 세척한 후 1N 가성소다 수용액을 이용하여 중성으로 조절하였다. 수층에 다이클로로메탄 100 mL를 투입한 후 유기층을 추출하고 무수 황산나트륨으로 탈수 후, 여과하고 감압농축하여 노란색 고체의 표제 화합물(4.65 g, 82%)을 얻었다.
1H-NMR 400 Hz (DMSO-d 6): 9.80 (s, 1H), 7.56-7.54 (d, J = 8.2 Hz, 2H), 3.19 (s, 4H), 2.79 (s, 4H).
LCMS (ESI, m/z): 227.1 [M+H+].
단계 2: 3,5-다이플루오로-4-(4-(7-아이소프로폭시-3-메틸-3H-[1,2,3]트리아졸로[4,5-d]피리미딘-5-일)피페라진-1-일)벤즈알데하이드의 제조
실시예 1의 단계 2에서 제조된 7-이소프로폭시-3-메틸-5-(메틸설포닐)-3H-[1,2,3]트리아졸로[4,5-d]피리미딘(1 g, 3.69 mmol)과 실시예 2의 단계 1에서 제조된 3,5-다이플루오로-4-(피페라진-1-일)벤즈알데하이드(0.959 g, 4.24 mmol)를 다이메틸아세트아마이드 15 mL에 희석하고, 110 ~ 120 ℃로 승온하여 2 시간 동안 교반하였다. 반응이 완료된 후 반응액을 상온으로 냉각하고 에틸아세테이트 75 mL, 물 30 mL를 투입하여 희석한 후 유기층을 분리하여 소금물로 세척하였다. 유기층을 무수 황산나트륨으로 탈수 및 여과하고 감압농축하였다. 농축 잔사에 이소프로판올 5 mL를 투입하고 상온에서 30분간 교반하였다. 석출된 결정을 여과하고 이소프로판올로 세척한 후 감압 건조하여 연한 노란색 고체의 표제 화합물(1.25 g, 81%)을 얻었다.
1H-NMR 400 Hz (CDCl3): 9.81 (s, 1H), 7.44-7.36 (m, 2H), 5.65-5.55 (m, 1H), 4.07 (s, 3H), 4.05-4.03 (t, J = 5.0 Hz, 4H), 3.43 (s, 4H), 1.50-1.48 (d, J = 6.2 Hz, 6H).
LCMS (ESI, m/z): 418.0 [M+H+].
단계 3: 3,5-다이플루오로-4-(4-(7-아이소프로폭시-3-메틸-3H-[1,2,3]트리아졸로[4,5-d]피리미딘-5-일)피페라진-1-일)페놀의 제조
단계 2에서 제조된 3,5-다이플루오로-4-(4-(7-아이소프로폭시-3-메틸-3H-[1,2,3]트리아졸로[4,5-d]피리미딘-5-일)피페라진-1-일)벤즈알데하이드 (1 g, 2.4 mmol)를 다이클로로메탄 8 mL에 희석한 후 -10 ~ 0 ℃에서 메타클로로퍼벤조산 (1076 mg, 4.8 mmol)을 천천히 나누어 적가한 후, 내부 온도 -10 내지 10 ℃를 유지하며 2 시간 동안 교반하였다. 반응액에 2N 수산화나트륨 수용액 (9.6 mL, 19.2 mmol)을 적가한 후, 서서히 상온으로 올려 2 시간 동안 교반하였다. 반응이 완료되면 물층을 분리하고, 0 내지 5 ℃에서 1N 염산 수용액을 이용하여 pH 6으로 조절한 후, 터트-부틸 메틸 에테르 50 mL를 투입하고 10 분간 교반하였다. 유기층을 추출하고 탄산수소나트륨 수용액 10 mL로 세척하였다. 무수 황산나트륨으로 탈수, 여과하고 감압농축하였다. 잔유물에 이소프로판올 3 mL를 가한 후 1 시간 동안 상온에서 교반하였다. 여과하고 감압 건조하여 연한 노란색 고체의 표제 화합물(388 mg, 40%)을 얻었다.
1H-NMR 400 Hz (DMSO-d 6): 6.44-6.42 (d, J = 11.0 Hz, 2H), 5.57-5.51 (m, 1H), 3.99 (s, 3H), 3.92 (s, 3H), 1.42-1.41 (d, J = 6.2 Hz, 6H).
LCMS (ESI, m/z): 406.0 [M+H+].
단계 4: 5-(4-(2,6-다이플루오로-4-(2-메톡시에톡시)페닐)피페라진-1-일)-7-아이소프로폭시-3-메틸-3H-[1,2,3]트리아졸로[4,5-d]피리미딘의 제조
단계 3에서 제조된 3,5-다이플루오로-4-(4-(7-아이소프로폭시-3-메틸-3H-[1,2,3]트리아졸로[4,5-d]피리미딘-5-일)피페라진-1-일)페놀 (1 g, 2.5 mmol)을 디메틸포름아마이드 10 mL에 희석한 후 탄산칼륨 (1.02 g, 7.4 mmol)을 가하고 65 ~ 70 ℃ 에서 7 시간 동안 교반하였다. 반응이 완료된 후 정제수 200 mL, 에틸아세테이트 550 mL를 투입하고 15 분 동안 상온에서 교반하였다. 유기층을 분리하여 무수 황산나트륨으로 탈수 후, 여과하고 감압농축하였다. 농축 잔사에 다이클로로메탄과 다이이소프로필 에테르를 적가하여 결정을 석출하였다. 석출된 결정을 여과하고 감압 건조하여 미백색 고체의 표제 화합물(780 mg, 68%)을 얻었다.
1H-NMR 400 Hz (DMSO-d 6): 6.77-6.69 (m, 2H), 5.55 (m, 1H), 4.09-4.06 (m, 2H), 3.99 (s, 3H), 3.93 (t, J = 4.8 Hz, 4H), 3.64-3.62 (m, 2H), 3.28 (s, 3H), 3.09 (t, J = 4.8 Hz, 4H), 1.42 (d, J = 6.4 Hz, 6H).
LCMS (ESI, m/z): 464.1 [M+H+].
단계 5: 5-(4-(2,6-다이플루오로-4-(2-메톡시에톡시)페닐)피페라진-1-일)-3-메틸-3,6-디히드로-7H-[1,2,3]트리아졸로[4,5-d]피리미딘-7-온의 제조
단계 4에서 제조된 5-(4-(2,6-다이플루오로-4-(2-메톡시에톡시)페닐)피페라진-1-일)-7-이소프로폭시-3-메틸-3H-[1,2,3]트리아졸로[4,5-d]피리미딘(750 mg, 1.62 mmol)에 아세트산 4.6 mL과 황산 0.81 mL를 투입하고, 내부 온도 45 내지 50 ℃로 승온하여 3 시간 동안 교반하였다. 반응이 완결된 후 반응액을 상온으로 냉각하고, 정제수 11 mL를 30 분간 적가하며 교반하였다. 적가가 완료된 후, 내부 온도를 5 내지 10 ℃로 냉각하고 1 시간 동안 교반하였다. 석출된 결정을 여과하고 아세톤 7.5 mL에 희석한 후, 내부 온도를 40 내지 45 ℃로 승온하여 1 시간 동안 교반하였다. 반응액을 서서히 5 내지 10 ℃로 냉각하며 정제수 7.5 mL를 투입하였다. 석출된 결정을 30 분간 교반 후 여과하고 감압 건조하여 미백색 고체의 표제 화합물(575 mg, 84%)을 얻었다.
1H-NMR 400 Hz (DMSO-d 6): 11.29 (brs, 1H), 6.74 (d, J = 11.2 Hz, 2H), 4.08 (t, J = 4.4 Hz, 2H), 3.92 (s, 3H), 3.82-3.76 (m, 4H), 3.62 (t, J = 4.4 Hz, 2H), 3.29 (s, 3H), 3.12-3.06 (m, 4H).
LCMS (ESI, m/z): 422.1 [M+H+].
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (10)

  1. (A-1) 하기 화학식 1로 표시되는 화합물 또는 이의 염으로부터 프로텍션 반응에 의해 하기 화학식 2로 표시되는 화합물을 제조하는 제 1 단계;
    (A-2) 상기 화학식 2로 표시되는 화합물로부터 산화 반응에 의해 하기 화학식 3으로 표시되는 화합물을 제조하는 제 2 단계;
    (A-3) 하기 화학식 4로 표시되는 화합물로부터 아미네이션 반응에 의해 하기 화학식 5로 표시되는 화합물을 제조하는 제 3 단계;
    (A-4) 상기 화학식 5로 표시되는 화합물로부터 Dakin 반응에 의해 하기 화학식 6으로 표시되는 화합물을 제조하는 제 4 단계;
    (A-5) 상기 화학식 6으로 표시되는 화합물로부터 알킬레이션 반응에 의해 하기 화학식 7로 표시되는 화합물을 제조하는 제 5 단계;
    (A-6) 상기 화학식 7로 표시되는 화합물로부터 디프로텍션 반응에 의해 하기 화학식 8로 표시되는 화합물 또는 이의 염을 제조하는 제 6 단계;
    (A-7) 상기 화학식 3으로 표시되는 화합물과 상기 화학식 8로 표시되는 화합물 또는 이의 염으로부터 아미네이션 반응에 의해 하기 화학식 Ia로 표시되는 화합물을 제조하는 제 7 단계; 및
    (A-8) 상기 화학식 Ia로 표시되는 화합물로부터 디프로텍션 반응에 의해 하기 화학식 I로 표시되는 화합물을 제조하는 제 8 단계;
    를 포함하는 트리아졸로피리미디논 유도체의 제조방법:
    [화학식 1]
    Figure PCTKR2021018043-appb-img-000036
    [화학식 2]
    Figure PCTKR2021018043-appb-img-000037
    [화학식 3]
    Figure PCTKR2021018043-appb-img-000038
    [화학식 4]
    Figure PCTKR2021018043-appb-img-000039
    [화학식 5]
    Figure PCTKR2021018043-appb-img-000040
    [화학식 6]
    Figure PCTKR2021018043-appb-img-000041
    [화학식 7]
    Figure PCTKR2021018043-appb-img-000042
    [화학식 8]
    Figure PCTKR2021018043-appb-img-000043
    [화학식 Ia]
    Figure PCTKR2021018043-appb-img-000044
    [화학식 I]
    Figure PCTKR2021018043-appb-img-000045
    상기 화학식에서,
    R은 O-보호기이며;
    A는 N-보호기이다.
  2. 제 1 항에 있어서,
    R은 C1-C6알킬, 아세틸, 벤조일, 벤질, p-메톡시벤질, MOM(메톡시메틸 아세탈), THP(테트라하이드로피란) 또는 실릴에터인 제조방법.
  3. 제 1 항에 있어서,
    A는 -Boc, -Cbz, -Fmoc, -벤질, p-메톡시벤질, 트리틸 또는 DMT(다이메톡시트리틸)인, 제조방법.
  4. 제 3 항에 있어서,
    A는 -Boc인, 제조방법.
  5. 제 1 항에 있어서,
    상기 (A-2) 단계는 과산화수소, 벤조일퍼옥사이드, 메타클로로퍼벤조산 및 옥손으로 이루어진 군으로부터 선택된 1 이상의 산화제와 반응시키는 것인, 제조방법.
  6. 제 5 항에 있어서,
    상기 산화제는 옥손인, 제조방법.
  7. 제 1 항에 있어서,
    상기 (A-4) 단계는 과산화수소, 암모늄퍼설페이트 및 메타클로로퍼벤조산(mCPBA)으로 이루어진 군으로부터 선택된 1 이상의 산화제와 반응시키는 것인, 제조방법.
  8. 제 7 항에 있어서,
    상기 산화제는 메타클로로퍼벤조산(mCPBA)인, 제조방법.
  9. (B-1) 하기 화학식 1로 표시되는 화합물 또는 이의 염으로부터 프로텍션 반응에 의해 하기 화학식 2로 표시되는 화합물을 제조하는 제 1 단계;
    (B-2) 상기 화학식 2로 표시되는 화합물로부터 산화 반응에 의해 하기 화학식 3으로 표시되는 화합물을 제조하는 제 2 단계;
    (B-3) 하기 화학식 4로 표시되는 화합물로부터 아미네이션 반응에 의해 하기 화학식 9로 표시되는 화합물을 제조하는 제 3 단계;
    (B-4) 하기 화학식 9로 표시되는 화합물로부터 아미네이션 반응에 의해 하기 화학식 10으로 표시되는 화합물을 제조하는 제 4 단계;
    (B-5) 하기 화학식 10으로 표시되는 화합물로부터 Dakin 반응에 의해 하기 화학식 11로 표시되는 화합물을 제조하는 제 5 단계;
    (B-6) 하기 화학식 11로 표시되는 화합물로부터 알킬레이션 반응에 의해 상기 화학식 Ia로 표시되는 화합물을 제조하는 제 6 단계; 및
    (B-7) 상기 화학식 Ia로 표시되는 화합물로부터 디프로텍션 반응에 의해 하기 화학식 I로 표시되는 화합물을 제조하는 제 6 단계;
    를 포함하는 트리아졸로피리미디논 유도체의 제조방법:
    [화학식 1]
    Figure PCTKR2021018043-appb-img-000046
    [화학식 2]
    Figure PCTKR2021018043-appb-img-000047
    [화학식 3]
    Figure PCTKR2021018043-appb-img-000048
    [화학식 4]
    Figure PCTKR2021018043-appb-img-000049
    [화학식 9]
    Figure PCTKR2021018043-appb-img-000050
    [화학식 10]
    Figure PCTKR2021018043-appb-img-000051
    [화학식 11]
    Figure PCTKR2021018043-appb-img-000052
    [화학식 Ia]
    Figure PCTKR2021018043-appb-img-000053
    [화학식 I]
    Figure PCTKR2021018043-appb-img-000054
    상기 화학식에서,
    R은 O-보호기이다.
  10. 제 9 항에 있어서,
    R은 C1-C6알킬, 아세틸, 벤조일, 벤질, p-메톡시벤질, MOM(메톡시메틸 아세탈), THP(테트라하이드로피란) 또는 실릴에터인 제조방법.
PCT/KR2021/018043 2021-12-01 2021-12-01 트리아졸로피리미디논 유도체의 제조방법 WO2023101048A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020247016745A KR20240090633A (ko) 2021-12-01 2021-12-01 트리아졸로피리미디논 유도체의 제조방법
CN202180104443.3A CN118284609A (zh) 2021-12-01 2021-12-01 用于制备三唑并嘧啶酮衍生物的方法
PCT/KR2021/018043 WO2023101048A1 (ko) 2021-12-01 2021-12-01 트리아졸로피리미디논 유도체의 제조방법
CA3239086A CA3239086A1 (en) 2021-12-01 2021-12-01 Method for preparing triazolopyrimidinone derivative
IL312831A IL312831A (en) 2021-12-01 2024-05-13 A method for the preparation of a triazolopyrimidine derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/018043 WO2023101048A1 (ko) 2021-12-01 2021-12-01 트리아졸로피리미디논 유도체의 제조방법

Publications (1)

Publication Number Publication Date
WO2023101048A1 true WO2023101048A1 (ko) 2023-06-08

Family

ID=86612419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018043 WO2023101048A1 (ko) 2021-12-01 2021-12-01 트리아졸로피리미디논 유도체의 제조방법

Country Status (5)

Country Link
KR (1) KR20240090633A (ko)
CN (1) CN118284609A (ko)
CA (1) CA3239086A1 (ko)
IL (1) IL312831A (ko)
WO (1) WO2023101048A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150005711A (ko) * 2012-06-07 2015-01-14 에프. 호프만-라 로슈 아게 탄키라제 억제제로서 피롤로피리미돈 및 피롤로피리돈
KR20150016406A (ko) * 2012-06-07 2015-02-11 에프. 호프만-라 로슈 아게 탄키라제의 피라졸로피리미돈 및 피라졸로피리돈 억제제
WO2016006974A2 (en) 2014-07-11 2016-01-14 St Pharm Co., Ltd. Novel triazolopyrimidinone or triazolopyridinone derivatives, and use thereof
US20180051030A1 (en) * 2015-03-12 2018-02-22 Merck Sharp & Dohme Corp. Pyrrolotriazine inhibitors of irak4 activity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150005711A (ko) * 2012-06-07 2015-01-14 에프. 호프만-라 로슈 아게 탄키라제 억제제로서 피롤로피리미돈 및 피롤로피리돈
KR20150016406A (ko) * 2012-06-07 2015-02-11 에프. 호프만-라 로슈 아게 탄키라제의 피라졸로피리미돈 및 피라졸로피리돈 억제제
WO2016006974A2 (en) 2014-07-11 2016-01-14 St Pharm Co., Ltd. Novel triazolopyrimidinone or triazolopyridinone derivatives, and use thereof
US20180051030A1 (en) * 2015-03-12 2018-02-22 Merck Sharp & Dohme Corp. Pyrrolotriazine inhibitors of irak4 activity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANGIOLINI, M. ; BASSINI, D.F. ; GUDE, M. ; MENICHINCHERI, M.: "Solid-phase synthesis of pyrido[2,3-d]pyrimidin-7-ones", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM , NL, vol. 46, no. 50, 12 December 2005 (2005-12-12), Amsterdam , NL , pages 8749 - 8752, XP027863124, ISSN: 0040-4039 *
HUANG ET AL., NATURE, vol. 461, no. 7264, 2009, pages 614 - 620

Also Published As

Publication number Publication date
IL312831A (en) 2024-07-01
CN118284609A (zh) 2024-07-02
CA3239086A1 (en) 2023-06-08
KR20240090633A (ko) 2024-06-21

Similar Documents

Publication Publication Date Title
WO2011071314A2 (en) Processes for preparing crystalline forms a and b of ilaprazole and process for converting the crystalline forms
WO2012134184A2 (ko) 신규한 세파로스포린 유도체 및 이를 함유하는 의약 조성물
EP2588474A2 (en) Process for the preparation of hmg-coa reductase inhibitors and intermediates thereof
WO2013048177A2 (ko) 셀레노펜-접합 방향족 화합물, 및 이의 제조 방법
WO2020067800A1 (ko) 유기 발광 소자용 잉크 조성물
WO2016204376A1 (en) Novel intermediates for preparing dpp-iv inhibitors, preparing method thereof and preparing method of dpp-iv inhibitors using the same
EP2611776A2 (en) Production method of intermediate compound for synthesizing medicament
WO2021118003A1 (ko) 신규 혈관누출 차단제의 고수율 제조방법
WO2021086069A1 (ko) Ezh2 저해제 및 e3 리가제 바인더를 포함하는 화합물 및 이를 유효성분으로 함유하는 ezh2 관련 질환의 예방 또는 치료용 약학적 조성물
WO2016108623A1 (en) Novel method for preparing thienopyrimidine compound and intermediates used therein
WO2023101048A1 (ko) 트리아졸로피리미디논 유도체의 제조방법
WO2022220612A1 (ko) 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조방법
WO2021194244A1 (ko) 신규한 이노토디올의 제조방법
WO2023017442A1 (en) Novel plk1 degradation inducing compound
WO2020036382A1 (ko) Sglt 저해제의 합성에 유용한 중간체의 제조
WO2022220610A1 (ko) 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조방법
WO2019107943A1 (ko) Jak 저해제 화합물, 및 이의 제조방법
WO2022092429A1 (ko) 유기 황 화합물의 제조방법
WO2022092835A1 (ko) 대칭형 포스페이트계 화합물의 제조방법
WO2022092833A1 (ko) 유기 황 화합물의 인시츄 제조방법
WO2014098410A1 (ko) 보센탄 일수화물의 제조방법, 이에 사용되는 신규 중간체 및 이의 제조방법
WO2018124644A1 (ko) 싸이에노피리미딘 화합물의 신규 제조방법 및 중간체
WO2023075263A1 (ko) 비대칭형 포스페이트계 화합물의 제조방법
WO2022220613A1 (ko) 스핑고신-1-인산 수용체 효능제의 신규한 제조방법
WO2015005615A1 (en) Method for preparation of benzimidazole derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3239086

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20247016745

Country of ref document: KR

Kind code of ref document: A