WO2021172568A1 - 予備加熱装置および射出装置 - Google Patents

予備加熱装置および射出装置 Download PDF

Info

Publication number
WO2021172568A1
WO2021172568A1 PCT/JP2021/007546 JP2021007546W WO2021172568A1 WO 2021172568 A1 WO2021172568 A1 WO 2021172568A1 JP 2021007546 W JP2021007546 W JP 2021007546W WO 2021172568 A1 WO2021172568 A1 WO 2021172568A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
molding material
preheating device
molding
preheating
Prior art date
Application number
PCT/JP2021/007546
Other languages
English (en)
French (fr)
Inventor
清家 幸治
雅基 天田
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to CN202180017445.9A priority Critical patent/CN115151399A/zh
Priority to JP2022503373A priority patent/JPWO2021172568A1/ja
Priority to DE112021001337.8T priority patent/DE112021001337T5/de
Publication of WO2021172568A1 publication Critical patent/WO2021172568A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/7604Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76177Location of measurement
    • B29C2945/7618Injection unit
    • B29C2945/76183Injection unit hopper

Definitions

  • the present invention relates to a preheating device and an injection device.
  • an injection molding machine when manufacturing a molded product such as a PET bottle cap, an injection molding machine relatively performs a series of steps from melting resin pellets and other molding materials into a mold device to obtain a molded product. It may be used in high cycle molding, which is repeated in a short cycle. In such a case, the injection molding machine is required to have a high production capacity.
  • Shortening the molding cycle by the injection molding machine increases the number of rotations of the screw placed in the cylinder of the injection device to finish the plasticization of the molding material in a short period of time, and the molding material to the tip of the cylinder This can be achieved by shortening the time required for accumulation.
  • the molding material is rapidly sent to the tip side of the cylinder without being sufficiently heated by the heater provided around the cylinder.
  • the molten molding material injected from the tip of the cylinder into the mold apparatus may contain an unmelted molding material, and the unmelted molding material may have a poor appearance or strength of the molded product. It causes problems such as deterioration. It is possible to promote the plasticization of the molding material by raising the heating temperature by the heater around the cylinder, but in high cycle molding, the residence time of the molding material inside the cylinder is short. Even if the heating temperature is raised, the injection of the unmelted molding material as described above cannot be sufficiently prevented.
  • Patent Document 1 states, “Even if the pellet-shaped long fiber reinforced thermoplastic resin is melted, the damage to the fiber can be minimized, and the fiber bundle in the pellet is maintained in the fiber length.
  • Long fibers by a planar heating body that moves toward the outlet side for the purpose of “providing an injection molding apparatus that can melt the resin while defibrating and molding a high-strength fiber-reinforced thermoplastic resin”.
  • a plasticizer that melts and plasticizes pellets of reinforced thermoplastic resin, an extruder that extrudes molten resin from the outlet of the plasticizer, and a plunger-type injection machine that introduces and injects resin from the extruder.
  • a flat heating body is a combination of a plurality of heating rolls
  • a flat heating body is a combination of a heating roll and a heating belt
  • a flat heating body is a combination of two heatings. It is a combination of belts for use “(see FIGS. 1 to 4 of Patent Document 1).
  • the pellets of the long fiber reinforced thermoplastic resin are supplied to the surface of the planar heating body, the pellets are heated in a planar manner.
  • the axis in the length direction of the pellet gradually becomes parallel to the surface of the planar heating body, and in this state, it is pressed against the surface, and as the planar heating body moves toward the outlet. While being melted, it is sent to the outlet of the plasticizer. After that, the molten resin is extruded by the extruder into the injection cylinder of the injection machine, and the resin of the injection cylinder is injected into the mold by the plunger. Therefore, the pellets are ejected. , The resin can be melted while maintaining the fiber length without kneading in a plasticizer, an extruder and an injection machine, and a high-strength fiber-reinforced thermoplastic resin can be molded. . ".
  • Patent Document 2 is characterized in that "a hopper that supplies a molding material into a heating cylinder of an injection molding machine, and a dehumidifying temperature control device that communicates with the inside of the hopper is attached to the outside of the hopper. "Hopper of injection molding machine” is described.
  • Patent Document 3 "It was obtained by supplying undried resin pellets into a cylinder of an injection molding machine, performing the first injection, and inspecting the quality of the resin purge injected after a lapse of a predetermined time from the first injection.
  • An injection molding machine for performing injection with an optimum amount of deposit per unit shot; a pellet supply path body for supplying pellets into the cylinder of the injection molding machine; and discharged in the injection molding machine and / or a mold.
  • An injection molding system including a gas exhaust path body for exhausting water, gas, etc. in the resin; and a decompression device connected to the exhaust path body; is disclosed.
  • Patent Document 3 states that "a heating device for heating pellets supplied to the injection molding machine is further provided” and “the heating device uses hot gas discharged from the injection molding machine".
  • the heating device is provided in the pellet supply path body", "Preferably, the heating device includes first and second heating devices. And the second heating device is an injection molding machine.” It is provided in the pellet supply route body on the side.
  • the pellet heating device 68 is a heat exchanger. The warm gas from the injection molding machine is carried to the heat exchanger.
  • the air in the atmosphere is a compressor (not shown). Thus, the air in the atmosphere is warmed to about 80 ° C. as it passes through the heat exchanger, and the warm air is supplied to the pellet storage tank 12. " ing.
  • Patent Document 4 states that "a long fiber composite material, which is a composite material of long fibers for reinforcement and a thermoplastic resin, is plasticized using a biaxially rotating twin-screw extruder that rotates in different directions, and this plastic product is a plunger type.
  • a method of forming a long fiber composite material that is supplied to an extruder and injects a thermoplastic from this plunger-type extruder into an injection compression molding die or extrudes a thermoplastic from this plunger-type extruder into an extrusion die. It is described that "the long fiber composite material supplied to the twin-screw screw extruder is heated to a softened state by passing a high temperature inert gas".
  • the high temperature inert gas circulation device 18 connects the exhaust gas treatment device 21, the blower 22 and the heater 23 in series, and the nitrogen gas cylinder 24 is upstream of the blower 22. It is connected, and the long fiber pellets or bulk long fiber composite material 15 is heated to a softened state using high temperature nitrogen gas as a heat medium.
  • the conventional technique described in the above-mentioned literature cannot be said to be a technique that sufficiently contributes to the improvement of the production capacity of the molded product, and it is effective to preheat the molding material before supplying it to the inside of the cylinder of the injection device.
  • Patent Document 1 describes that a plasticizing device for obtaining a molten resin to be supplied to a plunger type injector is used to crush and plasticize the pellets while pressing them.
  • Patent Document 2 as shown in FIG. 1, a dehumidifying temperature controller is provided in a hopper such as a cone that supplies a molding material into a cylinder of an injection molding machine.
  • a dehumidifying temperature controller of such a hopper cannot sufficiently and effectively heat a large number of molding materials. ..
  • the first invention has an object to deal with such a problem, and an object thereof is a preheating device and an injection capable of effectively preheating a molding material before being supplied to the inside of a cylinder. To provide the equipment.
  • the hopper described in Patent Document 2 above also has the following problems. That is, the hopper described in Patent Document 2 is described above, but as shown in FIG. 1, a dehumidifying temperature controller is provided in a cone-shaped hopper that supplies a molding material into the cylinder of an injection molding machine. It is provided. Although the hopper can preheat the molding material, there is room for improvement. That is, the injection device is required to efficiently heat a molding material such as a resin pellet in a short time, and to uniformly heat the molding material.
  • the second invention has an object to deal with such a problem, and an object thereof is a preheating device and an injection capable of effectively preheating a molding material before being supplied to the inside of a cylinder. To provide the equipment.
  • the third invention has an object to deal with such a problem, and an object thereof is to preheat a molding material before supplying it to the inside of a cylinder, and to raise the temperature of the molding material relatively rapidly. It is an object of the present invention to provide a preheating device and an injection device capable of raising a temperature.
  • the above-mentioned Patent Document 1 also has the following problems. That is, in order to preheat the molding material before supplying it to the inside of the cylinder, the molding material is introduced into a passage (hereinafter, also referred to as a material feed passage) through which the molding material is passed to preheat the molding material, and then exists in the passage. It is conceivable to heat the molding material. However, when injection molding is performed using the injection device, the injection device may be stopped for some reason, and this may also cause the molding material to stop moving in the material feed passage. When the movement of the molding material in the material feed passage is stopped, the residual heat continues to heat the molding material, the molding material melts, and the molding material is between the molding materials or between the molding materials and the wall surface.
  • Patent Document 1 which discloses a conventional injection apparatus does not pay any attention to such a problem.
  • the fourth invention has an object to deal with such a problem, and an object thereof is to preheat a molding material before supplying it to the inside of a cylinder, and in the process, to mold a preheated object. It is an object of the present invention to provide a preheating device and an injection device capable of preventing the molding material from being overheated and melted in a passage through which the material passes.
  • the first preheating device capable of solving the above-mentioned problem of the first invention preheats the molding material
  • the preheating device includes a material feed passage through which the molding material passes and the material feed. It has a heater that heats the molding material passing through the passage, the material feed passages are arranged to face each other, and have a pair of passage forming members in which the material feed passages are partitioned between the pair. At least one of the passage forming members is movable, and the passage width between the passage forming members can be adjusted.
  • the second preheating device which can solve the above-mentioned problem of the second invention, preheats the molding material, and the preheating device has a material feed passage through which the molding material passes, and is described above.
  • the material feed passage includes a confluence portion where the molding material and the heating medium merge, an in-line mixing portion where the molding material and the heating medium merged at the confluence portion are mixed, and the molding material is heated by the heating medium. It has.
  • the third preheating device which can solve the above-mentioned problem of the third invention, preheats the molding material, and the preheating device includes a passage for the material through which the molding material passes and the material. It has a superheated steam inlet that introduces superheated steam that heats the molding material in the passage into the passage for the material.
  • the fourth preheating device capable of solving the above-mentioned problem of the fourth invention preheats the molding material, and the preheating device includes a material feed passage through which the molding material passes and the material feed. It has a heating unit for heating the molding material passing through the passage and a cooling unit for cooling the molding material passing through the material feed passage.
  • the passage width between the passage forming members can be adjusted so that the molding material can be effectively preheated before being supplied to the inside of the cylinder of the injection device. ..
  • the second preheating device described above it is possible to effectively preheat the molding material before supplying it to the inside of the cylinder of the injection device.
  • the temperature of the molding material can be raised relatively rapidly by preheating before supplying to the inside of the cylinder of the injection device.
  • the molding material is preheated before being supplied to the inside of the cylinder of the injection device, and in the process, the molding material is excessively used in the passage through which the molding material to be preheated passes. It can be prevented from being heated and melted.
  • FIG. 3 is an enlarged cross-sectional view showing the preheating device of FIG. 1 and its vicinity. It is a front view which shows the specific example of the passage forming member of the preheating device of FIG. It is an enlarged perspective view which shows the material feed passage and the passage forming member of the preheating device of FIG. It is a perspective view which shows an example of the retention prevention mechanism which can be provided in the preheating device of FIG. It is a perspective view which shows another example of the retention prevention mechanism which can be provided in the preheating device of FIG. It is a perspective view which shows another example of the retention prevention mechanism which can be provided in the preheating device of FIG.
  • FIG. 1 It is a perspective view which shows another example of the retention prevention mechanism which can be provided in the preheating device of FIG. It is a perspective view which shows another example of the retention prevention mechanism which can be provided in the preheating device of FIG. It is a perspective view which shows another example of the retention prevention mechanism which can be provided in the preheating device of FIG. It is a perspective view which shows another example of the retention prevention mechanism which can be provided in the preheating device of FIG. It is sectional drawing which shows the preheating apparatus of another embodiment of 1st invention. It is sectional drawing which shows the preheating apparatus of still another Embodiment of 1st invention. 2 is a cross-sectional view and a graph showing the temperature of a molding material passing through a material feed passage of the preheating device of FIG.
  • FIG. 5 is an enlarged cross-sectional view showing the preheating device of FIG. 15 and its vicinity.
  • FIG. 5 is an enlarged perspective view showing a mixer included in the preheating device of FIG. 15.
  • FIG. 5 is an enlarged cross-sectional view showing a gas pumper included in the preheating device of FIG. It is sectional drawing which enlarges and shows the preheating apparatus of another embodiment of 2nd invention and the vicinity thereof.
  • FIG. 2 is an enlarged cross-sectional view showing the preheating device of FIG. 22 and its vicinity. It is sectional drawing which shows the part of the preheating apparatus of FIG. 23 enlarged. It is sectional drawing which shows a part of the preheating apparatus of another embodiment of 3rd invention.
  • FIG. 5 is a cross-sectional view taken along the horizontal direction showing a part of the preheating device according to still another embodiment of the third invention. It is a front view which shows the specific example of the passage forming member which the material feed passage of the preheating device of FIG. 23 has. It is an enlarged perspective view which shows the material feed passage and the passage forming member of the preheating apparatus of FIG. It is a perspective view which shows an example of the retention prevention mechanism which can be provided in the preheating device of FIG. It is a perspective view which shows another example of the retention prevention mechanism which can be provided in the preheating device of FIG.
  • FIG. 1 It is a perspective view which shows another example of the retention prevention mechanism which can be provided in the preheating device of FIG. It is a perspective view which shows another example of the retention prevention mechanism which can be provided in the preheating device of FIG. It is a perspective view which shows another example of the retention prevention mechanism which can be provided in the preheating device of FIG. It is a perspective view which shows another example of the retention prevention mechanism which can be provided in the preheating device of FIG. It is a perspective view which shows another example of the retention prevention mechanism which can be provided in the preheating device of FIG. It is sectional drawing which shows the preheating apparatus of still another Embodiment of 3rd invention and the vicinity thereof. It is sectional drawing which shows the preheating apparatus of still another Embodiment of 3rd invention and the vicinity thereof. FIG.
  • FIG. 2 is a cross-sectional view and a graph showing the temperature of a molding material passing through the material feed passage of the preheating device of FIG. 23. It is a flowchart which shows an example of the control which can be performed using the preheating apparatus of FIG. It is sectional drawing which shows the preheating device and the injection device of 1st Embodiment of 4th invention.
  • FIG. 6 is an enlarged cross-sectional view showing the preheating device of FIG. 40 and its vicinity. It is a block diagram of the control device of the preheating device of FIG. 40.
  • FIG. 11 is a cross-sectional view and a graph showing the temperature of a molding material passing through a material feed passage of the preheating device of FIG. 41.
  • FIG. 41 is a front view showing a specific example of a passage forming member of the preheating device of FIGS. 41 and 56.
  • 41 is an enlarged perspective view showing a material feeding passage and a passage forming member of the preheating device of FIGS. 41 and 56.
  • It is a perspective view which shows an example of the retention prevention mechanism which can be provided in the preheating device of FIG. 41 and FIG. 56.
  • It is a perspective view which shows another example of the retention prevention mechanism which can be provided in the preheating device of FIGS. 41 and 56.
  • FIG. 41 and 56 It is a perspective view which shows another example of the retention prevention mechanism which can be provided in the preheating device of FIGS. 41 and 56. It is a perspective view which shows another example of the retention prevention mechanism which can be provided in the preheating device of FIGS. 41 and 56. It is a perspective view which shows another example of the retention prevention mechanism which can be provided in the preheating device of FIGS. 41 and 56. It is a perspective view which shows another example of the retention prevention mechanism which can be provided in the preheating device of FIGS. 41 and 56. It is sectional drawing which shows the preheating apparatus of the 1st modification of 1st Embodiment. It is sectional drawing which shows the preheating apparatus of the 2nd modification of 1st Embodiment. It is sectional drawing along the vertical direction which shows the preheating device and the injection device of 2nd Embodiment of 4th invention. FIG.
  • FIG. 5 is an enlarged cross-sectional view showing the preheating device of FIG. 55 and its vicinity.
  • FIG. 5 is an enlarged cross-sectional view showing a part of the preheating device of FIG. 56.
  • It is sectional drawing which shows a part of the preheating apparatus of the 1st modification of 2nd Embodiment.
  • It is sectional drawing which shows a part of the preheating apparatus of the 2nd modification of 2nd Embodiment.
  • It is sectional drawing along the horizontal direction which shows a part of the preheating apparatus of the 3rd modification of 2nd Embodiment.
  • It is sectional drawing which shows the preheating apparatus of the 4th modification of 2nd Embodiment, and the vicinity thereof.
  • FIG. 6 is an enlarged cross-sectional view showing the preheating device of FIG. 63 and its vicinity.
  • FIG. 6 is an enlarged perspective view showing a mixer included in the preheating device of FIG. 64.
  • FIG. 6 is an enlarged cross-sectional view showing a gas pumper included in the preheating device of FIG. 64.
  • the preheating device 21 is for preheating the molding material, and by providing the injection device 1 as illustrated in FIG. 1, the preheated molding material can be supplied to the injection device 1.
  • the injection device 1 illustrated in FIG. 1 is an injection molding machine, for example, which is arranged on a slide base 101 of a moving device that moves the injection device 1 forward and backward, and injects a molding material into a mold device. ..
  • the injection device 1 can include a preheating device 21 and a cylinder 11 to which the molding material preheated by the preheating device is supplied to melt the molding material inside.
  • the injection device 1 shown in the figure includes a screw 12 that is rotationally driven inside the cylinder 11 to plasticize the molding material, a heater 13 that is provided around the cylinder 11 and heats the molding material inside the cylinder 11, and the like. The detailed structure of the injection device 1 will be described later.
  • the preheating device 21 is attached to the rear end portion of the screw 12 of the injection device 1 in the direction of the rotation axis (left-right direction in FIG. 1), which is opposite to the tip portion 14 for injecting the molding material of the cylinder 11. More specifically, the preheating device 21 is connected on the cylinder 11 to a through-hole-shaped supply port 11a provided at a part in the circumferential direction at the rear end of the cylinder 11, as shown in FIG. Mm of a molding material such as a resin pellet having a substantially spherical or cylindrical shape or other shape is supplied to the supply port 11a.
  • the preheating device 21 has a material feed passage 22 through which the molding material Mm passes and a heater 24 for heating the molding material Mm passing through the material feed passage 22.
  • the material feeding passages 22 have a pair of passage forming members 23 that are arranged so as to face each other and the material feeding passages 22 are partitioned between the material feeding passages 22.
  • the heater 24 is arranged outside the material feeding passage 22 in the passage width direction with the passage forming member 23 separated from the material feeding passage 22.
  • the passage width direction referred to here is a direction in which the passage forming members 23 arranged in parallel with each other are aligned, and is orthogonal to the material passage direction (vertical direction in FIG.
  • the material feeding passage 22, the passage forming member 23, and the heater 24 are housed and arranged inside a box-shaped housing 25 made of a heat insulating material or the like.
  • the molding material Mm supplied to the inside of the cylinder 11 can be preheated before being supplied.
  • the preheated molding material Mm is sufficiently melted in the inside of the cylinder 11 in a short time after being supplied to the inside of the cylinder 11 through the supply port 11a, and is ejected from the tip end portion of the cylinder 11. , It is possible to shorten the molding cycle.
  • At least one of the paired passage forming members 23 for partitioning the material feeding passage 22 is made movable as shown by an arrow in FIG. 2, whereby the preheating device 21 makes the paired passage forming member 21 movable.
  • the passage width of the material feeding passage 22 which is the distance between the 23 is adjustable.
  • At least one of the passage forming members 23 is a passage, for example, manually by the user by arranging a spacer between the mounting location and the inside of the housing 25, or automatically using a motor or other actuator. Allows you to move in the width direction.
  • the passage width of the material feed passage 22 adjustable, it is possible to set an appropriate passage width according to each of various molding materials Mm having various dimensions and shapes. For example, as shown in FIG. 2, when the passage width is set so that one piece of the molding material Mm can pass through, the molding material Mm passes through the material feeding passages 22 in a substantially aligned posture, and at this time, the passages. Most of the molding material Mm is effectively heated by the heater 24 outside the forming member 23 in the passage width direction. As a result, it is possible to effectively prevent the unmelted molding material from being mixed with the molten molding material injected from the tip end portion of the cylinder 11, so that it is possible to prevent the appearance of the molded product from being poor and the strength from being lowered.
  • the passage width set by the movable passage forming member 23 is preferably equal to or more than the length of one molding material Mm and less than the length of two molding materials Mm. In this case, since it is suppressed that the plurality of molding materials Mm overlap in the passage width direction in the material feed passage 22, most of the molding materials Mm can be heated more effectively.
  • the length of one molding material Mm is preferably the shortest dimension of the molding material Mm.
  • the molding material Mm may be a cylinder, a prism, or other columnar shape, and the shorter dimension of the diameter or width and height thereof may be the length of one molding material Mm.
  • a supply container 26 for supplying molding material to a cylinder such as a hopper (supply for cylinder supply) is provided on the lower surface of the housing 25 on the tip side (lower end side in FIG. 2) of the material feed passage 22 in the material passage direction.
  • a container 26, also simply referred to as a supply container 26) is provided.
  • the supply container 26 has, for example, a truncated cone-shaped portion 26a whose inner and outer outer shapes are both truncated cone-shaped, and a cylindrical portion 26b formed at the end portion of the truncated cone-shaped portion 26a on the small diameter side. Is.
  • the supply container 26 receives the molding material Mm that has passed through the material feeding passage 22 into the truncated cone-shaped portion 26a, and then passes the molded material Mm through the cylindrical portion 26b beyond the cone-shaped portion 26a to supply the molding material Mm to the inside of the cylinder 11.
  • An opening 26c having a width substantially equal to that of the material feeding passage 22 is formed at the end of the truncated cone-shaped portion 26a, and the molding material Mm that has passed through the material feeding passage 22 is supplied from the opening 26c to the supply container. Enter within 26.
  • a hopper or the like that stores a plurality of molding materials Mm on the rear end side (upper end side in FIG. 2) of the material feeding passage 22 in the material passing direction and supplies the molding material Mm in an appropriate amount to the material feeding passage 22.
  • a supply container 27 for supplying the molding material to the passage (the supply container 27 for supplying the passage, also simply referred to as the supply container 27) is placed on the upper surface of the housing 25.
  • the supply container 27 has a cylindrical portion 27a and a tapered portion 27b provided on the material feeding passage 22 side of the tubular portion 27a and whose inner and outer diameters are gradually reduced to be tapered.
  • the molding material Mm is supplied to the preheating device 21 from the supply container 27 for aisle supply. Then, the molding material Mm supplied to the preheating device 21 passes through the material feeding passage 22 while being preheated, passes through the supply container 26 for supplying the cylinder, and is then supplied to the inside of the cylinder 11. That is, here, the molding material Mm preheated by the preheating device 21 is supplied to the inside of the cylinder 11.
  • the shape of the supply container 26 and / or the supply container 27 is not limited to this, and may be appropriately changed, and the supply container 26 and / or the supply container 27 may be omitted.
  • the housing of the preheating device is arranged on the cylinder, and the tip side of the material feeding passage in the material passing direction is directly communicated with the supply port of the cylinder. NS.
  • the molding material preheated by the preheating device is supplied to the inside of the cylinder immediately after the preheating.
  • the heater 24 can be arranged on only one side of the material feeding passage 22 outside the passage width direction of one of the passage forming members 23, but in this embodiment, the passage width of each passage forming member 23 It is arranged on both sides of the material feed passage 22 on the outside of the direction. In that case, since the molding material Mm can be heated quickly by the heaters 24 on both sides, the molding material Mm can be effectively heated even if the passing speed of the molding material Mm in the material feed passage 22 is relatively high. Conditions such as the heater 24 are set so that the molding material Mm reaches a desired temperature on the tip side of the material feed passage 22 in the material passage direction.
  • the heater 24 is not particularly limited as long as it can heat the molding material Mm via the passage forming member 23.
  • a hot air heating type heater that sends a heating gas such as high temperature air
  • an electric heating type heater such as high frequency dielectric heating
  • an infrared heating type heater such as a halogen lamp or a ceramic heater
  • a laser heating type heater or the like
  • the passage forming member 23 can be made of a translucent or transparent material such as glass through which light or a laser is transmitted.
  • the arrangement of the heater 24 is not limited to the illustrated example, and the heater 24 may be arranged outside the housing 25 so that hot air flows through the material feeding passage 22.
  • the illustrated preheating device 21 has, as an example, a heater 24 including a hot air heating type heater.
  • the hot air heating type heater can obtain hot air by heating the compressed air sent from the compressor with a sheathed heater or the like. The temperature of the hot air can be adjusted by changing the output of the sheathed heater.
  • the passage forming member 23 has a plurality of ventilation holes penetrating the passage forming member 23 in the passage width direction in order to pass the heating gas sent from the hot air heating type heater through the material feeding passage 22. be able to.
  • the heating gas from the heater 24 flows into the material feeding passage 22 through the ventilation holes of the passage forming member 23, so that the heating gas can heat the molding material Mm of the material feeding passage 22.
  • the passage forming member 23 is, for example, as shown in FIG. 3A, a plate in which a plurality of ventilation holes 23b are formed in a plate material 23a made of metal or the like by press working or the like, such as so-called punching metal. It can also be a shaped member. In this case, a plurality of regularly arranged ventilation holes 23b can be formed in the plate material 23a by adjusting the processing mode and the like.
  • wire rods 23c are arranged in a grid pattern or the like, and a plurality of wire rods 23c having a shape such as a square or other polygons in front view are arranged between them. It may be a net-like member provided with a ventilation hole 23b. If the thickness of such a reticulated member is thin and the reticulated member lacks the strength required to form the material feed passage 22 in the passage forming member 23, the reticulated member and the reinforcing member are overlapped with each other.
  • the passage forming member 23 can be formed by the net-like member and the reinforcing member.
  • the reinforcing member can have various shapes such as a honeycomb shape or a lattice shape as long as the heating gas can pass therethrough.
  • the mesh of the reinforcing member may be coarser than the mesh of the mesh member.
  • a plurality of ventilation holes 23b are arranged in the vertical direction (vertical direction in FIG. 3B) and in the horizontal direction (horizontal direction in FIG. 3B) in a front view, and are regularly arranged. It is arranged in.
  • the material feed passage 22 is partitioned by the net-like passage forming member 23, as shown in FIG. 4, the plurality of molding materials Mm spread in the lateral direction of the passage forming member 23, and are indicated by arrows in the figure.
  • the passage forming member 23 moves in the material passing direction, which is the vertical direction.
  • a region of the material feeding passage 22 in the lateral direction of the passage forming member 23 is partitioned between the paired passage forming members 23 on each side of the material feeding passage 22 in the lateral direction of the passage forming member 23.
  • a passage partition member 22a having a square bar shape or the like is arranged.
  • the heating gas from the heater 24 as the hot air heating type heater is fed as a material.
  • the passage forming member 23 can be evenly fed to the passage 22 in the vertical direction and the horizontal direction. As a result, the heating gas can be blown onto many of the plurality of molding materials Mm passing through the material feed passage 22, and the molding materials Mm can be heated even more effectively.
  • the molding material Mm is supplied from the supply container 26 for supplying the cylinder to the inside of the cylinder 11.
  • the molding material Mm in the passage supply container 27 is sequentially heated by the heater 24 through the material feed passage 22 and then charged into the cylinder supply supply container 26.
  • the speed of the molding material Mm passing through the material feed passage 22 may depend on the speed of plasticization of the molding material Mm inside the cylinder 11, but the passing speed of the molding material Mm is as described above. It can also be adjusted by changing the passage width.
  • the material feed passage 22 and the supply container 26 are not shown.
  • a screw-shaped feeder or other supply regulator for adjusting the supply of the molding material Mm from the material feed passage 22 to the supply container 26 may be provided between the two.
  • the molding material Mm is caught in the ventilation holes 23b in the material feed passage 22 formed by the passage forming member 23. At least a part of the passage forming member 23 in the lateral direction may cause clogging or the like of the molding material Mm.
  • the retention of the molding material Mm in the material feed passage 22 may lead to excessive heating of the molding material Mm and eventually melting of the molding material Mm. Therefore, it is preferable that the preheating device 21 is provided with a retention prevention mechanism for preventing the molding material Mm from staying in the material feed passage 22.
  • At least one of the paired passage forming members 23 is displaced continuously during the operation of the injection molding machine or intermittently only when necessary.
  • the illustration of the drive source is omitted.
  • square rod-shaped movable members 22b are provided on both sides of the passage forming member 23 in the lateral direction on the outside in the passage width direction of one of the passage forming members 23. Then, while the molding material Mm passes through the material feed passage 22, one of the passage forming members 23 is formed by the movable members 22b as shown by arrows in FIGS. 5 (b) and 5 (c). By moving the member 23 in the lateral direction, the relative position of one passage forming member 23 with respect to the other passage forming member 23 changes. As a result, even if the molding material Mm is caught in the ventilation hole 23b, the catch is released by the movement of one of the passage forming members 23, and the molding material Mm is prevented from staying. Further, one of the passage forming members 23 may be moved not in the horizontal direction of the passage forming member 23 but in the vertical direction (vertical direction) parallel to the material passing direction.
  • square bar-shaped movable members 22b are provided on both ends of the passage forming member 23 in the vertical direction on the outside in the passage width direction of one of the passage forming members 23.
  • one passage forming member 23 is moved in the passage width direction by the movable member 22b while the molding material Mm is passing, and one passage is formed.
  • the relative position of the member 23 with respect to the other passage forming member 23 is changed.
  • the passage width of the material feeding passage 22 slightly increases or decreases.
  • the retention prevention mechanism of FIG. 6 can also be used as a mechanism for moving the passage forming member 23 in order to adjust the passage width as described above.
  • the retention prevention mechanism of FIG. 7 includes square rod-shaped movable members 22b provided at both ends of the passage forming member 23 in the vertical direction on the outside in the passage width direction of one of the passage forming members 23, and a material feeding passage.
  • a fulcrum member 22c such as a columnar shape that is arranged so as to be sandwiched between the passage forming member 23 and the passage partition member 22a at an intermediate position such as the central position in the material passing direction of the passage forming member 23 and extends in the lateral direction of the passage forming member 23. It has.
  • the fulcrum member 22c is attached to the passage partition member 22a. In this case, as shown in FIGS.
  • one of the passage forming members 23 rotates around the fulcrum member 22c. It is dynamically displaced and its direction changes so as to be oblique to the other passage forming member 23. More specifically, when one end of the passage forming member 23 in the vertical direction approaches or separates from the other passage forming member 23, the other end of the one passage forming member 23 in the vertical direction is the other. The direction of one of the passage forming members 23 is changed so as to be separated from or approached to the passage forming member 23 of the above.
  • the passage width of the material feeding passage 22 may not be constant in the material passing direction. Even with such a retention prevention mechanism, retention of the molding material Mm can be effectively prevented.
  • the retention prevention mechanism of FIG. 8 has almost the same configuration as that of FIG. 7, but the fulcrum member 22c is fixedly attached to one of the passage forming members 23 instead of the passage partition member 22a. Then, in FIG. 8, by rotationally driving the fulcrum member 22c without moving the movable member 22b, one of the passage forming members 23 is rotationally displaced around the fulcrum member 22c together with the fulcrum member 22c, which is substantially the same as in FIG. In the same manner, the orientation with respect to the other passage forming member 23 changes.
  • the retention prevention mechanism is arranged outside at least one of the passage forming members 23 in the passage width direction, and the impact applying portion for striking the passage forming member 23 at a predetermined cycle or the like. It can also be composed of 28.
  • the illustrated impact applying portion 28 is provided in parallel with the passage forming member 23 on the outside in the passage width direction of the other passage forming member 23, and has a plate-shaped member 28b in which one or more through holes 28a are formed and a plate. It includes one or more pin-shaped members 28c that are arranged through the through hole 28a of the shaped member 28b and are separated / approach-displaced with respect to the other passage forming member 23.
  • a similar impact applying portion 28 may be provided on the outside of one of the passage forming members 23 in the passage width direction.
  • the retention prevention mechanism is attached to at least one of the passage forming members 23, for example, the outer surface of the other passage forming member 23 in the passage width direction, and the passage forming member 23 is attached. It may be composed of one or more vibration imparting portions 29 such as vibrators which give vibration to.
  • the passage forming member 23 is arranged outside at least one of the passage width directions, and the gas is flowed at different flow rates to the ventilation holes of the passage forming member 23. It can also be a blower portion 30 that passes through 23b and hits the molding material Mm of the material feed passage 22. As shown in FIG. 10 (b) or FIG. 10 (c), the blower portion 30 changes the flow rate of the gas sent to the molding material Mm of the material feed passage 22 over time, thereby causing the gas to be strong or weak in the molding material Mm. It is something that can be guessed with. In sending the gas from the blower portion 30 to the molding material Mm, as shown in FIG.
  • a period in which the flow rate is zero and a period in which the flow rate is high may be periodically repeated, or may be repeated.
  • a period of low flow rate and a period of high flow rate may be periodically repeated.
  • a blower portion 30 as a retention prevention mechanism can be separately provided, the heater 24 as the hot air heating type heater described above can be used as the blower portion 30, and the heater 24 can also be used as a retention prevention mechanism.
  • the gas from the blower portion 30 corresponds to the heating gas from the heater 24.
  • the preheating device 21 can include one or more of the retention prevention mechanisms shown in FIGS. 5 to 10.
  • the preheating device 21 is provided with a retention detection mechanism for detecting the retention of the molding material Mm in the material feed passage 22.
  • the retention detection mechanism can be, for example, a sensor that detects retention by temperature, an image taken by a camera, infrared rays, a laser, or the like.
  • Such a sensor of the retention detection mechanism is provided at the tip end side of the material feed passage 22 in the material passage direction, that is, in the vicinity of the material feed passage 22 in front of the supply container 26 for cylinder supply in the material passage direction.
  • the sensor 23d is, for example, on the tip side of the material feed passage 22 in the material passage direction, outside the passage width direction of the passage forming member 23, and lateral to the passage forming member 23. A plurality of them may be provided at intervals in the direction. As a result, a portion where the molding material Mm is retained in the lateral direction of the passage forming member 23 can be found at an early stage.
  • the temperature sensor 23d of the retention detection mechanism is used as a temperature sensor, the temperature sensor is used so that the temperature of the molding material Mm located at the tip side of the material feed passage 22 in the material passage direction can be measured. It is preferable to arrange it.
  • the temperature of the molding material Mm referred to here can be the temperature of the molding material Mm itself, the temperature of the passage forming member 23, or the temperature in the space inside the ventilation hole 23b of the passage forming member 23.
  • the temperature sensor in order to measure the temperature of the molding material Mm itself or the temperature of the passage forming member 23, for example, the temperature sensor is passed through the ventilation hole 23b of the passage forming member 23 and the tip thereof becomes the molding material Mm.
  • the temperature sensor is arranged so as to come into contact with each other or so that the tip of the temperature sensor comes into contact with the passage forming member 23.
  • the above-mentioned retention prevention mechanism can be continuously operated during the operation of the injection molding machine, or when the retention detection mechanism detects the retention of the molding material Mm in the material feed passage 22, it is specific. It can be operated intermittently at the timing.
  • FIG. 11 shows the preheating device 121 of another embodiment.
  • the preheating device 121 has a supply container 127 for aisle supply and a supply container 126 for cylinder supply, which are substantially the same as those of the preheating device 21 described above, but mainly a housing 125 between them. It is different from the above-mentioned preheating device 21 in that a plurality of material feeding passages 122 are provided in the above-mentioned preheating device 21. By providing the plurality of material feeding passages 122 in this way, the area per material feeding passage 122 can be reduced, and the size of the preheating device 121 can be reduced.
  • the preheating apparatus 121 includes three material feeding passages 122 arranged in parallel with each other in order to send the molding material Mm from the supply container 127 for the passage supply to the supply container 126 for the cylinder supply, and their respective.
  • each material feed passage 122 It is preferable to provide the heaters 124 on both sides of each material feed passage 122 in the passage width direction as in the illustrated embodiment from the viewpoint of realizing quick and uniform preheating of the molding material Mm.
  • the preheating device 121 is also configured so that at least one of the paired passage forming members 123 forming each material feeding passage 122 is movable, and the passage width of each material feeding passage 122 can be adjusted. Although not shown, it is possible to provide two or four or more material feeding passages.
  • FIG. 12 shows the preheating device 221 of still another embodiment.
  • a pair of belt conveyors 223a including a plurality of rollers 223b including a driving roller and a driven roller, and a passage forming member 223 which is an endless annular belt wound around the rollers 223b.
  • a material feed passage 222 through which the molding material Mm passes is partitioned between the belt conveyors 223a.
  • Each of the pair of belt conveyors 223a rotationally drives the passage forming member 223 as a belt by the drive roller of the roller 223b, whereby the molding material Mm is sandwiched between the pair of belt conveyors 223a and the material is fed between them. It is transported through aisle 222.
  • the molding material Mm that has passed through the material feed passage 222 is charged into a supply container 226 for cylinder supply such as a hopper.
  • the supply container 226 has a truncated cone-shaped portion 226a and a cylindrical portion 226b similar to the supply container 26 of the preheating device 21 described above, and further, from the belt conveyor 223a to the upper end portion of the truncated cone-shaped portion 226a.
  • a cylindrical opening 226c that receives the molding material Mm is provided.
  • the molding material Mm is fed horizontally through the material feeding passage 222 and then charged into the supply container 226, but the pair of belt conveyors 223a are inclined or orthogonal to the horizontal direction. It may be arranged so that the material passing direction in the material feeding passage 222 is inclined or orthogonal to the horizontal direction.
  • the heater 224 is arranged outside the belt conveyor 223a in the aisle width direction.
  • each belt as the passage forming member 223 can be composed of, for example, a net-like member as described above so that the heating gas can pass therethrough.
  • the heating gas is sent to the molding material Mm passing through the material feed passage 222, and the molding material Mm can be effectively heated.
  • the preheating device 221 is among the pair of belt conveyors 223a as shown by the white arrows in FIG. At least one is configured to be movable with the passage forming member 223 contained therein.
  • the preheating devices 21, 121, and 221 described above can be controlled as described below, for example. Here, as an example, the control thereof will be described using the preheating device 21 of the preheating devices 21, 121, and 221.
  • the temperature sensor or the like as the sensor 23d provided on the tip side portion of the material feed passage 22 in the material passage direction as a retention detection mechanism or the like is used to provide the material feed passage 22.
  • the temperature of the molding material Mm on the tip side in the material passing direction is constantly monitored.
  • the temperature information of the molding material Mm measured thereby is transmitted to, for example, the control unit of the injection molding machine.
  • the molding material Mm When operating normally, the molding material Mm is heated by the heating gas Gh or the like as shown in FIG. 13A, and the temperature rises as it advances in the material passing direction through the material feeding passage 22. At this time, the heating temperature of the heater 24 and other conditions may be set so that the temperature of the molding material Mm becomes less than the allowable upper limit value Tu set in advance at a temperature lower than the melting point Tm of the molding material Mm.
  • the allowable upper limit value Tu can be set to a temperature lower than the melting point Tm, for example, by about 10 ° C.
  • the sensor 23d as the retention detection mechanism is used for the molding material Mm in the material feed passage 22.
  • the temperature of the molding material Mm may rise in the material feed passage 22 as shown in FIG. 13 (b).
  • the temperature of the molding material Mm approaches the melting point Tm or becomes equal to or higher than the melting point Tm, the molding materials Mm or the molding material Mm and the passage forming member 23 are melted and fused, and the molding material Mm becomes a material feed passage. There is concern that it will not be possible to pass 22.
  • the operation of the injection molding machine is stopped, or when the retention of the molding material Mm in the material feed passage 22 is detected (for example, molding is performed while the retention prevention mechanism is continuously operating).
  • the retention of the material Mm is detected, or when the retention of the molding material Mm is detected in the material feed passage 22 while the retention prevention mechanism is not operating, the retention is detected even if the retention prevention mechanism is activated in response to the detection. If the stagnation is still detected without being resolved), the operation stop signal or the stagnation detection signal is transmitted to the control unit.
  • the control unit transmits a heating stop signal to the preheating device 21 so as to stop the heating of the molding material Mm by the heater 24, and the preheating device 21 stops the heating of the molding material Mm by the heater 24. .. That is, the preheating device 21 stops the heating of the molding material Mm by the heater 24 based on the information on the operation stop of the injection molding machine and / or the information on the retention of the molding material Mm in the material feed passage 22.
  • the operation of the injection molding machine may be stopped, for example, due to the completion of production, stop due to the detection of an abnormality, stop due to the pressing of the emergency stop button, or the like.
  • a stop can be detected by various sensors or the like.
  • the temperature of the molding material Mm in the material feed passage 22 may rise due to the residual heat. Therefore, when the temperature of the molding material Mm measured by the temperature sensor satisfies a predetermined standard after the heating of the heater 24 is stopped, as shown in FIG. 13C, the molding material Mm of the material feed passage 22 is changed. For example, it is cooled by a cooling gas Gc or the like.
  • the above-mentioned predetermined criterion for starting the cooling of the molding material Mm can be a criterion determined by comparing the measured value of the temperature of the molding material Mm with the allowable upper limit value Tu, and specifically, the molding material Mm. When the measured value of the temperature of the above reaches the allowable upper limit value Tu, the cooling of the molding material Mm can be started. Alternatively, the amount of temperature rise that the molding material Mm can rise in the future is estimated from the difference between the temperature of the molding material Mm and the ambient temperature of the preheating device 21, and the estimated temperature rise is compared with the allowable upper limit value Tu.
  • the criteria determined by the above can also be the predetermined criteria described above.
  • the standard determined by comparing the estimated value of the temperature of the molding material Mm with the allowable upper limit value Tu can be used as the above-mentioned predetermined standard.
  • the preheating device 21 cools the molding material Mm of the material feed passage 22 based on the information regarding the temperature of the molding material Mm.
  • Cooling of the molding material Mm can be realized by making the hot air heating type heater of the heater 24 or the blower portion 30 have a structure capable of sending normal temperature such as cold air or cooling gas Gc, and separately from the heater 24 and the blower portion 30.
  • the preheating device 21 may be provided with a cooling unit for cooling the molding material Mm of the material feed passage 22. As a result, it is possible to effectively prevent the material feed passage 22 from being blocked due to the melting of the molding material Mm.
  • FIG. 14 An example of control as described above is shown in FIG. In FIG. 14, first, the molding material Mm is passed through the preheating device 21 and then supplied to the inside of the cylinder 11 to mold the molded product. During this period, if the operation of the injection molding machine is stopped, the heater 24 is stopped. Even if the operation of the injection molding machine is not stopped, for example, if the molding material Mm stays in the material feed passage 22 while the retention prevention mechanism is continuously operating, the heater 24 To stop. If the operation of the injection molding machine is not stopped and the operation of the retention prevention mechanism is stopped and the molding material Mm is retained in the material feed passage 22, the retention prevention mechanism is first activated. If the stagnation is still not resolved, the heater 24 is stopped.
  • the confirmation of whether or not the operation of the injection molding machine has stopped and the confirmation of whether or not the molding material Mm has accumulated may be replaced so that the order is reversed, or one of them is confirmed. It can also be only.
  • the temperature of the molding material Mm is equal to or higher than the allowable upper limit value.
  • the molding material Mm is cooled, and it is confirmed again whether or not the temperature of the molding material Mm is equal to or higher than the allowable upper limit value.
  • the temperature of the molding material Mm is less than the allowable upper limit value, it is determined whether or not to restart the molding. If it is determined that the molding may be restarted, the molding is restarted.
  • the injection device 1 to which the preheating device 21 or the like described above can be applied mainly melts the preheating device 21 and the molding material supplied from the preheating device 21 internally.
  • a heater 13 for heating the molding material plasticized by the screw 12 inside the cylinder 11 is arranged around the cylinder 11.
  • the cylinder 11 has a tip portion 14 having a smaller inner and outer diameter on the tip side (left side in FIG. 1) in the direction of the rotation axis, and a heater 13 is also arranged around the tip portion 14. Further, the cylinder 11 is provided with a through-hole-shaped supply port 11a on the rear end side in the direction of the rotation axis, to which the above-mentioned preheating device 21 is attached.
  • the metering motor 31 and the injection motor 41 are fixed to the back surfaces of the two motor support plates 32 and 42 arranged at intervals from each other in an upright posture on the slide base 101 on the rear end side in the rotation axis direction, respectively. Has been done.
  • the screw 12 is rotationally driven by the weighing motor 31 and is driven forward and backward by the injection motor 41.
  • the two motor support plates 32 and 42 are connected to each other by rods 51 and 52 at a plurality of locations on the upper side and the lower side of the measuring motor 31.
  • the weighing motor 31 mainly includes a rotor 33, a stator 34 arranged around the rotor 33, and a stator frame 35 that surrounds the rotor 33 and the stator 34 and is provided with the stator 34 on the inner surface.
  • the rotor 33 of the metering motor 31 is supported by bearings 33a inside the stator frame 35 at each end in the rotation axis direction. Further, the rotor 33 is spline-coupled around the measuring spline shaft 36, and the measuring spline shaft 36 is connected to the screw mounting portion 37 to which the screw 12 is attached.
  • the injection motor 41 is mainly provided so as to surround the rotor 43, the stator 44 arranged around the rotor 43, and the periphery of the rotor 43 and the stator 44, and the stator frame 45 is provided with the stator 44 on the inner surface. And have.
  • the rotor 43 is supported by bearings 43a inside the stator frame 45 at each end in the direction of its rotation axis.
  • the rotor 43 is connected to the drive shaft. More specifically, the drive shaft includes an injection spline shaft 46 spline-coupled by a groove 43b provided on the inner peripheral side of the cylindrical rotor 43, a screw shaft 48 connected to the injection spline shaft 46, and a weighing spline.
  • a pressure detector 38 is arranged between the stator frame 45 of the injection motor 41 and the motor support plate 42.
  • the pressure detector 38 is attached to each of the motor support plate 42 and the screw nut 47, and detects the load acting on the pressure detector 38 in the transmission path of the driving force from the injection motor 41 to the screw 12.
  • a tubular portion 39 is interposed between the pressure detector 38 and the stator frame 45. Further, on the rear end surface of the stator frame 45 of the injection motor 41 located on the opposite side of the drive shaft in the direction of the rotation axis, an encoder 45a which is connected to the rotor 43 by a shaft portion 45b and detects the rotation of the rotor 43 is provided. It is provided.
  • An example of a molding process by an injection molding machine provided with such an injection device 1 will be described in a state in which a molding material is already weighed and arranged in a predetermined amount inside the cylinder 11 in the latter half of the previous molding process. No Molding process is performed to close the mold device and put it in the mold clamping state.
  • a pressure holding step of holding the molding material inside at a predetermined pressure is sequentially performed.
  • the molding material filled in the mold apparatus is cooled and cured, and a cooling step of obtaining a molded product is performed.
  • the molding material separately supplied from the preheating device 21 into the cylinder 11 is melted while being fed toward the tip portion 14 of the cylinder 11 by the rotation of the screw 12 under heating by the heater 13, and a predetermined amount is melted.
  • a weighing step is performed in which the molding material is placed on the tip portion 14.
  • the molding material supplied into the cylinder 11 is already heated to an appropriate temperature by the preheating device 21. Therefore, even if the screw 12 is rotated at a high speed and the molding material is sent to the tip portion 14 of the cylinder 11 in a short time, the molding material can be sufficiently plasticized. As a result, the time required for weighing is shortened, and the molding cycle can be shortened.
  • the mold device is opened to open the mold, and an ejector device or the like is used to take out the molded product from the mold device.
  • the preheating device 81 is for preheating the molding material, and by including the injection device 1 as illustrated in FIG. 15, the preheated molding material can be supplied to the injection device 1.
  • the injection device 1 illustrated in FIG. 15 is an injection molding machine, for example, which is arranged on a slide base 101 of a moving device that moves the injection device 1 forward and backward, and injects a molding material into a mold device. ..
  • the injection device 1 can include a preheating device 81 and a cylinder 11 to which the molding material preheated by the preheating device is supplied to melt the molding material inside.
  • the injection device 1 shown in the figure includes a screw 12 that is rotationally driven inside the cylinder 11 to plasticize the molding material, a heater 13 that is provided around the cylinder 11 and heats the molding material inside the cylinder 11, and the like. The detailed structure of the injection device 1 will be described later.
  • the preheating device 81 is attached to the rear end portion of the cylinder 11 in the direction of the rotation axis of the screw 12 (left-right direction in FIG. 15) opposite to the tip portion 14 for injecting the molding material of the cylinder 11. More specifically, the preheating device 81 is connected on the cylinder 11 to a through-hole-shaped supply port 11a provided at a part in the circumferential direction at the rear end of the cylinder 11, as shown in FIG. Mm of a molding material such as a resin pellet having a substantially spherical or cylindrical shape or other shape is supplied to the supply port 11a.
  • the preheating device 81 has a material feed passage 82 through which the molding material Mm passes.
  • the material feed passage 82 is partitioned by the inner peripheral surface of the tubular body 83, such as a pipe made of metal (in other words, the material feed passage 82 is formed inside the tubular body 83). Then, in the material feed passage 82, the confluence portion 82a where the molding material Mm and the heating medium Gh merge, the molding material Mm merged at the confluence portion 82a, and the heating medium Gh are mixed, and the molding material Mm is mixed with the heating medium Gh. It has an in-line mixing unit 82b for heating the above. Therefore, as shown in FIG.
  • the molding material Mm is supplied to the supply port 11a of the cylinder 11 through the material feed passage 82 from the upstream (left side in FIG. 16) to the downstream (right side in FIG. 16) in the material passage direction. On the way, it passes through the merging portion 82a that merges with the heating medium Gh, and then the mixing portion 82b that mixes the molding material Mm and the heating medium Gh.
  • the molding material Mm supplied to the inside of the cylinder 11 can be preheated before being supplied.
  • the preheated molding material Mm is sufficiently melted in the inside of the cylinder 11 in a short time after being supplied to the inside of the cylinder 11 through the supply port 11a, and is ejected from the tip end portion of the cylinder 11. , It is possible to shorten the molding cycle.
  • the material feed passage 82 has a first portion 821 extending in the vertical direction (vertical direction in the drawing) from upstream to downstream in the material passage direction, and a lower end in the vertical direction (material) of the first portion 821.
  • a second portion 822 extending in the horizontal direction (horizontal direction in the figure) following the downstream side in the passing direction), and a third portion 823 extending in the vertical direction following the downstream side in the material passing direction of the second portion 822.
  • the molding material Mm is supplied into the material feed passage 82 at the upper end in the vertical direction
  • the second portion 822 has a merging portion 82a and a mixing portion 82b
  • the third portion 823 is in the vertical direction.
  • the size of the material feed passage 82 can be made arbitrary depending on the amount of the molding material Mm to be conveyed, the heating temperature, and the like. Further, the material feed passage 82 is not limited to the shape shown in FIG. 16, and may have any shape. Further, a heat insulating material can be provided around the tubular body 83 forming the material feeding passage 82.
  • the heating medium Gh heated by the heater 84 is sent from the heater 84 through the heat medium feed passage 84a to the molding material Mm being conveyed from the upstream to the downstream in the material passage direction. This is the part where they meet.
  • a heating gas specifically, a gas obtained by heating a gas such as air or an inert gas, or superheated steam can be used, but the heating medium Gh is a molding material at the confluence 82a. It is not particularly limited as long as it can merge with Mm and flow downstream in the material passage direction.
  • the heating medium Gh is heated by the heater 84 included in the preheating device 81, and as the heater 84, for example, a hot air heating type heater can be used.
  • the hot air heating type heater can obtain hot air by heating the compressed air sent from the compressor with a sheathed heater or the like. The temperature of the hot air can be adjusted by changing the output of the sheathed heater.
  • the heating medium Gh is sent to the confluence portion 82a through the heat medium feed passage 84a included in the preheating device 81, and the heat medium feed passage 84a between the heater 84 and the confluence portion 82a is, for example, heat-insulated.
  • the material may be partitioned by a metal pipe 84b or the like provided around it.
  • the heating medium Gh is sent to the confluence portion 82a of the material feeding passage 82 via the heat medium feeding passage 84a of FIG.
  • the heat medium feeding passage 84a branches from the material feeding passage 82 as described above, but the molding material Mm feeds the heat medium between the merging portion 82a and the heat medium feeding passage 84a.
  • a passage prevention portion such as a net can be provided to prevent the heat from being sent to the passage 84a.
  • the mixing portion 82b is a portion in which the molding material Mm merged at the merging portion 82a and the heating medium Gh are mixed in-line, and the molding material Mm is heated by the heating medium Gh.
  • the molding material Mm merges with the heating medium Gh at the merging portion 82a and is sent together with the heating medium Gh in the material passing direction, so that the molding material Mm and the heating medium Gh come into contact with each other for molding.
  • the material Mm can be partially heated. However, it is difficult to heat the molding material Mm sufficiently uniformly and efficiently within a short time only by contact with such a heating medium Gh.
  • the mixing portion 82b in the material feed passage 82 the flow of the molding material Mm and the heating medium Gh can be homogenized, and the temperature of the molding material Mm can be raised uniformly. Further, by being effectively mixed, the entire surface of the molding material Mm is sufficiently heated, and high-speed temperature rise becomes possible.
  • the mixing unit 82b in the example of FIG. 16, a stationary mixer which is an in-line mixer having no driving unit is used.
  • the static mixer in the illustrated example includes a plurality of spirally twisted plates 82c provided in the material feed passage 82, and includes such a spiral plate 82c.
  • the spiral plate 82c has a shape in which a flat plate is twisted approximately 180 ° around an axis to form a spiral shape, and the axis has a spiral shape.
  • the spiral plate 82c is arranged so as to follow the material passing direction in the material feeding passage 82. Further, the adjacent spiral plates 82c are joined to each other in a direction in which the twisting directions around the axes are opposite to each other, and the ends of the plates 82c are substantially orthogonal to each other.
  • the static mixer including such a spiral plate 82c preferably contains a plurality of the spiral plates 82c, whereby the molding material Mm and the heating medium Gh can be effectively mixed. ..
  • the spiral plate 82c can be made of metal.
  • the stationary mixer is not limited to the spirally twisted plate 82c as described above, for example, changing the flow direction of the heating medium and / or partially narrowing the material feed passage 82.
  • the contact efficiency between the molding material Mm and the heating medium may be improved.
  • the mixing unit 82b is not limited to the above mixer as long as the molding material Mm and the heating medium Gh can be mixed in-line, and any one can be used and has a driving unit. You may or may not have it. Also preferably, it is a mixer that does not have a drive unit and can be mixed in-line. By using such a mixer, for example, the mixer can be provided in the existing transport path of the molding material Mm as the material feed passage 82, and the equipment introduction cost can be reduced. ..
  • the preheating device 81 of the present embodiment includes a transporter 85 that transports the molding material Mm from the upstream to the downstream of the material feeding passage 82.
  • the transporter 85 is the molding material Mm.
  • It is a gas pumper that pumps gas. More specifically, in the gas pressure feeder 85, the compressed gas Gp produced by a compressor (not shown) or the like is introduced into the gas pressure feeder 85 as shown in FIG. 18, and the compressed gas Gp is introduced into the material of the material feed passage 82.
  • the discharge side gas flow Gb toward the downstream side in the passage direction (right side in FIG. 18) (in other words, the discharge port for generating the discharge side gas flow Gb faces the downstream side in the material passage direction).
  • the molding material Mm existing upstream in the passing direction is sucked and conveyed to the confluence portion 82a, then passed through the mixing portion 82b together with the heating medium Gh, and is pumped and conveyed to the downstream side of the material feeding passage 82. Further, by providing the gas pressure feeder 85 on the upstream side of the merging portion 82a in the material feeding passage 82, it is possible to prevent the backflow of the heating medium Gh in the material passing direction upstream. By using the gas pressure feeder that gas-pressure feeds the molding material Mm as the transporter 85 in this way, for example, the existing transport path of the molding material Mm can be used, and the equipment introduction cost can be reduced.
  • the compressed gas Gp is not particularly limited and air can be used.
  • the material feeding passage 82 is on the downstream side in the material passing direction and is in front of the supply port 11a of the cylinder 11, for example, in the example shown in FIG. (Omitted) can be provided, but the discharge port can also be used as an exhaust gas from the gas pump 85 introduced for transportation.
  • the gas pressure feeder as the conveyor 185 is provided on the downstream side in the material passage direction from the mixing portion 182b in the material feed passage 182 as shown in FIG.
  • the molding material Mm can be conveyed via the merging portion 182a and the mixing portion 182b in the material feeding passage 182 by the attractive force to the downstream side generated on the upstream side in the material passing direction from the gas pumping device 185.
  • the feed screw 285 is used as the conveyor 285 in the preheating device 281 instead of the gas pumping device described above, as shown in FIG. 20, and the material passing direction of the material feeding passage 282.
  • the feed screw 285 shown in FIG. 20 includes a screw 285a that is moved by rotating the molding material Mm, a cylindrical cylinder 285b that includes the screw 285a, and a drive unit 285c that rotates the screw 285a. ..
  • a supply container 227 hopper
  • the material feed passage 282 is connected to the opening 285e on the tip end side of the cylinder 285b, and the molding material Mm is fed from the opening 285e to the material feed passage 282.
  • a supply container 26 for supplying a cylinder such as a hopper is provided on the downstream side (lower end side in FIG. 16) of the material feed passage 82 in the material passage direction.
  • the supply container 26 has, for example, a truncated cone-shaped portion 26a whose inner and outer outer shapes are both truncated cone-shaped, and a cylindrical portion 26b formed at the end portion of the truncated cone-shaped portion 26a on the small diameter side. Is.
  • the supply container 26 receives the molding material Mm that has passed through the material feeding passage 82 into the truncated cone-shaped portion 26a, and then passes the molded material Mm through the cylindrical portion 26b beyond the cone-shaped portion 26a to supply the molding material Mm to the inside of the cylinder 11.
  • An opening 26c having a width substantially equal to that of the material feeding passage 82 is formed at the end of the truncated cone-shaped portion 26a, and the molding material Mm that has passed through the material feeding passage 82 is supplied from the opening 26c to the supply container. Enter within 26.
  • a supply container 27 for passage supply such as a hopper that stores a plurality of molding materials Mm and supplies the molding material Mm to the material feeding passage 82 in an appropriate amount. Is placed in front of the conveyor 85.
  • the molding material Mm is supplied to the preheating device 81 from the supply container 27 for aisle supply. Then, the molding material Mm supplied to the preheating device 81 passes through the material feeding passage 82 while being preheated, passes through the supply container 26 for supplying the cylinder, and is then supplied to the inside of the cylinder 11. That is, here, the molding material Mm preheated by the preheating device 81 is supplied to the inside of the cylinder 11.
  • the shape of the supply container 26 and / or the supply container 27 is not limited to this, and may be appropriately changed, and the supply container 26 and / or the supply container 27 may be omitted.
  • the preheating device is arranged on the cylinder, and the tip end side of the material feed passage in the material passage direction is directly communicated with the supply port of the cylinder. In this case, the molding material preheated by the preheating device is supplied to the inside of the cylinder immediately after the preheating.
  • the molding material Mm is supplied from the supply container 26 for supplying the cylinder to the inside of the cylinder 11.
  • the molding material Mm in the passage supply container 27 is sequentially heated by the heater 84 through the material feed passage 82, and then charged into the cylinder supply supply container 26.
  • the speed of the molding material Mm passing through the material feed passage 82 may depend on the speed of plasticization of the molding material Mm inside the cylinder 11, but the passing speed of the molding material Mm is as described above. It can also be adjusted by the conveyor 85.
  • the material feed passage 82 and the supply container 26 are not shown.
  • a screw-shaped feeder or other supply regulator for adjusting the supply of the molding material Mm from the material feed passage 82 to the supply container 26 may be provided between the two.
  • the preheating device 81 is provided with a retention detection mechanism (not shown) for detecting the retention of the molding material Mm in the material feed passage 82.
  • the retention detection mechanism can be, for example, a sensor that detects retention based on temperature or the like.
  • the temperature of the molding material Mm referred to here can be the temperature of the molding material Mm itself, the temperature in the space in the material feeding passage, or the temperature of the tubular body forming the material feeding passage. It is preferable that such a sensor of the retention detection mechanism is provided at the confluence portion 82a or the mixing portion 82b of the material feed passage 82, or a location near the downstream side thereof.
  • the preheating device described above can be controlled as described below, for example.
  • the control of the preheating device 81 among the preheating devices 81, 181 and 281 will be described.
  • the temperature of the molding material Mm in the material feed passage 82 is constantly monitored by a temperature sensor or the like as a sensor provided in the material feed passage 82 as a retention detection mechanism or the like. back.
  • the temperature information of the molding material Mm measured thereby is transmitted to, for example, the control unit of the injection molding machine.
  • the heating temperature of the heater 84 and other conditions shall be set so that the temperature of the molding material Mm becomes less than the allowable upper limit value Tu set in advance at a temperature lower than the melting point Tm of the molding material Mm.
  • the allowable upper limit value Tu can be set to a temperature lower than the melting point Tm, for example, by about 10 ° C.
  • the temperature of the molding material Mm may rise in the material feed passage 82.
  • the temperature of the molding material Mm approaches the melting point Tm or becomes equal to or higher than the melting point Tm, the molding materials Mm or the molding material Mm and the tubular body 83 are melted and fused, and the molding material Mm is transferred to the material feed passage 82. There is a concern that it will not be possible to pass through.
  • the control unit transmits a heating stop signal to the preheating device 81 so as to stop the heating of the molding material Mm by the heater 84, and the preheating device 81 stops the heating of the molding material Mm by the heater 84. .. That is, the preheating device 81 stops the heating of the molding material Mm by the heater 84 based on the information on the operation stop of the injection molding machine and / or the information on the retention of the molding material Mm in the material feed passage 82.
  • the temperature of the molding material Mm in the material feed passage 82 may rise due to the residual heat. Therefore, when the temperature of the molding material Mm measured by the temperature sensor satisfies a predetermined standard after the heating of the heater 84 is stopped, the molding material Mm of the material feed passage 82 is cooled by, for example, a cooling gas Gc or the like.
  • the above-mentioned predetermined criterion for starting the cooling of the molding material Mm can be a criterion determined by comparing the measured value of the temperature of the molding material Mm with the allowable upper limit value Tu, and specifically, the molding material Mm. When the measured value of the temperature of the above reaches the allowable upper limit value Tu, the cooling of the molding material Mm can be started. Alternatively, the amount of temperature increase in which the molding material Mm can rise in the future is estimated from the difference between the temperature of the molding material Mm and the ambient temperature of the preheating device 81, and the estimated amount of temperature increase is compared with the allowable upper limit value Tu.
  • the criteria determined by the above can also be the predetermined criteria described above. In other words, the preheating device 81 cools the molding material Mm of the material feed passage 82 based on the information regarding the temperature of the molding material Mm.
  • Cooling of the molding material Mm can be realized by having a structure in which the hot air heating type heater or the blower portion (not shown) of the heater 84 can send cold air or the like at room temperature or cooling gas Gc. Thereby, the blockage of the material feed passage 82 due to the melting of the molding material Mm can be effectively prevented.
  • FIG. 21 An example of control as described above is shown in FIG. In FIG. 21, first, the molding material Mm is passed through the preheating device 81 and then supplied to the inside of the cylinder 11 to mold the molded product. During this period, if the operation of the injection molding machine is stopped, the heater 84 is stopped. Even when the operation of the injection molding machine is not stopped, if the molding material Mm stays in the material feed passage 82, the heater 84 is stopped. If the operation of the injection molding machine is not stopped and the molding material Mm is not retained, molding is continued. The confirmation of whether or not the operation of the injection molding machine has stopped and the confirmation of whether or not the molding material Mm has accumulated may be replaced so that the order is reversed, or one of them is confirmed. It can also be only.
  • the temperature of the molding material Mm is equal to or higher than the allowable upper limit value.
  • the molding material Mm is cooled, and it is confirmed again whether or not the temperature of the molding material Mm is equal to or higher than the allowable upper limit value.
  • the temperature of the molding material Mm is less than the allowable upper limit value, it is determined whether or not to restart the molding. If it is determined that the molding may be restarted, the molding is restarted.
  • the injection device 1 to which the preheating device 81 or the like described above can be applied mainly melts the preheating device 81 and the molding material supplied from the preheating device 81 internally.
  • a heater 13 for heating the molding material plasticized by the screw 12 inside the cylinder 11 is arranged around the cylinder 11.
  • the cylinder 11 has a tip portion 14 having a smaller inner and outer diameter on the tip side (left side in FIG. 15) in the direction of the rotation axis, and a heater 13 is also arranged around the tip portion 14. Further, the cylinder 11 is provided with a through-hole-shaped supply port 11a on the rear end side in the direction of the rotation axis, to which the above-mentioned preheating device 81 is attached.
  • the metering motor 31 and the injection motor 41 are fixed to the back surfaces of the two motor support plates 32 and 42 arranged at intervals from each other in an upright posture on the slide base 101 on the rear end side in the rotation axis direction, respectively. Has been done.
  • the screw 12 is rotationally driven by the weighing motor 31 and is driven forward and backward by the injection motor 41.
  • the two motor support plates 32 and 42 are connected to each other by rods 51 and 52 at a plurality of locations, for example, four locations around the metering motor 31.
  • the weighing motor 31 mainly includes a rotor 33, a stator 34 arranged around the rotor 33, and a stator frame 35 that surrounds the rotor 33 and the stator 34 and is provided with the stator 34 on the inner surface.
  • the rotor 33 of the metering motor 31 is supported by bearings 33a inside the stator frame 35 at each end in the rotation axis direction. Further, the rotor 33 is spline-coupled around the measuring spline shaft 36, and the measuring spline shaft 36 is connected to the screw mounting portion 37 to which the screw 12 is attached.
  • the injection motor 41 is mainly provided so as to surround the rotor 43, the stator 44 arranged around the rotor 43, and the periphery of the rotor 43 and the stator 44, and the stator frame 45 is provided with the stator 44 on the inner surface. And have.
  • the rotor 43 is supported by bearings 43a inside the stator frame 45 at each end in the direction of its rotation axis.
  • the rotor 43 is connected to the drive shaft. More specifically, the drive shaft includes an injection spline shaft 46 spline-coupled by a groove 43b provided on the inner peripheral side of the cylindrical rotor 43, a screw shaft 48 connected to the injection spline shaft 46, and a weighing spline.
  • a pressure detector 38 is arranged between the stator frame 45 of the injection motor 41 and the motor support plate 42.
  • the pressure detector 38 is attached to each of the motor support plate 42 and the screw nut 47, and detects the load acting on the pressure detector 38 in the transmission path of the driving force from the injection motor 41 to the screw 12.
  • a tubular portion 39 is interposed between the pressure detector 38 and the stator frame 45. Further, on the rear end surface of the stator frame 45 of the injection motor 41 located on the opposite side of the drive shaft in the direction of the rotation axis, an encoder 45a which is connected to the rotor 43 by a shaft portion 45b and detects the rotation of the rotor 43 is provided. It is provided.
  • An example of a molding process by an injection molding machine provided with such an injection device 1 will be described in a state in which a molding material is already weighed and arranged in a predetermined amount inside the cylinder 11 in the latter half of the previous molding process. No Molding process is performed to close the mold device and put it in the mold clamping state.
  • a pressure holding step of holding the molding material inside at a predetermined pressure is sequentially performed.
  • the molding material filled in the mold apparatus is cooled and cured, and a cooling step of obtaining a molded product is performed.
  • the molding material separately supplied from the preheating device 81 into the cylinder 11 is melted while being fed toward the tip portion 14 of the cylinder 11 by the rotation of the screw 12 under heating by the heater 13, and a predetermined amount is melted.
  • a weighing step is performed in which the molding material is placed on the tip portion 14.
  • the molding material supplied into the cylinder 11 is already heated to an appropriate temperature by the preheating device 81. Therefore, even if the screw 12 is rotated at a high speed and the molding material is sent to the tip portion 14 of the cylinder 11 in a short time, the molding material can be sufficiently plasticized. As a result, the time required for weighing is shortened, and the molding cycle can be shortened.
  • the mold device is opened to open the mold, and an ejector device or the like is used to take out the molded product from the mold device.
  • the preheating device 60 is for preheating the molding material, and by including the injection device 1 as illustrated in FIG. 22, the preheated molding material can be supplied to the injection device 1.
  • the injection device 1 illustrated in FIG. 22 is an injection molding machine, for example, which is arranged on a slide base 101 of a moving device that moves the injection device 1 forward and backward, and injects a molding material into a mold device. ..
  • the injection device 1 can include a preheating device 60 and a cylinder 11 to which the molding material preheated by the preheating device is supplied to melt the molding material inside.
  • the injection device 1 shown in the figure includes a screw 12 that is rotationally driven inside the cylinder 11 to plasticize the molding material, a heater 13 that is provided around the cylinder 11 and heats the molding material inside the cylinder 11, and the like. The detailed structure of the injection device 1 will be described later.
  • the preheating device 60 is attached to the rear end portion of the screw 12 of the injection device 1 in the direction of the rotation axis (left-right direction in FIG. 22), which is opposite to the front end portion 14 for injecting the molding material of the cylinder 11. More specifically, the preheating device 60 is connected on the cylinder 11 to a through-hole-shaped supply port 11a provided at a part in the circumferential direction at the rear end of the cylinder 11, as shown in FIG. Mm of a molding material such as a resin pellet having a substantially spherical or cylindrical shape or other shape is supplied to the supply port 11a.
  • the preheating device 60 passes superheated steam Ss through the material passage 61 in order to heat the material passage 61 through which the molding material Mm passes and the molding material Mm in the material passage 61. It has a superheated steam introduction port 62 to be introduced into the 61. In the material passage 61, the molding material Mm is heated by the superheated steam Ss introduced from the superheated steam introduction port 62. As a result, the molding material Mm can be preheated before being supplied into the cylinder 11.
  • the superheated steam Ss introduced into the material passage 61 from the superheated steam introduction port 62 can be generated by further applying heat to the steam vaporized by boiling water with a superheated steam generator or the like (not shown).
  • heated air hot air
  • superheated steam heats the object to be heated not only by convection heat transfer but also by radiant heat transfer and condensation heat transfer.
  • the heat energy is extremely large compared to heated air and the like.
  • the molding material Mm is heated by the superheated steam Ss introduced from the superheated steam introduction port 62, the temperature of the molding material Mm rises to a predetermined temperature within a short time.
  • the molding material Mm is preheated instantaneously, so that the molding cycle by the injection molding machine can be shortened. This is particularly advantageous when applied in high cycle molding.
  • the superheated steam generator may have a structure in which a heating device such as a sheathed heater is provided in a heat-insulated housing.
  • the superheated steam generator can heat the saturated steam sent from the boiler or the like to generate the superheated steam.
  • the superheated steam introduction port 62 can be supplied to a predetermined location such as a factory where the injection device is installed. Superheated steam generated separately in the above equipment may be supplied.
  • the preheating device 60 can further have a passage partition wall portion 63 such as a cylinder or a cylinder provided around the material passage 61.
  • a material passage 61 is partitioned and provided inside the passage partition wall portion 63.
  • the cylindrical passage partition wall portion 63 is arranged sideways so that its central axis is substantially parallel to, for example, the horizontal direction of the rotation axis of the screw 12 (horizontal direction in FIGS. 22 to 24). Has been done.
  • the molding material Mm moves in the above-mentioned rotation axis direction, so that the material passage direction in which the molding material Mm passes is parallel to the rotation axis direction. become.
  • the material passage 61 may be provided so that the material passage direction in the material passage 61 is a vertical direction orthogonal to the rotation axis direction of the screw 12, as in the embodiment described later. Although not shown, the material passage 61 may be provided diagonally so as to be inclined with respect to the rotation axis direction of the screw 12.
  • the passage entrance 61a is provided on the rear end side (right side in FIGS. 22 to 24) of the material passage 61 in the material passage direction.
  • a substantially truncated cone-shaped hopper 61b can be attached to the passage entrance 61a.
  • a part of the passage partition wall portion 63 in the circumferential direction is provided so as to project toward the outer peripheral side and is orthogonal to the material passage direction.
  • the preheating device 60 may further have a transport mechanism for feeding the molding material Mm in the material passage direction in the material passage 61.
  • a transport mechanism for feeding the molding material Mm in the material passage direction in the material passage 61.
  • a preheating screw 64 is provided in the material passage 61.
  • the transport mechanism may be a belt conveyor or the like, although not shown.
  • the illustrated preheating screw 64 is provided upright on a rotating shaft 65 that is rotationally driven around an axis along the material passage direction in the material passage 61 and on the outer peripheral surface of the rotating shaft 65, and is provided around the above-mentioned axis.
  • the screw 64 when the screw 64 is rotationally driven by a drive source 67 such as a motor, the molding material Mm in the material passage 61 is on the outer peripheral side of the rotary shaft 65, as shown in FIG. 23, of the rotary shaft 65.
  • the flight 66 provided on the outer peripheral surface conveys the material in the material passing direction.
  • the preheating screw 64 of this embodiment has a hollow rotating shaft 65.
  • the rotating shaft 65 has an internal space 68 inside the rotating shaft 65, a cylindrical peripheral wall portion 69 for partitioning the internal space 68, and the peripheral wall portion 69 attached to the peripheral wall portion 69. It has a plurality of communication holes 70 formed through the holes.
  • the superheated steam introduction port 62 is provided on the tip surface of the preheating screw 64, more specifically, the rotation shaft 65 of the preheating screw 64 in the direction of the rotation axis.
  • the tip of the rotating shaft 65 in the preheating screw 64 in the direction of the rotation axis is positioned so as to be exposed to the outside of the passage partition wall 63 from the opening 63a provided on the end surface of the passage partition wall 63, and the tip thereof is positioned.
  • the superheated steam introduction port 62 can be provided in the water.
  • the superheated steam Ss introduced into the material passage 61 from the superheated steam introduction port 62 once rotates the preheating screw 64 in the material passage 61. It flows into the internal space 68 of the shaft 65. Then, the superheated steam Ss that has flowed into the internal space 68 is sent from the internal space 68 to the outer peripheral side of the rotating shaft 65 through the communication holes 70 through the plurality of communication holes 70 provided in the peripheral wall portion 69. On the outer peripheral side of the rotating shaft 65, the molding material Mm conveyed in the material passing direction by the flight 66 is heated by the superheated steam Ss that has passed through the communication hole 70.
  • the height of the outer peripheral edge of the flight 66 from the outer peripheral surface of the rotating shaft 65 is equal to or more than the length of one molding material Mm, and the molding material Mm is formed. It is preferably less than the length of two materials Mm. In this case, since it is suppressed that the plurality of molding materials Mm overlap in the radial direction of the preheating screw 64 on the outer peripheral side of the rotating shaft 65, for example, superheated steam sent from the communication hole 70 of the rotating shaft 65 to the outer peripheral side. Therefore, each molding material Mm passing through the material passage 61 can be heated more effectively.
  • the gap between the outer peripheral edge of the flight 66 and the inner peripheral surface of the passage partition wall portion 63 in the radial direction of the preheating screw 64 is narrower than the length of one molding material Mm. As a result, it is possible to prevent the molding material Mm from passing over the flight 66 in the direction of the rotation axis.
  • a minute gap is provided between the outer peripheral edge of the flight 66 and the inner peripheral surface of the passage partition wall portion 63 so that they do not come into contact with each other. Further, the distance from the outer peripheral surface of the rotating shaft 65 of the preheating screw 64 to the inner peripheral surface of the passage partition wall portion 63 is also longer than the length of one molding material Mm and the length of two molding materials Mm. It is preferably less than that. The length of one molding material Mm is preferably the shortest dimension of the molding material Mm.
  • the molding material Mm when the molding material Mm is substantially spherical, it is preferably the diameter thereof, or when it is an irregular spherical shape including an ellipse or an ellipse in the cross section, it is preferably the diameter on the shortest side thereof.
  • the molding material Mm may be a cylinder, a prism, or other columnar shape, and the shorter dimension of the diameter or width and height thereof may be the length of one molding material Mm.
  • the superheated steam introduction port 162 the passage partition wall portion 63 and the preheating screw 64 described above
  • the superheated steam introduction port 162 the passage partition wall portion 163 and the preheating screw 164 shown in FIG. 25 may be used.
  • the passage partition wall portion 163 is provided with a plurality of through-hole-shaped superheated steam introduction ports 162 penetrating the passage partition wall portion 163 in the circumferential direction and the rotation axis direction.
  • the preheating screw 164 may have a hollow or solid rotating shaft 165, but does not have the communication hole 70 as described above.
  • the end surface of the passage partition wall portion 163 is not provided with an opening, and the tip portion of the rotating shaft 165 in the direction of the rotation axis terminates inside the passage partition wall portion 163.
  • the superheated steam Ss is introduced into the material passage 61 from the superheated steam introduction port 162 provided in the passage partition wall portion 163.
  • the molding material Mm conveyed on the outer peripheral side of the rotating shaft 165 is heated.
  • the embodiment shown in FIG. 25 has substantially the same configuration as that shown in FIGS. 22 to 24, except for the structure of the superheated steam introduction port 162, the passage partition wall portion 163, and the preheating screw 164.
  • those shown in FIGS. 22 to 24 may be further provided with a plurality of through-hole-shaped superheated steam introduction ports 262 in the passage partition wall portion 263.
  • the molding material Mm conveyed on the outer peripheral side of the rotating shaft 65 of the preheating screw 64 is the superheated steam introduction port 262 of the passage partition wall portion 263 and the superheated steam introduction port of the preheating screw 64.
  • superheated steam is sent from both the inner and outer sides of the preheating screw 64 in the radial direction (vertical direction in FIG. 26) to be heated.
  • the embodiment of FIG. 26 has substantially the same configuration as that shown in FIGS. 22 to 24, except that the superheated steam introduction port 262 is provided in the passage partition wall portion 263.
  • the communication holes 70 of the peripheral wall portion 69 of the preheating screw 64 and the superheated steam introduction ports 162 and 262 of the passage partition wall portions 163 and 263 are in the circumferential direction of the peripheral wall portion 69 or the passage partition wall portions 163 and 263. And, it is preferable to provide a large number of them evenly distributed in the direction of the rotation axis.
  • the peripheral wall portion 69 and / or the passage partition wall portions 163 and 263 are, for example, a plurality of shapes such as a square or other polygons in a front view.
  • the net-like member shall be composed of a cylindrical net-like member having individual holes, or a cylindrical plate-like member in which a plurality of holes are formed in a metal plate material such as so-called punching metal by press working or the like. Can be done. If the net-like member is insufficient in strength, the net-like member may be superposed with a reinforcing member such as a honeycomb or a lattice to form a peripheral wall portion 69 and / or a passage partition wall portion 163, 263.
  • a reinforcing member such as a honeycomb or a lattice to form a peripheral wall portion 69 and / or a passage partition wall portion 163, 263.
  • the material passage 361 for sending the molding material Mm to one passage outlet 361c is provided, for example, the surrounding passage partition wall portion 363 and the inside thereof.
  • four linear material passages 361 are arranged around the passage outlet 361c at an angle of 90 ° from each other, together with the preheating screw 364. The number and arrangement mode can be changed as appropriate.
  • superheated steam introduction ports are provided so that superheated steam is introduced into each of the material passages 361.
  • a plurality of superheated steam introduction ports can be provided in each passage partition wall portion 363.
  • a discharge port for superheated steam may be provided.
  • the superheated steam that heats the molding material Mm in the material passage 61 can raise the temperature of the molding material Mm at high speed as described above.
  • the molding material Mm heated by superheated steam may cause dew condensation when the temperature is lower than 100 ° C., for example.
  • the preheating device 60 of this embodiment further heats the molding material Mm that has passed through the material passage 61 and is heated by superheated steam.
  • the preheating device 60 of this embodiment has a material feed passage 22 through which the molding material Mm passes after being heated by superheated steam and passing through the material passage 61, and a heater 24 for heating the molding material Mm passing through the material feed passage 22.
  • the molding material Mm passes through the above-mentioned material passage 61 in the direction of the rotation axis, and then falls into the material feed passage 22 from the passage outlet 61c of the material passage 61 due to its own weight, and enters the material feed passage 22. Pass through.
  • the material passage direction in the material passage 61 and the material passage direction (vertical direction in FIG. 23), which is the direction in which the molding material Mm passes in the material feed passage 22, are orthogonal to each other, and the molding material Mm is the material feed passage 22. Passes vertically.
  • the material feed passage 22 has a pair of passage forming members 23 that are arranged so as to face each other and the material feed passage 22 is partitioned between the material feed passages 22.
  • the heater 24 is arranged outside the material feeding passage 22 in the passage width direction with the passage forming member 23 separated from the material feeding passage 22.
  • the passage forming member 23 and the heater 24 have a function of drying the molding material Mm that has passed through the material passage 61 by being heated by superheated steam, and also has a function of further heating the molding material Mm.
  • the passage width direction referred to here is an alignment direction of the passage forming members 23 arranged in parallel with each other, and means a direction orthogonal to the material passage direction in the material feed passage 22 (left-right direction in FIG. 23).
  • the material feeding passage 22, the passage forming member 23, and the heater 24 are housed and arranged inside a box-shaped housing 25 made of a heat insulating material or the like.
  • At least one of the paired passage forming members 23 that partition the material feeding passage 22 can be made movable, whereby the material feeding passage 22 is separated from each other by the paired passage forming members 23. It is configured so that the width of a certain passage can be adjusted.
  • At least one of the passage forming members 23 is a passage, for example, manually by the user by arranging a spacer between the mounting location and the inside of the housing 25, or automatically using a motor or other actuator. It may be possible to move in the width direction.
  • the passage width of the material feed passage 22 is adjustable, it is possible to set an appropriate passage width corresponding to each of various molding materials Mm having various dimensions and shapes. For example, as shown in FIG.
  • the molding material Mm passes through the material feeding passages 22 in a substantially aligned posture, and at this time, the passages. Most of the molding material Mm is effectively heated by the heater 24 outside the forming member 23 in the passage width direction.
  • the passage width of the material feed passage 22 is at least the length of one molding material Mm and less than the length of two molding materials Mm. In this case, since it is suppressed that the plurality of molding materials Mm overlap in the passage width direction in the material feed passage 22, most of the molding materials Mm can be heated more effectively.
  • a supply container 26 such as a hopper is provided on the lower surface of the housing 25 on the tip side (lower end side in FIG. 23) of the material feed passage 22 in the material passage direction.
  • the supply container 26 has, for example, a truncated cone-shaped portion 26a whose inner and outer outer shapes are both truncated cone-shaped, and a cylindrical portion 26b formed at the end portion of the truncated cone-shaped portion 26a on the small diameter side.
  • the supply container 26 preferably contains a heat insulating material, such as when the peripheral wall thereof is made of a heat insulating material or the surface of the peripheral wall is covered with the heat insulating material.
  • the supply container 26 receives the molding material Mm that has passed through the material feeding passage 22 into the truncated cone-shaped portion 26a, and then passes the molded material Mm through the cylindrical portion 26b beyond the cone-shaped portion 26a to supply the molding material Mm to the inside of the cylinder 11.
  • An opening 26c having a width substantially equal to that of the material feeding passage 22 is formed at the end of the truncated cone-shaped portion 26a, and the molding material Mm that has passed through the material feeding passage 22 is supplied from the opening 26c to the supply container. Enter within 26.
  • the molding material Mm is supplied to the inside of the cylinder 11 after passing through the material feed passage 22 and the supply container 26. That is, here, the molding material Mm preheated by the preheating device 60 is supplied to the inside of the cylinder 11.
  • the shape of the supply container 26 is not limited to this, and the supply container 26 may be omitted as appropriate. If the supply container 26 is omitted and eliminated, the housing is arranged on the cylinder, and the tip end side of the material feed passage in the material passage direction is directly communicated with the supply port of the cylinder. In this case, the molding material is supplied to the inside of the cylinder immediately after passing through the material feed passage.
  • the heater 24 can be arranged on only one side of the material feeding passage 22 outside the passage width direction of one of the passage forming members 23, but in this embodiment, the passage width of each passage forming member 23 It is arranged on both sides of the material feed passage 22 on the outside of the direction. In that case, since the molding material Mm can be heated quickly by the heaters 24 on both sides, the molding material Mm can be effectively heated even if the passing speed of the molding material Mm in the material feed passage 22 is relatively high. Conditions such as the heater 24 are set so that the molding material Mm reaches a desired temperature on the tip side of the material feed passage 22 in the material passage direction.
  • the heater 24 is not particularly limited as long as it can heat the molding material Mm via the passage forming member 23.
  • a hot air heating type heater that sends a heating gas such as high temperature air
  • an electric heating type heater such as high frequency dielectric heating
  • an infrared heating type heater such as a halogen lamp or a ceramic heater
  • a laser heating type heater or the like
  • the passage forming member 23 can be made of a translucent or transparent material such as glass through which light or a laser is transmitted.
  • the arrangement of the heater 24 is not limited to the illustrated example, and the heater 24 may be arranged outside the housing 25 so that hot air flows through the material feeding passage 22.
  • the illustrated preheating device 60 has, as an example, a heater 24 including a hot air heating type heater.
  • the hot air heating type heater can obtain hot air by heating the compressed air sent from the compressor with a sheathed heater or the like. The temperature of the hot air can be adjusted by changing the output of the sheathed heater.
  • the hot air heating type heater is preferable in that the molding material Mm can be dried more effectively.
  • the passage forming member 23 has a plurality of ventilation holes penetrating the passage forming member 23 in the passage width direction in order to pass the heating gas sent from the hot air heating type heater through the material feeding passage 22. be able to.
  • the heating gas from the heater 24 flows into the material feeding passage 22 through the ventilation holes of the passage forming member 23, so that the heating gas can heat the molding material Mm of the material feeding passage 22.
  • the passage forming member 23 is, for example, a plate in which a plurality of ventilation holes 23b are formed in a plate material 23a made of metal or the like by press working or the like, such as so-called punching metal. It can also be a shaped member. In this case, a plurality of regularly arranged ventilation holes 23b can be formed in the plate material 23a by adjusting the processing mode and the like.
  • wire rods 23c are arranged in a grid pattern or the like, and a plurality of wire rods 23c having a shape such as a square or other polygons in front view are arranged between them. It may be a net-like member provided with a ventilation hole 23b. If the thickness of such a reticulated member is thin and the reticulated member lacks the strength required to form the material feed passage 22 in the passage forming member 23, the reticulated member and the reinforcing member are overlapped with each other.
  • the passage forming member 23 can be formed by the net-like member and the reinforcing member.
  • the reinforcing member can have various shapes such as a honeycomb shape or a lattice shape as long as the heating gas can pass therethrough.
  • the mesh of the reinforcing member may be coarser than the mesh of the mesh member.
  • a plurality of ventilation holes 23b are arranged in the vertical direction (vertical direction in FIG. 28 (b)) and in the horizontal direction (horizontal direction in FIG. 28 (b)) orthogonal to the vertical direction when viewed from the front. They are arranged and regularly arranged side by side.
  • the material feed passage 22 is partitioned by the net-like passage forming member 23, as shown in FIG. 29, the plurality of molding materials Mm spread in the lateral direction of the passage forming member 23 and are indicated by arrows in the figure.
  • the passage forming member 23 moves in the material passing direction, which is the vertical direction.
  • a region of the material feeding passage 22 in the lateral direction of the passage forming member 23 is partitioned between the paired passage forming members 23 on each side of the material feeding passage 22 in the lateral direction of the passage forming member 23.
  • a passage partition member 22a having a square bar shape or the like is arranged.
  • the heating gas from the heater 24 as the hot air heating type heater is fed as a material.
  • the passage forming member 23 can be evenly fed to the passage 22 in the vertical direction and the horizontal direction. As a result, the heating gas can be blown onto many of the plurality of molding materials Mm passing through the material feed passage 22, and the molding materials Mm can be heated even more effectively.
  • the molding material is supplied from the supply container 26 to the inside of the cylinder 11.
  • the molding material Mm that has passed through the material passage 61 is sequentially heated by the heater 24 through the material feed passage 22 and then charged into the supply container 26.
  • the speed of the molding material Mm passing through the material feed passage 22 may depend on the speed of plasticization of the molding material Mm inside the cylinder 11, but the passing speed of the molding material Mm is as described above. It can also be adjusted by changing the passage width.
  • the material feed passage 22 and the supply container 26 are not shown.
  • a screw-shaped feeder or other supply regulator for adjusting the supply of the molding material Mm from the material feed passage 22 to the supply container 26 may be provided between the two.
  • the molding material Mm is caught in the ventilation holes 23b in the material feed passage 22 formed by the passage forming member 23. At least a part of the passage forming member 23 in the lateral direction may cause clogging or the like of the molding material Mm.
  • the retention of the molding material Mm in the material feed passage 22 may lead to excessive heating of the molding material Mm and eventually melting of the molding material Mm. Therefore, it is preferable that the preheating device 60 is provided with a retention prevention mechanism for preventing the molding material Mm from staying in the material feed passage 22.
  • At least one of the paired passage forming members 23 is displaced continuously during the operation of the injection molding machine or intermittently only when necessary.
  • the illustration of the drive source is omitted.
  • square rod-shaped movable members 22b are provided on both sides of the passage forming member 23 in the lateral direction on the outside in the passage width direction of one of the passage forming members 23. Then, while the molding material Mm passes through the material feed passage 22, one of the passage forming members 23 is formed by the movable members 22b as shown by arrows in FIGS. 30 (b) and 30 (c). By moving the member 23 in the lateral direction, the relative position of one passage forming member 23 with respect to the other passage forming member 23 changes. As a result, even if the molding material Mm is caught in the ventilation hole 23b, the catch is released by the movement of one of the passage forming members 23, and the molding material Mm is prevented from staying. Further, one of the passage forming members 23 may be moved not in the horizontal direction of the passage forming member 23 but in the vertical direction (vertical direction) parallel to the material passing direction.
  • square rod-shaped movable members 22b are provided on both ends of the passage forming member 23 in the vertical direction on the outside in the passage width direction of one of the passage forming members 23.
  • one passage forming member 23 is moved in the passage width direction by the movable member 22b while the molding material Mm is passing, and one passage is formed.
  • the relative position of the member 23 with respect to the other passage forming member 23 is changed.
  • the passage width of the material feeding passage 22 slightly increases or decreases.
  • the retention prevention mechanism of FIG. 31 can also be used as a mechanism for moving the passage forming member 23 in order to adjust the passage width as described above.
  • the retention prevention mechanism of FIG. 32 includes square rod-shaped movable members 22b provided at both ends of the passage forming member 23 in the vertical direction on the outside in the passage width direction of one of the passage forming members 23, and a material feeding passage.
  • a fulcrum member 22c such as a columnar shape that is arranged so as to be sandwiched between the passage forming member 23 and the passage partition member 22a at an intermediate position such as the central position in the material passing direction of the passage forming member 23 and extends in the lateral direction of the passage forming member 23. It has.
  • the fulcrum member 22c is attached to the passage partition member 22a. In this case, as shown in FIGS.
  • one of the passage forming members 23 rotates around the fulcrum member 22c. It is dynamically displaced and its direction changes so as to be oblique to the other passage forming member 23. More specifically, when one end of the passage forming member 23 in the vertical direction approaches or separates from the other passage forming member 23, the other end of the one passage forming member 23 in the vertical direction is the other. The direction of one of the passage forming members 23 is changed so as to be separated from or approached to the passage forming member 23 of the above.
  • the passage width of the material feeding passage 22 may not be constant in the material passing direction. Even with such a retention prevention mechanism, retention of the molding material Mm can be effectively prevented.
  • the retention prevention mechanism of FIG. 33 has substantially the same configuration as that of FIG. 32, but the fulcrum member 22c is fixedly attached to one of the passage forming members 23 instead of the passage partition member 22a. Then, in FIG. 33, by rotationally driving the fulcrum member 22c without moving the movable member 22b, one of the passage forming members 23 is rotationally displaced around the fulcrum member 22c together with the fulcrum member 22c, which is substantially the same as in FIG. 32. In the same manner, the orientation with respect to the other passage forming member 23 changes.
  • the retention prevention mechanism is arranged outside at least one of the passage forming members 23 in the passage width direction, and the impact applying portion for striking the passage forming member 23 at a predetermined cycle or the like. It can also be composed of 28.
  • the illustrated impact applying portion 28 is provided in parallel with the passage forming member 23 on the outside in the passage width direction of the other passage forming member 23, and has a plate-shaped member 28b in which one or more through holes 28a are formed and a plate. It includes one or more pin-shaped members 28c that are arranged through the through hole 28a of the shaped member 28b and are separated / approach-displaced with respect to the other passage forming member 23.
  • a similar impact applying portion 28 may be provided on the outside of one of the passage forming members 23 in the passage width direction.
  • the retention prevention mechanism is attached to at least one of the passage forming members 23, for example, the outer surface of the other passage forming member 23 in the passage width direction, and the passage forming member 23 is attached. It may be composed of one or more vibration imparting portions 29 such as vibrators which give vibration to.
  • the passage forming member 23 is arranged outside at least one of the passage width directions, and the gas is blown at different flow rates to the passage forming member 23. It can also be a blower portion 30 that passes through 23b and hits the molding material Mm of the material feed passage 22. As shown in FIG. 35 (b) or FIG. 35 (c), the blower portion 30 changes the flow rate of the gas sent to the molding material Mm of the material feed passage 22 over time, thereby causing the gas to be strong or weak in the molding material Mm. It is something that can be guessed with. In sending the gas from the blower portion 30 to the molding material Mm, as shown in FIG.
  • a period in which the flow rate is zero and a period in which the flow rate is high may be periodically repeated, or may be repeated.
  • a period of low flow rate and a period of high flow rate may be periodically repeated.
  • a blower portion 30 as a retention prevention mechanism can be separately provided, the heater 24 as the hot air heating type heater described above can be used as the blower portion 30, and the heater 24 can also be used as a retention prevention mechanism.
  • the gas from the blower portion 30 corresponds to the heating gas from the heater 24.
  • the preheating device 60 can include one or more of the retention prevention mechanisms shown in FIGS. 30 to 35.
  • the preheating device 60 is provided with a retention detection mechanism for detecting the retention of the molding material Mm in the material feed passage 22.
  • the retention detection mechanism can be, for example, a sensor that detects retention by temperature, an image taken by a camera, infrared rays, a laser, or the like.
  • such a sensor of the retention detection mechanism is provided at the tip end side of the material feed passage 22 in the material passage direction, that is, in the vicinity of the material feed passage 22 in front of the supply container 26 in the material passage direction. be. More specifically, as shown in FIG. 29, the sensor 23d is, for example, on the tip side of the material feed passage 22 in the material passage direction, outside the passage width direction of the passage forming member 23, and lateral to the passage forming member 23. A plurality of them may be provided at intervals in the direction. As a result, a portion where the molding material Mm is retained in the lateral direction of the passage forming member 23 can be found at an early stage.
  • the temperature sensor 23d of the retention detection mechanism is used as a temperature sensor, the temperature sensor is used so that the temperature of the molding material Mm located at the tip side of the material feed passage 22 in the material passage direction can be measured. It is preferable to arrange it.
  • the temperature of the molding material Mm referred to here can be the temperature of the molding material Mm itself, the temperature of the passage forming member 23, or the temperature in the space inside the ventilation hole 23b of the passage forming member 23.
  • the temperature sensor in order to measure the temperature of the molding material Mm itself or the temperature of the passage forming member 23, for example, the temperature sensor is passed through the ventilation hole 23b of the passage forming member 23 and the tip thereof becomes the molding material Mm.
  • the temperature sensor is arranged so as to come into contact with each other or so that the tip of the temperature sensor comes into contact with the passage forming member 23.
  • the above-mentioned retention prevention mechanism can be continuously operated during the operation of the injection molding machine, or when the retention detection mechanism detects the retention of the molding material Mm in the material feed passage 22, it is specific. It can be operated intermittently at the timing.
  • multiple material feeding passages can be provided.
  • the area per material feed passage can be reduced, and the size of the preheating device can be reduced.
  • providing heaters on both sides of each material feeding passage in the passage width direction realizes quick and uniform preheating of the molding material Mm. Is preferable.
  • the material feeding passage described above may be omitted, and the passage outlet 61c of the material passage 61 may be directly connected to the opening 26c of the supply container 26.
  • the preheating device 260 of FIG. 36 omits the housing 25 of the preheating device 60 of FIG. 23 and its internal structure (that is, the material feed passage 22, the passage forming member 23, and the heater 24). It has substantially the same configuration as that of the above.
  • the molding material Mm that has passed through the material passage 61 while being heated by the superheated steam Ss is supplied to the inside of the cylinder 11 via the supply container 26.
  • FIG. 37 shows the preheating device 460 of still another embodiment.
  • the preheating device 460 of FIG. 37 does not have a transport mechanism such as a preheating screw, and the molding material Mm passes through the material passage 461 while falling downward due to its own weight.
  • the material passage direction of the material passage 461 is parallel to the vertical direction like the material passage direction of the material feed passage 22, but if the molding material Mm can pass through the material passage 461, it will be in the vertical direction. It can also be tilted.
  • a plurality of superheated steam introduction ports 462 are provided in the passage partition wall portion 463 around the material passage 461. The superheated steam Ss is sent from the superheated steam introduction port 462 into the material passage 461 to heat the molding material Mm.
  • the housing 25 and its internal structure that is, the material feed passage 22, the passage forming member 23 and the heater 24, and / or the supply
  • the container 26 may be omitted.
  • the preheating devices 60, 360, and 460 described above can be controlled, for example, as described below. Here, as an example, the control thereof will be described using the preheating device 60 of the preheating devices 60, 360, and 460.
  • a temperature sensor or the like as a sensor 23d provided on the tip side portion of the material feed passage 22 in the material passage direction as a retention detection mechanism or the like is used to provide a temperature sensor or the like of the material feed passage 22.
  • the temperature of the molding material Mm on the tip side in the material passing direction is constantly monitored.
  • the temperature information of the molding material Mm measured thereby is transmitted to, for example, the control unit of the injection molding machine.
  • the molding material Mm When operating normally, the molding material Mm is heated by the heating gas Gh or the like as shown in FIG. 38 (a), and the temperature rises as it advances in the material passing direction through the material feeding passage 22.
  • the heating temperature of the heater 24 and other conditions may be set so that the temperature of the molding material Mm becomes less than the allowable upper limit value Tu set in advance at a temperature lower than the melting point Tm of the molding material Mm.
  • the allowable upper limit value Tu can be set to a temperature lower than the melting point Tm, for example, by about 10 ° C.
  • the sensor 23d as the retention detection mechanism is used for the molding material Mm in the material feed passage 22.
  • the temperature of the molding material Mm may rise in the material feed passage 22 as shown in FIG. 38 (b).
  • the temperature of the molding material Mm approaches the melting point Tm or becomes equal to or higher than the melting point Tm, the molding materials Mm or the molding material Mm and the passage forming member 23 are melted and fused, and the molding material Mm becomes a material feed passage. There is concern that it will not be possible to pass 22.
  • the operation of the injection molding machine is stopped, or when the retention of the molding material Mm in the material feed passage 22 is detected (for example, molding is performed while the retention prevention mechanism is continuously operating).
  • the retention of the material Mm is detected, or when the retention of the molding material Mm is detected in the material feed passage 22 while the retention prevention mechanism is not operating, the retention is detected even if the retention prevention mechanism is activated in response to the detection. If the stagnation is still detected without being resolved), the operation stop signal or the stagnation detection signal is transmitted to the control unit.
  • the control unit transmits a heating stop signal to the preheating device 60 so as to stop the heating of the molding material Mm by the heater 24, and the preheating device 60 stops the heating of the molding material Mm by the heater 24. .. That is, the preheating device 60 stops the heating of the molding material Mm by the heater 24 based on the information on the operation stop of the injection molding machine and / or the information on the retention of the molding material Mm in the material feed passage 22.
  • the operation of the injection molding machine may be stopped, for example, due to the completion of production, stop due to the detection of an abnormality, stop due to the pressing of the emergency stop button, or the like.
  • a stop can be detected by various sensors or the like.
  • the temperature of the molding material Mm in the material feed passage 22 may rise due to the residual heat. Therefore, when the temperature of the molding material Mm measured by the temperature sensor satisfies a predetermined standard after the heating of the heater 24 is stopped, as shown in FIG. 38 (c), the molding material Mm of the material feed passage 22 is changed. For example, it is cooled by a cooling gas Gc or the like.
  • the above-mentioned predetermined criterion for starting the cooling of the molding material Mm can be a criterion determined by comparing the measured value of the temperature of the molding material Mm with the allowable upper limit value Tu, and specifically, the molding material Mm. When the measured value of the temperature of the above reaches the allowable upper limit value Tu, the cooling of the molding material Mm can be started. Alternatively, the amount of temperature increase that the molding material Mm can rise in the future is estimated from the difference between the temperature of the molding material Mm and the ambient temperature of the preheating device 60, and the estimated temperature increase amount is compared with the allowable upper limit value Tu.
  • the criteria determined by the above can also be the predetermined criteria described above.
  • the standard determined by comparing the estimated value of the temperature of the molding material Mm with the allowable upper limit value Tu can be used as the above-mentioned predetermined standard.
  • the preheating device 60 cools the molding material Mm of the material feed passage 22 based on the information regarding the temperature of the molding material Mm.
  • Cooling of the molding material Mm can be realized by making the hot air heating type heater of the heater 24 or the blower portion 30 have a structure capable of sending normal temperature such as cold air or cooling gas Gc, and separately from the heater 24 and the blower portion 30.
  • the preheating device 60 may be provided with a cooling unit for cooling the molding material Mm of the material feed passage 22. As a result, it is possible to effectively prevent the material feed passage 22 from being blocked due to the melting of the molding material Mm.
  • FIG. 39 An example of control as described above is shown in FIG. In FIG. 39, first, the molding material Mm is passed through the preheating device 60 and then supplied to the inside of the cylinder 11 to mold the molded product. During this period, if the operation of the injection molding machine is stopped, the heater 24 is stopped. Even if the operation of the injection molding machine is not stopped, for example, if the molding material Mm stays in the material feed passage 22 while the retention prevention mechanism is continuously operating, the heater 24 To stop. If the operation of the injection molding machine is not stopped and the operation of the retention prevention mechanism is stopped and the molding material Mm is retained in the material feed passage 22, the retention prevention mechanism is first activated. If the stagnation is still not resolved, the heater 24 is stopped.
  • the confirmation of whether or not the operation of the injection molding machine has stopped and the confirmation of whether or not the molding material Mm has accumulated may be replaced so that the order is reversed, or one of them is confirmed. It can also be only.
  • the temperature of the molding material Mm is equal to or higher than the allowable upper limit value.
  • the molding material Mm is cooled, and it is confirmed again whether or not the temperature of the molding material Mm is equal to or higher than the allowable upper limit value.
  • the temperature of the molding material Mm is less than the allowable upper limit value, it is determined whether or not to restart the molding. If it is determined that the molding may be restarted, the molding is restarted.
  • the injection device 1 to which the preheating device 60 or the like described above can be applied mainly melts the preheating device 60 and the molding material supplied from the preheating device 60 internally.
  • a heater 13 for heating the molding material plasticized by the screw 12 inside the cylinder 11 is arranged around the cylinder 11.
  • the cylinder 11 has a tip portion 14 having a smaller inner and outer diameter on the tip side (left side in FIG. 22) in the direction of the rotation axis, and a heater 13 is also arranged around the tip portion 14. Further, the cylinder 11 is provided with a through-hole-shaped supply port 11a on the rear end side in the direction of the rotation axis, to which the above-mentioned preheating device 60 is attached.
  • the metering motor 31 and the injection motor 41 are fixed to the back surfaces of the two motor support plates 32 and 42 arranged at intervals from each other in an upright posture on the slide base 101 on the rear end side in the rotation axis direction, respectively. Has been done.
  • the screw 12 is rotationally driven by the weighing motor 31 and is driven forward and backward by the injection motor 41.
  • the two motor support plates 32 and 42 are connected to each other by rods 51 at a plurality of locations, for example, four locations around the metering motor 31.
  • the weighing motor 31 mainly includes a rotor 33, a stator 34 arranged around the rotor 33, and a stator frame 35 that surrounds the rotor 33 and the stator 34 and is provided with the stator 34 on the inner surface.
  • the rotor 33 of the metering motor 31 is supported by bearings 33a inside the stator frame 35 at each end in the rotation axis direction. Further, the rotor 33 is spline-coupled around the measuring spline shaft 36, and the measuring spline shaft 36 is connected to the screw mounting portion 37 to which the screw 12 is attached.
  • the injection motor 41 is mainly provided so as to surround the rotor 43, the stator 44 arranged around the rotor 43, and the periphery of the rotor 43 and the stator 44, and the stator frame 45 is provided with the stator 44 on the inner surface. And have.
  • the rotor 43 is supported by bearings 43a inside the stator frame 45 at each end in the direction of its rotation axis.
  • the rotor 43 is connected to the drive shaft. More specifically, the drive shaft includes an injection spline shaft 46 spline-coupled by a groove 43b provided on the inner peripheral side of the cylindrical rotor 43, a screw shaft 48 connected to the injection spline shaft 46, and a weighing spline.
  • a pressure detector 38 is arranged between the stator frame 45 of the injection motor 41 and the motor support plate 42.
  • the pressure detector 38 is attached to each of the motor support plate 42 and the screw nut 47, and detects the load acting on the pressure detector 38 in the transmission path of the driving force from the injection motor 41 to the screw 12.
  • a tubular portion 39 is interposed between the pressure detector 38 and the stator frame 45. Further, on the rear end surface of the stator frame 45 of the injection motor 41 located on the opposite side of the drive shaft in the direction of the rotation axis, an encoder 45a which is connected to the rotor 43 by a shaft portion 45b and detects the rotation of the rotor 43 is provided. It is provided.
  • An example of a molding process by an injection molding machine provided with such an injection device 1 will be described in a state in which a predetermined amount of molding material is already accumulated and arranged inside the cylinder 11 in the latter half of the previous molding process. No Molding process is performed to close the mold device and put it in the mold clamping state.
  • a pressure holding step of holding the molding material inside at a predetermined pressure is sequentially performed.
  • the molding material filled in the mold apparatus is cooled and cured, and a cooling step of obtaining a molded product is performed.
  • the molding material separately supplied from the preheating device 60 into the cylinder 11 is melted while being fed toward the tip portion 14 of the cylinder 11 by the rotation of the screw 12 under heating by the heater 13, and a predetermined amount is melted.
  • a weighing step is performed in which the molding material is placed on the tip portion 14.
  • the molding material supplied into the cylinder 11 is already heated to an appropriate temperature by the preheating device 60. Therefore, even if the screw 12 is rotated at a high speed and the molding material is sent to the tip portion 14 of the cylinder 11 in a short time, the molding material can be sufficiently plasticized. As a result, the time required for accumulating the molding material on the tip portion 14 of the cylinder 11 is shortened, and the molding cycle can be shortened.
  • the mold device is opened to open the mold, and an ejector device or the like is used to take out the molded product from the mold device.
  • the preheating device 21 is for preheating the molding material, and by including the injection device 1 as illustrated in FIG. 40, the preheated molding material can be supplied to the injection device 1.
  • the injection device 1 illustrated in FIG. 40 is an injection molding machine, for example, which is arranged on a slide base 101 of a moving device that moves the injection device 1 forward and backward, and injects a molding material into a mold device. ..
  • the injection device 1 can include a preheating device 21 and a cylinder 11 to which the molding material preheated by the preheating device is supplied to melt the molding material inside.
  • the injection device 1 shown in the figure includes a screw 12 that is rotationally driven inside the cylinder 11 to plasticize the molding material, a heater 13 that is provided around the cylinder 11 and heats the molding material inside the cylinder 11, and the like. The detailed structure of the injection device 1 will be described later.
  • the preheating device 21 is attached to the rear end portion of the screw 12 of the injection device 1 in the direction of the rotation axis (left-right direction in FIG. 40), which is opposite to the tip portion 14 for injecting the molding material of the cylinder 11. More specifically, as shown in FIG. 41, the preheating device 21 is connected to a through-hole-shaped supply port 11a provided at a part in the circumferential direction at the rear end of the cylinder 11 on the cylinder 11. Mm of a molding material such as a resin pellet having a substantially spherical or cylindrical shape or other shape is supplied to the supply port 11a.
  • the preheating device 21 includes a material feed passage 22 through which the molding material Mm passes, a heating unit 24 for heating the molding material Mm passing through the material feed passage 22, and a molding material Mm passing through the material feed passage 22. It has a cooling unit (not shown in FIG. 41) for cooling.
  • the molding material Mm supplied to the inside of the cylinder 11 can be preheated before being supplied.
  • the preheated molding material Mm is sufficiently melted in the inside of the cylinder 11 in a short time after being supplied to the inside of the cylinder 11 through the supply port 11a, and is ejected from the tip end portion of the cylinder 11. , It is possible to shorten the molding cycle.
  • the cooling unit allows the molding material Mm to pass through the material feed passage 22. Since it can be cooled, it is possible to prevent the molding material Mm from melting and fusing due to the residual heat in the material feed passage 22.
  • the preheating device 21 may further include a control unit that controls the heating unit 24 and / or the cooling unit. More specifically, as shown in FIG. 42, the control unit sets the heating unit 24 and / or the cooling unit by a signal obtained by the operating state detection mechanism, the retention detection mechanism, and / or the temperature information detection mechanism described later. Can be controlled.
  • the control of the preheating device 21 by the control unit can be performed, for example, as described below.
  • the control unit for controlling the operation of the injection device 1 included in the injection device 1 controls the heating unit 24 and / or the cooling unit. Can also be used.
  • the temperature of the molding material Mm on the tip side of the material feed passage 22 in the material passage direction is measured by a temperature sensor or the like provided on the tip side portion of the material feed passage 22 in the material passage direction, for example. Keep an eye on it all the time.
  • the temperature information of the molding material Mm measured thereby is transmitted to, for example, the control unit of the preheating device 21.
  • the molding material Mm When operating normally, as shown in FIG. 43A, the molding material Mm is heated by the heating gas Gh or the like generated from the heating unit 24, and as it advances through the material feed passage 22 in the material passing direction. The temperature rises. At this time, the heating temperature and other conditions of the heating unit 24 may be set so that the temperature of the molding material Mm is lower than the melting point Tm of the molding material Mm and is less than the allowable upper limit value Tu set in advance.
  • the allowable upper limit value Tu can be set to a temperature lower than the melting point Tm, for example, by about 10 ° C.
  • the movement of the molding material Mm is stopped in the material feed passage 22.
  • the temperature of the molding material Mm may rise.
  • the temperature of the molding material Mm approaches the melting point Tm or becomes equal to or higher than the melting point Tm, the molding materials Mm or the molding material Mm and the passage forming member 23 are melted and fused, and the molding material Mm becomes a material feed passage. There is concern that it will not be possible to pass 22.
  • the preheating devices 21 and 60 of the first embodiment and the second embodiment may be provided with a retention prevention mechanism, but the above-mentioned "when the molding material Mm is retained in the material feed passage 22". ”Includes the case where the molding material Mm stays in the material feed passage 22 regardless of whether or not the retention prevention mechanism is operating at that time.
  • the preheating device 21 includes an operating state detection mechanism that detects the operating state of the injection device 1 and / or a retention detecting mechanism that detects the retention of the molding material Mm in the material feed passage 22. There is.
  • the operating state detection mechanism detects the information regarding the stop of the operation of the injection device 1, or when the retention detection mechanism detects the information regarding the retention of the molding material Mm
  • the detection signal specifically, the injection device 1
  • the operation stop signal or the retention detection signal of the molding material Mm is transmitted to the control unit. In response to this, the control unit controls the heating unit 24.
  • the control unit transmits a heating stop signal to the preheating unit 21 so as to stop the heating of the molding material Mm by the heating unit 24, and the preheating device 21 heats the molding material Mm by the heating unit 24.
  • the above-mentioned "retention detection mechanism has detected information regarding retention of the molding material Mm.”
  • the molding material in the material feed passage 22 is detected. This includes the case where the retention of Mm is detected, and even if the retention prevention mechanism is activated in response to the detection, the retention is not eliminated and the retention is still detected.
  • the preheating device 21 includes an operating state detection mechanism and / or a retention detection mechanism, and the control unit controls the heating unit 24 based on the information detected by the operating state detection mechanism and / or the retention detection mechanism.
  • the heating by the heating unit 24 can be stopped, and it is possible to prevent the molding material Mm from melting and fusing due to excessive heating in the material feeding passage 22.
  • the state in which the movement of the molding material Mm is stopped does not mean that each of the molding materials Mm is strictly stopped, but the movement of the molding material Mm as a whole is stopped. Refers to being in a state.
  • a transmitting unit that transmits the operating status of the injection device 1 for detection by the operating state detection mechanism, for example, a transmitting unit that transmits the operating status of the injection device 1, and more specifically, a transmitting unit that transmits the operating status of the measuring motor 31 and the injection motor 41 of the injection device 1 is provided.
  • the operating state detection mechanism can detect, for example, a stop due to the completion of production, a stop due to the detection of an abnormality, a stop due to the pressing of the emergency stop button, etc., and the above stop can be detected by various sensors or the like.
  • the retention detection mechanism can detect when the molding material Mm stays in the material feed passage 22 by using a sensor that detects the retention of the molding material Mm in the material feed passage 22.
  • the preheating device 21 includes a temperature information detection mechanism that detects information regarding the temperature of the molding material Mm in the material feed passage 22.
  • the temperature information detection mechanism detects information about the temperature of the molding material Mm in the material feed passage 22 after the heating of the heating unit 24 is stopped, specifically, for example, the temperature of the molding material Mm measured by the temperature sensor is predetermined.
  • the control unit controls the cooling unit. Specifically, the control unit controls the cooling unit and cools the molding material Mm of the material feed passage 22 with, for example, a cooling gas Gc or the like, as shown in FIG. 43 (c).
  • the above-mentioned predetermined criterion for starting the cooling of the molding material Mm can be a criterion determined by comparing the measured value of the temperature of the molding material Mm with the allowable upper limit value Tu, and specifically, the molding material Mm. When the measured value of the temperature of the above reaches the allowable upper limit value Tu, the cooling of the molding material Mm can be started. Alternatively, the amount of temperature increase in which the molding material Mm can rise in the future is estimated from the difference between the temperature of the molding material Mm and the ambient temperature of the material feed passage 22, and the estimated amount of temperature increase is compared with the allowable upper limit value Tu.
  • the criteria determined by the above can also be the predetermined criteria described above.
  • the standard determined by comparing the estimated value of the temperature of the molding material Mm with the allowable upper limit value Tu can be used as the above-mentioned predetermined standard. Then, the information that the at least one criterion is satisfied is included in the information regarding the temperature of the molding material Mm in the material feed passage 22 detected by the temperature information detection mechanism.
  • the cooling by the cooling unit only needs to be able to lower the temperature of the molding material Mm, and the cooling medium applied to the molding material Mm is not only cold air but also wind lower than the temperature of the molding material Mm, for example, normal temperature air. May be good.
  • the cooling unit may be provided in the preheating device 21, but it can be realized by having the heating unit 24 have a structure capable of sending cold air or the like at room temperature or cooling gas Gc. As a result, it is possible to effectively prevent the material feed passage 22 from being blocked due to the melting of the molding material Mm.
  • FIG. 44 An example of the control as described above is shown in FIG. In FIG. 44, first, the molding material Mm is passed through the preheating device 21 and then supplied to the inside of the cylinder 11 to mold the molded product. During this time, when the operating state detection mechanism detects information regarding the stop of the operation of the injection device 1, for example, when the operation of the injection device 1 is stopped, the heating unit 24 is stopped by the control of the control unit. Even when the operation of the injection device 1 is not stopped, control is performed when the retention detection mechanism detects information regarding the retention of the molding material Mm, for example, when the molding material Mm stays in the material feed passage 22. The heating unit 24 is stopped by the control of the unit.
  • the molding is continued.
  • the confirmation of whether or not the operation of the injection device 1 has stopped and the confirmation of whether or not the molding material Mm has accumulated may be replaced so that the order is reversed, or one of them is confirmed. It can also be only.
  • the preheating devices 21 and 60 of the first embodiment and the second embodiment are provided with a retention prevention mechanism, even if the above-mentioned "operation of the injection device 1 is not stopped". "When the molding material Mm stays in the material feed passage 22" includes, for example, the case where the molding material Mm stays in the material feed passage 22 even if the retention prevention mechanism is continuously operated. ..
  • the retention prevention mechanism When the retention prevention mechanism is provided, when the operation of the injection device 1 is not stopped, the operation of the retention prevention mechanism is stopped, and the molding material Mm is retained in the material feed passage 22, first of all, It is preferable to operate the retention prevention mechanism and stop the heating unit 24 if the retention is still not resolved.
  • the temperature information detection mechanism detects information on the temperature of the molding material Mm in the material feed passage 22, for example, information that the temperature of the molding material Mm is equal to or higher than the allowable upper limit value
  • the cooling unit is controlled by the control unit. Starts to cool the molding material Mm. Then, it is confirmed whether or not the information regarding the temperature is still detected by the temperature information detection mechanism, that is, whether or not the temperature of the molding material Mm is equal to or higher than the allowable upper limit value.
  • the temperature information detection mechanism does not detect the temperature information, for example, when the temperature of the molding material Mm is less than the allowable upper limit value, it is determined whether or not to restart the molding. If it is determined that the molding may be restarted, the molding is restarted.
  • the preheating device 21 includes a material feed passage 22 through which the molding material Mm passes and a heating unit 24 for heating the molding material Mm passing through the material feed passage 22 as shown in FIG. 41.
  • the material feeding passages 22 have a pair of passage forming members 23 that are arranged so as to face each other and the material feeding passages 22 are partitioned between the material feeding passages 22.
  • the heating unit 24 is arranged outside the material feeding passage 22 in the passage width direction with the passage forming member 23 separated from the material feeding passage 22.
  • the passage width direction referred to here is a direction in which the passage forming members 23 arranged in parallel with each other are aligned, and is orthogonal to the material passage direction (vertical direction in FIG. 41), which is the direction in which the molding material Mm passes in the material feed passage 22. (Left-right direction in FIG. 41).
  • the material feeding passage 22, the passage forming member 23, and the heating portion 24 are housed and arranged inside a box-shaped housing 25 made of a heat insulating material or the like.
  • the molding material Mm supplied to the inside of the cylinder 11 can be preheated before being supplied.
  • the preheated molding material Mm is sufficiently melted in the inside of the cylinder 11 in a short time after being supplied to the inside of the cylinder 11 through the supply port 11a, and is ejected from the tip end portion of the cylinder 11. , It is possible to shorten the molding cycle.
  • At least one of the passage forming members 23 forming the material feeding passage 22 and forming a pair is made movable as shown by an arrow in FIG. 41, whereby the preheating device 21 makes the paired passage forming member 21 movable.
  • the passage width of the material feeding passage 22 which is the distance between the 23 is adjustable.
  • At least one of the passage forming members 23 is a passage, for example, manually by the user by arranging a spacer between the mounting location and the inside of the housing 25, or automatically using a motor or other actuator. Allows you to move in the width direction.
  • the passage width of the material feed passage 22 adjustable, it is possible to set an appropriate passage width according to each of various molding materials Mm having various dimensions and shapes. For example, as shown in FIG. 41, when the passage width is set so that one piece of the molding material Mm can pass through, the molding material Mm passes through the material feeding passages 22 in a substantially aligned posture, and at this time, the passages. Most of the molding material Mm is effectively heated in the heating portion 24 outside the passage width direction of the forming member 23. As a result, it is possible to effectively prevent the unmelted molding material from being mixed with the molten molding material injected from the tip end portion of the cylinder 11, so that it is possible to prevent the appearance of the molded product from being poor and the strength from being lowered.
  • the passage width set by the movable passage forming member 23 is preferably equal to or more than the length of one molding material Mm and less than the length of two molding materials Mm. In this case, since it is suppressed that the plurality of molding materials Mm overlap in the passage width direction in the material feed passage 22, most of the molding materials Mm can be heated more effectively.
  • the length of one molding material Mm is preferably the shortest dimension of the molding material Mm.
  • the molding material Mm may be a cylinder, a prism, or other columnar shape, and the shorter dimension of the diameter or width and height thereof may be the length of one molding material Mm.
  • a supply container 26 for supplying the molding material Mm to a cylinder such as a hopper (for cylinder supply).
  • a supply container 26, also simply referred to as a supply container 26) is provided.
  • the supply container 26 has, for example, a truncated cone-shaped portion 26a whose inner and outer outer shapes are both truncated cone-shaped, and a cylindrical portion 26b formed at the end portion of the truncated cone-shaped portion 26a on the small diameter side. Is.
  • the supply container 26 receives the molding material Mm that has passed through the material feeding passage 22 into the truncated cone-shaped portion 26a, and then passes the molded material Mm through the cylindrical portion 26b beyond the cone-shaped portion 26a to supply the molding material Mm to the inside of the cylinder 11.
  • An opening 26c having a width substantially equal to that of the material feeding passage 22 is formed at the end of the truncated cone-shaped portion 26a, and the molding material Mm that has passed through the material feeding passage 22 is supplied from the opening 26c to the supply container. Enter within 26.
  • a hopper or the like that stores a plurality of molding materials Mm on the rear end side (upper end side in FIG. 41) of the material feeding passage 22 in the material passing direction and supplies the molding material Mm in an appropriate amount to the material feeding passage 22.
  • a supply container 27 for supplying the molding material to the passage (the supply container 27 for supplying the passage, also simply referred to as the supply container 27) is placed on the upper surface of the housing 25.
  • the supply container 27 has a cylindrical portion 27a and a tapered portion 27b provided on the material feeding passage 22 side of the tubular portion 27a and whose inner and outer diameters are gradually reduced to be tapered.
  • the molding material Mm is supplied to the preheating device 21 from the supply container 27 for aisle supply. Then, the molding material Mm supplied to the preheating device 21 passes through the material feeding passage 22 while being preheated, passes through the supply container 26 for supplying the cylinder, and is then supplied to the inside of the cylinder 11. That is, here, the molding material Mm preheated by the preheating device 21 is supplied to the inside of the cylinder 11.
  • the shape of the supply container 26 and / or the supply container 27 is not limited to this, and may be appropriately changed, and the supply container 26 and / or the supply container 27 may be omitted.
  • the housing of the preheating device is arranged on the cylinder, and the tip side of the material feeding passage in the material passing direction is directly communicated with the supply port of the cylinder. NS.
  • the molding material Mm preheated by the preheating device is supplied to the inside of the cylinder immediately after the preheating.
  • the heating unit 24 can be arranged on only one side of the material feeding passage 22 outside the passage width direction of one of the passage forming members 23, but in this embodiment, the passage of each passage forming member 23. It is arranged on both sides of the material feed passage 22 on the outside in the width direction. In that case, since the molding material Mm can be heated quickly by the heating portions 24 on both sides, the molding material Mm can be effectively heated even if the passing speed of the molding material Mm in the material feed passage 22 is relatively high. Conditions such as the heating unit 24 are set so that the molding material Mm reaches a desired temperature on the tip side of the material feeding passage 22 in the material passing direction.
  • the heating unit 24 is not particularly limited as long as it can heat the molding material Mm via the passage forming member 23.
  • a hot air heating type heater that sends a heating gas such as high temperature air
  • an electric heating type heater such as high frequency dielectric heating
  • an infrared heating type heater such as a halogen lamp or a ceramic heater
  • a laser heating type heater or the like
  • the passage forming member 23 can be made of a translucent or transparent material such as glass through which light or a laser is transmitted.
  • the arrangement of the heating unit 24 is not limited to the example of FIG. 41, and may be arranged outside the housing 25 so that hot air flows through the material feeding passage 22.
  • the illustrated preheating device 21 has, as an example, a heating unit 24 including a hot air heating type heater.
  • the hot air heating type heater can obtain hot air by heating the compressed air sent from the compressor with a sheathed heater or the like. The temperature of the hot air can be adjusted by changing the output of the sheathed heater.
  • the passage forming member 23 has a plurality of ventilation holes penetrating the passage forming member 23 in the passage width direction in order to pass the heating gas sent from the hot air heating type heater through the material feeding passage 22. be able to.
  • the heating gas from the heating unit 24 flows into the material feeding passage 22 through the ventilation holes of the passage forming member 23, so that the heating gas can heat the molding material Mm of the material feeding passage 22.
  • the passage forming member 23 is a plate in which a plurality of ventilation holes 23b are formed in a plate material 23a made of metal or the like by press working or the like, for example, like so-called punching metal. It can also be a shaped member. In this case, a plurality of regularly arranged ventilation holes 23b can be formed in the plate material 23a by adjusting the processing mode and the like.
  • wire rods 23c are arranged in a grid pattern or the like, and a plurality of wire rods 23c having a shape such as a square or other polygons in front view are arranged between them. It may be a net-like member provided with a ventilation hole 23b. If the thickness of such a reticulated member is thin and the reticulated member lacks the strength required to form the material feed passage 22 in the passage forming member 23, the reticulated member and the reinforcing member are overlapped with each other.
  • the passage forming member 23 can be formed by the net-like member and the reinforcing member.
  • the reinforcing member can have various shapes such as a honeycomb shape or a lattice shape as long as the heating gas can pass therethrough.
  • the mesh of the reinforcing member may be coarser than the mesh of the mesh member.
  • a plurality of ventilation holes 23b are arranged in the vertical direction (vertical direction in FIG. 45 (b)) and the horizontal direction (horizontal direction in FIG. 45 (b)) in a front view, and are regularly arranged. It is arranged in.
  • the material feed passage 22 is partitioned by the net-like passage forming member 23, as shown in FIG. 46, the plurality of molding materials Mm spread in the lateral direction of the passage forming member 23 and are indicated by arrows in the figure.
  • the passage forming member 23 moves in the material passing direction, which is the vertical direction.
  • a region of the material feeding passage 22 in the lateral direction of the passage forming member 23 is partitioned between the paired passage forming members 23 on each side of the material feeding passage 22 in the lateral direction of the passage forming member 23.
  • a passage partition member 22a having a square bar shape or the like is arranged.
  • the heating gas from the heating unit 24 as the hot air heating type heater is used as the material.
  • the passage forming member 23 can be evenly fed to the feed passage 22 in the vertical direction and the horizontal direction. As a result, the heating gas can be blown onto many of the plurality of molding materials Mm passing through the material feed passage 22, and the molding materials Mm can be heated even more effectively.
  • the cylinder 11 is supplied from the supply container 26 for supplying the cylinder to the inside of the cylinder 11.
  • the molding material Mm in the passage supply container 27 is sequentially heated by the heating unit 24 through the material feed passage 22 and then charged into the cylinder supply supply container 26.
  • the speed of the molding material Mm passing through the material feed passage 22 may depend on the speed of plasticization of the molding material Mm inside the cylinder 11, but the passing speed of the molding material Mm is as described above. It can also be adjusted by changing the passage width.
  • the material feed passage 22 and the supply container 26 are not shown.
  • a screw-shaped feeder or other supply regulator for adjusting the supply of the molding material Mm from the material feed passage 22 to the supply container 26 may be provided between the two.
  • the preheating device 21 has a cooling unit (not shown) for cooling the molding material Mm passing through the material feed passage 22 as described above.
  • the cooling unit can be arranged outside the housing 25 that accommodates the material feed passage 22 and the like shown in FIG. 41, and a pipe or the like extending from the cooling unit to the inside of the housing 25 is used. Then, the cooling medium generated in the cooling unit can flow into the inside of the housing 25 to cool the molding material Mm passing through the material feed passage 22.
  • the cooling medium generated by the cooling unit may be not only cold air but also air lower than the temperature of the molding material Mm, for example, air at room temperature.
  • the cooling unit may be provided in the preheating device 21, but it can be realized by having the heating unit 24 have a structure capable of sending cold air or the like at room temperature or cooling gas Gc.
  • the preheating device 21 may further include a control unit that controls the heating unit 24 and / or the cooling unit. More specifically, as shown in FIG. 42, the control unit controls the heating unit 24 and / or the cooling unit by a signal obtained by the operating state detection mechanism, the retention detection mechanism, and / or the temperature information detection mechanism. be able to.
  • the operating state detection mechanism of the preheating device 21 of the first embodiment detects the operating state of the injection device 1 when the operation of the injection molding machine is stopped for some reason, for example.
  • the detection can be performed, for example, by providing a transmitting unit that transmits the operating status of the injection device 1, and more specifically, a transmitting unit that transmits the operating status of the measuring motor 31 and the injection motor 41 of the injection device 1.
  • the retention detection mechanism detects information on the retention of the molding material Mm when the molding material Mm stays in the material feed passage 22 for some reason, for example.
  • the detection can be performed by using a sensor that detects the retention of the molding material Mm in the material feed passage 22.
  • the preheating device 21 of the first embodiment as will be described next, it is preferable that the preheating device 21 is provided with a mechanism for preventing the molding material Mm from staying in the material feed passage 22.
  • the molding material Mm is introduced into the ventilation holes 23b in the material feed passage 22 formed by the passage forming member 23. Due to being caught or the like, clogging or the like of the molding material Mm may occur in at least a part of the passage forming member 23 in the lateral direction. As described above, the retention of the molding material Mm in the material feed passage 22 may lead to excessive heating of the molding material Mm and eventually melting of the molding material Mm. Therefore, it is preferable that the preheating device 21 is provided with a retention prevention mechanism for preventing the molding material Mm from staying in the material feed passage 22.
  • At least one of the paired passage forming members 23 is displaced continuously during the operation of the injection molding machine or intermittently only when necessary.
  • the illustration of the drive source is omitted.
  • square rod-shaped movable members 22b are provided on both sides of the passage forming member 23 in the lateral direction on the outside in the passage width direction of one of the passage forming members 23. Then, while the molding material Mm passes through the material feed passage 22, one of the passage forming members 23 is formed by the movable members 22b as shown by arrows in FIGS. 47 (b) and 47 (c). By moving the member 23 in the lateral direction, the relative position of one passage forming member 23 with respect to the other passage forming member 23 changes. As a result, even if the molding material Mm is caught in the ventilation hole 23b, the catch is released by the movement of one of the passage forming members 23, and the molding material Mm is prevented from staying. Further, one of the passage forming members 23 may be moved not in the horizontal direction of the passage forming member 23 but in the vertical direction (vertical direction) parallel to the material passing direction.
  • FIG. 48 square bar-shaped movable members 22b are provided on both ends of the passage forming member 23 in the vertical direction on the outside in the passage width direction of one of the passage forming members 23.
  • this retention prevention mechanism as shown in FIGS. 48 (b) and 48 (c), one passage forming member 23 is moved in the passage width direction by the movable member 22b while the molding material Mm is passing, and one passage is formed. The relative position of the member 23 with respect to the other passage forming member 23 is changed. At this time, the passage width of the material feeding passage 22 slightly increases or decreases.
  • the retention prevention mechanism of FIG. 48 can also be used as a mechanism for moving the passage forming member 23 in order to adjust the passage width as described above.
  • the retention prevention mechanism of FIG. 49 includes square rod-shaped movable members 22b provided at both ends of the passage forming member 23 in the vertical direction on the outside in the passage width direction of one of the passage forming members 23, and a material feeding passage.
  • a fulcrum member 22c such as a columnar shape that is arranged so as to be sandwiched between the passage forming member 23 and the passage partition member 22a at an intermediate position such as the central position in the material passing direction of the passage forming member 23 and extends in the lateral direction of the passage forming member 23. It has.
  • the fulcrum member 22c is attached to the passage partition member 22a. In this case, as shown in FIGS.
  • one of the passage forming members 23 rotates around the fulcrum member 22c. It is dynamically displaced and its direction changes so as to be oblique to the other passage forming member 23. More specifically, when one end of the passage forming member 23 in the vertical direction approaches or separates from the other passage forming member 23, the other end of the one passage forming member 23 in the vertical direction is the other. The direction of one of the passage forming members 23 is changed so as to be separated from or approached to the passage forming member 23 of the above.
  • the passage width of the material feeding passage 22 may not be constant in the material passing direction. Even with such a retention prevention mechanism, retention of the molding material Mm can be effectively prevented.
  • the retention prevention mechanism of FIG. 50 has almost the same configuration as that of FIG. 49, but the fulcrum member 22c is fixedly attached to one of the passage forming members 23 instead of the passage partition member 22a. Then, in FIG. 50, by rotationally driving the fulcrum member 22c without moving the movable member 22b, one of the passage forming members 23 is rotationally displaced around the fulcrum member 22c together with the fulcrum member 22c, which is substantially the same as in FIG. 49. In the same manner, the orientation with respect to the other passage forming member 23 changes.
  • the retention prevention mechanism is arranged outside at least one of the passage forming members 23 in the passage width direction, and the impact applying portion for striking the passage forming member 23 at a predetermined cycle or the like. It can also be composed of 28.
  • the illustrated impact applying portion 28 is provided in parallel with the passage forming member 23 on the outside in the passage width direction of the other passage forming member 23, and has a plate-shaped member 28b in which one or more through holes 28a are formed and a plate. It includes one or more pin-shaped members 28c that are arranged through the through hole 28a of the shaped member 28b and are separated / approach-displaced with respect to the other passage forming member 23.
  • a similar impact applying portion 28 may be provided on the outside of one of the passage forming members 23 in the passage width direction.
  • the retention prevention mechanism is attached to at least one of the passage forming members 23, for example, the outer surface of the other passage forming member 23 in the passage width direction, and the passage forming member 23 is attached. It may be composed of one or more vibration imparting portions 29 such as vibrators which give vibration to.
  • the passage forming member 23 is arranged outside at least one of the passage width directions, and the gas is blown at different flow rates to the passage forming member 23. It can also be a blower portion 30 that passes through 23b and hits the molding material Mm of the material feed passage 22. As shown in FIG. 52 (b) or FIG. It is something that can be guessed with.
  • the period in which the flow rate is zero and the period in which the flow rate is high may be periodically repeated, or may be repeated.
  • a period of low flow rate and a period of high flow rate may be periodically repeated.
  • a blower unit 30 as a retention prevention mechanism can be separately provided, the heating unit 24 as the hot air heating type heater described above can be used as the ventilation unit 30, and the heating unit 24 can also be used as a retention prevention mechanism.
  • the heating unit 24 is also used as the preheating and retention prevention mechanism, the gas from the blower unit 30 corresponds to the heating gas from the heating unit 24.
  • the cooling unit described above can be made into a blowing unit 30 by simply forming a structure for blowing air, and the cooling unit can also be used as a retention prevention mechanism.
  • the cooling unit is also used as the cooling and retention prevention mechanism, the gas from the blower unit 30 corresponds to the cooling gas from the cooling unit.
  • the preheating device 21 can include one or more of the retention prevention mechanisms shown in FIGS. 47 to 52.
  • the preheating device 21 is provided with a retention detection mechanism for detecting the retention of the molding material Mm in the material feed passage 22 as described above.
  • the retention detection mechanism can be, for example, a sensor that detects retention by temperature, an image taken by a camera, infrared rays, a laser, or the like.
  • Such a sensor of the retention detection mechanism is provided at the tip end side of the material feed passage 22 in the material passage direction, that is, in the vicinity of the material feed passage 22 in front of the supply container 26 for cylinder supply in the material passage direction.
  • the sensor 23d is, for example, on the tip side of the material feed passage 22 in the material passage direction, outside the passage width direction of the passage forming member 23, and lateral to the passage forming member 23. A plurality of them may be provided at intervals in the direction. As a result, a portion where the molding material Mm is retained in the lateral direction of the passage forming member 23 can be found at an early stage.
  • the temperature sensor 23d of the retention detection mechanism is used as a temperature sensor, the temperature sensor is used so that the temperature of the molding material Mm located at the tip end side of the material feeding passage 22 in the material passing direction can be measured. It is preferable to arrange it.
  • the temperature of the molding material Mm referred to here can be the temperature of the molding material Mm itself, the temperature of the passage forming member 23, or the temperature in the space inside the ventilation hole 23b of the passage forming member 23.
  • the temperature sensor is passed through the ventilation hole 23b of the passage forming member 23 and the tip thereof becomes the molding material Mm.
  • the temperature sensor is arranged so as to come into contact with each other or so that the tip of the temperature sensor comes into contact with the passage forming member 23.
  • the sensor 23d of the retention detection mechanism is a temperature sensor, it can also be used as a temperature sensor that can be used in the temperature information detection mechanism that can be provided in the preheating device 21. That is, when the temperature sensor is also used, the preheating device 21 detects the retention of the molding material Mm by the temperature sensor as the retention detection mechanism, and the control unit detects the retention of the molding material Mm obtained from the retention detection mechanism. By controlling the heating unit 24 based on the above, the heating by the heating unit 24 can be stopped.
  • the control unit can control the cooling unit to cool the molding material Mm based on the information regarding the temperature.
  • the above-mentioned retention prevention mechanism can be continuously operated during the operation of the injection molding machine, or when the retention detection mechanism detects the retention of the molding material Mm in the material feed passage 22, it is specific. It can be operated intermittently at the timing.
  • a temperature sensor can be provided in the material feed passage 22 in order for the temperature information detection mechanism to detect information about the temperature (as described above, the sensor 23d of the retention detection mechanism is temperature-based. If it is used as a sensor, it may also be used). More specifically, it is preferable to arrange the temperature sensor so that the temperature sensor can measure the temperature of the molding material Mm located at the tip end side portion of the material feed passage 22 in the material passage direction.
  • the temperature of the molding material Mm referred to here can be the temperature of the molding material Mm itself, the temperature of the passage forming member 23, or the temperature in the space inside the ventilation hole 23b of the passage forming member 23.
  • the temperature sensor in order to measure the temperature of the molding material Mm itself or the temperature of the passage forming member 23, for example, the temperature sensor is passed through the ventilation hole 23b of the passage forming member 23 and the tip thereof becomes the molding material Mm.
  • the temperature sensor is arranged so as to come into contact with each other or so that the tip of the temperature sensor comes into contact with the passage forming member 23.
  • FIG. 53 shows the preheating device 121 of the first modification of the first embodiment.
  • the preheating device 121 has a supply container 127 for aisle supply and a supply container 126 for cylinder supply, which are substantially the same as those of the preheating device 21 described above, but mainly a housing 125 between them. It is different from the above-mentioned preheating device 21 in that a plurality of material feeding passages 122 are provided in the above-mentioned preheating device 21. By providing the plurality of material feeding passages 122 in this way, the area per material feeding passage 122 can be reduced, and the size of the preheating device 121 can be reduced.
  • the preheating device 121 includes three material feeding passages 122 arranged in parallel with each other in order to send the molding material Mm from the supply container 127 for the passage supply to the supply container 126 for the cylinder supply, and their respective.
  • a heating unit 124 that heats the molding material Mm of the material feed passage 122 from the three pairs of passage forming members 123 that partition each material feed passage 122 and the outside in the passage width direction that separates the material feed passage 122 and the passage forming member 123. And have.
  • three openings 126c are provided according to the number of material feeding passages 122.
  • each material feed passage 122 It is preferable to provide the heating unit 124 on both sides of each material feed passage 122 in the passage width direction as in the illustrated embodiment from the viewpoint of realizing quick and uniform preheating of the molding material Mm.
  • the preheating device 121 is also configured so that at least one of the paired passage forming members 123 forming each material feeding passage 122 is movable, and the passage width of each material feeding passage 122 can be adjusted. Although not shown, it is possible to provide two or four or more material feeding passages.
  • FIG. 54 shows the preheating device 221 of the second modification of the first embodiment.
  • a pair of belt conveyors 223a including a plurality of rollers 223b including a driving roller and a driven roller, and a passage forming member 223 which is an endless annular belt wound around the rollers 223b.
  • a material feed passage 222 through which the molding material Mm passes is partitioned between the belt conveyors 223a.
  • Each of the pair of belt conveyors 223a rotationally drives the passage forming member 223 as a belt by the drive roller of the roller 223b, whereby the molding material Mm is sandwiched between the pair of belt conveyors 223a and the material is fed between them. It is transported through aisle 222.
  • the molding material Mm that has passed through the material feed passage 222 is charged into a supply container 226 for cylinder supply such as a hopper.
  • the supply container 226 has a truncated cone-shaped portion 226a and a cylindrical portion 226b similar to the supply container 26 of the preheating device 21 described above, and further, from the belt conveyor 223a to the upper end portion of the truncated cone-shaped portion 226a.
  • a cylindrical opening 226c that receives the molding material Mm is provided.
  • the molding material Mm is fed horizontally through the material feeding passage 222 and then charged into the supply container 226, but the pair of belt conveyors 223a are inclined or orthogonal to the horizontal direction. It may be arranged so that the material passing direction in the material feeding passage 222 is inclined or orthogonal to the horizontal direction.
  • the heating unit 224 is arranged outside the belt conveyor 223a in the aisle width direction.
  • each belt as the passage forming member 223 can be composed of, for example, a net-like member as described above so that the heating gas can pass therethrough.
  • the heating gas is sent to the molding material Mm passing through the material feed passage 222, and the molding material Mm can be effectively heated.
  • the preheating device 221 is among the pair of belt conveyors 223a as shown by the white arrows in FIG. At least one is configured to be movable with the passage forming member 223 contained therein.
  • the preheating device 121 of the first modification of the first embodiment and the preheating device 221 of the second modification of the first embodiment described above are controlled in the same manner as the control of the preheating device 21 described above. be able to.
  • the preheating device 60 of the second embodiment illustrated in FIG. 55 is the same as the preheating device 21 of the first embodiment shown in FIG. 40, in the direction of the rotation axis of the screw 12 of the injection device 1 (horizontal direction in FIG. 55). Then, it is attached to the rear end portion on the side opposite to the front end portion 14 for injecting the molding material of the cylinder 11. More specifically, as shown in FIG. 56, the preheating device 60 is connected to a through-hole-shaped supply port 11a provided at a part in the circumferential direction at the rear end of the cylinder 11 on the cylinder 11. Mm of a molding material such as a resin pellet having a substantially spherical or cylindrical shape or other shape is supplied to the supply port 11a.
  • the preheating device 60 passes superheated steam Ss through the material passage 61 in order to heat the material passage 61 through which the molding material Mm passes and the molding material Mm in the material passage 61. It has a superheated steam introduction port 62 to be introduced into the 61. In the material passage 61, the molding material Mm is heated by the superheated steam Ss introduced from the superheated steam introduction port 62. As a result, the molding material Mm can be preheated before being supplied into the cylinder 11.
  • the superheated steam introduced into the material passage 61 from the superheated steam introduction port 62 can be generated by further applying heat to the steam vaporized by boiling water with a superheated steam generator or the like (not shown).
  • heated air hot air
  • superheated steam heats the object to be heated not only by convection heat transfer but also by radiant heat transfer and condensation heat transfer.
  • the heat energy is extremely large compared to heated air and the like.
  • the molding material Mm is heated by the superheated steam introduced from the superheated steam introduction port 62, the temperature of the molding material Mm rises to a predetermined temperature within a short time.
  • the molding material Mm is preheated instantaneously, so that the molding cycle by the injection molding machine can be shortened. This is particularly advantageous when applied in high cycle molding.
  • the superheated steam generator may have a structure in which a heating device such as a sheathed heater is provided in a heat-insulated housing.
  • the superheated steam generator can heat the saturated steam sent from the boiler or the like to generate the superheated steam.
  • the superheated steam introduction port 62 can be supplied to a predetermined location such as a factory where the injection device is installed. Superheated steam generated separately in the above equipment may be supplied.
  • the preheating device 60 can further have a passage partition wall portion 63 such as a cylinder or a cylinder provided around the material passage 61.
  • a material passage 61 is partitioned and provided inside the passage partition wall portion 63.
  • the cylindrical passage partition wall portion 63 is arranged sideways so that its central axis is substantially parallel to, for example, the horizontal direction of the rotation axis of the screw 12 (horizontal direction in FIGS. 55 to 57). Has been done.
  • the molding material Mm moves in the above-mentioned rotation axis direction, so that the material passage direction in which the molding material Mm passes is parallel to the rotation axis direction. become.
  • the material passage 61 may be provided so that the material passage direction in the material passage 61 is a vertical direction orthogonal to the rotation axis direction of the screw 12, as in the embodiment described later. Although not shown, the material passage 61 may be provided diagonally so as to be inclined with respect to the rotation axis direction of the screw 12.
  • the passage entrance 61a is provided on the rear end side (right side in FIGS. 55 to 57) of the material passage 61 in the material passage direction.
  • a substantially truncated cone-shaped hopper 61b can be attached to the passage entrance 61a.
  • a part of the passage partition wall portion 63 in the circumferential direction is provided so as to project toward the outer peripheral side and is orthogonal to the material passage direction.
  • a passage outlet 61c that tapers toward the tip side, which is the lower side in the direction, is provided.
  • the preheating device 60 may further have a transport mechanism for feeding the molding material Mm in the material passage direction in the material passage 61.
  • a preheating screw 64 is provided in the material passage 61.
  • the transport mechanism may be a belt conveyor or the like, although not shown.
  • the illustrated preheating screw 64 is provided upright on a rotating shaft 65 that is rotationally driven around an axis along the material passage direction in the material passage 61 and on the outer peripheral surface of the rotating shaft 65, and is provided around the above-mentioned axis.
  • the screw 64 when the screw 64 is rotationally driven by a drive source 67 such as a motor, the molding material Mm in the material passage 61 is on the outer peripheral side of the rotary shaft 65, as shown in FIG. 56, of the rotary shaft 65.
  • the flight 66 provided on the outer peripheral surface conveys the material in the material passing direction.
  • the preheating screw 64 of the second embodiment has a hollow rotating shaft 65.
  • the rotating shaft 65 has an internal space 68 inside the rotating shaft 65, a cylindrical peripheral wall portion 69 for partitioning the internal space 68, and the peripheral wall portion 69 attached to the peripheral wall portion 69. It has a plurality of communication holes 70 formed through the holes.
  • the superheated steam introduction port 62 is provided on the tip surface of the preheating screw 64, more specifically, the rotation shaft 65 of the preheating screw 64 in the direction of the rotation axis.
  • the tip of the rotating shaft 65 in the preheating screw 64 in the direction of the rotation axis is positioned so as to be exposed to the outside of the passage partition wall 63 from the opening 63a provided on the end surface of the passage partition wall 63, and the tip thereof is positioned.
  • the superheated steam introduction port 62 can be provided in the water.
  • the superheated steam Ss introduced into the material passage 61 from the superheated steam introduction port 62 once rotates the preheating screw 64 in the material passage 61. It flows into the internal space 68 of the shaft 65. Then, the superheated steam Ss that has flowed into the internal space 68 is sent from the internal space 68 to the outer peripheral side of the rotating shaft 65 through the communication holes 70 through the plurality of communication holes 70 provided in the peripheral wall portion 69. On the outer peripheral side of the rotating shaft 65, the molding material Mm conveyed in the material passing direction by the flight 66 is heated by the superheated steam Ss that has passed through the communication hole 70.
  • the height of the outer peripheral edge of the flight 66 from the outer peripheral surface of the rotating shaft 65 is equal to or more than the length of one molding material Mm, and the molding material Mm is formed. It is preferably less than the length of two materials Mm. In this case, since it is suppressed that the plurality of molding materials Mm overlap in the radial direction of the preheating screw 64 on the outer peripheral side of the rotating shaft 65, for example, superheated steam sent from the communication hole 70 of the rotating shaft 65 to the outer peripheral side. Therefore, each molding material Mm passing through the material passage 61 can be heated more effectively.
  • the gap between the outer peripheral edge of the flight 66 and the inner peripheral surface of the passage partition wall portion 63 in the radial direction of the preheating screw 64 is narrower than the length of one molding material Mm. As a result, it is possible to prevent the molding material Mm from passing over the flight 66 in the direction of the rotation axis.
  • a minute gap is provided between the outer peripheral edge of the flight 66 and the inner peripheral surface of the passage partition wall portion 63 so that they do not come into contact with each other. Further, the distance from the outer peripheral surface of the rotating shaft 65 of the preheating screw 64 to the inner peripheral surface of the passage partition wall portion 63 is also longer than the length of one molding material Mm and the length of two molding materials Mm. It is preferably less than that. The length of one molding material Mm is preferably the shortest dimension of the molding material Mm.
  • the molding material Mm when the molding material Mm is substantially spherical, it is preferably the diameter thereof, or when it is an irregular spherical shape including an ellipse or an ellipse in the cross section, it is preferably the diameter on the shortest side thereof.
  • the molding material Mm may be a cylinder, a prism, or other columnar shape, and the shorter dimension of the diameter or width and height thereof may be the length of one molding material Mm.
  • the superheated steam introduction port 162 instead of the superheated steam introduction port 62, the passage partition wall portion 63 and the preheating screw 64 described above, the superheated steam introduction port 162, the passage partition wall portion 163 and the preheating of the first modification of the second embodiment shown in FIG. 58 are used. It can also be a screw 164.
  • the passage partition wall portion 163 is provided with a plurality of through-hole-shaped superheated steam introduction ports 162 penetrating the passage partition wall portion 163 in the circumferential direction and the rotation axis direction.
  • the preheating screw 164 may have a hollow or solid rotating shaft 165, but does not have the communication hole 70 as described above.
  • the end surface of the passage partition wall portion 163 is not provided with an opening, and the tip portion of the rotating shaft 165 in the direction of the rotation axis terminates inside the passage partition wall portion 163.
  • superheated steam is introduced into the material passage 61 from the superheated steam introduction port 162 provided in the passage partition wall portion 163.
  • the molding material Mm conveyed on the outer peripheral side of the rotating shaft 165 is heated.
  • the first modification of the second embodiment shown in FIG. 58 has substantially the same configuration as that shown in FIGS. 55 to 57, except for the structures of the superheated steam introduction port 162, the passage partition wall portion 163, and the preheating screw 164. Has.
  • those shown in FIGS. 55 to 57 may be further provided with a plurality of through-hole-shaped superheated steam introduction ports 262 in the passage partition wall portion 263.
  • the molding material Mm conveyed on the outer peripheral side of the rotating shaft 65 of the preheating screw 64 is the superheated steam introduction port 262 of the passage partition wall portion 263 and for preheating.
  • the superheated steam inlet 62 of the screw 64 sends superheated steam from both the inner and outer sides of the preheating screw 64 in the radial direction (vertical direction in FIG. 59) to heat the screw 64.
  • the second modification of the second embodiment of FIG. 59 has substantially the same configuration as that shown in FIGS. 55 to 57, except that the superheated steam introduction port 262 is provided in the passage partition wall portion 263.
  • the communication holes 70 of the peripheral wall portion 69 of the preheating screw 64 and the superheated steam introduction ports 162 and 262 of the passage partition wall portions 163 and 263 are in the circumferential direction of the peripheral wall portion 69 or the passage partition wall portions 163 and 263. And, it is preferable to provide a large number of them evenly distributed in the direction of the rotation axis.
  • the peripheral wall portion 69 and / or the passage partition wall portions 163 and 263 are, for example, a plurality of shapes such as a square or other polygons in a front view.
  • the net-like member shall be composed of a cylindrical net-like member having individual holes, or a cylindrical plate-like member in which a plurality of holes are formed in a metal plate material such as so-called punching metal by press working or the like. Can be done. If the net-like member is insufficient in strength, the net-like member may be superposed with a reinforcing member such as a honeycomb or a lattice to form a peripheral wall portion 69 and / or a passage partition wall portion 163, 263.
  • a reinforcing member such as a honeycomb or a lattice to form a peripheral wall portion 69 and / or a passage partition wall portion 163, 263.
  • the material passage 361 for sending the molding material Mm to one passage outlet 361c is provided, for example, the surrounding passage partition wall portion 363 and the inside thereof.
  • four linear material passages 361 are arranged around the passage outlet 361c so as to be separated from each other at an angle of 90 °.
  • the number and arrangement of the material passages 361 can be changed as appropriate.
  • superheated steam introduction ports are provided so that superheated steam is introduced into each of the material passages 361.
  • a plurality of superheated steam introduction ports can be provided in each passage partition wall portion 363.
  • a discharge port for superheated steam may be provided.
  • the superheated steam that heats the molding material Mm in the material passage 61 can raise the temperature of the molding material Mm at high speed as described above.
  • the molding material Mm heated by superheated steam may cause dew condensation when the temperature is lower than 100 ° C., for example.
  • the preheating device 60 of the second embodiment is used to dry or further heat the molding material Mm that has passed through the material passage 61 and is heated by superheated steam.
  • the molding material Mm passes through the above-mentioned material passage 61 in the direction of the rotation axis, and then falls into the material feed passage 22 from the passage outlet 61c of the material passage 61 due to its own weight, and enters the material feed passage. Pass through the passage 22.
  • the material passage direction in the material passage 61 and the material passage direction (vertical direction in FIG. 56), which is the direction in which the molding material Mm passes in the material feed passage 22, are orthogonal to each other, and the molding material Mm is the material feed passage 22. Passes vertically.
  • the material feed passage 22 has a pair of passage forming members 23 that are arranged so as to face each other and the material feed passage 22 is partitioned between the material feed passages 22.
  • the heating unit 24 is arranged outside the material feeding passage 22 in the passage width direction with the passage forming member 23 separated from the material feeding passage 22.
  • the passage forming member 23 and the heating unit 24 have a function of drying the molding material Mm that has passed through the material passage 61 by being heated by superheated steam, and also has a function of further heating the molding material Mm.
  • the passage width direction referred to here is an alignment direction of the passage forming members 23 arranged in parallel with each other, and means a direction orthogonal to the material passage direction in the material feed passage 22 (left-right direction in FIG. 56).
  • the material feeding passage 22, the passage forming member 23, and the heating portion 24 are housed and arranged inside a box-shaped housing 25 made of a heat insulating material or the like.
  • At least one of the paired passage forming members 23 that partition the material feeding passage 22 can be made movable, whereby the material feeding passage 22 is separated from each other by the paired passage forming members 23. It is configured so that the width of a certain passage can be adjusted.
  • At least one of the passage forming members 23 is a passage, for example, manually by the user by arranging a spacer between the mounting location and the inside of the housing 25, or automatically using a motor or other actuator. It may be possible to move in the width direction.
  • the passage width of the material feed passage 22 is adjustable, it is possible to set an appropriate passage width corresponding to each of various molding materials Mm having various dimensions and shapes. For example, as shown in FIG.
  • the molding material Mm passes through the material feeding passages 22 in a substantially aligned posture, and at this time, the passages. Most of the molding material Mm is effectively heated in the heating portion 24 outside the passage width direction of the forming member 23.
  • the passage width of the material feed passage 22 is at least the length of one molding material Mm and less than the length of two molding materials Mm. In this case, since it is suppressed that the plurality of molding materials Mm overlap in the passage width direction in the material feed passage 22, most of the molding materials Mm can be heated more effectively.
  • a supply container 26 such as a hopper is provided on the lower surface of the housing 25 on the tip side (lower end side in FIG. 56) of the material feeding passage 22 in the material passing direction.
  • the supply container 26 has, for example, a truncated cone-shaped portion 26a whose inner and outer outer shapes are both truncated cone-shaped, and a cylindrical portion 26b formed at the end portion of the truncated cone-shaped portion 26a on the small diameter side.
  • the supply container 26 preferably contains a heat insulating material, such as when the peripheral wall thereof is made of a heat insulating material or the surface of the peripheral wall is covered with the heat insulating material.
  • the supply container 26 receives the molding material Mm that has passed through the material feeding passage 22 into the truncated cone-shaped portion 26a, and then passes the molded material Mm through the cylindrical portion 26b beyond the cone-shaped portion 26a to supply the molding material Mm to the inside of the cylinder 11.
  • An opening 26c having a width substantially equal to that of the material feeding passage 22 is formed at the end of the truncated cone-shaped portion 26a, and the molding material Mm that has passed through the material feeding passage 22 is supplied from the opening 26c to the supply container. Enter within 26.
  • the molding material Mm is supplied to the inside of the cylinder 11 after passing through the material feed passage 22 and the supply container 26. That is, here, the molding material Mm preheated by the preheating device 60 is supplied to the inside of the cylinder 11.
  • the shape of the supply container 26 is not limited to this, and the supply container 26 may be omitted as appropriate. If the supply container 26 is omitted and eliminated, the housing is arranged on the cylinder, and the tip end side of the material feed passage in the material passage direction is directly communicated with the supply port of the cylinder. In this case, the molding material is supplied to the inside of the cylinder immediately after passing through the material feed passage.
  • the heating unit 24 can be arranged on only one side of the material feeding passage 22 outside the passage width direction of one of the passage forming members 23, but in the second embodiment, each passage forming member 23 It is arranged on both sides of the material feeding passage 22 on the outside in the passage width direction of the above. In that case, since the molding material Mm can be heated quickly by the heating portions 24 on both sides, the molding material Mm can be effectively heated even if the passing speed of the molding material Mm in the material feed passage 22 is relatively high. Conditions such as the heating unit 24 are set so that the molding material Mm reaches a desired temperature on the tip side of the material feeding passage 22 in the material passing direction.
  • the heating unit 24 is not particularly limited as long as it can heat the molding material Mm via the passage forming member 23.
  • a hot air heating type heater that sends a heating gas such as high temperature air
  • an electric heating type heater such as high frequency dielectric heating
  • an infrared heating type heater such as a halogen lamp or a ceramic heater
  • a laser heating type heater or the like
  • the passage forming member 23 can be made of a translucent or transparent material such as glass through which light or a laser is transmitted.
  • the arrangement of the heating unit 24 is not limited to the example of FIG. 56, and may be arranged outside the housing 25 so that hot air flows through the material feeding passage 22.
  • the illustrated preheating device 60 has, as an example, a heating unit 24 including a hot air heating type heater.
  • the hot air heating type heater can obtain hot air by heating the compressed air sent from the compressor with a sheathed heater or the like. The temperature of the hot air can be adjusted by changing the output of the sheathed heater.
  • the hot air heating type heater is preferable in that the molding material Mm can be dried more effectively.
  • the passage forming member 23 has a plurality of ventilation holes penetrating the passage forming member 23 in the passage width direction in order to pass the heating gas sent from the hot air heating type heater through the material feeding passage 22. be able to.
  • the heating gas from the heating unit 24 flows into the material feeding passage 22 through the ventilation holes of the passage forming member 23, so that the heating gas can heat the molding material Mm of the material feeding passage 22.
  • the passage forming member 23 is a plate in which a plurality of ventilation holes 23b are formed in a plate material 23a made of metal or the like by press working or the like, for example, like so-called punching metal. It can also be a shaped member. In this case, a plurality of regularly arranged ventilation holes 23b can be formed in the plate material 23a by adjusting the processing mode and the like.
  • wire rods 23c are arranged in a grid pattern or the like, and a plurality of wire rods 23c having a shape such as a square or other polygons in front view are arranged between them. It may be a net-like member provided with a ventilation hole 23b. If the thickness of such a reticulated member is thin and the reticulated member lacks the strength required to form the material feed passage 22 in the passage forming member 23, the reticulated member and the reinforcing member are overlapped with each other.
  • the passage forming member 23 can be formed by the net-like member and the reinforcing member.
  • the reinforcing member can have various shapes such as a honeycomb shape or a lattice shape as long as the heating gas can pass therethrough.
  • the mesh of the reinforcing member may be coarser than the mesh of the mesh member.
  • a plurality of ventilation holes 23b are arranged in the vertical direction (vertical direction in FIG. 45 (b)) and in the horizontal direction (horizontal direction in FIG. 45 (b)) orthogonal to the vertical direction when viewed from the front. They are arranged and regularly arranged side by side.
  • the material feed passage 22 is partitioned by the net-like passage forming member 23, as shown in FIG. 46, the plurality of molding materials Mm spread in the lateral direction of the passage forming member 23 and are indicated by arrows in the figure.
  • the passage forming member 23 moves in the material passing direction, which is the vertical direction.
  • a region of the material feeding passage 22 in the lateral direction of the passage forming member 23 is partitioned between the paired passage forming members 23 on each side of the material feeding passage 22 in the lateral direction of the passage forming member 23.
  • a passage partition member 22a having a square bar shape or the like is arranged.
  • the heating gas from the heating unit 24 as the hot air heating type heater is used as the material.
  • the passage forming member 23 can be evenly fed to the feed passage 22 in the vertical direction and the horizontal direction. As a result, the heating gas can be blown onto many of the plurality of molding materials Mm passing through the material feed passage 22, and the molding materials Mm can be heated even more effectively.
  • the molding material is supplied from the supply container 26 to the inside of the cylinder 11.
  • the molding material Mm that has passed through the material passage 61 is sequentially heated by the heating unit 24 through the material feed passage 22 and then put into the supply container 26.
  • the speed of the molding material Mm passing through the material feed passage 22 may depend on the speed of plasticization of the molding material Mm inside the cylinder 11, but the passing speed of the molding material Mm is as described above. It can also be adjusted by changing the passage width.
  • the material feed passage 22 and the supply container 26 are not shown.
  • a screw-shaped feeder or other supply regulator for adjusting the supply of the molding material Mm from the material feed passage 22 to the supply container 26 may be provided between the two.
  • the preheating device 60 has a cooling unit (not shown) for cooling the molding material Mm passing through the material feed passage 22.
  • the cooling unit can be arranged outside the housing 25 that accommodates the material feed passage 22 and the like shown in FIG. 56, and a pipe or the like extending from the cooling unit to the inside of the housing 25 is used. Then, the cooling medium generated in the cooling unit can flow into the inside of the housing 25 to cool the molding material Mm passing through the material feed passage 22.
  • the cooling medium generated by the cooling unit may be not only cold air but also air lower than the temperature of the molding material Mm, for example, air at room temperature.
  • the cooling unit may be provided in the preheating device 21, but it can be realized by having the heating unit 24 have a structure capable of sending cold air or the like at room temperature or cooling gas Gc.
  • the preheating device 60, 360, 460 can be controlled in the same manner as the control for the preheating device 21 of the first embodiment described above. That is, the preheating device 60, 360, 460 may further include a control unit that controls the heating unit 24 and / or the cooling unit. More specifically, the control unit can control the heating unit 24 and / or the cooling unit by a signal obtained by the operating state detection mechanism, the retention detection mechanism, and / or the temperature information detection mechanism.
  • the operating state detection mechanism of the second embodiment detects the operating state of the injection device 1 when the operation of the injection molding machine is stopped for some reason, for example.
  • the detection can be performed, for example, by providing a transmitting unit that transmits the operating status of the injection device 1, and more specifically, a transmitting unit that transmits the operating status of the measuring motor 31 and the injection motor 41 of the injection device 1.
  • the retention detection mechanism detects information on the retention of the molding material Mm when the molding material Mm stays in the material feed passage 22 for some reason, for example.
  • the detection can be performed by using a sensor that detects the retention of the molding material Mm in the material feed passage 22.
  • the preheating device 60 of the second embodiment as will be described next, it is preferable that the preheating device 60 is provided with a mechanism for preventing the molding material Mm from staying in the material feed passage 22.
  • the molding material Mm is introduced into the ventilation holes 23b in the material feed passage 22 formed by the passage forming member 23. Due to being caught or the like, clogging or the like of the molding material Mm may occur in at least a part of the passage forming member 23 in the lateral direction.
  • the retention of the molding material Mm in the material feed passage 22 may lead to excessive heating of the molding material Mm and eventually melting of the molding material Mm. Therefore, it is preferable that the preheating device 60 is provided with a retention prevention mechanism for preventing the molding material Mm from staying in the material feed passage 22.
  • At least one of the paired passage forming members 23 is displaced continuously during the operation of the injection molding machine or intermittently only when necessary.
  • the illustration of the drive source is omitted.
  • square rod-shaped movable members 22b are provided on both sides of the passage forming member 23 in the lateral direction on the outside in the passage width direction of one of the passage forming members 23. Then, while the molding material Mm passes through the material feed passage 22, one of the passage forming members 23 is formed by the movable members 22b as shown by arrows in FIGS. 47 (b) and 47 (c). By moving the member 23 in the lateral direction, the relative position of one passage forming member 23 with respect to the other passage forming member 23 changes. As a result, even if the molding material Mm is caught in the ventilation hole 23b, the catch is released by the movement of one of the passage forming members 23, and the molding material Mm is prevented from staying. Further, one of the passage forming members 23 may be moved not in the horizontal direction of the passage forming member 23 but in the vertical direction (vertical direction) parallel to the material passing direction.
  • FIG. 48 square bar-shaped movable members 22b are provided on both ends of the passage forming member 23 in the vertical direction on the outside in the passage width direction of one of the passage forming members 23.
  • this retention prevention mechanism as shown in FIGS. 48 (b) and 48 (c), one passage forming member 23 is moved in the passage width direction by the movable member 22b while the molding material Mm is passing, and one passage is formed. The relative position of the member 23 with respect to the other passage forming member 23 is changed. At this time, the passage width of the material feeding passage 22 slightly increases or decreases.
  • the retention prevention mechanism of FIG. 48 can also be used as a mechanism for moving the passage forming member 23 in order to adjust the passage width as described above.
  • the retention prevention mechanism of FIG. 49 includes square rod-shaped movable members 22b provided at both ends of the passage forming member 23 in the vertical direction on the outside in the passage width direction of one of the passage forming members 23, and a material feeding passage.
  • a fulcrum member 22c such as a columnar shape that is arranged so as to be sandwiched between the passage forming member 23 and the passage partition member 22a at an intermediate position such as the central position in the material passing direction of the passage forming member 23 and extends in the lateral direction of the passage forming member 23. It has.
  • the fulcrum member 22c is attached to the passage partition member 22a. In this case, as shown in FIGS.
  • one of the passage forming members 23 rotates around the fulcrum member 22c. It is dynamically displaced and its direction changes so as to be oblique to the other passage forming member 23. More specifically, when one end of the passage forming member 23 in the vertical direction approaches or separates from the other passage forming member 23, the other end of the one passage forming member 23 in the vertical direction is the other. The direction of one of the passage forming members 23 is changed so as to be separated from or approached to the passage forming member 23 of the above.
  • the passage width of the material feeding passage 22 may not be constant in the material passing direction. Even with such a retention prevention mechanism, retention of the molding material Mm can be effectively prevented.
  • the retention prevention mechanism of FIG. 50 has almost the same configuration as that of FIG. 49, but the fulcrum member 22c is fixedly attached to one of the passage forming members 23 instead of the passage partition member 22a. Then, in FIG. 51, by rotationally driving the fulcrum member 22c without moving the movable member 22b, one of the passage forming members 23 is rotationally displaced around the fulcrum member 22c together with the fulcrum member 22c, which is substantially the same as in FIG. 49. In the same manner, the orientation with respect to the other passage forming member 23 changes.
  • the retention prevention mechanism is arranged outside at least one of the passage forming members 23 in the passage width direction, and the impact applying portion for striking the passage forming member 23 at a predetermined cycle or the like. It can also be composed of 28.
  • the illustrated impact applying portion 28 is provided in parallel with the passage forming member 23 on the outside in the passage width direction of the other passage forming member 23, and has a plate-shaped member 28b in which one or more through holes 28a are formed and a plate. It includes one or more pin-shaped members 28c that are arranged through the through hole 28a of the shaped member 28b and are separated / approach-displaced with respect to the other passage forming member 23.
  • a similar impact applying portion 28 may be provided on the outside of one of the passage forming members 23 in the passage width direction.
  • the retention prevention mechanism is attached to at least one of the passage forming members 23, for example, the outer surface of the other passage forming member 23 in the passage width direction, and the passage forming member 23 is attached. It may be composed of one or more vibration imparting portions 29 such as vibrators which give vibration to.
  • the passage forming member 23 is arranged outside at least one of the passage width directions, and the gas is blown at different flow rates to the passage forming member 23. It can also be a blower portion 30 that passes through 23b and hits the molding material Mm of the material feed passage 22. As shown in FIG. 52 (b) or FIG. It is something that can be guessed with.
  • the period in which the flow rate is zero and the period in which the flow rate is high may be periodically repeated, or may be repeated.
  • a period of low flow rate and a period of high flow rate may be periodically repeated.
  • a blower unit 30 as a retention prevention mechanism can be separately provided, the heating unit 24 as the hot air heating type heater described above can be used as the ventilation unit 30, and the heating unit 24 can also be used as a retention prevention mechanism.
  • the heating unit 24 is also used as the preheating and retention prevention mechanism, the gas from the blower unit 30 corresponds to the heating gas from the heating unit 24.
  • the cooling unit described above can be made into a blowing unit 30 by simply forming a structure for blowing air, and the cooling unit can also be used as a retention prevention mechanism.
  • the cooling unit is also used as the cooling and retention prevention mechanism, the gas from the blower unit 30 corresponds to the cooling gas from the cooling unit.
  • the preheating device 60 can include one or more of the retention prevention mechanisms shown in FIGS. 47 to 52.
  • the preheating device 60 is provided with a retention detection mechanism for detecting the retention of the molding material Mm in the material feed passage 22.
  • the retention detection mechanism can be, for example, a sensor that detects retention by temperature, an image taken by a camera, infrared rays, a laser, or the like.
  • such a sensor of the retention detection mechanism is provided at the tip end side of the material feed passage 22 in the material passage direction, that is, in the vicinity of the material feed passage 22 in front of the supply container 26 in the material passage direction. be. More specifically, as shown in FIG. 46, the sensor 23d is, for example, on the tip side of the material feed passage 22 in the material passage direction, outside the passage width direction of the passage forming member 23, and lateral to the passage forming member 23. A plurality of them may be provided at intervals in the direction. As a result, a portion where the molding material Mm is retained in the lateral direction of the passage forming member 23 can be found at an early stage.
  • the temperature sensor 23d of the retention detection mechanism is used as a temperature sensor, the temperature sensor is used so that the temperature of the molding material Mm located at the tip end side of the material feeding passage 22 in the material passing direction can be measured. It is preferable to arrange it.
  • the temperature of the molding material Mm referred to here can be the temperature of the molding material Mm itself, the temperature of the passage forming member 23, or the temperature in the space inside the ventilation hole 23b of the passage forming member 23.
  • the temperature sensor is passed through the ventilation hole 23b of the passage forming member 23 and the tip thereof becomes the molding material Mm.
  • the temperature sensor is arranged so as to come into contact with each other or so that the tip of the temperature sensor comes into contact with the passage forming member 23.
  • the sensor 23d of the retention detection mechanism is a temperature sensor, it can also be used as a temperature sensor that can be used in the temperature information detection mechanism that can be provided in the preheating device 60. That is, when the temperature sensor is also used, the preheating device 60 detects the retention of the molding material Mm by the temperature sensor as the retention detection mechanism, and the control unit detects the retention of the molding material Mm obtained from the retention detection mechanism. By controlling the heating unit 24 based on the above, the heating by the heating unit 24 can be stopped.
  • the control unit can control the cooling unit to cool the molding material Mm based on the information regarding the temperature.
  • the above-mentioned retention prevention mechanism can be continuously operated during the operation of the injection molding machine, or when the retention detection mechanism detects the retention of the molding material Mm in the material feed passage 22, it is specific. It can be operated intermittently at the timing.
  • a temperature sensor can be provided in the material feed passage 22 in order for the temperature information detection mechanism to detect information about the temperature (as described above, the sensor 23d of the retention detection mechanism is temperature-based. If it is used as a sensor, it may also be used). More specifically, it is preferable to arrange the temperature sensor so that the temperature sensor can measure the temperature of the molding material Mm located at the tip end side portion of the material feed passage 22 in the material passage direction.
  • the temperature of the molding material Mm referred to here can be the temperature of the molding material Mm itself, the temperature of the passage forming member 23, or the temperature in the space inside the ventilation hole 23b of the passage forming member 23.
  • the temperature sensor in order to measure the temperature of the molding material Mm itself or the temperature of the passage forming member 23, for example, the temperature sensor is passed through the ventilation hole 23b of the passage forming member 23 and the tip thereof becomes the molding material Mm.
  • the temperature sensor is arranged so as to come into contact with each other or so that the tip of the temperature sensor comes into contact with the passage forming member 23.
  • control unit controls the introduction of superheated steam in addition to the heating unit 24 and / or the cooling unit, and the control unit is the injection detected by the operating state detection mechanism. It is preferable to control the introduction of the heating unit 24 and the superheated steam based on the information regarding the stop of the operation of the apparatus 1 and / or the information regarding the retention of the molding material Mm detected by the retention detection mechanism. When the control unit receives such information, the control unit controls the heating unit 24 to stop heating and stop the introduction of superheated steam, whereby the molding material Mm is melted and fused. This can be prevented more.
  • a plurality of material feeding passages can be provided.
  • the area per material feed passage can be reduced, and the size of the preheating device can be reduced.
  • providing heaters on both sides of each material feeding passage in the passage width direction realizes quick and uniform preheating of the molding material Mm. Is preferable.
  • the material feeding passage described above is omitted, and the passage outlet 61c of the material passage 61 is directly connected to the opening 26c of the supply container 26.
  • the preheating device 260 of FIG. 61 is shown in FIG. 6 except that the housing 25 of the preheating device 60 of FIG. 56 and its internal structure (that is, the material feed passage 22, the passage forming member 23, and the heating portion 24) are omitted. It has substantially the same configuration as that of 56. In the preheating device 260 shown in FIG.
  • the molding material Mm that has passed through the material passage 61 while being heated by the superheated steam Ss is supplied to the inside of the cylinder 11 via the supply container 26.
  • a hot air heating type heater (not shown) at the passage outlet 61c of the material passage 61 and dry the molding material Mm there.
  • a temperature sensor can be provided in the material passage 61 in order for the temperature information detection mechanism to detect information on temperature.
  • the temperature sensor so that the temperature sensor can measure the temperature of the molding material Mm located at the tip end side portion of the material passage 61 in the material passage direction.
  • the temperature of the molding material Mm referred to here can be the temperature of the molding material Mm itself, the temperature of the preheating screw 64, or the temperature in the space inside the communication hole 70 of the preheating screw 64.
  • the temperature sensor in order to measure the temperature of the molding material Mm itself or the temperature of the preheating screw 64, for example, the temperature sensor is passed through the communication hole 70 of the preheating screw 64 and the tip thereof becomes the molding material Mm.
  • the temperature sensor is arranged so as to come into contact with each other or so that the tip of the temperature sensor comes into contact with the preheating screw 64.
  • FIG. 62 shows a preheating device 460 of a fifth modification of the second embodiment.
  • the preheating device 460 of FIG. 62 does not have a transport mechanism such as a preheating screw, and the molding material Mm passes through the material passage 461 while falling downward due to its own weight.
  • the material passage direction of the material passage 461 is parallel to the vertical direction like the material passage direction of the material feed passage 22, but if the molding material Mm can pass through the material passage 461, it will be in the vertical direction. It can also be tilted.
  • a plurality of superheated steam introduction ports 462 are provided in the passage partition wall portion 463 around the material passage 461. The superheated steam Ss is sent from the superheated steam introduction port 462 into the material passage 461 to heat the molding material Mm.
  • the housing 25 and its internal structure that is, the material feed passage 22, the passage forming member 23 and the heating portion 24
  • the supply container 26 may be omitted.
  • the preheating device 81 of the third embodiment illustrated in FIG. 63 is the rotation axis direction of the screw 12 of the injection device 1 (horizontal direction in FIG. 63), similarly to the preheating device 21 of the first embodiment shown in FIG. 40. Then, it is attached to the rear end portion on the opposite side of the tip portion 14 from which the molding material Mm of the cylinder 11 is injected. More specifically, as shown in FIG. 63, the preheating device 81 is connected to a through-hole-shaped supply port 11a provided at a part in the circumferential direction at the rear end of the cylinder 11 on the cylinder 11. Mm of a molding material such as a resin pellet having a substantially spherical or cylindrical shape or other shape is supplied to the supply port 11a.
  • the preheating device 81 has a material feed passage 82 through which the molding material Mm passes, as shown in FIG. 64.
  • the material feed passage 82 is partitioned by the inner peripheral surface of the tubular body 83, such as a pipe made of metal (in other words, the material feed passage 82 is formed inside the tubular body 83). Then, in the material feed passage 82, the confluence portion 82a where the molding material Mm and the heating medium Gh merge, the molding material Mm merged at the confluence portion 82a, and the heating medium Gh are mixed, and the molding material Mm is mixed with the heating medium Gh. It has an in-line mixing unit 82b for heating the above. Therefore, as shown in FIG.
  • the molding material Mm is supplied to the supply port 11a of the cylinder 11 through the material feed passage 82 from the upstream (left side in FIG. 64) to the downstream (right side in FIG. 64) in the material passage direction. On the way, it passes through the merging portion 82a that merges with the heating medium Gh, and then the mixing portion 82b that mixes the molding material Mm and the heating medium Gh.
  • the molding material Mm supplied to the inside of the cylinder 11 can be preheated before being supplied.
  • the preheated molding material Mm is sufficiently melted in the inside of the cylinder 11 in a short time after being supplied to the inside of the cylinder 11 through the supply port 11a, and is ejected from the tip end portion of the cylinder 11. , It is possible to shorten the molding cycle.
  • the material feed passage 82 has a first portion 821 extending in the vertical direction (vertical direction in FIG. 64) from the upstream to the downstream in the material passage direction, and a lower end in the vertical direction of the first portion 821.
  • a second portion 822 extending in the horizontal direction (horizontal direction in FIG. 64) following the material passing direction downstream side), and a third portion 823 extending in the vertical direction following the material passing direction downstream side of the second portion 822.
  • the first portion 821 the molding material Mm is supplied into the material feed passage 82 at the upper end in the vertical direction
  • the second portion 822 has a merging portion 82a and a mixing portion 82b
  • the third portion 823 is in the vertical direction.
  • the size of the material feed passage 82 can be made arbitrary depending on the amount of the molding material Mm to be conveyed, the heating temperature, and the like. Further, the material feed passage 82 is not limited to the shape shown in FIG. 64, and may have any shape. Further, a heat insulating material can be provided around the tubular body 83 forming the material feeding passage 82.
  • the heating medium Gh heated by the heating portion 84 is sent from the heating portion 84 through the heat medium feeding passage 84a, and the molding material being conveyed from the upstream to the downstream in the material passing direction.
  • This is the part that joins Mm.
  • a heating gas specifically, a gas obtained by heating a gas such as air or an inert gas, or superheated steam can be used, but the heating medium Gh is a molding material at the confluence 82a. It is not particularly limited as long as it can merge with Mm and flow downstream in the material passage direction.
  • the heating medium Gh is heated by the heating unit 84 included in the preheating device 81, and as the heating unit 84, for example, a hot air heating type heater can be used.
  • the hot air heating type heater can obtain hot air by heating the compressed air sent from the compressor with a sheathed heater or the like. The temperature of the hot air can be adjusted by changing the output of the sheathed heater.
  • the heating medium Gh is sent to the confluence portion 82a through the heat medium feed passage 84a included in the preheating device 81, and the heat medium feed passage 84a between the heating unit 84 and the confluence portion 82a is, for example,
  • the heat insulating material may be partitioned by a metal pipe 84b or the like provided in the periphery.
  • the heating medium Gh is generated by the heating unit 84 and then sent to the confluence portion 82a of the material feeding passage 82 via the heat medium feeding passage 84a of FIG. 64.
  • the heat medium feeding passage 84a branches from the material feeding passage 82 as described above, but the molding material Mm feeds the heat medium between the merging portion 82a and the heat medium feeding passage 84a.
  • a passage prevention portion such as a net can be provided to prevent the heat from being sent to the passage 84a.
  • the mixing portion 82b is a portion in which the molding material Mm merged at the merging portion 82a and the heating medium Gh are mixed in-line, and the molding material Mm is heated by the heating medium Gh.
  • the molding material Mm merges with the heating medium Gh at the merging portion 82a and is sent together with the heating medium Gh in the material passing direction, so that the molding material Mm and the heating medium Gh come into contact with each other for molding.
  • the material Mm can be partially heated. However, it is difficult to heat the molding material Mm sufficiently uniformly and efficiently within a short time only by contact with such a heating medium Gh.
  • the mixing portion 82b in the material feed passage 82 the flow of the molding material Mm and the heating medium Gh can be homogenized, and the temperature of the molding material Mm can be raised uniformly. Further, by being effectively mixed, the entire surface of the molding material Mm is sufficiently heated, and high-speed temperature rise becomes possible.
  • the mixing unit 82b in the example of FIG. 64, a static mixer which is an in-line mixer having no driving unit is used.
  • the static mixer in the illustrated example includes a plurality of spirally twisted plates 82c provided in the material feed passage 82, and includes such a spiral plate 82c.
  • the spiral plate 82c has a shape in which a flat plate is twisted approximately 180 ° around an axis to form a spiral.
  • the spiral plate 82c is arranged so as to follow the material passing direction in the material feeding passage 82. Further, the adjacent spiral plates 82c are joined to each other in a direction in which the twisting directions around the axes are opposite to each other, and the ends of the plates 82c are substantially orthogonal to each other.
  • the static mixer including such a spiral plate 82c preferably contains a plurality of the spiral plates 82c, whereby the molding material Mm and the heating medium Gh can be effectively mixed. .. Further, the spiral plate 82c can be made of metal.
  • the stationary mixer is not limited to the spirally twisted plate 82c as described above, for example, changing the flow direction of the heating medium and / or partially narrowing the material feed passage 82.
  • the mixing unit 82b is not limited to the above mixer as long as the molding material Mm and the heating medium Gh can be mixed in-line, and any one can be used and has a driving unit. You may or may not have it. Also preferably, it is a mixer that does not have a drive unit and can be mixed in-line. By using such a mixer, for example, the mixer can be provided in the existing transport path of the molding material Mm as the material feed passage 82, and the equipment introduction cost can be reduced. ..
  • the preheating device 81 of the third embodiment includes a transporter 85 that transports the molding material Mm from the upstream to the downstream of the material feed passage 82.
  • the transporter 85 is the molding material. It is a gas pressure feeder that gas pressure feeds Mm. More specifically, in the gas pressure feeder 85, the compressed gas Gp produced by a compressor (not shown) or the like is introduced into the gas pressure feeder 85 as shown in FIG. 66, and the compressed gas Gp is introduced into the material of the material feed passage 82.
  • the discharge side gas flow Gb toward the downstream side in the passage direction (right side in FIG. 66) (in other words, the discharge port for generating the discharge side gas flow Gb faces the downstream side in the material passage direction).
  • the molding material Mm existing upstream in the material passage direction is sucked and conveyed to the confluence portion 82a, then passed through the mixing portion 82b together with the heating medium Gh, and is pumped and conveyed to the downstream side of the material feeding passage 82. Further, by providing the gas pressure feeder 85 on the upstream side of the merging portion 82a in the material feeding passage 82, it is possible to prevent the backflow of the heating medium Gh in the material passing direction upstream. By using the gas pressure feeder that gas-pressure feeds the molding material Mm as the transporter 85 in this way, for example, the existing transport path of the molding material Mm can be used, and the equipment introduction cost can be reduced.
  • the compressed gas Gp is not particularly limited and air can be used.
  • the material feeding passage 82 is on the downstream side in the material passing direction and in front of the supply port 11a of the cylinder 11, for example, in the example shown in FIG. 41, the heating medium Gh is discharged to the supply container 26 (not shown). (Omitted) can be provided, but the discharge port can also be used as an exhaust gas from the gas pump 85 introduced for transportation.
  • the gas pressure feeder as the conveyor 185 is downstream of the mixing portion 182b in the material feed passage 182 as shown in FIG. 67.
  • the molding material Mm is passed through the merging portion 182a and the mixing portion 182b in the material feeding passage 182 by the attractive force to the downstream side generated on the upstream side in the material passing direction from the gas pumping device 185, which is provided on the side. Can be transported.
  • the feed screw 285 is used as the transporter 285 in the preheating device 281 instead of the gas pumper described above, as shown in FIG.
  • the feed screw 285 shown in FIG. 68 includes a screw 285a that is moved by rotating the molding material Mm, a cylindrical cylinder 285b that includes the screw 285a, and a drive unit 285c that rotates the screw 285a. ..
  • a supply container 227 hopper
  • the material feed passage 282 is connected to the opening 285e on the tip end side of the cylinder 285b, and the molding material Mm is fed from the opening 285e to the material feed passage 282.
  • a supply container 26 for supplying a cylinder such as a hopper is provided on the downstream side (lower end side in FIG. 64) of the material feed passage 82 in the material passage direction.
  • the supply container 26 has, for example, a truncated cone-shaped portion 26a whose inner and outer outer shapes are both truncated cone-shaped, and a cylindrical portion 26b formed at the end portion of the truncated cone-shaped portion 26a on the small diameter side. Is.
  • the supply container 26 receives the molding material Mm that has passed through the material feeding passage 82 into the truncated cone-shaped portion 26a, and then passes the molded material Mm through the cylindrical portion 26b beyond the cone-shaped portion 26a to supply the molding material Mm to the inside of the cylinder 11.
  • An opening 26c having a width substantially equal to that of the material feeding passage 82 is formed at the end of the truncated cone-shaped portion 26a, and the molding material Mm that has passed through the material feeding passage 82 is supplied from the opening 26c to the supply container. Enter within 26.
  • a supply container 27 for passage supply such as a hopper that stores a plurality of molding materials Mm and supplies the molding material Mm to the material feeding passage 82 in an appropriate amount. Is placed in front of the conveyor 85.
  • the molding material Mm is supplied to the preheating device 81 from the supply container 27 for aisle supply. Then, the molding material Mm supplied to the preheating device 81 passes through the material feeding passage 82 while being preheated, passes through the supply container 26 for supplying the cylinder, and is then supplied to the inside of the cylinder 11. That is, here, the molding material Mm preheated by the preheating device 81 is supplied to the inside of the cylinder 11.
  • the shape of the supply container 26 and / or the supply container 27 is not limited to this, and may be appropriately changed, and the supply container 26 and / or the supply container 27 may be omitted.
  • the preheating device is arranged on the cylinder, and the tip end side of the material feed passage in the material passage direction is directly communicated with the supply port of the cylinder.
  • the molding material Mm preheated by the preheating device is supplied to the inside of the cylinder immediately after the preheating.
  • the molding material Mm is supplied from the cylinder supply container 26 to the inside of the cylinder 11 as the plasticization by the screw 12 or the like inside the cylinder 11 progresses.
  • the molding material Mm in the passage supply container 27 is sequentially heated by the heating unit 84 through the material feed passage 82, and then charged into the cylinder supply supply container 26.
  • the speed of the molding material Mm passing through the material feed passage 82 may depend on the speed of plasticization of the molding material Mm inside the cylinder 11, but the passing speed of the molding material Mm is as described above. It can also be adjusted by the conveyor 85.
  • the material feed passage 82 and the supply container 26 are not shown.
  • a screw-shaped feeder or other supply regulator for adjusting the supply of the molding material Mm from the material feed passage 82 to the supply container 26 may be provided between the two.
  • the preheating device 81 has a cooling unit (not shown) for cooling the molding material Mm passing through the material feed passage 82.
  • the cooling unit can be arranged outside the tubular body 83 for partitioning the material feed passage 82, as shown in FIG. 64, and from the cooling unit to the inside of the material feed passage 82 and the heat medium feed passage 84a.
  • the cooling medium generated in the cooling unit can flow into the material feed passage 82 to cool the molding material Mm passing through the material feed passage 82.
  • the cooling medium generated by the cooling unit may be not only cold air but also air lower than the temperature of the molding material Mm, for example, air at room temperature.
  • the cooling unit may be provided in the preheating device 81, but it can be realized by having the heating unit 24 have a structure capable of sending cold air or the like at room temperature or cooling gas Gc.
  • the preheating devices 81, 181 and 281 of the third embodiment can be controlled in the same manner as the control of the preheating device 21 of the first embodiment described above. That is, the preheating devices 81, 181 and 281 may further include a control unit that controls the heating unit 84 and / or the cooling unit. More specifically, the control unit can control the heating unit 84 and / or the cooling unit by a signal obtained by the operating state detection mechanism, the retention detection mechanism, and / or the temperature information detection mechanism.
  • the operating state detection mechanism of the third embodiment detects the operating state of the injection device 1 when the operation of the injection molding machine is stopped for some reason, for example.
  • the detection can be performed, for example, by providing a transmitting unit that transmits the operating status of the injection device 1, and more specifically, a transmitting unit that transmits the operating status of the measuring motor 31 and the injection motor 41 of the injection device 1.
  • the retention detection mechanism detects information on the retention of the molding material Mm when the molding material Mm stays in the material feed passage 82 for some reason, for example.
  • the detection can be performed by using a sensor that detects the retention of the molding material Mm in the material feed passage 82.
  • the preheating device 81 is provided with a retention detection mechanism (not shown) for detecting the retention of the molding material Mm in the material feed passage 82.
  • the retention detection mechanism can be, for example, a sensor that detects retention based on temperature or the like. By providing the retention detection mechanism, for example, when the molding material Mm is retained, it can be detected at an early stage when the temperature of the molding material Mm is excessively raised.
  • the temperature of the molding material Mm referred to here can be the temperature of the molding material Mm itself, the temperature in the space in the material feeding passage, or the temperature of the tubular body forming the material feeding passage. It is preferable that such a sensor of the retention detection mechanism is provided at the confluence portion 82a or the mixing portion 82b of the material feed passage 82, or a location near the downstream side thereof.
  • the sensor of the retention detection mechanism is a temperature sensor
  • it can also be used as a temperature sensor that can be used in the temperature information detection mechanism that can be provided in the preheating device 81. That is, when the temperature sensor is also used, the preheating device 81 detects the retention of the molding material Mm by the temperature sensor as the retention detection mechanism, and the control unit detects the retention of the molding material Mm obtained from the retention detection mechanism.
  • the heating unit 84 By controlling the heating unit 84 based on the above, the heating by the heating unit 84 can be stopped.
  • the control unit can control the cooling unit to cool the molding material Mm based on the information regarding the temperature.
  • a temperature sensor can be provided in the material feed passage 82 in order for the temperature information detection mechanism to detect information about the temperature (as described above, the sensor of the retention detection mechanism is a temperature sensor). In that case, it may be shared). More specifically, it is preferable that the temperature sensor is provided at the confluence portion 82a or the mixing portion 82b of the material feed passage 82, or at a location near the downstream side thereof.
  • the temperature of the molding material Mm referred to here can be the temperature of the molding material Mm itself, the temperature in the space in the material feeding passage, or the temperature of the tubular body forming the material feeding passage.
  • the injection device 1 to which the preheating device 21 and the like described above can be applied mainly uses the preheating device 21 and the molding material supplied from the preheating device 21 internally.
  • a heater 13 for heating the molding material plasticized by the screw 12 inside the cylinder 11 is arranged around the cylinder 11.
  • the cylinder 11 has a tip portion 14 having a smaller inner and outer diameter on the tip side (left side in FIG. 40) in the direction of the rotation axis, and a heater 13 is also arranged around the tip portion 14. Further, the cylinder 11 is provided with a through-hole-shaped supply port 11a on the rear end side in the direction of the rotation axis, to which the above-mentioned preheating device 21 is attached.
  • the metering motor 31 and the injection motor 41 are fixed to the back surfaces of the two motor support plates 32 and 42 arranged at intervals from each other in an upright posture on the slide base 101 on the rear end side in the rotation axis direction, respectively. Has been done.
  • the screw 12 is rotationally driven by the weighing motor 31 and is driven forward and backward by the injection motor 41.
  • the two motor support plates 32 and 42 are connected to each other by rods 51 and 52 at a plurality of locations on the upper side and the lower side of the measuring motor 31.
  • the weighing motor 31 mainly includes a rotor 33, a stator 34 arranged around the rotor 33, and a stator frame 35 that surrounds the rotor 33 and the stator 34 and is provided with the stator 34 on the inner surface.
  • the rotor 33 of the metering motor 31 is supported by bearings 33a inside the stator frame 35 at each end in the rotation axis direction. Further, the rotor 33 is spline-coupled around the measuring spline shaft 36, and the measuring spline shaft 36 is connected to the screw mounting portion 37 to which the screw 12 is attached.
  • the injection motor 41 is mainly provided so as to surround the rotor 43, the stator 44 arranged around the rotor 43, and the periphery of the rotor 43 and the stator 44, and the stator frame 45 is provided with the stator 44 on the inner surface. And have.
  • the rotor 43 is supported by bearings 43a inside the stator frame 45 at each end in the direction of its rotation axis.
  • the rotor 43 is connected to the drive shaft. More specifically, the drive shaft includes an injection spline shaft 46 spline-coupled by a groove 43b provided on the inner peripheral side of the cylindrical rotor 43, a screw shaft 48 connected to the injection spline shaft 46, and a weighing spline.
  • a pressure detector 38 is arranged between the stator frame 45 of the injection motor 41 and the motor support plate 42.
  • the pressure detector 38 is attached to each of the motor support plate 42 and the screw nut 47, and detects the load acting on the pressure detector 38 in the transmission path of the driving force from the injection motor 41 to the screw 12.
  • a tubular portion 39 is interposed between the pressure detector 38 and the stator frame 45. Further, on the rear end surface of the stator frame 45 of the injection motor 41 located on the opposite side of the drive shaft in the direction of the rotation axis, an encoder 45a which is connected to the rotor 43 by a shaft portion 45b and detects the rotation of the rotor 43 is provided. It is provided.
  • the preheating device 21 does not include the control unit for controlling the heating unit 24 and / or the cooling unit, but instead the injection device 21.
  • the device 1 can also be provided.
  • the control unit when the injection device 1 instead includes the control unit for controlling the heating unit 24 and / or the cooling unit is the same as the above-mentioned control performed by the control unit when the preheating device 21 includes the control unit. As such, control can be performed.
  • An example of a molding process by an injection molding machine provided with such an injection device 1 will be described in a state in which a molding material is already weighed and arranged in a predetermined amount inside the cylinder 11 in the latter half of the previous molding process. No Molding process is performed to close the mold device and put it in the mold clamping state.
  • a pressure holding step of holding the molding material inside at a predetermined pressure is sequentially performed.
  • the molding material filled in the mold apparatus is cooled and cured, and a cooling step of obtaining a molded product is performed.
  • the molding material separately supplied from the preheating device 21 into the cylinder 11 is melted while being fed toward the tip portion 14 of the cylinder 11 by the rotation of the screw 12 under heating by the heater 13, and a predetermined amount is melted.
  • a weighing step is performed in which the molding material is placed on the tip portion 14.
  • the molding material supplied into the cylinder 11 is already heated to an appropriate temperature by the preheating devices 21, 60, and 81. Therefore, even if the screw 12 is rotated at a high speed and the molding material is sent to the tip portion 14 of the cylinder 11 in a short time, the molding material can be sufficiently plasticized. As a result, the time required for weighing is shortened, and the molding cycle can be shortened.
  • the mold device is opened to open the mold, and an ejector device or the like is used to take out the molded product from the mold device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

本発明の一実施形態の予備加熱装置21は、成形材料Mmを予熱する装置であって、前記予備加熱装置21は、成形材料Mmが通る材料送り通路22と、前記材料送り通路22を通る成形材料Mmを加熱するヒータ24とを有し、前記材料送り通路22は、互いに対向して配置され、相互間に前記材料送り通路22が区画される対をなす通路形成部材23を有し、対をなす前記通路形成部材23のうちの少なくとも一方が可動であり、前記通路形成部材23間の通路幅を調整可能に構成される装置である。また、本発明の一実施形態の射出装置1は、前記予備加熱装置21と、前記予備加熱装置21で予熱された成形材料Mmを溶融するシリンダ11とを備え、前記シリンダ11で溶融された成形材料Mmを金型装置に射出する装置である。

Description

予備加熱装置および射出装置
 本発明は、予備加熱装置および射出装置に関する。
 たとえばペットボトルのキャップ等の成形品を製造するに際し、射出成形機は、樹脂ペレットその他の成形材料を溶融しつつ金型装置内に注入して成形品を得るまでの一連の工程を、比較的短いサイクルで繰返し行うハイサイクル成形で使用されることがある。このような場合、射出成形機には高い生産能力が要求される。
 射出成形機による成形のサイクルの短縮は、射出装置のシリンダ内に配置されたスクリュの回転数を増大させて成形材料の可塑化を短期間のうちに終了させ、シリンダ先端部への成形材料の蓄積に要する時間を短くすることにより実現することができる。
 但し、スクリュを高速回転させると、成形材料はシリンダの内部で、シリンダの周囲に設けられた加熱器による加熱が十分になされずに、シリンダの先端部側に急速に送られる。この場合、シリンダの先端部から金型装置に射出される溶融状態の成形材料に、未溶融の成形材料が含まれることがあり、かかる未溶融の成形材料は、成形品の外観不良や強度の低下等の不具合の発生を招く。なお、シリンダの周囲の加熱器による加熱温度を高くすることによって、成形材料の可塑化を促進させることが可能であるが、ハイサイクル成形ではシリンダの内部での成形材料の滞留時間が短いことから、加熱温度を高くしても上述したような未溶融の成形材料の射出は十分に防止できない。
 これに対処するには、成形材料をシリンダの内部に供給する前に予め加熱することが考えられる。
 なおここで、特許文献1には、「ペレット状の長繊維強化熱可塑性樹脂を溶融しても繊維の損傷を最小とすることができ、またペレット中の繊維束を、繊維長を保持したまま解繊しつつ樹脂を溶融することができ、強度の高い繊維強化熱可塑性樹脂を成形する射出成形装置を提供すること」を目的として、「出口側に向けて移動する平面状加熱体によって長繊維強化熱可塑性樹脂のペレットを溶融し可塑化する可塑化装置と、該可塑化装置の出口からの溶融樹脂を押出す押出機と、該押出機から樹脂を導入して射出するプランジャ式射出機とからなることを特徴とする長繊維強化熱可塑性樹脂用射出成形装置」が提案されている。具体的には、「平面状加熱体が複数の加熱用ロールの組合せである」、「平面状加熱体が加熱用ロールと加熱用ベルトの組合せである」、「平面状加熱体が2つの加熱用ベルトの組合せである」等とされている(特許文献1の図1~4参照)。
 そして、特許文献1に記載の「長繊維強化熱可塑性樹脂用射出成形装置」によれば、「平面状加熱体の表面に長繊維強化熱可塑性樹脂のペレットを供給すると、ペレットは、平面状加熱体の表面で転動することによりペレットの長さ方向の軸線が平面状加熱体の表面と次第に平行になり、この状態でその表面に押圧され、平面状加熱体の出口方向への移動に伴い溶融されつつ可塑化装置の出口に送られる。この後、溶融樹脂は押出機により射出機の射出シリンダに押出され、射出シリンダの樹脂は、プランジャによって金型内に射出される。したがって、ペレットは、可塑化装置、押出機および射出機において混練されることがなく、繊維長を保持したまま解繊しつつ樹脂を溶融することができ、強度の高い繊維強化熱可塑性樹脂を成形することができる。」とされている。
 特許文献2には、「射出成形機の加熱シリンダ内に成形材料を供給するホッパーであって、このホッパーの外部に、ホッパー内部と連通する除湿温調装置が取り付けられていることを特徴とする射出成形機のホッパー」が記載されている。
 特許文献3では、「未乾燥樹脂ペレットを射出成形機のシリンダー内に供給して最初の射出を行い、そして最初の射出から所定時間経過後に射出された樹脂パージの品質を検査して得られた単位ショット当たりの最適な堆積量をもって射出を行うための射出成形機と;射出成形機のシリンダー内にペレットを供給するためのペレット供給経路体と;前記射出成形機及び又は金型中で排出される樹脂中の水分やガス等を排気するためのガス排気経路体と;前記排気経路体に接続される減圧装置と;を備える射出成形システム」が開示されている。この「射出成形システム」に関し、特許文献3には、「射出成形機へ供給するペレットを加熱するための加熱装置をさらに備える」、「前記加熱装置は射出成形機から排出される温ガスを利用した熱交換器である」、「前記加熱装置はペレット供給経路体に設けられる」、「好ましくは、加熱装置は第1及び第2加熱装置を備える。そして、第2加熱装置は、射出成形機側のペレット供給経路体に設けられる。」との記載がある。より具体的には、「ペレットの加熱装置68は、熱交換器である。射出成形機からの温気体が熱交換器に運ばれる。一方、大気中の空気が、圧縮機(図示せず)を介して熱交換器に運ばれる。かくして、大気中の空気は、熱交換機を通過する際に約80℃に暖められる。そして、温風はペレット貯蔵タンク12に供給される。」と記載されている。
 特許文献4には、「補強のための長繊維と熱可塑性樹脂との複合材料である長繊維複合材料を異方向回転2軸噛み合いスクリュ式押出装置を用いて可塑化し、この可塑物をプランジャ式押出装置に供給し、このプランジャ式押出装置から射出圧縮成形金型に可塑物を射出するか又は、このプランジャ式押出装置から押出金型に可塑物を押し出す長繊維複合材料の成形方法」で、「前記2軸スクリュ式押出装置に供給される長繊維複合材料は、高温不活性ガスが通過することにより軟化状態に加熱されている」ことが記載されている。特許文献4には、「高温不活性ガス」について、「高温不活性ガス循環装置18は、排ガス処理装置21とブロア22とヒータ23とを直列に接続し、窒素ガスボンベ24をブロア22の上流に接続したものであり、高温の窒素ガスを熱媒体として、長繊維ペレット又はバルク状の長繊維複合材料15を加熱して軟化状態にする。」と記載されている。
特開平8-142139号公報 実開昭62-104915号公報 国際公開第99/33630号 特開平7-52185号公報
 ここで、上記のような文献に記載の従来の技術は、成形品の生産能力の向上に十分に資する技術とは言えず、射出装置のシリンダの内部に供給する前の成形材料の予熱を有効に行うことができる技術が求められている。
 具体的には、シリンダ内部への供給前に成形材料の予熱を行う場合、特にハイサイクル成形では成形材料を短時間のうちに効率的に加熱するため、予熱時に多数個の成形材料を通す通路の幅をある程度狭くすることが有効である。これにより、それらの成形材料が当該通路を、たとえば一列に整列しながら通過し、その際に成形材料の多くが直接的に、通路の両側のヒータ等によって加熱されやすくなる。しかるに、樹脂ペレット等の成形材料は様々な寸法形状のものがあり、そのような多様な成形材料のすべてに適した通路幅を設定することは困難である。
 特許文献1及び2のいずれも、このような成形材料の寸法形状を考慮した予熱の適正化については何ら着目されていない。
 なお特許文献1には、プランジャ式射出機に供給する溶融樹脂を得るための可塑化装置で、ペレットを押圧しながら押し潰して可塑化することが記載されているが、上述したような予熱については何の記載も示唆もない。
 特許文献2では、その第1図に示されているように、射出成形機のシリンダ内に成形材料を供給する円錐状等のホッパーに除湿温調器を設けたものである。円錐状等のホッパー内では、多数個の成形材料が互いに重なり合って不規則に存在することから、そのようなホッパーの除湿温調器では、多数個の成形材料を十分有効に加熱することができない。
 そこで第1発明は、このような問題に対処することを課題とするものであり、その目的は、シリンダの内部に供給する前の成形材料の予熱を有効に行うことができる予備加熱装置および射出装置を提供することにある。
 ところで、上記の特許文献2に記載のホッパーでは次のような課題もあった。すなわち、特許文献2に記載のホッパーは、上述したが、その第1図に示されているように、射出成形機のシリンダ内に成形材料を供給する円錐状等のホッパーに除湿温調器を設けたものである。当該ホッパーは、成形材料を予め加熱することはできるものの、改善の余地があった。すなわち、射出装置としては、樹脂ペレット等の成形材料を短時間のうちに効率的に加熱すること、さらに、成形材料の加熱を均一に行うことも求められていた。
 そこで第2発明は、このような問題に対処することを課題とするものであり、その目的は、シリンダの内部に供給する前の成形材料の予熱を有効に行うことができる予備加熱装置および射出装置を提供することにある。
 ここで、上記の特許文献3、4については次のような課題もあった。すなわち、特許文献3、4に記載されているような、空気を加熱した温風や、高温の窒素ガス等の高温不活性ガスは、熱エネルギーがそれほど高くない。それ故に、シリンダの内部への供給前の成形材料の予熱で当該成形材料を加熱する熱媒体として、仮にそのような温風又は高温不活性ガスを用いたとしても、成形材料を所定の温度まで加熱するには、ある程度の時間を要する。したがって、上述した熱媒体では、特に成形材料がシリンダ内に迅速に供給されるハイサイクル成形で、成形材料の予熱が不十分になることが懸念される。
 そこで第3発明は、このような問題に対処することを課題とするものであり、その目的は、シリンダの内部に供給する前の成形材料の予熱で、該成形材料の温度を比較的急速に昇温させることができる予備加熱装置および射出装置を提供することにある。
 ところで、上記の特許文献1については次のような課題もあった。すなわち、シリンダ内部への供給前に成形材料の予熱を行うには、成形材料を予熱するために成形材料を通す通路(以下、材料送り通路とも称す)中に導入した後、その中に存在する成形材料を加熱することが考えられる。しかし、射出装置を用いて射出成形を行う際には、何らかの理由で射出装置の停止が発生することがあり、これにより、併せて成形材料も材料送り通路内で移動が止まることが生じ得る。そして、材料送り通路内での成形材料の移動が停止した場合には、余熱が成形材料を加熱し続けることになり、成形材料が溶融し、成形材料同士で、または成形材料が壁面との間で、融着する虞がある。そして、そのように融着が生じた場合には、射出成形が再開されても、成形材料が材料送り通路を通過できなくなる虞があった。そして、そのような課題に対しては、従来の射出装置を開示する例えば特許文献1では何ら着目されていない。
 そこで第4発明は、このような問題に対処することを課題とするものであり、その目的は、シリンダの内部に供給する前の成形材料の予熱を行うとともに、その過程で、予熱対象の成形材料が通る通路内において成形材料が過剰に加熱されて融解することを防止することができる予備加熱装置および射出装置を提供することにある。
 上述した第1発明についての課題を解決することができる第1の予備加熱装置は、成形材料を予熱するものであって、前記予備加熱装置は、成形材料が通る材料送り通路と、前記材料送り通路を通る成形材料を加熱するヒータとを有し、前記材料送り通路は、互いに対向して配置され、相互間に前記材料送り通路が区画される対をなす通路形成部材を有し、対をなす前記通路形成部材のうちの少なくとも一方が可動であり、前記通路形成部材間の通路幅を調整可能に構成されてなるものである。
 上述した第2発明についての課題を解決することができる第2の予備加熱装置は、成形材料を予熱するものであって、前記予備加熱装置は、成形材料が通る材料送り通路を有し、前記材料送り通路は、成形材料と加熱媒体とが合流する合流部と、前記合流部で合流した該成形材料と加熱媒体とを混合させ、加熱媒体で該成形材料を加熱するインラインの混合部と、を有するものである。
 上述した第3発明についての課題を解決することができる第3の予備加熱装置は、成形材料を予熱するものであって、前記予備加熱装置は、成形材料が通る材料用通路と、前記材料用通路内の成形材料を加熱する過熱水蒸気を、当該材料用通路内に導入する過熱水蒸気導入口とを有するものである。
 上述した第4発明についての課題を解決することができる第4の予備加熱装置は、成形材料を予熱するものであって、前記予備加熱装置は、成形材料が通る材料送り通路と、前記材料送り通路を通る成形材料を加熱する加熱部と、前記材料送り通路を通る成形材料を冷却する冷却部と、を有するものである。
 上記の第1の予備加熱装置によれば、通路形成部材間の通路幅を調整可能に構成したことにより、射出装置のシリンダの内部に供給する前の成形材料の予熱を有効に行うことができる。
 上記の第2の予備加熱装置によれば、射出装置のシリンダの内部に供給する前の成形材料の予熱を有効に行うことができる。
 上記の第3の予備加熱装置によれば、射出装置のシリンダの内部に供給する前の予熱で成形材料の温度を比較的急速に昇温させることができる。
 上記の第4の予備加熱装置によれば、射出装置のシリンダの内部に供給する前の成形材料の予熱を行うとともに、その過程で、予熱対象の成形材料が通る通路内において成形材料が過剰に加熱されて融解することを防止することができる。
第1発明の一の実施形態の予備加熱装置および射出装置を示す断面図である。 図1の予備加熱装置及びその近傍を拡大して示す断面図である。 図2の予備加熱装置の通路形成部材の具体例を示す正面図である。 図2の予備加熱装置の材料送り通路及び通路形成部材を示す拡大斜視図である。 図2の予備加熱装置に設けることのできる滞留防止機構の一例を示す斜視図である。 図2の予備加熱装置に設けることのできる滞留防止機構の他の例を示す斜視図である。 図2の予備加熱装置に設けることのできる滞留防止機構の他の例を示す斜視図である。 図2の予備加熱装置に設けることのできる滞留防止機構の他の例を示す斜視図である。 図2の予備加熱装置に設けることのできる滞留防止機構の他の例を示す斜視図である。 図2の予備加熱装置に設けることのできる滞留防止機構の他の例を示す斜視図である。 第1発明の他の実施形態の予備加熱装置を示す断面図である。 第1発明のさらに他の実施形態の予備加熱装置を示す断面図である。 図2の予備加熱装置の材料送り通路を通る成形材料の温度を示す断面図及びグラフである。 図2の予備加熱装置を用いて行うことができる制御の一例を示すフローチャートである。 第2発明の一の実施形態の予備加熱装置および射出装置を示す断面図である。 図15の予備加熱装置及びその近傍を拡大して示す断面図である。 図15の予備加熱装置が備える混合器を拡大して示す斜視図である。 図15の予備加熱装置が備える気体圧送器を拡大して示す断面図である。 第2発明の他の実施形態の予備加熱装置及びその近傍を拡大して示す断面図である。 第2発明のさらに他の実施形態の予備加熱装置及びその近傍を拡大して示す断面図である。 図16の予備加熱装置を用いて行うことができる制御の一例を示すフローチャートである。 第3発明の一の実施形態の予備加熱装置および射出装置を示す、鉛直方向に沿う断面図である。 図22の予備加熱装置及びその近傍を示す拡大断面図である。 図23の予備加熱装置の一部を拡大して示す断面図である。 第3発明の他の実施形態の予備加熱装置の一部を示す断面図である。 第3発明のさらに他の実施形態の予備加熱装置の一部を示す断面図である。 第3発明のさらに他の実施形態の予備加熱装置の一部を示す、水平方向に沿う断面図である。 図23の予備加熱装置の材料送り通路が有する通路形成部材の具体例を示す正面図である。 図23の予備加熱装置の材料送り通路及び通路形成部材を示す拡大斜視図である。 図23の予備加熱装置に設けることのできる滞留防止機構の一例を示す斜視図である。 図23の予備加熱装置に設けることのできる滞留防止機構の他の例を示す斜視図である。 図23の予備加熱装置に設けることのできる滞留防止機構の他の例を示す斜視図である。 図23の予備加熱装置に設けることのできる滞留防止機構の他の例を示す斜視図である。 図23の予備加熱装置に設けることのできる滞留防止機構の他の例を示す斜視図である。 図23の予備加熱装置に設けることのできる滞留防止機構の他の例を示す斜視図である。 第3発明のさらに他の実施形態の予備加熱装置及びその近傍を示す断面図である。 第3発明のさらに他の実施形態の予備加熱装置及びその近傍を示す断面図である。 図23の予備加熱装置の材料送り通路を通る成形材料の温度を示す断面図及びグラフである。 図23の予備加熱装置を用いて行うことができる制御の一例を示すフローチャートである。 第4発明の第1実施形態の予備加熱装置および射出装置を示す断面図である。 図40の予備加熱装置及びその近傍を拡大して示す断面図である。 図40の予備加熱装置の制御装置のブロック図である。 図41の予備加熱装置の材料送り通路を通る成形材料の温度を示す断面図及びグラフである。 図41の予備加熱装置を用いて行うことができる制御の一例を示すフローチャートである。 図41、図56の予備加熱装置の通路形成部材の具体例を示す正面図である。 図41、図56の予備加熱装置の材料送り通路及び通路形成部材を示す拡大斜視図である。 図41、図56の予備加熱装置に設けることのできる滞留防止機構の一例を示す斜視図である。 図41、図56の予備加熱装置に設けることのできる滞留防止機構の他の例を示す斜視図である。 図41、図56の予備加熱装置に設けることのできる滞留防止機構の他の例を示す斜視図である。 図41、図56の予備加熱装置に設けることのできる滞留防止機構の他の例を示す斜視図である。 図41、図56の予備加熱装置に設けることのできる滞留防止機構の他の例を示す斜視図である。 図41、図56の予備加熱装置に設けることのできる滞留防止機構の他の例を示す斜視図である。 第1実施形態の第1変形例の予備加熱装置を示す断面図である。 第1実施形態の第2変形例の予備加熱装置を示す断面図である。 第4発明の第2実施形態の予備加熱装置および射出装置を示す、鉛直方向に沿う断面図である。 図55の予備加熱装置及びその近傍を示す拡大断面図である。 図56の予備加熱装置の一部を拡大して示す断面図である。 第2実施形態の第1変形例の予備加熱装置の一部を示す断面図である。 第2実施形態の第2変形例の予備加熱装置の一部を示す断面図である。 第2実施形態の第3変形例の予備加熱装置の一部を示す、水平方向に沿う断面図である。 第2実施形態の第4変形例の予備加熱装置及びその近傍を示す断面図である。 第2実施形態の第5変形例の予備加熱装置及びその近傍を示す断面図である。 第4発明の第3実施形態の予備加熱装置および射出装置を示す断面図である。 図63の予備加熱装置及びその近傍を拡大して示す断面図である。 図64の予備加熱装置が備える混合器を拡大して示す斜視図である。 図64の予備加熱装置が備える気体圧送器を拡大して示す断面図である。 第3実施形態の第1変形例の予備加熱装置及びその近傍を拡大して示す断面図である。 第3実施形態の第2変形例の予備加熱装置及びその近傍を拡大して示す断面図である。
 以下に図面を参照しながら、各発明の実施の形態について詳細に説明する。
〔第1発明〕
 この実施形態では、予備加熱装置21は、成形材料を予熱するためのものあり、図1に例示するような射出装置1が備えることで、射出装置1に予熱した成形材料を供給することができる。図1に例示する射出装置1は、射出成形機で、たとえば射出装置1を前進・後退させる移動装置のスライドベース101上に配置されて、金型装置への成形材料の射出を行うものである。射出装置1は、予備加熱装置21と、予備加熱装置で予熱された成形材料が供給されて内部で成形材料を溶融させるシリンダ11とを備えることができる。なお、図示の射出装置1は、シリンダ11の内部で回転駆動されて成形材料を可塑化するスクリュ12や、シリンダ11の周囲に設けられてシリンダ11の内部の成形材料を加熱する加熱器13等をさらに備えるものであるが、この射出装置1の詳細な構造については後述する。
(予備加熱装置)
 予備加熱装置21は、射出装置1のスクリュ12の回転軸線方向(図1の左右方向)で、シリンダ11の成形材料を射出する先端部14とは逆側の後端部に取り付けられる。より詳細には、この予備加熱装置21は、シリンダ11上にて、図2に示すように、シリンダ11の後端部で周方向の一部に設けられた貫通孔状の供給口11aに接続されており、当該供給口11aに、実質的に球状もしくは円柱状その他の形状の樹脂ペレット等の成形材料Mmを供給するものである。
 この実施形態では、予備加熱装置21は、成形材料Mmが通る材料送り通路22と、材料送り通路22を通る成形材料Mmを加熱するヒータ24とを有するものである。ここで、材料送り通路22は、互いに対向して配置されて相互間に材料送り通路22が区画される対をなす通路形成部材23を有する。そして、ヒータ24は、材料送り通路22から通路形成部材23を隔てた通路幅方向の外側に配置されている。ここでいう通路幅方向は、互いに平行に並ぶ通路形成部材23の整列方向であって、材料送り通路22で成形材料Mmが通る方向である材料通過方向(図2の上下方向)に直交する方向(図2の左右方向)を意味する。なお、材料送り通路22、通路形成部材23及びヒータ24は、断熱材等からなる箱状の筐体25の内部に収容されて配置されている。
 このような構成を有する予備加熱装置21では、シリンダ11の内部に供給する成形材料Mmを、その供給前に予め加熱することができる。その結果、予熱された成形材料Mmは、供給口11aを通ってシリンダ11の内部に供給された後に当該内部で短時間のうちに十分に溶融して、シリンダ11の先端部から射出されるので、成形のサイクルの短縮化を実現することができる。
 そしてここでは、材料送り通路22を区画形成する対をなす通路形成部材23の少なくとも一方を、図2に矢印で示すように可動とし、これにより、予備加熱装置21は、対をなす通路形成部材23の相互間の間隔である材料送り通路22の通路幅を調整可能に構成されている。通路形成部材23の少なくとも一方は、たとえば、筐体25の内部でその取付け箇所との間にユーザがスペーサを配置すること等による手動で、又は、モータその他のアクチュエータ等を用いた自動で、通路幅方向に動かすことができるようにする。
 材料送り通路22の通路幅を調整可能にしたことにより、様々な寸法形状がある多様な成形材料Mmのそれぞれに応じた適切な通路幅を設定することができる。たとえば、図2に示すように、成形材料Mmの一個分が通過できる程度の通路幅としたときは、成形材料Mmが材料送り通路22をほぼ一列に整列した姿勢で通過し、この際に通路形成部材23の通路幅方向の外側のヒータ24で、成形材料Mmの多くが有効に加熱されることになる。それにより、シリンダ11の先端部から射出される溶融状態の成形材料に、未溶融のものが混じることを効果的に抑制できるので、成形品の外観不良や強度の低下を防止することができる。
 可動の通路形成部材23により設定される通路幅は、成形材料Mmの一個分の長さ以上、かつ、成形材料Mmの二個分の長さ未満とすることが好ましい。この場合、材料送り通路22で、複数個の成形材料Mmが通路幅方向に重なり合うことが抑制されるので、それらの成形材料Mmの多くを、より一層有効に加熱することができる。成形材料Mmの一個分の長さは、成形材料Mmの最も短い寸法とすることが好ましい。たとえば、成形材料Mmがほぼ球状である場合はその直径とし、又は、断面に楕円ないし長円を含む異形の球状である場合はその最も短い短辺側の直径とすることが好ましい。あるいは、成形材料Mmが円柱もしくは角柱その他の柱状であって、その直径もしくは幅と高さのうちの短いほうの寸法を成形材料Mmの一個分の長さとすることがある。
 なお、材料送り通路22の材料通過方向の先端側(図2の下端側)で筐体25の下面には、ホッパー等のシリンダへの成形材料の供給用の供給容器26(シリンダ供給用の供給容器26、単に供給容器26ともいう。)が設けられている。供給容器26は、図示の例では、たとえば内外形がともに円錐台状である円錐台状部分26aと、円錐台状部分26aの小径側の端部に形成された円筒状部分26bとを有するものである。供給容器26は、材料送り通路22を通過した成形材料Mmを、円錐台状部分26aに受け入れた後、その先の円筒状部分26bに通してシリンダ11の内部に供給する。円錐台状部分26aの端部には、材料送り通路22とほぼ同程度の幅の開口部26cが形成されており、材料送り通路22を通過した成形材料Mmは、その開口部26cから供給容器26内に入る。
 また、材料送り通路22の材料通過方向の後端側(図2の上端側)には、複数個の成形材料Mmを蓄えて該成形材料Mmを適正量で材料送り通路22に供給するホッパー等の通路への成形材料の供給用の供給容器27(通路供給用の供給容器27、単に供給容器27ともいう。)が、筐体25の上面に載置されている。供給容器27は、円筒状等の筒部27aと、筒部27aの材料送り通路22側に設けられて、内外径が漸減して先細りになるテーパ部27bとを有する。
 図示の例では、成形材料Mmは、通路供給用の供給容器27から予備加熱装置21に供給される。そして、予備加熱装置21に供給された成形材料Mmは、予熱されながら材料送り通路22を通過し、シリンダ供給用の供給容器26を経た後に、シリンダ11の内部に供給される。つまりここでは、予備加熱装置21で予熱された成形材料Mmがシリンダ11の内部に供給されることになる。但し、供給容器26及び/又は供給容器27の形状はこれに限らず、適宜変更することができるとともに、供給容器26及び/又は供給容器27を省略することもある。仮にシリンダ供給用の供給容器26を省略して無くした場合、予備加熱装置の筐体がシリンダ上に配置されて、材料送り通路の材料通過方向の先端側がシリンダの供給口に直接的に連通される。この場合、予備加熱装置で予熱された成形材料は、当該予熱の直後にシリンダの内部に供給される。
 ここで、ヒータ24は、一方の通路形成部材23の通路幅方向の外側で材料送り通路22の片側だけに配置することも可能であるが、この実施形態では、各通路形成部材23の通路幅方向の外側で材料送り通路22の両側にそれぞれ配置されている。そのほうが、成形材料Mmを両側のヒータ24で迅速に加熱できるので、材料送り通路22の成形材料Mmの通過速度を比較的速くしたとしても、成形材料Mmを有効に加熱することができる。なお、材料送り通路22の材料通過方向の先端側で、成形材料Mmが所望の温度になるように、ヒータ24等の条件が設定される。
 ヒータ24は、通路形成部材23を介して成形材料Mmを加熱できるものであれば、その加熱方式については特に問わない。たとえば、高温の空気等の加熱ガスを送る熱風加熱式ヒータ、高周波誘電加熱等の電熱式ヒータ、ハロゲンランプやセラミックヒータ等の赤外線加熱式ヒータ、レーザ加熱式ヒータ等を採用することができる。ヒータ24を赤外線加熱式ヒータ又はレーザ加熱式ヒータとする場合、通路形成部材23は、ガラス等の光ないしレーザが透過する半透明もしくは透明の材料で構成することができる。なお、ヒータ24の配置は、図示の例に限らず、筐体25の外部に配置し、熱風を材料送り通路22に流すようにしてもよい。
 図示の予備加熱装置21では、一例として、熱風加熱式ヒータを含むヒータ24を有するものとしている。熱風加熱式ヒータは具体的には、たとえば、コンプレッサから送られる圧縮空気をシーズヒータ等で加熱することにより、熱風が得られるものとすることができる。熱風の温度調整は、シーズヒータの出力を変更することにより可能である。
 この場合、通路形成部材23は、熱風加熱式ヒータから送られる加熱ガスを、材料送り通路22に通すため、通路幅方向に当該通路形成部材23を貫通する複数個の通気孔を有するものとすることができる。これにより、ヒータ24からの加熱ガスは、通路形成部材23の通気孔を通って材料送り通路22に流れるので、当該加熱ガスで材料送り通路22の成形材料Mmを加熱することができる。
 具体的には通路形成部材23は、たとえば、図3(a)に示すように、いわゆるパンチングメタルのように、金属製等の板材23aにプレス加工等で複数個の通気孔23bを形成した板状部材とすることもできる。この場合、加工態様等の調整により、板材23aに、規則的に配置された複数個の通気孔23bを形成することができる。
 あるいは、通路形成部材23は、図3(b)に示すように、たとえば線材23cを格子状等に配置して、それらの間に、正面視で正方形その他の多角形等の形状の複数個の通気孔23bを設けた網状部材としてもよい。仮にそのような網状部材の厚みが薄く、通路形成部材23で材料送り通路22を形成するに必要な強度が当該網状部材に不足している場合、当該網状部材と補強部材とを重ね合わせて、それらの網状部材と補強部材とで通路形成部材23を構成することができる。補強部材は加熱ガスを通すことができれば、ハニカム状又は格子状等の種々の形状とすることができる。たとえば、補強部材の網目は、網状部材の網目よりも粗いものであってもかまわない。図示の網状部材は、複数個の通気孔23bが、正面視で縦方向(図3(b)の上下方向)及び横方向(図3(b)の左右方向)に配列し、規則的に並んで配置されている。
 たとえば、網状の通路形成部材23で材料送り通路22を区画形成した場合、図4に示すように、複数個の成形材料Mmは、通路形成部材23の横方向に拡がって、同図に矢印で示すように、通路形成部材23の縦方向である材料通過方向に移動する。なお、対をなす通路形成部材23の相互間で通路形成部材23の横方向における材料送り通路22の各側部には、通路形成部材23の横方向での材料送り通路22の領域を区画する角棒状等の通路区画部材22aを配置している。
 上述した網状や板状の通路形成部材23のように、正面視で通気孔23bを均等に分散させて規則的に配置したときは、熱風加熱式ヒータとしたヒータ24からの加熱ガスを材料送り通路22に、通路形成部材23の縦方向及び横方向で均等に送ることができる。それにより、材料送り通路22を通る複数個の成形材料Mmの多くに、加熱ガスを吹き付けることができて、それらの成形材料Mmをより一層効果的に加熱することができる。
 図2に示す実施形態では、射出装置1のシリンダ11の内部でのスクリュ12等による可塑化が進行するに従って、成形材料Mmがシリンダ供給用の供給容器26からシリンダ11の内部に供給される。それに伴い、通路供給用の供給容器27内の成形材料Mmが順次に、材料送り通路22を通ってヒータ24で加熱された後に、シリンダ供給用の供給容器26に投入される。この場合、材料送り通路22を通過する成形材料Mmの速度は、シリンダ11の内部での成形材料Mmの可塑化の速度に依存し得るが、当該成形材料Mmの通過速度は、先述したような通路幅の変更により調整することもできる。また必要に応じて、成形材料Mmの材料送り通路22を通過する速度及び、それに影響される成形材料Mmの加熱の程度を調整するため、図示は省略するが、材料送り通路22と供給容器26との間に、材料送り通路22から供給容器26への成形材料Mmの供給を調整するスクリュ状等のフィーダーその他の供給調整機を設けてもよい。
 また図示は省略するが、通路幅は一定のままで材料送り通路22の位置を変更させる機構があってもよい。材料送り通路22の位置を変更することにより、単位時間当たりの成形材料の通過量を調整することができる。
 ところで、複数個の通気孔23bを有する網状もしくは板状等の通路形成部材23では、それによって形成される材料送り通路22にて、成形材料Mmが通気孔23bに引っ掛かること等に起因して、通路形成部材23の横方向の少なくとも一部で成形材料Mmの詰まり等の滞留が発生することがある。材料送り通路22での成形材料Mmの滞留は、成形材料Mmの過剰な加熱、ひいては成形材料Mmの溶融を招くおそれがある。
 それゆえに、予備加熱装置21には、材料送り通路22での成形材料Mmの滞留を防止する滞留防止機構を設けることが好ましい。
 滞留防止機構としては、たとえば図5~8に示すように、射出成形機の作動時に継続的に、又は、必要なときだけ断続的に、対をなす通路形成部材23の少なくとも一方を変位させて、他方の通路形成部材23に対する一方の通路形成部材23の相対的な位置及び/又は向きを変化させる駆動部とすることができる。なおここでは、その駆動源の図示は省略する。
 図5に示すところでは、一方の通路形成部材23の通路幅方向の外側で、当該通路形成部材23の横方向の両側部にそれぞれ、角棒状の可動用部材22bを設けている。そして、成形材料Mmが材料送り通路22を通過している間、それらの可動用部材22bで一方の通路形成部材23を、図5(b)及び(c)に矢印で示すように、通路形成部材23の横方向に動かすことで、一方の通路形成部材23の、他方の通路形成部材23に対する相対位置が変化する。これにより、成形材料Mmが通気孔23bに引っ掛かったとしても、一方の通路形成部材23の移動でその引っ掛かりが外れて、成形材料Mmの滞留が防止される。
 また、一方の通路形成部材23を、通路形成部材23の横方向ではなく、材料通過方向と平行な縦方向(上下方向)に動かすようにしてもよい。
 図6に示す滞留防止機構では、一方の通路形成部材23の通路幅方向の外側で、当該通路形成部材23の縦方向の両端部のそれぞれに、角棒状の可動用部材22bを設けている。この滞留防止機構は、成形材料Mmの通過中に、図6(b)及び(c)に示すように、可動用部材22bで一方の通路形成部材23を通路幅方向に動かし、一方の通路形成部材23の、他方の通路形成部材23に対する相対位置を変化させる。このとき、材料送り通路22の通路幅が微小に増減する。なお、図6の滞留防止機構は、先述したような通路幅を調整するために通路形成部材23を可動させる機構としても用いることができる。
 図7の滞留防止機構は、一方の通路形成部材23の通路幅方向の外側で、当該通路形成部材23の縦方向の両端部のそれぞれに設けた角棒状の可動用部材22bと、材料送り通路22の材料通過方向の中央位置等の途中位置で当該通路形成部材23と通路区画部材22aとの間に挟み込んで配置されて、通路形成部材23の横方向に延びる円柱状等の支点部材22cとを有するものである。ここでは、支点部材22cは、通路区画部材22aに取り付けられている。この場合、図7(b)及び(c)に示すように、各可動用部材22bを通路幅方向で相互に逆向きに動かすと、一方の通路形成部材23は、支点部材22cの周りで回動変位し、他方の通路形成部材23に対して斜めになるように向きが変化する。より詳細には、一方の通路形成部材23の縦方向の一端部が、他方の通路形成部材23に対して接近もしくは離隔したとき、一方の通路形成部材23の縦方向の他端部は、他方の通路形成部材23に対して離隔もしくは接近するように、一方の通路形成部材23の向きが変化する。なお、これに伴い、材料送り通路22の通路幅は材料通過方向で一定ではなくなるときがある。このような滞留防止機構でも、成形材料Mmの滞留を有効に防止することができる。
 図8の滞留防止機構は、図7とほぼ同様の構成を有するものであるが、支点部材22cが、通路区画部材22aではなく一方の通路形成部材23に固定されて取り付けられている。そして図8では、可動用部材22bを動かさずに、支点部材22cを回転駆動することで、支点部材22cとともに一方の通路形成部材23が支点部材22cの周りで回動変位し、図7と実質的に同様にして他方の通路形成部材23に対する向きが変化する。
 あるいは、滞留防止機構は、図9(a)に示すように、通路形成部材23の少なくとも一方の通路幅方向の外側に配置されて、当該通路形成部材23を所定の周期等で打ち付ける衝撃付与部28で構成することもできる。図示の衝撃付与部28は、他方の通路形成部材23の通路幅方向の外側で当該通路形成部材23と平行に設けられて、一個以上の貫通孔28aが形成された板状部材28bと、板状部材28bの貫通孔28a内を通って配置されて、他方の通路形成部材23に対して離隔・接近変位する一本以上のピン状部材28cを含むものである。一方の通路形成部材23の通路幅方向の外側にも、同様の衝撃付与部28を設けてもよい。
 また、滞留防止機構は、図9(b)に示すように、通路形成部材23の少なくとも一方、たとえば他方の通路形成部材23の通路幅方向の外側の表面に取り付けられて、当該通路形成部材23に振動を与える一個以上の振動子等の振動付与部29で構成してもよい。
 そしてまた、滞留防止機構としては、図10(a)に示すように、通路形成部材23の少なくとも一方の通路幅方向の外側に配置されて、気体を異なる流量で、通路形成部材23の通気孔23bに通して材料送り通路22の成形材料Mmに当てる送風部30とすることもできる。この送風部30は、図10(b)又は(c)に示すように、材料送り通路22の成形材料Mmに送る気体の流量を経時的に変化させ、それにより、気体を成形材料Mmに強弱をつけて当てることができるものである。なお、送風部30から成形材料Mmへ気体を送るに当っては、図10(b)のように、流量がゼロである期間と流量が多い期間とを周期的に繰り返してもよいし、又は、図10(c)のように、流量が少ない期間と流量が多い期間とを周期的に繰り返してもよい。滞留防止機構としての送風部30を別途設けることもできるが、先述した熱風加熱式ヒータとしたヒータ24を送風部30とし、当該ヒータ24を滞留防止機構としても使用することもできる。ヒータ24を予熱及び滞留防止機構として兼用した場合、送風部30からの気体は、ヒータ24からの加熱ガスに相当する。
 図5~10に示すような上述した滞留防止機構は、それらのうちの一つを予備加熱装置21で採用することができる他、それらの複数を組み合わせて採用することもできる。つまり、予備加熱装置21は、図5~10に示す滞留防止機構のうちの一つ以上を含むことができる。
 また、予備加熱装置21には、図示は省略するが、材料送り通路22での成形材料Mmの滞留を検出する滞留検出機構を設けることが好ましい。滞留検出機構としては、たとえば、温度、カメラによる画像、赤外線又は、レーザ等により滞留を検出するセンサとすることができる。
 滞留検出機構のそのようなセンサは、材料送り通路22の材料通過方向の先端側の部分、つまり、シリンダ供給用の供給容器26よりも材料通過方向の手前における材料送り通路22近傍の箇所に設けることが好適である。より詳細には、図4に示すように、かかるセンサ23dは、たとえば、材料送り通路22の材料通過方向の先端側で、通路形成部材23の通路幅方向の外側に、通路形成部材23の横方向に互いに間隔をおいて複数個設けることができる。これにより、通路形成部材23の横方向で成形材料Mmの滞留が生じている箇所を早期に見つけることができる。
 仮に滞留検出機構のセンサ23dを温度センサとする場合、その温度センサで、材料送り通路22の材料通過方向の先端側の部分に位置する成形材料Mmの温度を測定できるように、当該温度センサを配置することが好ましい。ここでいう成形材料Mmの温度は、成形材料Mm自体の温度、通路形成部材23の温度、又は、通路形成部材23の通気孔23b内の空間における温度とすることができる。接触式の温度センサの場合、成形材料Mm自体の温度又は通路形成部材23の温度を測定するには、たとえば、温度センサを通路形成部材23の通気孔23bに通してその先端が成形材料Mmに接触するように、又は、温度センサの先端が通路形成部材23に接触するように、当該温度センサを配置する。
 先述した滞留防止機構は、射出成形機の作動中に常に継続的に作動させることができ、又は、滞留検出機構により材料送り通路22での成形材料Mmの滞留が検出されたとき等の特定のタイミングで間欠的に作動させることができる。
 図11に、他の実施形態の予備加熱装置121を示す。この予備加熱装置121は、先に述べた予備加熱装置21と実質的に同様の通路供給用の供給容器127及びシリンダ供給用の供給容器126を有するが、主に、それらの間の筐体125に材料送り通路122が複数設けられている点で、先述の予備加熱装置21と異なるものである。このように複数の材料送り通路122を設けることにより、材料送り通路122の一つ当たりの面積を小さくすることができて、予備加熱装置121の小型化を実現することができる。
 より詳細には、予備加熱装置121は、いずれも成形材料Mmを通路供給用の供給容器127からシリンダ供給用の供給容器126に送るべく、互いに平行に並ぶ三つの材料送り通路122と、それらの各材料送り通路122を区画する三対の通路形成部材123と、材料送り通路122と通路形成部材123を隔てた通路幅方向の外側から、材料送り通路122の成形材料Mmを加熱するヒータ124とを有する。供給容器126の円錐台状部分126aの端部には、材料送り通路122の個数に応じた三個の開口部126cが設けられている。
 ヒータ124は、図示の実施形態のように、各材料送り通路122の通路幅方向の両側に設けることが、成形材料Mmの迅速かつ均一な予熱を実現するとの観点から好ましい。この予備加熱装置121も、各材料送り通路122を形成する対をなす通路形成部材123のうちの少なくとも一方が可動であり、各材料送り通路122の通路幅を調整できるように構成されている。なお、図示は省略するが、二つ又は四つ以上の材料送り通路を設けることも可能である。
 図12に、さらに他の実施形態の予備加熱装置221を示す。図12の予備加熱装置221では、駆動ローラ及び従動ローラを含む複数個のローラ223bと、それらのローラ223bに巻き掛けられた無端環状のベルトである通路形成部材223とを含む一対のベルトコンベア223aが設けられている。そして、それらのベルトコンベア223aの間に、成形材料Mmが通る材料送り通路222が区画されている。
 一対のベルトコンベア223aのそれぞれは、ローラ223bの駆動ローラでベルトとしての通路形成部材223を回転駆動し、それにより、成形材料Mmは、一対のベルトコンベア223a間に挟まれながら、その間の材料送り通路222を通って搬送される。材料送り通路222を通過した成形材料Mmは、ホッパー等のシリンダ供給用の供給容器226に投入される。この供給容器226は、先述した予備加熱装置21の供給容器26と同様の円錐台状部分226a及び円筒状部分226bを有し、さらに、円錐台状部分226aの上端部に、ベルトコンベア223aからの成形材料Mmを受け入れる円筒状等の開口部226cが設けられている。なお、この例では、成形材料Mmを材料送り通路222で水平方向に送った後に、供給容器226に投入するものとしているが、一対のベルトコンベア223aを水平方向に対して傾斜ないし直交する向きに配置して、材料送り通路222での材料通過方向を水平方向に対して傾斜ないし直交する方向としてもよい。
 ベルトコンベア223aよりも通路幅方向の外側には、ヒータ224が配置されている。ヒータ224を先述した熱風加熱式ヒータとする場合、通路形成部材223としての各ベルトは、加熱ガスを通すことができるように、たとえば、先述したような網状部材等で構成することができる。これにより、材料送り通路222を通る成形材料Mmに加熱ガスが送られて、該成形材料Mmを有効に加熱することができる。
 また、この予備加熱装置221は、一対のベルトコンベア223a間の間隔である材料送り通路222の通路幅を調整するため、図12に白抜き矢印で示すように、一対のベルトコンベア223aのうちの少なくとも一方を、それに含まれる通路形成部材223とともに動かすことができるように構成されている。
(予備加熱装置の制御)
 以上に述べた予備加熱装置21、121、221は、たとえば次に述べるようにして制御することができる。なおここでは、一例として、予備加熱装置21、121、221のうちの予備加熱装置21を用いて、その制御について説明する。
 予備加熱装置21では、その使用時に、先述したように、滞留検出機構等として材料送り通路22の材料通過方向の先端側の部分に設けたセンサ23dとしての温度センサ等で、材料送り通路22の材料通過方向の先端側における成形材料Mmの温度を常時監視しておく。これにより測定された成形材料Mmの温度の情報は、たとえば射出成形機の制御部に送信される。
 正常に作動しているとき、成形材料Mmは、図13(a)に示すように、加熱ガスGh等で加熱されて、材料送り通路22を材料通過方向に進むに従って温度が上昇する。このとき、成形材料Mmの温度は、成形材料Mmの融点Tmより低い温度に予め定められる許容上限値Tu未満になるように、ヒータ24の加熱温度その他の条件を設定することがある。許容上限値Tuは、たとえば融点Tmよりも10℃程度低い温度に設定され得る。
 ここで、何らかの理由により射出成形機の作動が停止した場合、又は、滞留防止機構が作動しているか否かに関わらず、滞留検出機構としてのセンサ23dが、材料送り通路22での成形材料Mmの滞留を検出した場合、材料送り通路22では、図13(b)に示すように、成形材料Mmの温度が上昇し得る。成形材料Mmの温度が融点Tmに近づいたり、融点Tm以上になったりすると、成形材料Mmどうしが、又は成形材料Mmと通路形成部材23とが溶融・融着し、成形材料Mmが材料送り通路22を通過できなくなることが懸念される。
 これを防止するため、射出成形機の作動が停止した場合、又は、材料送り通路22での成形材料Mmの滞留を検出した場合(たとえば、滞留防止機構が継続的に作動している間に成形材料Mmの滞留を検出した場合、もしくは、滞留防止機構が作動していない間に材料送り通路22での成形材料Mmの滞留が検出され、それを受けて滞留防止機構が作動しても当該滞留が解消されずに依然として滞留が検出される場合)は、その作動停止信号又は滞留検出信号を、制御部に送信する。これを受けて制御部は、予備加熱装置21に、ヒータ24による成形材料Mmの加熱を停止するよう加熱停止信号を送信し、予備加熱装置21は、ヒータ24による成形材料Mmの加熱を停止する。すなわち、予備加熱装置21は、射出成形機の作動停止の情報、及び/又は、材料送り通路22での成形材料Mmの滞留に関する情報に基づいて、ヒータ24による成形材料Mmの加熱を停止する。
 なお、射出成形機の作動の停止には、たとえば、生産完了による停止、異常を検出したことによる停止、非常停止ボタンが押されたことによる停止等がある。このような停止は、各種センサ等で検出が可能である。
 ヒータ24による成形材料Mmの加熱を停止した場合であっても、余熱により、材料送り通路22での成形材料Mmの温度が上昇することがある。それ故に、ヒータ24の加熱停止後、温度センサにより測定される成形材料Mmの温度が所定の基準を満たした場合、図13(c)に示すように、材料送り通路22の成形材料Mmを、たとえば冷却ガスGc等により冷却する。
 成形材料Mmの冷却を開始する上記の所定の基準は、成形材料Mmの温度の実測値と許容上限値Tuとの比較により決定される基準とすることができ、具体的には、成形材料Mmの温度の実測値が許容上限値Tuに達したことをもって、成形材料Mmの冷却を開始することとすることができる。あるいは、成形材料Mmの温度と予備加熱装置21の周囲温度との差から、成形材料Mmが今後上昇し得る温度上昇量を推測し、その推定された温度上昇量と許容上限値Tuとの比較により決定される基準を、上記の所定の基準とすることもできる。また、あるいは、成形材料Mmの温度の推定値と、許容上限値Tuとの比較により決定される基準を、上記の所定の基準とすることもできる。言い換えると、予備加熱装置21は、成形材料Mmの温度に関する情報に基づいて、材料送り通路22の成形材料Mmを冷却する。
 成形材料Mmの冷却は、ヒータ24の熱風加熱式ヒータ又は送風部30が冷風等の常温もしくは冷却ガスGcを送れる構造にすることによって実現することができる他、ヒータ24や送風部30とは別に、材料送り通路22の成形材料Mmを冷却するための冷却部を予備加熱装置21に設けてもよい。
 これにより、成形材料Mmの溶融による材料送り通路22の閉塞を有効に防止することができる。
 上述したような制御の一例を図14に示す。図14では、はじめに、成形材料Mmを、予備加熱装置21に通した後にシリンダ11の内部に供給して、成形品の成形を行う。この間に、射出成形機の作動が停止した場合は、ヒータ24を停止する。射出成形機の作動が停止していない場合であっても、たとえば滞留防止機構が継続的に作動している間に、材料送り通路22での成形材料Mmの滞留が発生した場合は、ヒータ24を停止する。なお、射出成形機の作動が停止していない場合で、滞留防止機構の作動が停止していて材料送り通路22での成形材料Mmの滞留が発生した場合は、まず滞留防止機構を作動させ、それでも滞留が解消されなければヒータ24を停止する。射出成形機の作動が停止しておらず、かつ、成形材料Mmの滞留が発生していない場合は、成形を継続する。なお、射出成形機の作動が停止したかどうかの確認と、成形材料Mmの滞留が発生したかどうかの確認は、その順序が逆になるように入れ替えてもよく、又は、いずれか一方の確認のみとすることもできる。
 次いで、ヒータ24を停止した後に、成形材料Mmの温度が許容上限値以上であるか否かを確認する。成形材料Mmの温度が許容上限値以上であった場合は、成形材料Mmの冷却を行い、再度、成形材料Mmの温度が許容上限値以上であるか否かを確認する。
 成形材料Mmの温度が許容上限値未満であった場合は、成形を再開するか否かの判断を行う。成形を再開してもよいと判断された場合、成形を再開する。
(射出装置)
 上述したような予備加熱装置21等を適用することができる射出装置1は、図1に例示するように、主として、予備加熱装置21と、予備加熱装置21から供給された成形材料を内部で溶融させるシリンダ11と、シリンダ11の内部で回転駆動されて成形材料を可塑化するスクリュ12と、スクリュ12の回転軸線方向の後方側(図1の右側)に配置された計量モータ31と、計量モータ31のさらに後方側に配置された射出モータ41とを備える。
 シリンダ11の周囲には、シリンダ11の内部でスクリュ12により可塑化される成形材料を加熱する加熱器13が配置されている。シリンダ11は回転軸線方向の先端側(図1の左側)に内外径が小さくなる先端部14を有し、その先端部14の周囲にも加熱器13が配置される。また、シリンダ11は回転軸線方向の後端側には、貫通孔状の供給口11aが設けられており、そこに先述の予備加熱装置21が取り付けられている。
 計量モータ31及び射出モータ41はそれぞれ、スライドベース101上に立てた姿勢で互いに間隔をおいて配置された二枚のモータ支持プレート32、42のそれぞれの回転軸線方向の後端側の背面に固定されている。スクリュ12は、計量モータ31により回転駆動されるとともに、射出モータ41により進退駆動される。二枚のモータ支持プレート32、42は、計量モータ31を隔てた上方側及び下方側の複数箇所でロッド51、52により互いに連結されている。
 計量モータ31は、主に、ロータ33と、ロータ33の周囲に配置されたステータ34と、ロータ33及びステータ34の周囲を取り囲み、内表面にステータ34が設けられたステータフレーム35とを含む。計量モータ31のロータ33はその回転軸線方向の各端部で、ステータフレーム35の内側に軸受33aにより支持されている。また、このロータ33は、計量スプライン軸36の周囲にスプライン結合されており、この計量スプライン軸36は、スクリュ12が取り付けられたスクリュ取付部37に連結されている。なお、計量スプライン軸36の外周面の回転軸線方向の後端部には、ロータ33の内周面に設けられたキー溝に対応する一個以上のキー36aが形成されている。これにより、計量モータ31からスクリュ12に回転駆動力が伝達されて、スクリュ12を回転させることができる。
 射出モータ41は、主に、ロータ43と、ロータ43の周囲に配置されたステータ44と、ロータ43及びステータ44の周囲を取り囲んで設けられて、内表面にステータ44が設けられたステータフレーム45とを有するものである。ロータ43はその回転軸線方向の各端部で、ステータフレーム45の内側に軸受43aにより支持されている。射出モータ41は、ロータ43が駆動軸に接続されている。この駆動軸は、より詳細には、円筒状のロータ43の内周側に設けた溝部43bでスプライン結合された射出スプライン軸46と、射出スプライン軸46に連結されたねじ軸48と、計量スプライン軸36の内側に軸受49を介して回転自在に取り付けられた回転軸50とを有する。ねじ軸48に螺合するねじナット47は、後述する圧力検出器38を介してモータ支持プレート42に取り付けられる。この構造により、射出モータ41による回転駆動力が、スクリュ12の回転軸線方向の直線駆動力に変換されて、スクリュ12に伝達される。
 なお、射出モータ41のステータフレーム45とモータ支持プレート42との間には、圧力検出器38を配置している。この圧力検出器38はモータ支持プレート42及びねじナット47のそれぞれに取り付けられて、射出モータ41からスクリュ12への駆動力の伝達経路で当該圧力検出器38に作用する荷重を検出する。圧力検出器38とステータフレーム45との間には、筒状部分39を介在させて設けている。
 また、回転軸線方向で上記の駆動軸とは反対側に位置する射出モータ41のステータフレーム45の後端面には、ロータ43と軸部45bで連結されてロータ43の回転を検出するエンコーダ45aが設けられている。
 このような射出装置1を備える射出成形機による成形過程の一例を述べると、前回の成形過程の後半に既にシリンダ11の内部に成形材料が所定の量で計量されて配置された状態で、図示しない金型装置を閉じて型締状態とする型締工程を行う。次いで、スクリュ12の前進により成形材料を金型装置内に向けて射出し、成形材料を金型装置内のキャビティに充填する充填工程と、スクリュ12をさらに前進させてシリンダ11の先端部14の内部にある成形材料を所定の圧力に保持する保圧工程とを順次に行う。
 そしてその後、金型装置内に充填された成形材料を冷却させて硬化させ、成形品を得る冷却工程を行う。この際に、予備加熱装置21からシリンダ11内に別途供給した成形材料を、加熱器13による加熱下でスクリュ12の回転によりシリンダ11の先端部14に向けて送りながら溶融させ、所定の量の成形材料を先端部14に配置する計量工程が行われる。
 ここにおいて、この実施形態では、シリンダ11内に供給される成形材料が、予備加熱装置21により既に適切な温度に加熱されている。それ故に、スクリュ12を高速で回転させ、成形材料を短時間のうちにシリンダ11の先端部14に送ったとしても、成形材料を十分に可塑化することができる。これにより、計量に要する時間が短くなり、成形サイクルの短縮化を実現することができる。
 なおその後は、金型装置を開いて型開状態とし、エジェクタ装置等により金型装置から成形品を取り出す取出工程を行う。
〔第2発明〕
 この実施形態では、予備加熱装置81は、成形材料を予熱するためのものあり、図15に例示するような射出装置1が備えることで、射出装置1に予熱した成形材料を供給することができる。図15に例示する射出装置1は、射出成形機で、たとえば射出装置1を前進・後退させる移動装置のスライドベース101上に配置されて、金型装置への成形材料の射出を行うものである。射出装置1は、予備加熱装置81と、予備加熱装置で予熱された成形材料が供給されて内部で成形材料を溶融させるシリンダ11とを備えることができる。なお、図示の射出装置1は、シリンダ11の内部で回転駆動されて成形材料を可塑化するスクリュ12や、シリンダ11の周囲に設けられてシリンダ11の内部の成形材料を加熱する加熱器13等をさらに備えるものであるが、この射出装置1の詳細な構造については後述する。
(予備加熱装置)
 予備加熱装置81は、射出装置1のスクリュ12の回転軸線方向(図15の左右方向)で、シリンダ11の成形材料を射出する先端部14とは逆側の後端部に取り付けられる。より詳細には、この予備加熱装置81は、シリンダ11上にて、図16に示すように、シリンダ11の後端部で周方向の一部に設けられた貫通孔状の供給口11aに接続されており、当該供給口11aに、実質的に球状もしくは円柱状その他の形状の樹脂ペレット等の成形材料Mmを供給するものである。
 この実施形態では、予備加熱装置81は、成形材料Mmが通る材料送り通路82を有するものである。材料送り通路82は、例えば金属で形成された配管などの管状体83の内周面によって区画されている(換言すれば、材料送り通路82は管状体83の内部に形成されている)。そして、材料送り通路82は、成形材料Mmと加熱媒体Ghとが合流する合流部82aと、合流部82aで合流した成形材料Mmと加熱媒体Ghとを混合させ、加熱媒体Ghで該成形材料Mmを加熱するインラインの混合部82bと、を有する。したがって、成形材料Mmは、図16に示すように、材料通過方向上流(図16の左側)から下流(図16の右側)へ材料送り通路82を通ってシリンダ11の供給口11aに供給され、その途中において、加熱媒体Ghと合流する合流部82a、次いで、成形材料Mmと加熱媒体Ghとを混合する混合部82bを通過する。
 このような構成を有する予備加熱装置81では、シリンダ11の内部に供給する成形材料Mmを、その供給前に予め加熱することができる。その結果、予熱された成形材料Mmは、供給口11aを通ってシリンダ11の内部に供給された後に当該内部で短時間のうちに十分に溶融して、シリンダ11の先端部から射出されるので、成形のサイクルの短縮化を実現することができる。
 ここで、材料送り通路82は、図示の例では、材料通過方向上流から下流に向かって、鉛直方向(図では上下方向)に延びる第1部分821と、第1部分821の鉛直方向下端(材料通過方向下流側)に続いて、水平方向(図では左右方向)に延びる第2部分822と、第2部分822の材料通過方向下流側に続いて、鉛直方向に延びる第3部分823と、を有する。第1部分821は、鉛直方向上端において、成形材料Mmが材料送り通路82内に供給され、また、第2部分822は合流部82aおよび混合部82bを有し、さらに第3部分823は上下方向下端において後述する供給容器26に連結している。
 なお、材料送り通路82の大きさは、搬送する成形材料Mmの量、加熱する温度などによって任意にすることができる。また、材料送り通路82は、図16に示す形状に限らず、任意の形状にすることができる。さらに、材料送り通路82を形成する管状体83の周囲には断熱材を設けることができる。
 材料送り通路82中の合流部82aは、ヒータ84で加熱された加熱媒体Ghが、ヒータ84から熱媒送り通路84aで送られて、材料通過方向上流から下流への搬送中の成形材料Mmと合流する部分である。
 加熱媒体Ghとしては、加熱ガス、具体的には、空気、不活性ガスなどの気体を加熱したもの、または過熱水蒸気などを用いることができるが、加熱媒体Ghとしては、合流部82aで成形材料Mmと合流し材料通過方向下流へ流動可能であれば特に限定されない。また、加熱媒体Ghは、予備加熱装置81が有するヒータ84によって加熱されたものであり、当該ヒータ84としては、例えば熱風加熱式ヒータを用いることができる。熱風加熱式ヒータは具体的には、たとえば、コンプレッサから送られる圧縮空気をシーズヒータ等で加熱することにより、熱風が得られるものとすることができる。熱風の温度調整は、シーズヒータの出力を変更することにより可能である。また、加熱媒体Ghは、予備加熱装置81が有する熱媒送り通路84aを通って合流部82aに送られるが、ヒータ84と合流部82aとの間の当該熱媒送り通路84aは、例えば、断熱材が周囲に設けられた、金属で形成された配管84b等で区画され得る。
 加熱媒体Ghは、ヒータ84で生成された後、図16の熱媒送り通路84aを介して、材料送り通路82の合流部82aへ送られる。
 なお、合流部82aでは、上述のように材料送り通路82から熱媒送り通路84aが分岐しているが、合流部82aと熱媒送り通路84aとの間には、成形材料Mmが熱媒送り通路84aに送られないようにするための、網などの通過防止部を設けることができる。
 混合部82bは、合流部82aで合流した成形材料Mmと加熱媒体Ghとをインラインで混合させ、加熱媒体Ghで該成形材料Mmを加熱する部分である。合流部82aを設けることにより、成形材料Mmは、加熱媒体Ghと当該合流部82aで合流し加熱媒体Ghとともに材料通過方向に送られることで、成形材料Mmと加熱媒体Ghとが接触し、成形材料Mmは部分的には加熱され得る。しかし、成形材料Mmの加熱はそのような加熱媒体Ghとの接触だけでは、十分均一に、また、短時間のうちに効率的に行われにくい。そこで、材料送り通路82に混合部82bも設けることで、成形材料Mmおよび加熱媒体Ghの流れを均質化し、成形材料Mmを均一に昇温させることができる。また、効果的に混ざり合わされることで、成形材料Mmの表面全体から十分に加熱され、高速昇温が可能となる。
 混合部82bとしては、図16の例では、駆動部を有しないインライン混合器である静止型混合器が用いられている。図示の例での静止型混合器は、具体的には、材料送り通路82内に設けられた複数の螺旋状にねじられた板82cを含んでおり、このような螺旋状の板82cを含むことで、成形材料Mmと加熱媒体Ghとの流れが分割、転換、反転されながら混合部82bを通過し、成形材料Mmを短時間のうちに効率的に、均一に加熱することができる。
 螺旋状の板82cは、図17に示すように(図17では2枚の板を示している)、平板を、軸周りに略180°ねじって螺旋状になった形状を有し、当該軸が材料送り通路82での材料通過方向に沿うように、当該螺旋状の板82cが配置される。また、隣り合う螺旋状の板82cは、相互に、軸周りのねじり方向が逆になっており、また、相互に、板82cの端部が略直交する向きで接合されている。このような螺旋状の板82cを含む静止型混合器は、当該螺旋状の板82cが複数枚含まれることが好ましく、これにより成形材料Mmと加熱媒体Ghとを効果的に混合することができる。また、螺旋状の板82cは、金属で形成することができる。但し、静止型混合器は、上述したような螺旋状にねじられた板82cに限らず、たとえば加熱媒体の流れの方向を変化させること及び/又は材料送り通路82を部分的に狭くすること等により、成形材料Mmと加熱媒体との接触効率を高めることができるものであればよい。
 なお、本実施形態において混合部82bとしては、成形材料Mmと加熱媒体Ghとをインラインで混合可能であれば上記の混合器に限定されず任意のものを用いることができ、駆動部を有していても有していなくてもよい。また好ましくは、駆動部を有しないインラインで混合可能な混合器である。このような混合器を用いることで、例えば、材料送り通路82として成形材料Mmの既存の搬送路などを利用してそこに当該混合器を設けることができ、少ない設備導入コストとすることができる。
 また、本実施形態の予備加熱装置81は、成形材料Mmを材料送り通路82の上流から下流へ搬送する搬送器85を備えており、図16の例では、当該搬送器85は、成形材料Mmを気体圧送する気体圧送器である。気体圧送器85は、より詳細には、コンプレッサ(図示は省略)等により製造した圧縮気体Gpを図18に示すように気体圧送器85に導入し、圧縮気体Gpを、材料送り通路82の材料通過方向下流側(図18では右側)に向けて吐出側気体流Gbを生成することで(換言すれば、吐出側気体流Gbを生成するための吐出口が材料通過方向下流側に向いている)、圧縮気体Gpを吐出側気体流Gbを吐出した吐出部よりも上流側(図18では左側)が負圧になる。それにより、気体圧送器85よりも材料通過方向上流側において下流側へ吸引される吸引側気体流Gfが生じ、材料送り通路82の材料通過方向上流側に存在する成形材料Mmを下流側へ搬送する。
 そして、本実施形態では、図16に示すように、気体圧送器85は、材料送り通路82内の合流部82aより上流側に設けられることにより、気体圧送器85が、材料送り通路82の材料通過方向上流に存在する成形材料Mmを、合流部82aへ吸引して搬送し、次いで、加熱媒体Ghとともに混合部82bを通過させて、材料送り通路82の下流側へ圧送して搬送する。また、気体圧送器85は、材料送り通路82内の合流部82aより上流側に設けられることにより、加熱媒体Ghの材料通過方向上流への逆流を防ぐことができる。
 このように搬送器85として成形材料Mmを気体圧送する気体圧送器を用いることにより、例えば、成形材料Mmの既存の搬送路などを利用でき、少ない設備導入コストとすることができる。
 なお、搬送器85として気体圧送器を用いる場合には、圧縮気体Gpは特に限定されず空気を用いることができる。また、材料送り通路82は、材料通過方向下流側であってシリンダ11の供給口11aの前に、例えば図16に示す例では供給容器26に、加熱媒体Ghが排出される排出口(図示は省略)を設けることができるが、当該排出口を、搬送のために導入した気体圧送器85由来の気体の排気としても用いることができる。
 また、他の実施形態では、予備加熱装置181において、搬送器185としての気体圧送器を、図19に示すように材料送り通路182中の混合部182bよりも材料通過方向下流側に設けており、気体圧送器185よりも材料通過方向上流側に生じる、下流側への吸引力により、成形材料Mmを、材料送り通路182中の合流部182a、混合部182bを経由して搬送させることができる。
 また、さらに他の実施形態では、上述の気体圧送器に代えて、予備加熱装置281中の搬送器285として図20に示すようにフィードスクリュ285を用いており、材料送り通路282の材料通過方向上流にフィードスクリュ285を設けることにより、成形材料Mmを、材料送り通路282中を押し出すように、合流部282a、混合部282bを経由して搬送させることができる。なお、図20に示すフィードスクリュ285は、成形材料Mmを回転することで移動させるスクリュ285aと、当該スクリュ285aを内包する円筒状のシリンダ285bと、当該スクリュ285aを回転させる駆動部285cとを備える。また、フィードスクリュ285は、シリンダ285bの駆動部285c側の開口部285dに供給容器227(ホッパー)が接続され、当該供給容器227より成形材料Mmが供給される。さらに、フィードスクリュ285は、シリンダ285bの先端部側の開口部285eに材料送り通路282が接続され、当該開口部285eから材料送り通路282へ成形材料Mmが送り出される。
 ところで、本実施形態においては、材料送り通路82の材料通過方向の下流側(図16の下端側)には、ホッパー等のシリンダ供給用の供給容器26が設けられている。供給容器26は、図示の例では、たとえば内外形がともに円錐台状である円錐台状部分26aと、円錐台状部分26aの小径側の端部に形成された円筒状部分26bとを有するものである。供給容器26は、材料送り通路82を通過した成形材料Mmを、円錐台状部分26aに受け入れた後、その先の円筒状部分26bに通してシリンダ11の内部に供給する。円錐台状部分26aの端部には、材料送り通路82とほぼ同程度の幅の開口部26cが形成されており、材料送り通路82を通過した成形材料Mmは、その開口部26cから供給容器26内に入る。
 また、材料送り通路82の材料通過方向の上流側には、複数個の成形材料Mmを蓄えて該成形材料Mmを適正量で材料送り通路82に供給するホッパー等の通路供給用の供給容器27が、搬送器85前に載置されている。
 図示の例では、成形材料Mmは、通路供給用の供給容器27から予備加熱装置81に供給される。そして、予備加熱装置81に供給された成形材料Mmは、予熱されながら材料送り通路82を通過し、シリンダ供給用の供給容器26を経た後に、シリンダ11の内部に供給される。つまりここでは、予備加熱装置81で予熱された成形材料Mmがシリンダ11の内部に供給されることになる。但し、供給容器26及び/又は供給容器27の形状はこれに限らず、適宜変更することができるとともに、供給容器26及び/又は供給容器27を省略することもある。仮にシリンダ用の供給容器26を省略して無くした場合、予備加熱装置がシリンダ上に配置されて、材料送り通路の材料通過方向の先端側がシリンダの供給口に直接的に連通される。この場合、予備加熱装置で予熱された成形材料は、当該予熱の直後にシリンダの内部に供給される。
 なお、図16に示す実施形態では、シリンダ11の内部でのスクリュ12等による可塑化が進行するに従って、成形材料Mmがシリンダ供給用の供給容器26からシリンダ11の内部に供給される。それに伴い、通路供給用の供給容器27内の成形材料Mmが順次に、材料送り通路82を通ってヒータ84で加熱された後に、シリンダ供給用の供給容器26に投入される。この場合、材料送り通路82を通過する成形材料Mmの速度は、シリンダ11の内部での成形材料Mmの可塑化の速度に依存し得るが、当該成形材料Mmの通過速度は、先述したような搬送器85により調整することもできる。また必要に応じて、成形材料Mmの材料送り通路82を通過する速度及び、それに影響される成形材料Mmの加熱の程度を調整するため、図示は省略するが、材料送り通路82と供給容器26との間に、材料送り通路82から供給容器26への成形材料Mmの供給を調整するスクリュ状等のフィーダーその他の供給調整機を設けてもよい。
 ところで、本実施形態において、予備加熱装置81には、材料送り通路82での成形材料Mmの滞留を検出する滞留検出機構(図示は省略する)を設けることが好ましい。滞留検出機構としては、たとえば、温度等により滞留を検出するセンサとすることができる。滞留検出機構を設けることにより、例えば射出装置の停止などによって成形材料Mmが滞留した場合などにおいて、成形材料Mmの温度が過昇温したときに早期に発見することができる。なお、ここでいう成形材料Mmの温度は、成形材料Mm自体の温度、材料送り通路中の空間における温度、又は材料送り通路を形成する管状体の温度とすることができる。
 滞留検出機構のそのようなセンサは、材料送り通路82の合流部82aまたは混合部82b、あるいはその下流側近傍の箇所に設けることが好適である。
(予備加熱装置の制御)
 以上に述べた予備加熱装置は、たとえば次に述べるようにして制御することができる。なおここでは、一例として、予備加熱装置81、181、281のうちの、予備加熱装置81を用いて、その制御について説明する。
 予備加熱装置81では、その使用時に、先述したように、滞留検出機構等として材料送り通路82に設けたセンサとしての温度センサ等で、材料送り通路82の成形材料Mmの温度を常時監視しておく。これにより測定された成形材料Mmの温度の情報は、たとえば射出成形機の制御部に送信される。
 正常に作動しているとき、成形材料Mmの温度は、成形材料Mmの融点Tmより低い温度に予め定められる許容上限値Tu未満になるように、ヒータ84の加熱温度その他の条件を設定することがある。許容上限値Tuは、たとえば融点Tmよりも10℃程度低い温度に設定され得る。
 ここで、何らかの理由により射出成形機の作動が停止した場合、材料送り通路82では、成形材料Mmの温度が上昇し得る。成形材料Mmの温度が融点Tmに近づいたり、融点Tm以上になったりすると、成形材料Mmどうしが、又は成形材料Mmと管状体83とが溶融・融着し、成形材料Mmが材料送り通路82を通過できなくなることが懸念される。
 これを防止するため、射出成形機の作動が停止した場合、又は、材料送り通路82での成形材料Mmの滞留を検出した場合は、その作動停止信号又は滞留検出信号を、制御部に送信する。これを受けて制御部は、予備加熱装置81に、ヒータ84による成形材料Mmの加熱を停止するよう加熱停止信号を送信し、予備加熱装置81は、ヒータ84による成形材料Mmの加熱を停止する。すなわち、予備加熱装置81は、射出成形機の作動停止の情報、及び/又は、材料送り通路82での成形材料Mmの滞留に関する情報に基づいて、ヒータ84による成形材料Mmの加熱を停止する。
 ヒータ84による成形材料Mmの加熱を停止した場合であっても、余熱により、材料送り通路82での成形材料Mmの温度が上昇することがある。それ故に、ヒータ84の加熱停止後、温度センサにより測定される成形材料Mmの温度が所定の基準を満たした場合、材料送り通路82の成形材料Mmを、たとえば冷却ガスGc等により冷却する。
 成形材料Mmの冷却を開始する上記の所定の基準は、成形材料Mmの温度の実測値と許容上限値Tuとの比較により決定される基準とすることができ、具体的には、成形材料Mmの温度の実測値が許容上限値Tuに達したことをもって、成形材料Mmの冷却を開始することとすることができる。あるいは、成形材料Mmの温度と予備加熱装置81の周囲温度との差から、成形材料Mmが今後上昇し得る温度上昇量を推測し、その推定された温度上昇量と許容上限値Tuとの比較により決定される基準を、上記の所定の基準とすることもできる。言い換えると、予備加熱装置81は、成形材料Mmの温度に関する情報に基づいて、材料送り通路82の成形材料Mmを冷却する。
 成形材料Mmの冷却は、ヒータ84の熱風加熱式ヒータ又は送風部(図示は省略)が冷風等の常温もしくは冷却ガスGcを送れる構造にすることによって実現することができる。
 これにより、成形材料Mmの溶融による材料送り通路82の閉塞を有効に防止することができる。
 上述したような制御の一例を図21に示す。図21では、はじめに、成形材料Mmを、予備加熱装置81に通した後にシリンダ11の内部に供給して、成形品の成形を行う。この間に、射出成形機の作動が停止した場合は、ヒータ84を停止する。射出成形機の作動が停止していない場合であっても、材料送り通路82での成形材料Mmの滞留が発生した場合は、ヒータ84を停止する。射出成形機の作動が停止しておらず、かつ、成形材料Mmの滞留が発生していない場合は、成形を継続する。なお、射出成形機の作動が停止したかどうかの確認と、成形材料Mmの滞留が発生したかどうかの確認は、その順序が逆になるように入れ替えてもよく、又は、いずれか一方の確認のみとすることもできる。
 次いで、ヒータ84を停止した後に、成形材料Mmの温度が許容上限値以上であるか否かを確認する。成形材料Mmの温度が許容上限値以上であった場合は、成形材料Mmの冷却を行い、再度、成形材料Mmの温度が許容上限値以上であるか否かを確認する。
 成形材料Mmの温度が許容上限値未満であった場合は、成形を再開するか否かの判断を行う。成形を再開してもよいと判断された場合、成形を再開する。
(射出装置)
 上述したような予備加熱装置81等を適用することができる射出装置1は、図15に例示するように、主として、予備加熱装置81と、予備加熱装置81から供給された成形材料を内部で溶融させるシリンダ11と、シリンダ11の内部で回転駆動されて成形材料を可塑化するスクリュ12と、スクリュ12の回転軸線方向の後方側(図15の右側)に配置された計量モータ31と、計量モータ31のさらに後方側に配置された射出モータ41とを備える。
 シリンダ11の周囲には、シリンダ11の内部でスクリュ12により可塑化される成形材料を加熱する加熱器13が配置されている。シリンダ11は回転軸線方向の先端側(図15の左側)に内外径が小さくなる先端部14を有し、その先端部14の周囲にも加熱器13が配置される。また、シリンダ11は回転軸線方向の後端側には、貫通孔状の供給口11aが設けられており、そこに先述の予備加熱装置81が取り付けられている。
 計量モータ31及び射出モータ41はそれぞれ、スライドベース101上に立てた姿勢で互いに間隔をおいて配置された二枚のモータ支持プレート32、42のそれぞれの回転軸線方向の後端側の背面に固定されている。スクリュ12は、計量モータ31により回転駆動されるとともに、射出モータ41により進退駆動される。二枚のモータ支持プレート32、42は、計量モータ31の周囲の複数箇所、たとえば四箇所でロッド51、52により互いに連結されている。
 計量モータ31は、主に、ロータ33と、ロータ33の周囲に配置されたステータ34と、ロータ33及びステータ34の周囲を取り囲み、内表面にステータ34が設けられたステータフレーム35とを含む。計量モータ31のロータ33はその回転軸線方向の各端部で、ステータフレーム35の内側に軸受33aにより支持されている。また、このロータ33は、計量スプライン軸36の周囲にスプライン結合されており、この計量スプライン軸36は、スクリュ12が取り付けられたスクリュ取付部37に連結されている。なお、計量スプライン軸36の外周面の回転軸線方向の後端部には、ロータ33の内周面に設けられたキー溝に対応する一個以上のキー36aが形成されている。これにより、計量モータ31からスクリュ12に回転駆動力が伝達されて、スクリュ12を回転させることができる。
 射出モータ41は、主に、ロータ43と、ロータ43の周囲に配置されたステータ44と、ロータ43及びステータ44の周囲を取り囲んで設けられて、内表面にステータ44が設けられたステータフレーム45とを有するものである。ロータ43はその回転軸線方向の各端部で、ステータフレーム45の内側に軸受43aにより支持されている。射出モータ41は、ロータ43が駆動軸に接続されている。この駆動軸は、より詳細には、円筒状のロータ43の内周側に設けた溝部43bでスプライン結合された射出スプライン軸46と、射出スプライン軸46に連結されたねじ軸48と、計量スプライン軸36の内側に軸受49を介して回転自在に取り付けられた回転軸50とを有する。ねじ軸48に螺合するねじナット47は、後述する圧力検出器38を介してモータ支持プレート42に取り付けられる。この構造により、射出モータ41による回転駆動力が、スクリュ12の回転軸線方向の直線駆動力に変換されて、スクリュ12に伝達される。
 なお、射出モータ41のステータフレーム45とモータ支持プレート42との間には、圧力検出器38を配置している。この圧力検出器38はモータ支持プレート42及びねじナット47のそれぞれに取り付けられて、射出モータ41からスクリュ12への駆動力の伝達経路で当該圧力検出器38に作用する荷重を検出する。圧力検出器38とステータフレーム45との間には、筒状部分39を介在させて設けている。
 また、回転軸線方向で上記の駆動軸とは反対側に位置する射出モータ41のステータフレーム45の後端面には、ロータ43と軸部45bで連結されてロータ43の回転を検出するエンコーダ45aが設けられている。
 このような射出装置1を備える射出成形機による成形過程の一例を述べると、前回の成形過程の後半に既にシリンダ11の内部に成形材料が所定の量で計量されて配置された状態で、図示しない金型装置を閉じて型締状態とする型締工程を行う。次いで、スクリュ12の前進により成形材料を金型装置内に向けて射出し、成形材料を金型装置内のキャビティに充填する充填工程と、スクリュ12をさらに前進させてシリンダ11の先端部14の内部にある成形材料を所定の圧力に保持する保圧工程とを順次に行う。
 そしてその後、金型装置内に充填された成形材料を冷却させて硬化させ、成形品を得る冷却工程を行う。この際に、予備加熱装置81からシリンダ11内に別途供給した成形材料を、加熱器13による加熱下でスクリュ12の回転によりシリンダ11の先端部14に向けて送りながら溶融させ、所定の量の成形材料を先端部14に配置する計量工程が行われる。
 ここにおいて、この実施形態では、シリンダ11内に供給される成形材料が、予備加熱装置81により既に適切な温度に加熱されている。それ故に、スクリュ12を高速で回転させ、成形材料を短時間のうちにシリンダ11の先端部14に送ったとしても、成形材料を十分に可塑化することができる。これにより、計量に要する時間が短くなり、成形サイクルの短縮化を実現することができる。
 なおその後は、金型装置を開いて型開状態とし、エジェクタ装置等により金型装置から成形品を取り出す取出工程を行う。
〔第3発明〕
 この実施形態では、予備加熱装置60は、成形材料を予熱するためのものあり、図22に例示するような射出装置1が備えることで、射出装置1に予熱した成形材料を供給することができる。図22に例示する射出装置1は、射出成形機で、たとえば射出装置1を前進・後退させる移動装置のスライドベース101上に配置されて、金型装置への成形材料の射出を行うものである。射出装置1は、予備加熱装置60と、予備加熱装置で予熱された成形材料が供給されて内部で成形材料を溶融させるシリンダ11とを備えることができる。なお、図示の射出装置1は、シリンダ11の内部で回転駆動されて成形材料を可塑化するスクリュ12や、シリンダ11の周囲に設けられてシリンダ11の内部の成形材料を加熱する加熱器13等をさらに備えるものであるが、この射出装置1の詳細な構造については後述する。
(予備加熱装置)
 予備加熱装置60は、射出装置1のスクリュ12の回転軸線方向(図22の左右方向)で、シリンダ11の成形材料を射出する先端部14とは逆側の後端部に取り付けられる。より詳細には、この予備加熱装置60は、シリンダ11上にて、図23に示すように、シリンダ11の後端部で周方向の一部に設けられた貫通孔状の供給口11aに接続されており、当該供給口11aに、実質的に球状もしくは円柱状その他の形状の樹脂ペレット等の成形材料Mmを供給するものである。
 ここで、予備加熱装置60は、図22~24に示すように、成形材料Mmが通る材料用通路61と、材料用通路61内の成形材料Mmを加熱するべく、過熱水蒸気Ssを材料用通路61内に導入する過熱水蒸気導入口62とを有するものである。材料用通路61内で成形材料Mmは、過熱水蒸気導入口62から導入された過熱水蒸気Ssで加熱される。これにより、成形材料Mmをシリンダ11内に供給する前に、成形材料Mmの予熱を行うことができる。
 過熱水蒸気導入口62から材料用通路61内に導入される過熱水蒸気Ssは、図示しない過熱水蒸気発生装置等で、水が沸騰し気化した水蒸気にさらに熱を加えることにより発生させることができる。一般に、加熱空気(熱風)等は対流伝熱で加熱対象物を加熱するのに対し、過熱水蒸気は、対流伝熱のみならず、さらに輻射伝熱及び凝縮伝熱で加熱対象物を加熱し、加熱空気等と比べて熱エネルギーが極めて大きい。ここでは、過熱水蒸気導入口62から導入される過熱水蒸気Ssで、成形材料Mmを加熱することから、成形材料Mmの温度が短時間のうちに所定の温度まで上昇する。その結果として、この実施形態では、成形材料Mmの予熱が瞬時に行われるので、射出成形機による成形のサイクルを短縮することができる。このことは、特にハイサイクル成形で適用した場合に有利である。
 たとえば、過熱水蒸気発生装置は、断熱された筐体内にシーズヒータ等の加熱機器を設けた構造を有するものとすることができる。この場合、過熱水蒸気発生装置では、ボイラ等から送られてきた飽和水蒸気を加熱して、過熱水蒸気を発生させることができる。
 過熱水蒸気導入口62には、射出装置を含む射出成形機に設けられ得る過熱水蒸気発生装置で発生させた過熱水蒸気を供給することができる他、射出装置が設置される工場等の設置場所における所定の設備で別途発生した過熱水蒸気を供給してもよい。
 予備加熱装置60は、図示の例のように、材料用通路61の周囲に設けられた円筒その他の筒状等の通路区画壁部63をさらに有することができる。この通路区画壁部63の内側には、材料用通路61が区画されて設けられている。特にこの例では、円筒状の通路区画壁部63は、その中心軸線が、たとえば水平方向であるスクリュ12の回転軸線方向(図22~24の左右方向)とほぼ平行になるように横向きに配置されている。このような通路区画壁部63の内側の材料用通路61では、成形材料Mmは上記の回転軸線方向に移動することにより、成形材料Mmが通る方向である材料通行方向が当該回転軸線方向と平行になる。但し、材料用通路61での材料通行方向は、後述する実施形態のように、スクリュ12の回転軸線方向に対して直交する鉛直方向になるように、材料用通路61を設けることができる他、図示は省略するが、スクリュ12の回転軸線方向に対して傾斜する方向になるように、材料用通路61を斜めに設けることもできる。
 なお、図24に示すように、材料用通路61の材料通行方向の後端側(図22~24では右側)には、通路区画壁部63の周方向の一部をくり抜いて形成した孔状の通路入口61aが設けられている。この通路入口61aには、実質的に円錐台状のホッパー61bが取り付けられ得る。
 材料用通路61の材料通行方向の先端側(図22~24では左側)には、通路区画壁部63の周方向の一部に外周側に向かって突出して設けられて材料通行方向に直交する方向の下方側である先端側に向けて先細りになる通路出口61cが設けられている。
 また、予備加熱装置60はさらに、材料用通路61内で成形材料Mmを材料通行方向に送る搬送機構をさらに有するものとすることができる。この実施形態では、搬送機構の一例として、材料用通路61内に予熱用スクリュ64を設けている。搬送機構は予熱用スクリュ64の他、図示は省略するがベルトコンベア等としてもよい。
 図示の予熱用スクリュ64は、材料用通路61内で材料通行方向に沿う軸線の周りに回転駆動される回転軸65と、回転軸65の外周面上に立てて設けられ、上記の軸線の周囲で螺旋状等の所定の形状で延びるフライト66とを含むものであるが、予熱用スクリュ64の形状はこれに限らない。この予熱用スクリュ64では、モータ等の駆動源67によって回転駆動されると、材料用通路61内で成形材料Mmは、図23に示すように、回転軸65の外周側で、回転軸65の外周面上に設けられたフライト66により、材料通行方向に搬送される。
 この実施形態の予熱用スクリュ64は、中空の回転軸65としている。具体的には、回転軸65は、図24から解かるように、その内側の内部空間68と、内部空間68を区画する円筒状の周壁部69と、その周壁部69に該周壁部69を貫通して形成された複数個の連通孔70とを有するものである。そしてここでは、過熱水蒸気導入口62は、予熱用スクリュ64、より詳細には、予熱用スクリュ64の回転軸65の回転軸線方向の先端面に設けられている。たとえば、予熱用スクリュ64における回転軸65の回転軸線方向の先端部を、通路区画壁部63の端面に設けた開口部63aから通路区画壁部63の外部に露出させて位置させ、その先端部に過熱水蒸気導入口62を設けることができる。
 このような予熱用スクリュ64が配置された材料用通路61では、過熱水蒸気導入口62から材料用通路61内に導入された過熱水蒸気Ssは一旦、材料用通路61内で予熱用スクリュ64の回転軸65の内部空間68に流れる。そして、内部空間68に流入した過熱水蒸気Ssは、内部空間68から、周壁部69に設けた複数個の連通孔70により当該連通孔70を通って、回転軸65の外周側に送られる。回転軸65の外周側では、フライト66で材料通行方向に搬送されている成形材料Mmが、連通孔70を通過した過熱水蒸気Ssにより加熱される。
 なお、予熱用スクリュ64は、回転軸65の外周面からのフライト66の外周縁の高さ(予熱用スクリュ64の溝深さ)が、成形材料Mmの一個分の長さ以上、かつ、成形材料Mmの二個分の長さ未満とすることが好ましい。この場合、回転軸65の外周側で、複数個の成形材料Mmが予熱用スクリュ64の径方向に重なり合うことが抑制されるので、たとえば回転軸65の連通孔70から外周側に送られる過熱水蒸気により、材料用通路61を通る各成形材料Mmをより一層有効に加熱することができる。それにより、シリンダ11の先端部14から射出される溶融状態の成形材料に、未溶融のものが混じることを効果的に抑制できるので、成形品の外観不良や強度の低下を防止することができる。
 また、予熱用スクリュ64の径方向でフライト66の外周縁と通路区画壁部63の内周面との間の隙間は、成形材料Mmの一個分の長さよりも狭くすることが好適である。これにより、回転軸線方向で成形材料Mmがフライト66を乗り越えてしまうことを抑制できる。なお、フライト66の外周縁と通路区画壁部63の内周面とは、それぞれが接触しないように微小な隙間が設けられている。さらに、予熱用スクリュ64の回転軸65の外周面から通路区画壁部63の内周面までの距離も、成形材料Mmの一個分の長さ以上、かつ、成形材料Mmの二個分の長さ未満とすることが好ましい。
 成形材料Mmの一個分の長さは、成形材料Mmの最も短い寸法とすることが好ましい。たとえば、成形材料Mmがほぼ球状である場合はその直径とし、又は、断面に楕円ないし長円を含む異形の球状である場合はその最も短い短辺側の直径とすることが好ましい。あるいは、成形材料Mmが円柱もしくは角柱その他の柱状であって、その直径もしくは幅と高さのうちの短いほうの寸法を成形材料Mmの一個分の長さとすることがある。
 上述した過熱水蒸気導入口62、通路区画壁部63及び予熱用スクリュ64に代えて、図25に示す過熱水蒸気導入口162、通路区画壁部163及び予熱用スクリュ164とすることもできる。図25では、通路区画壁部163は、通路区画壁部163を貫通する貫通孔状の過熱水蒸気導入口162が、周方向及び回転軸線方向に複数個設けられている。予熱用スクリュ164は、その回転軸165が中空又は中実のいずれであってもよいが、先述したような連通孔70を有しない。また、通路区画壁部163の端面には開口部が設けられておらず、回転軸165は、その回転軸線方向の先端部が通路区画壁部163の内側で終端する。図25に示す実施形態では、通路区画壁部163に設けられた過熱水蒸気導入口162から、材料用通路61内に過熱水蒸気Ssが導入される。これにより、回転軸165の外周側で搬送される成形材料Mmが加熱される。図25に示す実施形態は、過熱水蒸気導入口162、通路区画壁部163及び予熱用スクリュ164の構造を除いて、図22~24に示すものと実質的に同じ構成を有する。
 あるいは、図26に示すように、図22~24に示すものでさらに、通路区画壁部263に複数個の貫通孔状の過熱水蒸気導入口262を設けたものとしてもよい。図26に示す実施形態では、予熱用スクリュ64の回転軸65の外周側で搬送される成形材料Mmは、通路区画壁部263の過熱水蒸気導入口262及び、予熱用スクリュ64の過熱水蒸気導入口62により、予熱用スクリュ64の径方向(図26の上下方向)の内側及び外側の両側から過熱水蒸気が送られて加熱される。図26の実施形態は、通路区画壁部263に過熱水蒸気導入口262を設けたことを除いて、図22~24に示すものとほぼ同じ構成である。
 上述したように、予熱用スクリュ64の周壁部69の連通孔70や、通路区画壁部163、263の過熱水蒸気導入口162、262は、周壁部69又は通路区画壁部163、263の周方向及び回転軸線方向に均等に分散させて多数個設けることが好ましい。そのような予熱用スクリュ64や通路区画壁部163、263を実現するため、周壁部69及び/又は通路区画壁部163、263は、たとえば、正面視で正方形その他の多角形等の形状の複数個の孔部を有する円筒状の網状部材、又は、いわゆるパンチングメタルのような、金属製等の板材にプレス加工等で複数個の孔部を形成した円筒状の板状部材等で構成することができる。網状部材では強度不足である場合、網状部材をハニカム状又は格子状等の補強部材と重ね合わせたもので、周壁部69及び/又は通路区画壁部163、263を構成してもよい。
 たとえば、射出装置1のシリンダ11での可塑化能力が高く、シリンダ11への成形材料Mmの供給をより速い速度で行うことが求められる場合、上記の予熱用スクリュ64、164の外径を大きくすることにより対応することができる。あるいは、図27に材料用通路を上方側から見た断面図で示すように、一つの通路出口361cに成形材料Mmを送る材料用通路361を、たとえばその周囲の通路区画壁部363及びその内側の予熱用スクリュ364とともに、図27に示す例では、通路出口361cの周囲に四つの直線状の材料用通路361を、互いに90°の角度で離して配置しているが、材料用通路361の個数や配置態様は適宜変更することができる。複数の材料用通路361を設けた場合、それぞれの材料用通路361内に過熱水蒸気が導入されるように、過熱水蒸気導入口を設ける。この例では、たとえば、各通路区画壁部363に複数の過熱水蒸気導入口を設けることができる。また、過熱水蒸気用の排出口を設けてもよい。
 ところで、材料用通路61で成形材料Mmを加熱する過熱水蒸気は、先述したように成形材料Mmを高速で昇温させることができる。他方、過熱水蒸気で加熱された成形材料Mmは、たとえば100℃よりも低い温度になると結露が生じ得る。
 このような結露による水分の除去等を目的として、材料用通路61を通過して過熱水蒸気で加熱された成形材料Mmを乾燥ないし、さらに加熱するため、この実施形態の予備加熱装置60はさらに、図23に示すように、過熱水蒸気で加熱されて材料用通路61を通過した後に成形材料Mmが通る材料送り通路22と、材料送り通路22を通る成形材料Mmを加熱するヒータ24とを有する。この実施形態では、成形材料Mmは、先述の材料用通路61を回転軸線方向に通過した後、自重により材料用通路61の通路出口61cから材料送り通路22に落下して入り、材料送り通路22を通る。ここでは、材料用通路61での材料通行方向と、材料送り通路22で成形材料Mmが通る方向である材料通過方向(図23の上下方向)とは直交し、成形材料Mmは材料送り通路22を鉛直方向に通過する。
 この材料送り通路22は、互いに対向して配置されて相互間に材料送り通路22が区画される対をなす通路形成部材23を有する。そして、ヒータ24は、材料送り通路22から通路形成部材23を隔てた通路幅方向の外側に配置されている。通路形成部材23及びヒータ24は、過熱水蒸気で加熱されて材料用通路61を通過した成形材料Mmを乾燥する機能を有する他、当該成形材料Mmをさらに加熱する機能をも有する。ここでいう通路幅方向は、互いに平行に並ぶ通路形成部材23の整列方向であって、材料送り通路22での材料通過方向に直交する方向(図23の左右方向)を意味する。図示の実施形態では、材料送り通路22、通路形成部材23及びヒータ24は、断熱材等からなる箱状の筐体25の内部に収容されて配置されている。
 なお、材料送り通路22を区画形成する対をなす通路形成部材23の少なくとも一方は可動とすることができ、これにより、材料送り通路22は、対をなす通路形成部材23の相互間の間隔であるその通路幅を調整可能に構成されている。通路形成部材23の少なくとも一方は、たとえば、筐体25の内部でその取付け箇所との間にユーザがスペーサを配置すること等による手動で、又は、モータその他のアクチュエータ等を用いた自動で、通路幅方向に動かすことができるようにしてもよい。材料送り通路22の通路幅を調整可能にすると、様々な寸法形状がある多様な成形材料Mmのそれぞれに応じた適切な通路幅を設定することができる。たとえば、図23に示すように、成形材料Mmの一個分が通過できる程度の通路幅としたときは、成形材料Mmが材料送り通路22をほぼ一列に整列した姿勢で通過し、この際に通路形成部材23の通路幅方向の外側のヒータ24で、成形材料Mmの多くが有効に加熱されることになる。
 材料送り通路22の通路幅は、成形材料Mmの一個分の長さ以上、かつ、成形材料Mmの二個分の長さ未満とすることが好ましい。この場合、材料送り通路22で、複数個の成形材料Mmが通路幅方向に重なり合うことが抑制されるので、それらの成形材料Mmの多くを、より一層有効に加熱することができる。
 材料送り通路22の材料通過方向の先端側(図23の下端側)で筐体25の下面には、ホッパー等の供給容器26が設けられている。供給容器26は、図示の例では、たとえば内外形がともに円錐台状である円錐台状部分26aと、円錐台状部分26aの小径側の端部に形成された円筒状部分26bとを有するものである。供給容器26は、その周壁が断熱材からなるか又は周壁の表面を断熱材で覆うこと等により、断熱材を含むことが好ましい。供給容器26は、材料送り通路22を通過した成形材料Mmを、円錐台状部分26aに受け入れた後、その先の円筒状部分26bに通してシリンダ11の内部に供給する。円錐台状部分26aの端部には、材料送り通路22とほぼ同程度の幅の開口部26cが形成されており、材料送り通路22を通過した成形材料Mmは、その開口部26cから供給容器26内に入る。
 図示の例では、成形材料Mmは材料送り通路22を通過して供給容器26を経た後に、シリンダ11の内部に供給される。つまりここでは、予備加熱装置60で予熱された成形材料Mmがシリンダ11の内部に供給されることになる。但し、供給容器26の形状はこれに限らず、適宜変更することができるとともに、供給容器26を省略することもある。仮に供給容器26を省略して無くした場合、筐体がシリンダ上に配置されて、材料送り通路の材料通過方向の先端側がシリンダの供給口に直接的に連通される。この場合、成形材料は、材料送り通路を通過した直後にシリンダの内部に供給される。
 ここで、ヒータ24は、一方の通路形成部材23の通路幅方向の外側で材料送り通路22の片側だけに配置することも可能であるが、この実施形態では、各通路形成部材23の通路幅方向の外側で材料送り通路22の両側にそれぞれ配置されている。そのほうが、成形材料Mmを両側のヒータ24で迅速に加熱できるので、材料送り通路22の成形材料Mmの通過速度を比較的速くしたとしても、成形材料Mmを有効に加熱することができる。なお、材料送り通路22の材料通過方向の先端側で、成形材料Mmが所望の温度になるように、ヒータ24等の条件が設定される。
 ヒータ24は、通路形成部材23を介して成形材料Mmを加熱できるものであれば、その加熱方式については特に問わない。たとえば、高温の空気等の加熱ガスを送る熱風加熱式ヒータ、高周波誘電加熱等の電熱式ヒータ、ハロゲンランプやセラミックヒータ等の赤外線加熱式ヒータ、レーザ加熱式ヒータ等を採用することができる。ヒータ24を赤外線加熱式ヒータ又はレーザ加熱式ヒータとする場合、通路形成部材23は、ガラス等の光ないしレーザが透過する半透明もしくは透明の材料で構成することができる。なお、ヒータ24の配置は、図示の例に限らず、筐体25の外部に配置し、熱風を材料送り通路22に流すようにしてもよい。
 図示の予備加熱装置60では、一例として、熱風加熱式ヒータを含むヒータ24を有するものとしている。熱風加熱式ヒータは具体的には、たとえば、コンプレッサから送られる圧縮空気をシーズヒータ等で加熱することにより、熱風が得られるものとすることができる。熱風の温度調整は、シーズヒータの出力を変更することにより可能である。熱風加熱式ヒータは、成形材料Mmをより有効に乾燥できる点で好ましい。
 この場合、通路形成部材23は、熱風加熱式ヒータから送られる加熱ガスを、材料送り通路22に通すため、通路幅方向に当該通路形成部材23を貫通する複数個の通気孔を有するものとすることができる。これにより、ヒータ24からの加熱ガスは、通路形成部材23の通気孔を通って材料送り通路22に流れるので、当該加熱ガスで材料送り通路22の成形材料Mmを加熱することができる。
 具体的には通路形成部材23は、たとえば、図28(a)に示すように、いわゆるパンチングメタルのように、金属製等の板材23aにプレス加工等で複数個の通気孔23bを形成した板状部材とすることもできる。この場合、加工態様等の調整により、板材23aに、規則的に配置された複数個の通気孔23bを形成することができる。
 あるいは、通路形成部材23は、図28(b)に示すように、たとえば線材23cを格子状等に配置して、それらの間に、正面視で正方形その他の多角形等の形状の複数個の通気孔23bを設けた網状部材としてもよい。仮にそのような網状部材の厚みが薄く、通路形成部材23で材料送り通路22を形成するに必要な強度が当該網状部材に不足している場合、当該網状部材と補強部材とを重ね合わせて、それらの網状部材と補強部材とで通路形成部材23を構成することができる。補強部材は加熱ガスを通すことができれば、ハニカム状又は格子状等の種々の形状とすることができる。たとえば、補強部材の網目は、網状部材の網目よりも粗いものであってもかまわない。図示の網状部材は、複数個の通気孔23bが、正面視で縦方向(図28(b)の上下方向)及び、当該縦方向に直交する横方向(図28(b)の左右方向)に配列し、規則的に並んで配置されている。
 たとえば、網状の通路形成部材23で材料送り通路22を区画形成した場合、図29に示すように、複数個の成形材料Mmは、通路形成部材23の横方向に拡がって、同図に矢印で示すように、通路形成部材23の縦方向である材料通過方向に移動する。なお、対をなす通路形成部材23の相互間で通路形成部材23の横方向における材料送り通路22の各側部には、通路形成部材23の横方向での材料送り通路22の領域を区画する角棒状等の通路区画部材22aを配置している。
 上述した網状や板状の通路形成部材23のように、正面視で通気孔23bを均等に分散させて規則的に配置したときは、熱風加熱式ヒータとしたヒータ24からの加熱ガスを材料送り通路22に、通路形成部材23の縦方向及び横方向で均等に送ることができる。それにより、材料送り通路22を通る複数個の成形材料Mmの多くに、加熱ガスを吹き付けることができて、それらの成形材料Mmをより一層効果的に加熱することができる。
 この実施形態では、シリンダ11の内部でのスクリュ12による成形材料の可塑化が進行するに従って、供給容器26からシリンダ11の内部に供給される。それに伴い、材料用通路61を通過した成形材料Mmが順次に、材料送り通路22を通ってヒータ24で加熱された後に、供給容器26に投入される。この場合、材料送り通路22を通過する成形材料Mmの速度は、シリンダ11の内部での成形材料Mmの可塑化の速度に依存し得るが、当該成形材料Mmの通過速度は、先述したような通路幅の変更により調整することもできる。また必要に応じて、成形材料Mmの材料送り通路22を通過する速度及び、それに影響される成形材料Mmの加熱の程度を調整するため、図示は省略するが、材料送り通路22と供給容器26との間に、材料送り通路22から供給容器26への成形材料Mmの供給を調整するスクリュ状等のフィーダーその他の供給調整機を設けてもよい。
 また図示は省略するが、通路幅は一定のままで材料送り通路22の位置を変更させる機構があってもよい。材料送り通路22の位置を変更することにより、単位時間当たりの成形材料Mmの通過量を調整することができる。
 ところで、複数個の通気孔23bを有する網状もしくは板状等の通路形成部材23では、それによって形成される材料送り通路22にて、成形材料Mmが通気孔23bに引っ掛かること等に起因して、通路形成部材23の横方向の少なくとも一部で成形材料Mmの詰まり等の滞留が発生することがある。材料送り通路22での成形材料Mmの滞留は、成形材料Mmの過剰な加熱、ひいては成形材料Mmの溶融を招くおそれがある。
 それゆえに、予備加熱装置60には、材料送り通路22での成形材料Mmの滞留を防止する滞留防止機構を設けることが好ましい。
 滞留防止機構としては、たとえば図30~33に示すように、射出成形機の作動時に継続的に、又は、必要なときだけ断続的に、対をなす通路形成部材23の少なくとも一方を変位させて、他方の通路形成部材23に対する一方の通路形成部材23の相対的な位置及び/又は向きを変化させる駆動部とすることができる。なおここでは、その駆動源の図示は省略する。
 図30に示すところでは、一方の通路形成部材23の通路幅方向の外側で、当該通路形成部材23の横方向の両側部にそれぞれ、角棒状の可動用部材22bを設けている。そして、成形材料Mmが材料送り通路22を通過している間、それらの可動用部材22bで一方の通路形成部材23を、図30(b)及び(c)に矢印で示すように、通路形成部材23の横方向に動かすことで、一方の通路形成部材23の、他方の通路形成部材23に対する相対位置が変化する。これにより、成形材料Mmが通気孔23bに引っ掛かったとしても、一方の通路形成部材23の移動でその引っ掛かりが外れて、成形材料Mmの滞留が防止される。
 また、一方の通路形成部材23を、通路形成部材23の横方向ではなく、材料通過方向と平行な縦方向(上下方向)に動かすようにしてもよい。
 図31に示す滞留防止機構では、一方の通路形成部材23の通路幅方向の外側で、当該通路形成部材23の縦方向の両端部のそれぞれに、角棒状の可動用部材22bを設けている。この滞留防止機構は、成形材料Mmの通過中に、図31(b)及び(c)に示すように、可動用部材22bで一方の通路形成部材23を通路幅方向に動かし、一方の通路形成部材23の、他方の通路形成部材23に対する相対位置を変化させる。このとき、材料送り通路22の通路幅が微小に増減する。なお、図31の滞留防止機構は、先述したような通路幅を調整するために通路形成部材23を可動させる機構としても用いることができる。
 図32の滞留防止機構は、一方の通路形成部材23の通路幅方向の外側で、当該通路形成部材23の縦方向の両端部のそれぞれに設けた角棒状の可動用部材22bと、材料送り通路22の材料通過方向の中央位置等の途中位置で当該通路形成部材23と通路区画部材22aとの間に挟み込んで配置されて、通路形成部材23の横方向に延びる円柱状等の支点部材22cとを有するものである。ここでは、支点部材22cは、通路区画部材22aに取り付けられている。この場合、図32(b)及び(c)に示すように、各可動用部材22bを通路幅方向で相互に逆向きに動かすと、一方の通路形成部材23は、支点部材22cの周りで回動変位し、他方の通路形成部材23に対して斜めになるように向きが変化する。より詳細には、一方の通路形成部材23の縦方向の一端部が、他方の通路形成部材23に対して接近もしくは離隔したとき、一方の通路形成部材23の縦方向の他端部は、他方の通路形成部材23に対して離隔もしくは接近するように、一方の通路形成部材23の向きが変化する。なお、これに伴い、材料送り通路22の通路幅は材料通過方向で一定ではなくなるときがある。このような滞留防止機構でも、成形材料Mmの滞留を有効に防止することができる。
 図33の滞留防止機構は、図32とほぼ同様の構成を有するものであるが、支点部材22cが、通路区画部材22aではなく一方の通路形成部材23に固定されて取り付けられている。そして図33では、可動用部材22bを動かさずに、支点部材22cを回転駆動することで、支点部材22cとともに一方の通路形成部材23が支点部材22cの周りで回動変位し、図32と実質的に同様にして他方の通路形成部材23に対する向きが変化する。
 あるいは、滞留防止機構は、図34(a)に示すように、通路形成部材23の少なくとも一方の通路幅方向の外側に配置されて、当該通路形成部材23を所定の周期等で打ち付ける衝撃付与部28で構成することもできる。図示の衝撃付与部28は、他方の通路形成部材23の通路幅方向の外側で当該通路形成部材23と平行に設けられて、一個以上の貫通孔28aが形成された板状部材28bと、板状部材28bの貫通孔28a内を通って配置されて、他方の通路形成部材23に対して離隔・接近変位する一本以上のピン状部材28cを含むものである。一方の通路形成部材23の通路幅方向の外側にも、同様の衝撃付与部28を設けてもよい。
 また、滞留防止機構は、図34(b)に示すように、通路形成部材23の少なくとも一方、たとえば他方の通路形成部材23の通路幅方向の外側の表面に取り付けられて、当該通路形成部材23に振動を与える一個以上の振動子等の振動付与部29で構成してもよい。
 そしてまた、滞留防止機構としては、図35(a)に示すように、通路形成部材23の少なくとも一方の通路幅方向の外側に配置されて、気体を異なる流量で、通路形成部材23の通気孔23bに通して材料送り通路22の成形材料Mmに当てる送風部30とすることもできる。この送風部30は、図35(b)又は(c)に示すように、材料送り通路22の成形材料Mmに送る気体の流量を経時的に変化させ、それにより、気体を成形材料Mmに強弱をつけて当てることができるものである。なお、送風部30から成形材料Mmへ気体を送るに当っては、図35(b)のように、流量がゼロである期間と流量が多い期間とを周期的に繰り返してもよいし、又は、図35(c)のように、流量が少ない期間と流量が多い期間とを周期的に繰り返してもよい。滞留防止機構としての送風部30を別途設けることもできるが、先述した熱風加熱式ヒータとしたヒータ24を送風部30とし、当該ヒータ24を滞留防止機構としても使用することもできる。ヒータ24を予熱及び滞留防止機構として兼用した場合、送風部30からの気体は、ヒータ24からの加熱ガスに相当する。
 図30~35に示すような上述した滞留防止機構は、それらのうちの一つを予備加熱装置60で採用することができる他、それらの複数を組み合わせて採用することもできる。つまり、予備加熱装置60は、図30~35に示す滞留防止機構のうちの一つ以上を含むことができる。
 また、予備加熱装置60には、材料送り通路22での成形材料Mmの滞留を検出する滞留検出機構を設けることが好ましい。滞留検出機構としては、たとえば、温度、カメラによる画像、赤外線又は、レーザ等により滞留を検出するセンサとすることができる。
 滞留検出機構のそのようなセンサは、材料送り通路22の材料通過方向の先端側の部分、つまり、供給容器26よりも材料通過方向の手前における材料送り通路22近傍の箇所に設けることが好適である。より詳細には、図29に示すように、かかるセンサ23dは、たとえば、材料送り通路22の材料通過方向の先端側で、通路形成部材23の通路幅方向の外側に、通路形成部材23の横方向に互いに間隔をおいて複数個設けることができる。これにより、通路形成部材23の横方向で成形材料Mmの滞留が生じている箇所を早期に見つけることができる。
 仮に滞留検出機構のセンサ23dを温度センサとする場合、その温度センサで、材料送り通路22の材料通過方向の先端側の部分に位置する成形材料Mmの温度を測定できるように、当該温度センサを配置することが好ましい。ここでいう成形材料Mmの温度は、成形材料Mm自体の温度、通路形成部材23の温度、又は、通路形成部材23の通気孔23b内の空間における温度とすることができる。接触式の温度センサの場合、成形材料Mm自体の温度又は通路形成部材23の温度を測定するには、たとえば、温度センサを通路形成部材23の通気孔23bに通してその先端が成形材料Mmに接触するように、又は、温度センサの先端が通路形成部材23に接触するように、当該温度センサを配置する。
 先述した滞留防止機構は、射出成形機の作動中に常に継続的に作動させることができ、又は、滞留検出機構により材料送り通路22での成形材料Mmの滞留が検出されたとき等の特定のタイミングで間欠的に作動させることができる。
 図示は省略するが、材料送り通路は複数設けることもできる。この場合、材料送り通路の一つ当たりの面積を小さくすることができて、予備加熱装置の小型化を実現することができる。たとえば、互いに平行に並ぶ二つ以上の材料送り通路を設けたときは、各材料送り通路の通路幅方向の両側にヒータを設けることが、成形材料Mmの迅速かつ均一な予熱を実現するとの観点から好ましい。
 一方、図36に示す実施形態のように、上述した材料送り通路を省略し、材料用通路61の通路出口61cを直接的に、供給容器26の開口部26cに接続してもよい。図36の予備加熱装置260は、図23の予備加熱装置60の筐体25及びその内部構造(すなわち、材料送り通路22、通路形成部材23及びヒータ24)を省略したことを除いて、図23のものと実質的に同様の構成を有するものである。図36に示す予備加熱装置260では、過熱水蒸気Ssで加熱されながら材料用通路61を通過した成形材料Mmは、供給容器26を経て、シリンダ11の内部に供給される。この場合、材料用通路61の通路出口61cに、図示しない熱風加熱式ヒータを設けて、そこで成形材料Mmの乾燥を行うことも可能である。また図示は省略するが、さらに供給容器26も省略して、材料用通路の通路出口をシリンダの供給口に接続することも可能である。
 図37に、さらに他の実施形態の予備加熱装置460を示す。図37の予備加熱装置460は、予熱用スクリュ等の搬送機構を有しないものであり、成形材料Mmが自身の自重により下方側に落下しながら、材料用通路461を通過する。ここでは、材料用通路461の材料通行方向は、材料送り通路22の材料通過方向と同様に鉛直方向と平行な方向としているが、材料用通路461を成形材料Mmが通ることができれば鉛直方向に対して傾斜させることもできる。
 予備加熱装置460では、たとえば、材料用通路461の周囲の通路区画壁部463に複数の過熱水蒸気導入口462が設けられている。過熱水蒸気Ssは、かかる過熱水蒸気導入口462から材料用通路461内に送られ、成形材料Mmを加熱する。
 このような材料用通路461及び過熱水蒸気導入口462を有する予備加熱装置460でも、筐体25及びその内部構造(すなわち、材料送り通路22、通路形成部材23及びヒータ24)、並びに/又は、供給容器26を省略してもよい。
(予備加熱装置の制御)
 以上に述べた予備加熱装置60、360、460は、たとえば次に述べるようにして制御することができる。なおここでは、一例として、予備加熱装置60、360、460のうちの予備加熱装置60を用いて、その制御について説明する。
 予備加熱装置60では、その使用時に、先述したように、滞留検出機構等として材料送り通路22の材料通過方向の先端側の部分に設けたセンサ23dとしての温度センサ等で、材料送り通路22の材料通過方向の先端側における成形材料Mmの温度を常時監視しておく。これにより測定された成形材料Mmの温度の情報は、たとえば射出成形機の制御部に送信される。
 正常に作動しているとき、成形材料Mmは、図38(a)に示すように、加熱ガスGh等で加熱されて、材料送り通路22を材料通過方向に進むに従って温度が上昇する。このとき、成形材料Mmの温度は、成形材料Mmの融点Tmより低い温度に予め定められる許容上限値Tu未満になるように、ヒータ24の加熱温度その他の条件を設定することがある。許容上限値Tuは、たとえば融点Tmよりも10℃程度低い温度に設定され得る。
 ここで、何らかの理由により射出成形機の作動が停止した場合、又は、滞留防止機構が作動しているか否かに関わらず、滞留検出機構としてのセンサ23dが、材料送り通路22での成形材料Mmの滞留を検出した場合、材料送り通路22では、図38(b)に示すように、成形材料Mmの温度が上昇し得る。成形材料Mmの温度が融点Tmに近づいたり、融点Tm以上になったりすると、成形材料Mmどうしが、又は成形材料Mmと通路形成部材23とが溶融・融着し、成形材料Mmが材料送り通路22を通過できなくなることが懸念される。
 これを防止するため、射出成形機の作動が停止した場合、又は、材料送り通路22での成形材料Mmの滞留を検出した場合(たとえば、滞留防止機構が継続的に作動している間に成形材料Mmの滞留を検出した場合、もしくは、滞留防止機構が作動していない間に材料送り通路22での成形材料Mmの滞留が検出され、それを受けて滞留防止機構が作動しても当該滞留が解消されずに依然として滞留が検出される場合)は、その作動停止信号又は滞留検出信号を、制御部に送信する。これを受けて制御部は、予備加熱装置60に、ヒータ24による成形材料Mmの加熱を停止するよう加熱停止信号を送信し、予備加熱装置60は、ヒータ24による成形材料Mmの加熱を停止する。すなわち、予備加熱装置60は、射出成形機の作動停止の情報、及び/又は、材料送り通路22での成形材料Mmの滞留に関する情報に基づいて、ヒータ24による成形材料Mmの加熱を停止する。
 なお、射出成形機の作動の停止には、たとえば、生産完了による停止、異常を検出したことによる停止、非常停止ボタンが押されたことによる停止等がある。このような停止は、各種センサ等で検出が可能である。
 ヒータ24による成形材料Mmの加熱を停止した場合であっても、余熱により、材料送り通路22での成形材料Mmの温度が上昇することがある。それ故に、ヒータ24の加熱停止後、温度センサにより測定される成形材料Mmの温度が所定の基準を満たした場合、図38(c)に示すように、材料送り通路22の成形材料Mmを、たとえば冷却ガスGc等により冷却する。
 成形材料Mmの冷却を開始する上記の所定の基準は、成形材料Mmの温度の実測値と許容上限値Tuとの比較により決定される基準とすることができ、具体的には、成形材料Mmの温度の実測値が許容上限値Tuに達したことをもって、成形材料Mmの冷却を開始することとすることができる。あるいは、成形材料Mmの温度と予備加熱装置60の周囲温度との差から、成形材料Mmが今後上昇し得る温度上昇量を推測し、その推定された温度上昇量と許容上限値Tuとの比較により決定される基準を、上記の所定の基準とすることもできる。また、あるいは、成形材料Mmの温度の推定値と、許容上限値Tuとの比較により決定される基準を、上記の所定の基準とすることもできる。言い換えると、予備加熱装置60は、成形材料Mmの温度に関する情報に基づいて、材料送り通路22の成形材料Mmを冷却する。
 成形材料Mmの冷却は、ヒータ24の熱風加熱式ヒータ又は送風部30が冷風等の常温もしくは冷却ガスGcを送れる構造にすることによって実現することができる他、ヒータ24や送風部30とは別に、材料送り通路22の成形材料Mmを冷却するための冷却部を予備加熱装置60に設けてもよい。
 これにより、成形材料Mmの溶融による材料送り通路22の閉塞を有効に防止することができる。
 上述したような制御の一例を図39に示す。図39では、はじめに、成形材料Mmを、予備加熱装置60に通した後にシリンダ11の内部に供給して、成形品の成形を行う。この間に、射出成形機の作動が停止した場合は、ヒータ24を停止する。射出成形機の作動が停止していない場合であっても、たとえば滞留防止機構が継続的に作動している間に、材料送り通路22での成形材料Mmの滞留が発生した場合は、ヒータ24を停止する。なお、射出成形機の作動が停止していない場合で、滞留防止機構の作動が停止していて材料送り通路22での成形材料Mmの滞留が発生した場合は、まず滞留防止機構を作動させ、それでも滞留が解消されなければヒータ24を停止する。射出成形機の作動が停止しておらず、かつ、成形材料Mmの滞留が発生していない場合は、成形を継続する。なお、射出成形機の作動が停止したかどうかの確認と、成形材料Mmの滞留が発生したかどうかの確認は、その順序が逆になるように入れ替えてもよく、又は、いずれか一方の確認のみとすることもできる。
 次いで、ヒータ24を停止した後に、成形材料Mmの温度が許容上限値以上であるか否かを確認する。成形材料Mmの温度が許容上限値以上であった場合は、成形材料Mmの冷却を行い、再度、成形材料Mmの温度が許容上限値以上であるか否かを確認する。
 成形材料Mmの温度が許容上限値未満であった場合は、成形を再開するか否かの判断を行う。成形を再開してもよいと判断された場合、成形を再開する。
(射出装置)
 上述したような予備加熱装置60等を適用することができる射出装置1は、図22に例示するように、主として、予備加熱装置60と、予備加熱装置60から供給された成形材料を内部で溶融させるシリンダ11と、シリンダ11の内部で回転駆動されて成形材料を可塑化するスクリュ12と、スクリュ12の回転軸線方向の後方側(図22の右側)に配置された計量モータ31と、計量モータ31のさらに後方側に配置された射出モータ41とを備える。
 シリンダ11の周囲には、シリンダ11の内部でスクリュ12により可塑化される成形材料を加熱する加熱器13が配置されている。シリンダ11は回転軸線方向の先端側(図22の左側)に内外径が小さくなる先端部14を有し、その先端部14の周囲にも加熱器13が配置される。また、シリンダ11は回転軸線方向の後端側には、貫通孔状の供給口11aが設けられており、そこに先述の予備加熱装置60が取り付けられている。
 計量モータ31及び射出モータ41はそれぞれ、スライドベース101上に立てた姿勢で互いに間隔をおいて配置された二枚のモータ支持プレート32、42のそれぞれの回転軸線方向の後端側の背面に固定されている。スクリュ12は、計量モータ31により回転駆動されるとともに、射出モータ41により進退駆動される。二枚のモータ支持プレート32、42は、計量モータ31の周囲の複数箇所、たとえば四箇所でロッド51により互いに連結されている。
 計量モータ31は、主に、ロータ33と、ロータ33の周囲に配置されたステータ34と、ロータ33及びステータ34の周囲を取り囲み、内表面にステータ34が設けられたステータフレーム35とを含む。計量モータ31のロータ33はその回転軸線方向の各端部で、ステータフレーム35の内側に軸受33aにより支持されている。また、このロータ33は、計量スプライン軸36の周囲にスプライン結合されており、この計量スプライン軸36は、スクリュ12が取り付けられたスクリュ取付部37に連結されている。なお、計量スプライン軸36の外周面の回転軸線方向の後端部には、ロータ33の内周面に設けられたキー溝に対応する一個以上のキー36aが形成されている。これにより、計量モータ31からスクリュ12に回転駆動力が伝達されて、スクリュ12を回転させることができる。
 射出モータ41は、主に、ロータ43と、ロータ43の周囲に配置されたステータ44と、ロータ43及びステータ44の周囲を取り囲んで設けられて、内表面にステータ44が設けられたステータフレーム45とを有するものである。ロータ43はその回転軸線方向の各端部で、ステータフレーム45の内側に軸受43aにより支持されている。射出モータ41は、ロータ43が駆動軸に接続されている。この駆動軸は、より詳細には、円筒状のロータ43の内周側に設けた溝部43bでスプライン結合された射出スプライン軸46と、射出スプライン軸46に連結されたねじ軸48と、計量スプライン軸36の内側に軸受49を介して回転自在に取り付けられた回転軸50とを有する。ねじ軸48に螺合するねじナット47は、後述する圧力検出器38を介してモータ支持プレート42に取り付けられる。この構造により、射出モータ41による回転駆動力が、スクリュ12の回転軸線方向の直線駆動力に変換されて、スクリュ12に伝達される。
 なお、射出モータ41のステータフレーム45とモータ支持プレート42との間には、圧力検出器38を配置している。この圧力検出器38はモータ支持プレート42及びねじナット47のそれぞれに取り付けられて、射出モータ41からスクリュ12への駆動力の伝達経路で当該圧力検出器38に作用する荷重を検出する。圧力検出器38とステータフレーム45との間には、筒状部分39を介在させて設けている。
 また、回転軸線方向で上記の駆動軸とは反対側に位置する射出モータ41のステータフレーム45の後端面には、ロータ43と軸部45bで連結されてロータ43の回転を検出するエンコーダ45aが設けられている。
 このような射出装置1を備える射出成形機による成形過程の一例を述べると、前回の成形過程の後半に既にシリンダ11の内部に成形材料が所定の量で蓄積されて配置された状態で、図示しない金型装置を閉じて型締状態とする型締工程を行う。次いで、スクリュ12の前進により成形材料を金型装置内に向けて射出し、成形材料を金型装置内のキャビティに充填する充填工程と、スクリュ12をさらに前進させてシリンダ11の先端部14の内部にある成形材料を所定の圧力に保持する保圧工程とを順次に行う。
 そしてその後、金型装置内に充填された成形材料を冷却させて硬化させ、成形品を得る冷却工程を行う。この際に、予備加熱装置60からシリンダ11内に別途供給した成形材料を、加熱器13による加熱下でスクリュ12の回転によりシリンダ11の先端部14に向けて送りながら溶融させ、所定の量の成形材料を先端部14に配置する計量工程が行われる。
 ここにおいて、この実施形態では、シリンダ11内に供給される成形材料が、予備加熱装置60により既に適切な温度に加熱されている。それ故に、スクリュ12を高速で回転させ、成形材料を短時間のうちにシリンダ11の先端部14に送ったとしても、成形材料を十分に可塑化することができる。これにより、シリンダ11の先端部14への成形材料の蓄積に要する時間が短くなり、成形サイクルの短縮化を実現することができる。
 なおその後は、金型装置を開いて型開状態とし、エジェクタ装置等により金型装置から成形品を取り出す取出工程を行う。
〔第4発明〕
 この実施形態では、予備加熱装置21は、成形材料を予熱するためのものあり、図40に例示するような射出装置1が備えることで、射出装置1に予熱した成形材料を供給することができる。図40に例示する射出装置1は、射出成形機で、たとえば射出装置1を前進・後退させる移動装置のスライドベース101上に配置されて、金型装置への成形材料の射出を行うものである。射出装置1は、予備加熱装置21と、予備加熱装置で予熱された成形材料が供給されて内部で成形材料を溶融させるシリンダ11とを備えることができる。なお、図示の射出装置1は、シリンダ11の内部で回転駆動されて成形材料を可塑化するスクリュ12や、シリンダ11の周囲に設けられてシリンダ11の内部の成形材料を加熱する加熱器13等をさらに備えるものであるが、この射出装置1の詳細な構造については後述する。
(予備加熱装置)
 予備加熱装置21は、射出装置1のスクリュ12の回転軸線方向(図40の左右方向)で、シリンダ11の成形材料を射出する先端部14とは逆側の後端部に取り付けられる。より詳細には、この予備加熱装置21は、シリンダ11上にて、図41に示すように、シリンダ11の後端部で周方向の一部に設けられた貫通孔状の供給口11aに接続されており、当該供給口11aに、実質的に球状もしくは円柱状その他の形状の樹脂ペレット等の成形材料Mmを供給するものである。
 この第1実施形態では、予備加熱装置21は、成形材料Mmが通る材料送り通路22と、材料送り通路22を通る成形材料Mmを加熱する加熱部24と、材料送り通路22を通る成形材料Mmを冷却する冷却部(図41では図示を省略)と、を有するものである。
 このような構成を有する予備加熱装置21では、シリンダ11の内部に供給する成形材料Mmを、その供給前に予め加熱することができる。その結果、予熱された成形材料Mmは、供給口11aを通ってシリンダ11の内部に供給された後に当該内部で短時間のうちに十分に溶融して、シリンダ11の先端部から射出されるので、成形のサイクルの短縮化を実現することができる。また、射出成形を行う際に射出装置が停止し、それによって、材料送り通路22中で成形材料Mmの移動が止まった場合であっても、冷却部によって材料送り通路22を通る成形材料Mmを冷却することができるので、材料送り通路22内の余熱でもって成形材料Mmが融解し融着することを防止することができる。
(予備加熱装置の制御)
 ここで、予備加熱装置21は、図42のブロック図に示すように、加熱部24及び/又は冷却部を制御する制御部をさらに備えることができる。またより詳細には、制御部は、図42に示すように、後述する作動状態検出機構、滞留検出機構、及び/又は温度情報検出機構により得られる信号により、加熱部24及び/又は冷却部を制御することができる。
 制御部による予備加熱装置21の制御は、たとえば次に述べるようにして行うことができる。
 なお、射出装置1が予備加熱装置21を備える場合には、射出装置1が備える射出装置1の作動を制御するための制御部が、上記の加熱部24及び/又は冷却部を制御する制御部を兼用することができる。
 予備加熱装置21では、その使用時に、材料送り通路22の例えば材料通過方向の先端側の部分に設けた温度センサ等で、材料送り通路22の材料通過方向の先端側における成形材料Mmの温度を常時監視しておく。これにより測定された成形材料Mmの温度の情報は、たとえば予備加熱装置21の制御部に送信される。
 正常に作動しているとき、成形材料Mmは、図43(a)に示すように、加熱部24より発生させた加熱ガスGh等で加熱されて、材料送り通路22を材料通過方向に進むに従って温度が上昇する。このとき、成形材料Mmの温度は、成形材料Mmの融点Tmより低い温度に予め定められる許容上限値Tu未満になるように、加熱部24の加熱温度その他の条件を設定することがある。許容上限値Tuは、たとえば融点Tmよりも10℃程度低い温度に設定され得る。
 ここで、何らかの理由により、射出成形機の作動が停止した場合、又は、材料送り通路22内で成形材料Mmが滞留した場合等が発生すると、材料送り通路22内で成形材料Mmの移動が停止した状態となり得る。このとき、材料送り通路22では、図43(b)に示すように、成形材料Mmの温度が上昇し得る。成形材料Mmの温度が融点Tmに近づいたり、融点Tm以上になったりすると、成形材料Mmどうしが、又は成形材料Mmと通路形成部材23とが溶融・融着し、成形材料Mmが材料送り通路22を通過できなくなることが懸念される。
 なお、後述するように、第1実施形態、第2実施形態の予備加熱装置21、60では滞留防止機構を備えることができるが、上記の「材料送り通路22内で成形材料Mmが滞留した場合」には、そのときに、滞留防止機構が作動しているか否かに関わらず、材料送り通路22内で成形材料Mmが滞留した場合も含む。
 これを防止するため、予備加熱装置21は、射出装置1の作動状態を検出する作動状態検出機構、及び/又は、材料送り通路22での成形材料Mmの滞留を検出する滞留検出機構を備えている。作動状態検出機構が、射出装置1の作動の停止に関する情報を検出した場合や、滞留検出機構が成形材料Mmの滞留に関する情報を検出した場合は、その検出信号、具体的には、射出装置1の作動停止信号又は成形材料Mmの滞留検出信号を、制御部に送信する。これを受けて制御部は、加熱部24を制御する。具体的には、制御部は、予備加熱装置21に、加熱部24による成形材料Mmの加熱を停止するよう加熱停止信号を送信し、予備加熱装置21は、加熱部24による成形材料Mmの加熱を停止する。
 なお、後述するように、第1実施形態、第2実施形態の予備加熱装置21、60が滞留防止機構を備える場合には、上記の「滞留検出機構が成形材料Mmの滞留に関する情報を検出した場合」には、たとえば、滞留防止機構が継続的に作動している間に成形材料Mmの滞留を検出した場合、もしくは、滞留防止機構が作動していない間に材料送り通路22での成形材料Mmの滞留が検出され、それを受けて滞留防止機構が作動しても当該滞留が解消されずに依然として滞留が検出される場合も含む。
 このように、予備加熱装置21が作動状態検出機構及び/又は滞留検出機構を備え、制御部が、作動状態検出機構及び/又は滞留検出機構より検出された情報に基づいて、加熱部24を制御することにより、加熱部24による加熱を停止することができ、材料送り通路22内での過剰な加熱でもって成形材料Mmが融解し融着することを防止することができる。
 なお、本明細書において、成形材料Mmの移動が停止した状態とは、成形材料Mmの一つ一つが厳密に停止した状態にあることではなく、成形材料Mm全体としての移動が停止している状態にあることを指す。
 また、作動状態検出機構による検出は、たとえば射出装置1の作動状況を発信する発信部、より詳細には射出装置1の計量モータ31や射出モータ41の作動状況を発信する発信部、を設けることにより行うことができる。また、作動状態検出機構では、たとえば、生産完了による停止、異常を検出したことによる停止、非常停止ボタンが押されたことによる停止等も検出可能であり、上記停止は、各種センサ等で検出が可能である。
 また、滞留検出機構による、材料送り通路22内で成形材料Mmが滞留した場合の検出は、材料送り通路22内の成形材料Mmの滞留を検出するセンサを用いることで行うことができる。
 ところで、加熱部24による成形材料Mmの加熱を停止した場合であっても、余熱により、材料送り通路22での成形材料Mmが上昇することがある。これを防止するため、予備加熱装置21は、材料送り通路22内の成形材料Mmの温度に関する情報を検出する温度情報検出機構を備えている。加熱部24の加熱停止後、温度情報検出機構が材料送り通路22内の成形材料Mmの温度に関する情報を検出した場合、具体的にはたとえば、温度センサにより測定される成形材料Mmの温度が所定の基準を満たしたという情報を温度情報検出機構が検出した場合には、その検出信号を、制御部に送信する。これを受けて制御部は、冷却部を制御する。具体的には、制御部は、冷却部を制御し、図43(c)に示すように、材料送り通路22の成形材料Mmを、たとえば冷却ガスGc等により冷却する。
 成形材料Mmの冷却を開始する上記の所定の基準は、成形材料Mmの温度の実測値と許容上限値Tuとの比較により決定される基準とすることができ、具体的には、成形材料Mmの温度の実測値が許容上限値Tuに達したことをもって、成形材料Mmの冷却を開始することとすることができる。あるいは、成形材料Mmの温度と材料送り通路22の周囲温度との差から、成形材料Mmが今後上昇し得る温度上昇量を推測し、その推定された温度上昇量と許容上限値Tuとの比較により決定される基準を、上記の所定の基準とすることもできる。また、あるいは、成形材料Mmの温度の推定値と、許容上限値Tuとの比較により決定される基準を、上記の所定の基準とすることもできる。そして、上記の少なくとも1つの基準を満たしたという情報は、温度情報検出機構が検出する、材料送り通路22内の成形材料Mmの温度に関する情報に含まれる。
 なお、冷却部による冷却は、成形材料Mmの温度を低下させることができればよく、成形材料Mmに当てる冷却媒体は、冷風だけでなく成形材料Mmの温度より低い風、例えば常温の風であってもよい。また、冷却部は、予備加熱装置21に設けてもよいが、加熱部24が冷風等の常温もしくは冷却ガスGcを送れる構造にすることによって実現することができる。
 これにより、成形材料Mmの溶融による材料送り通路22の閉塞を有効に防止することができる。
 上述したような制御の一例を図44に示す。図44では、はじめに、成形材料Mmを、予備加熱装置21に通した後にシリンダ11の内部に供給して、成形品の成形を行う。この間に、作動状態検出機構が射出装置1の作動の停止に関する情報を検出した場合、たとえば射出装置1の作動が停止した場合は、制御部による制御によって加熱部24が停止する。射出装置1の作動が停止していない場合であっても、滞留検出機構が成形材料Mmの滞留に関する情報を検出した場合、たとえば材料送り通路22での成形材料Mmの滞留が発生した場合、制御部による制御によって加熱部24が停止する。射出装置1の作動が停止しておらず、かつ、成形材料Mmの滞留が発生していない場合は、成形を継続する。なお、射出装置1の作動が停止したかどうかの確認と、成形材料Mmの滞留が発生したかどうかの確認は、その順序が逆になるように入れ替えてもよく、又は、いずれか一方の確認のみとすることもできる。
 なお、後述するように、第1実施形態、第2実施形態の予備加熱装置21、60が滞留防止機構を備える場合、上記の「射出装置1の作動が停止していない場合であっても、材料送り通路22での成形材料Mmの滞留が発生した場合」には、たとえば滞留防止機構が継続的に作動していても、材料送り通路22での成形材料Mmの滞留が発生した場合も含む。滞留防止機構を備える場合には、射出装置1の作動が停止していないときで、滞留防止機構の作動が停止していて材料送り通路22での成形材料Mmの滞留が発生したときは、まず滞留防止機構を作動させ、それでも滞留が解消されなければ加熱部24を停止することが好ましい。
 次いで、加熱部24を停止した後に、成形材料Mmの温度が許容上限値以上であるか否かを確認する。つまり、温度情報検出機構により、材料送り通路22内の成形材料Mmの温度に関する情報、たとえば成形材料Mmの温度が許容上限値以上であるという情報を検出した場合は、制御部による制御によって冷却部が起動して成形材料Mmの冷却を行う。そして、温度情報検出機構により温度に関する情報が依然として検出されているか否か、つまり、再度、成形材料Mmの温度が許容上限値以上であるか否かを確認する。
 温度情報検出機構により温度に関する情報が検出されていない場合、例えば成形材料Mmの温度が許容上限値未満であった場合は、成形を再開するか否かの判断を行う。成形を再開してもよいと判断された場合、成形を再開する。
(第1実施形態の予備加熱装置)
 続いて、第1実施形態の予備加熱装置について図面を用いてより詳細に説明する。
 第1実施形態では、予備加熱装置21は、図41を参照するように成形材料Mmが通る材料送り通路22と、材料送り通路22を通る成形材料Mmを加熱する加熱部24とを有するものである。ここで、材料送り通路22は、互いに対向して配置されて相互間に材料送り通路22が区画される対をなす通路形成部材23を有する。そして、加熱部24は、材料送り通路22から通路形成部材23を隔てた通路幅方向の外側に配置されている。ここでいう通路幅方向は、互いに平行に並ぶ通路形成部材23の整列方向であって、材料送り通路22で成形材料Mmが通る方向である材料通過方向(図41の上下方向)に直交する方向(図41の左右方向)を意味する。なお、材料送り通路22、通路形成部材23及び加熱部24は、断熱材等からなる箱状の筐体25の内部に収容されて配置されている。
 このような構成を有する予備加熱装置21では、シリンダ11の内部に供給する成形材料Mmを、その供給前に予め加熱することができる。その結果、予熱された成形材料Mmは、供給口11aを通ってシリンダ11の内部に供給された後に当該内部で短時間のうちに十分に溶融して、シリンダ11の先端部から射出されるので、成形のサイクルの短縮化を実現することができる。
 そしてここでは、材料送り通路22を区画形成し対をなす通路形成部材23の少なくとも一方を、図41に矢印で示すように可動とし、これにより、予備加熱装置21は、対をなす通路形成部材23の相互間の間隔である材料送り通路22の通路幅を調整可能に構成されている。通路形成部材23の少なくとも一方は、たとえば、筐体25の内部でその取付け箇所との間にユーザがスペーサを配置すること等による手動で、又は、モータその他のアクチュエータ等を用いた自動で、通路幅方向に動かすことができるようにする。
 材料送り通路22の通路幅を調整可能にしたことにより、様々な寸法形状がある多様な成形材料Mmのそれぞれに応じた適切な通路幅を設定することができる。たとえば、図41に示すように、成形材料Mmの一個分が通過できる程度の通路幅としたときは、成形材料Mmが材料送り通路22をほぼ一列に整列した姿勢で通過し、この際に通路形成部材23の通路幅方向の外側の加熱部24で、成形材料Mmの多くが有効に加熱されることになる。それにより、シリンダ11の先端部から射出される溶融状態の成形材料に、未溶融のものが混じることを効果的に抑制できるので、成形品の外観不良や強度の低下を防止することができる。
 可動の通路形成部材23により設定される通路幅は、成形材料Mmの一個分の長さ以上、かつ、成形材料Mmの二個分の長さ未満とすることが好ましい。この場合、材料送り通路22で、複数個の成形材料Mmが通路幅方向に重なり合うことが抑制されるので、それらの成形材料Mmの多くを、より一層有効に加熱することができる。成形材料Mmの一個分の長さは、成形材料Mmの最も短い寸法とすることが好ましい。たとえば、成形材料Mmがほぼ球状である場合はその直径とし、又は、断面に楕円ないし長円を含む異形の球状である場合はその最も短い短辺側の直径とすることが好ましい。あるいは、成形材料Mmが円柱もしくは角柱その他の柱状であって、その直径もしくは幅と高さのうちの短いほうの寸法を成形材料Mmの一個分の長さとすることがある。
 なお、材料送り通路22の材料通過方向の先端側(図41の下端側)で筐体25の下面には、ホッパー等のシリンダへの成形材料Mmの供給用の供給容器26(シリンダ供給用の供給容器26、単に供給容器26ともいう。)が設けられている。供給容器26は、図示の例では、たとえば内外形がともに円錐台状である円錐台状部分26aと、円錐台状部分26aの小径側の端部に形成された円筒状部分26bとを有するものである。供給容器26は、材料送り通路22を通過した成形材料Mmを、円錐台状部分26aに受け入れた後、その先の円筒状部分26bに通してシリンダ11の内部に供給する。円錐台状部分26aの端部には、材料送り通路22とほぼ同程度の幅の開口部26cが形成されており、材料送り通路22を通過した成形材料Mmは、その開口部26cから供給容器26内に入る。
 また、材料送り通路22の材料通過方向の後端側(図41の上端側)には、複数個の成形材料Mmを蓄えて該成形材料Mmを適正量で材料送り通路22に供給するホッパー等の通路への成形材料の供給用の供給容器27(通路供給用の供給容器27、単に供給容器27ともいう。)が、筐体25の上面に載置されている。供給容器27は、円筒状等の筒部27aと、筒部27aの材料送り通路22側に設けられて、内外径が漸減して先細りになるテーパ部27bとを有する。
 図示の例では、成形材料Mmは、通路供給用の供給容器27から予備加熱装置21に供給される。そして、予備加熱装置21に供給された成形材料Mmは、予熱されながら材料送り通路22を通過し、シリンダ供給用の供給容器26を経た後に、シリンダ11の内部に供給される。つまりここでは、予備加熱装置21で予熱された成形材料Mmがシリンダ11の内部に供給されることになる。但し、供給容器26及び/又は供給容器27の形状はこれに限らず、適宜変更することができるとともに、供給容器26及び/又は供給容器27を省略することもある。仮にシリンダ供給用の供給容器26を省略して無くした場合、予備加熱装置の筐体がシリンダ上に配置されて、材料送り通路の材料通過方向の先端側がシリンダの供給口に直接的に連通される。この場合、予備加熱装置で予熱された成形材料Mmは、当該予熱の直後にシリンダの内部に供給される。
 ここで、加熱部24は、一方の通路形成部材23の通路幅方向の外側で材料送り通路22の片側だけに配置することも可能であるが、この実施形態では、各通路形成部材23の通路幅方向の外側で材料送り通路22の両側にそれぞれ配置されている。そのほうが、成形材料Mmを両側の加熱部24で迅速に加熱できるので、材料送り通路22の成形材料Mmの通過速度を比較的速くしたとしても、成形材料Mmを有効に加熱することができる。なお、材料送り通路22の材料通過方向の先端側で、成形材料Mmが所望の温度になるように、加熱部24等の条件が設定される。
 加熱部24は、通路形成部材23を介して成形材料Mmを加熱できるものであれば、その加熱方式については特に問わない。たとえば、高温の空気等の加熱ガスを送る熱風加熱式ヒータ、高周波誘電加熱等の電熱式ヒータ、ハロゲンランプやセラミックヒータ等の赤外線加熱式ヒータ、レーザ加熱式ヒータ等を採用することができる。加熱部24を赤外線加熱式ヒータ又はレーザ加熱式ヒータとする場合、通路形成部材23は、ガラス等の光ないしレーザが透過する半透明もしくは透明の材料で構成することができる。なお、加熱部24の配置は、図41の例に限らず、筐体25の外部に配置し、熱風を材料送り通路22に流すようにしてもよい。
 図示の予備加熱装置21では、一例として、熱風加熱式ヒータを含む加熱部24を有するものとしている。熱風加熱式ヒータは具体的には、たとえば、コンプレッサから送られる圧縮空気をシーズヒータ等で加熱することにより、熱風が得られるものとすることができる。熱風の温度調整は、シーズヒータの出力を変更することにより可能である。
 この場合、通路形成部材23は、熱風加熱式ヒータから送られる加熱ガスを、材料送り通路22に通すため、通路幅方向に当該通路形成部材23を貫通する複数個の通気孔を有するものとすることができる。これにより、加熱部24からの加熱ガスは、通路形成部材23の通気孔を通って材料送り通路22に流れるので、当該加熱ガスで材料送り通路22の成形材料Mmを加熱することができる。
 具体的には通路形成部材23は、たとえば、図45(a)に示すように、いわゆるパンチングメタルのように、金属製等の板材23aにプレス加工等で複数個の通気孔23bを形成した板状部材とすることもできる。この場合、加工態様等の調整により、板材23aに、規則的に配置された複数個の通気孔23bを形成することができる。
 あるいは、通路形成部材23は、図45(b)に示すように、たとえば線材23cを格子状等に配置して、それらの間に、正面視で正方形その他の多角形等の形状の複数個の通気孔23bを設けた網状部材としてもよい。仮にそのような網状部材の厚みが薄く、通路形成部材23で材料送り通路22を形成するに必要な強度が当該網状部材に不足している場合、当該網状部材と補強部材とを重ね合わせて、それらの網状部材と補強部材とで通路形成部材23を構成することができる。補強部材は加熱ガスを通すことができれば、ハニカム状又は格子状等の種々の形状とすることができる。たとえば、補強部材の網目は、網状部材の網目よりも粗いものであってもかまわない。図示の網状部材は、複数個の通気孔23bが、正面視で縦方向(図45(b)の上下方向)及び横方向(図45(b)の左右方向)に配列し、規則的に並んで配置されている。
 たとえば、網状の通路形成部材23で材料送り通路22を区画形成した場合、図46に示すように、複数個の成形材料Mmは、通路形成部材23の横方向に拡がって、同図に矢印で示すように、通路形成部材23の縦方向である材料通過方向に移動する。なお、対をなす通路形成部材23の相互間で通路形成部材23の横方向における材料送り通路22の各側部には、通路形成部材23の横方向での材料送り通路22の領域を区画する角棒状等の通路区画部材22aを配置している。
 上述した網状や板状の通路形成部材23のように、正面視で通気孔23bを均等に分散させて規則的に配置したときは、熱風加熱式ヒータとした加熱部24からの加熱ガスを材料送り通路22に、通路形成部材23の縦方向及び横方向で均等に送ることができる。それにより、材料送り通路22を通る複数個の成形材料Mmの多くに、加熱ガスを吹き付けることができて、それらの成形材料Mmをより一層効果的に加熱することができる。
 図41に示す実施形態では、シリンダ11の内部でのスクリュ12等による可塑化が進行するに従って、シリンダ供給用の供給容器26からシリンダ11の内部に供給される。それに伴い、通路供給用の供給容器27内の成形材料Mmが順次に、材料送り通路22を通って加熱部24で加熱された後に、シリンダ供給用の供給容器26に投入される。この場合、材料送り通路22を通過する成形材料Mmの速度は、シリンダ11の内部での成形材料Mmの可塑化の速度に依存し得るが、当該成形材料Mmの通過速度は、先述したような通路幅の変更により調整することもできる。また必要に応じて、成形材料Mmの材料送り通路22を通過する速度及び、それに影響される成形材料Mmの加熱の程度を調整するため、図示は省略するが、材料送り通路22と供給容器26との間に、材料送り通路22から供給容器26への成形材料Mmの供給を調整するスクリュ状等のフィーダーその他の供給調整機を設けてもよい。
 また図示は省略するが、通路幅は一定のままで材料送り通路22の位置を変更させる機構があってもよい。材料送り通路22の位置を変更することにより、単位時間当たりの成形材料Mmの通過量を調整することができる。
 ここで、予備加熱装置21は、先述のように、材料送り通路22を通る成形材料Mmを冷却する冷却部(図示せず)を有する。詳細には、冷却部は、図41に示す、材料送り通路22等を収容する筐体25の外部に配置することができ、また、冷却部から筐体25の内部へ延びる配管等を用いることで、冷却部で発生させた冷却媒体を筐体25の内部へ流入させ、材料送り通路22を通る成形材料Mmを冷却することができる。冷却部が発生する冷却媒体は、冷風だけでなく成形材料Mmの温度より低い風、例えば常温の風であってもよい。
 また、冷却部は、予備加熱装置21に設けてもよいが、加熱部24が冷風等の常温もしくは冷却ガスGcを送れる構造にすることによって実現することができる。
 また、予備加熱装置21は、図42のブロック図に示すように、加熱部24及び/又は冷却部を制御する制御部をさらに備えることができる。またより詳細には、制御部は、図42に示すように、作動状態検出機構、滞留検出機構、及び/又は温度情報検出機構により得られる信号により、加熱部24及び/又は冷却部を制御することができる。
 第1実施形態の予備加熱装置21の作動状態検出機構は、たとえば何らかの理由により、射出成形機の作動が停止した場合に射出装置1の作動状態を検出する。当該検出は、たとえば射出装置1の動作状況を発信する発信部、より詳細には射出装置1の計量モータ31や射出モータ41の動作状況を発信する発信部を設けることにより行うことができる。
 また、滞留検出機構は、たとえば何らかの理由により、材料送り通路22内で成形材料Mmが滞留した場合に成形材料Mmの滞留に関する情報を検出する。当該検出は、材料送り通路22内の成形材料Mmの滞留を検出するセンサを用いることで行うことができる。
 ただし、第1実施形態の予備加熱装置21では、次に説明するように、そもそも、予備加熱装置21に、材料送り通路22内の成形材料Mmの滞留を防止する機構を設けることが好ましい。
 すなわち、第1実施形態のような、複数個の通気孔23bを有する網状もしくは板状等の通路形成部材23では、それによって形成される材料送り通路22にて、成形材料Mmが通気孔23bに引っ掛かること等に起因して、通路形成部材23の横方向の少なくとも一部で成形材料Mmの詰まり等の滞留が発生することがある。材料送り通路22での成形材料Mmの滞留は、先述のように、成形材料Mmの過剰な加熱、ひいては成形材料Mmの溶融を招くおそれがある。
 それゆえに、予備加熱装置21には、材料送り通路22での成形材料Mmの滞留を防止する滞留防止機構を設けることが好ましい。
 滞留防止機構としては、たとえば図47~50に示すように、射出成形機の作動時に継続的に、又は、必要なときだけ断続的に、対をなす通路形成部材23の少なくとも一方を変位させて、他方の通路形成部材23に対する一方の通路形成部材23の相対的な位置及び/又は向きを変化させる駆動部とすることができる。なおここでは、その駆動源の図示は省略する。
 図47に示すところでは、一方の通路形成部材23の通路幅方向の外側で、当該通路形成部材23の横方向の両側部にそれぞれ、角棒状の可動用部材22bを設けている。そして、成形材料Mmが材料送り通路22を通過している間、それらの可動用部材22bで一方の通路形成部材23を、図47(b)及び(c)に矢印で示すように、通路形成部材23の横方向に動かすことで、一方の通路形成部材23の、他方の通路形成部材23に対する相対位置が変化する。これにより、成形材料Mmが通気孔23bに引っ掛かったとしても、一方の通路形成部材23の移動でその引っ掛かりが外れて、成形材料Mmの滞留が防止される。
 また、一方の通路形成部材23を、通路形成部材23の横方向ではなく、材料通過方向と平行な縦方向(上下方向)に動かすようにしてもよい。
 図48に示す滞留防止機構では、一方の通路形成部材23の通路幅方向の外側で、当該通路形成部材23の縦方向の両端部のそれぞれに、角棒状の可動用部材22bを設けている。この滞留防止機構は、成形材料Mmの通過中に、図48(b)及び(c)に示すように、可動用部材22bで一方の通路形成部材23を通路幅方向に動かし、一方の通路形成部材23の、他方の通路形成部材23に対する相対位置を変化させる。このとき、材料送り通路22の通路幅が微小に増減する。なお、図48の滞留防止機構は、先述したような通路幅を調整するために通路形成部材23を可動させる機構としても用いることができる。
 図49の滞留防止機構は、一方の通路形成部材23の通路幅方向の外側で、当該通路形成部材23の縦方向の両端部のそれぞれに設けた角棒状の可動用部材22bと、材料送り通路22の材料通過方向の中央位置等の途中位置で当該通路形成部材23と通路区画部材22aとの間に挟み込んで配置されて、通路形成部材23の横方向に延びる円柱状等の支点部材22cとを有するものである。ここでは、支点部材22cは、通路区画部材22aに取り付けられている。この場合、図49(b)及び(c)に示すように、各可動用部材22bを通路幅方向で相互に逆向きに動かすと、一方の通路形成部材23は、支点部材22cの周りで回動変位し、他方の通路形成部材23に対して斜めになるように向きが変化する。より詳細には、一方の通路形成部材23の縦方向の一端部が、他方の通路形成部材23に対して接近もしくは離隔したとき、一方の通路形成部材23の縦方向の他端部は、他方の通路形成部材23に対して離隔もしくは接近するように、一方の通路形成部材23の向きが変化する。なお、これに伴い、材料送り通路22の通路幅は材料通過方向で一定ではなくなるときがある。このような滞留防止機構でも、成形材料Mmの滞留を有効に防止することができる。
 図50の滞留防止機構は、図49とほぼ同様の構成を有するものであるが、支点部材22cが、通路区画部材22aではなく一方の通路形成部材23に固定されて取り付けられている。そして図50では、可動用部材22bを動かさずに、支点部材22cを回転駆動することで、支点部材22cとともに一方の通路形成部材23が支点部材22cの周りで回動変位し、図49と実質的に同様にして他方の通路形成部材23に対する向きが変化する。
 あるいは、滞留防止機構は、図51(a)に示すように、通路形成部材23の少なくとも一方の通路幅方向の外側に配置されて、当該通路形成部材23を所定の周期等で打ち付ける衝撃付与部28で構成することもできる。図示の衝撃付与部28は、他方の通路形成部材23の通路幅方向の外側で当該通路形成部材23と平行に設けられて、一個以上の貫通孔28aが形成された板状部材28bと、板状部材28bの貫通孔28a内を通って配置されて、他方の通路形成部材23に対して離隔・接近変位する一本以上のピン状部材28cを含むものである。一方の通路形成部材23の通路幅方向の外側にも、同様の衝撃付与部28を設けてもよい。
 また、滞留防止機構は、図51(b)に示すように、通路形成部材23の少なくとも一方、たとえば他方の通路形成部材23の通路幅方向の外側の表面に取り付けられて、当該通路形成部材23に振動を与える一個以上の振動子等の振動付与部29で構成してもよい。
 そしてまた、滞留防止機構としては、図52(a)に示すように、通路形成部材23の少なくとも一方の通路幅方向の外側に配置されて、気体を異なる流量で、通路形成部材23の通気孔23bに通して材料送り通路22の成形材料Mmに当てる送風部30とすることもできる。この送風部30は、図52(b)又は(c)に示すように、材料送り通路22の成形材料Mmに送る気体の流量を経時的に変化させ、それにより、気体を成形材料Mmに強弱をつけて当てることができるものである。なお、送風部30から成形材料Mmへ気体を送るに当っては、図52(b)のように、流量がゼロである期間と流量が多い期間とを周期的に繰り返してもよいし、又は、図52(c)のように、流量が少ない期間と流量が多い期間とを周期的に繰り返してもよい。滞留防止機構としての送風部30を別途設けることもできるが、先述した熱風加熱式ヒータとした加熱部24を送風部30とし、当該加熱部24を滞留防止機構としても使用することもできる。加熱部24を予熱及び滞留防止機構として兼用した場合、送風部30からの気体は、加熱部24からの加熱ガスに相当する。
 また、先述した冷却部を、単に送風するための構造にすることによって送風部30とし、当該冷却部を滞留防止機構としても使用することもできる。冷却部を冷却及び滞留防止機構として兼用した場合、送風部30からの気体は、冷却部からの冷却ガスに相当する。
 図47~52に示すような上述した滞留防止機構は、それらのうちの一つを予備加熱装置21で採用することができる他、それらの複数を組み合わせて採用することもできる。つまり、予備加熱装置21は、図47~52に示す滞留防止機構のうちの一つ以上を含むことができる。
 また、予備加熱装置21には、図示は省略するが、上述のように、材料送り通路22での成形材料Mmの滞留を検出する滞留検出機構を設けることが好ましい。滞留検出機構としては、たとえば、温度、カメラによる画像、赤外線又は、レーザ等により滞留を検出するセンサとすることができる。
 滞留検出機構のそのようなセンサは、材料送り通路22の材料通過方向の先端側の部分、つまり、シリンダ供給用の供給容器26よりも材料通過方向の手前における材料送り通路22近傍の箇所に設けることが好適である。より詳細には、図46に示すように、かかるセンサ23dは、たとえば、材料送り通路22の材料通過方向の先端側で、通路形成部材23の通路幅方向の外側に、通路形成部材23の横方向に互いに間隔をおいて複数個設けることができる。これにより、通路形成部材23の横方向で成形材料Mmの滞留が生じている箇所を早期に見つけることができる。
 仮に滞留検出機構のセンサ23dを温度センサとする場合、その温度センサで、材料送り通路22の材料通過方向の先端側の部分に位置する成形材料Mmの温度を測定できるように、当該温度センサを配置することが好ましい。ここでいう成形材料Mmの温度は、成形材料Mm自体の温度、通路形成部材23の温度、又は、通路形成部材23の通気孔23b内の空間における温度とすることができる。接触式の温度センサの場合、成形材料Mm自体の温度又は通路形成部材23の温度を測定するには、たとえば、温度センサを通路形成部材23の通気孔23bに通してその先端が成形材料Mmに接触するように、又は、温度センサの先端が通路形成部材23に接触するように、当該温度センサを配置する。
 なお、滞留検出機構のセンサ23dが温度センサの場合には、予備加熱装置21が備えることができる温度情報検出機構で用いることができる温度センサと兼用することができる。つまり、温度センサを兼用する場合、予備加熱装置21は、滞留検出機構としての温度センサにより、成形材料Mmの滞留を検出し、制御部が、滞留検出機構より得られる成形材料Mmの滞留の検出に基づいて、加熱部24を制御することにより、加熱部24による加熱を停止することができる。そして、温度情報検出機構が材料送り通路22内の成形材料Mmの温度に関する情報を検出した場合、具体的にはたとえば、温度センサにより測定される成形材料Mmの温度が所定の基準を満たした場合には、制御部は、当該温度に関する情報に基づいて、冷却部を制御して成形材料Mmを冷却することができる。
 先述した滞留防止機構は、射出成形機の作動中に常に継続的に作動させることができ、又は、滞留検出機構により材料送り通路22での成形材料Mmの滞留が検出されたとき等の特定のタイミングで間欠的に作動させることができる。
 また、予備加熱装置21では、温度情報検出機構が温度に関する情報を検出するために、たとえば温度センサを材料送り通路22内に設けることができる(上述のように、滞留検出機構のセンサ23dを温度センサとする場合には兼用してもよい)。より詳細には、かかる温度センサで、材料送り通路22の材料通過方向の先端側の部分に位置する成形材料Mmの温度を測定できるように、当該温度センサを配置することが好ましい。ここでいう成形材料Mmの温度は、成形材料Mm自体の温度、通路形成部材23の温度、又は、通路形成部材23の通気孔23b内の空間における温度とすることができる。接触式の温度センサの場合、成形材料Mm自体の温度又は通路形成部材23の温度を測定するには、たとえば、温度センサを通路形成部材23の通気孔23bに通してその先端が成形材料Mmに接触するように、又は、温度センサの先端が通路形成部材23に接触するように、当該温度センサを配置する。
 図53に、第1実施形態の第1変形例の予備加熱装置121を示す。この予備加熱装置121は、先に述べた予備加熱装置21と実質的に同様の通路供給用の供給容器127及びシリンダ供給用の供給容器126を有するが、主に、それらの間の筐体125に材料送り通路122が複数設けられている点で、先述の予備加熱装置21と異なるものである。このように複数の材料送り通路122を設けることにより、材料送り通路122の一つ当たりの面積を小さくすることができて、予備加熱装置121の小型化を実現することができる。
 より詳細には、予備加熱装置121は、いずれも成形材料Mmを通路供給用の供給容器127からシリンダ供給用の供給容器126に送るべく、互いに平行に並ぶ三つの材料送り通路122と、それらの各材料送り通路122を区画する三対の通路形成部材123と、材料送り通路122と通路形成部材123を隔てた通路幅方向の外側から、材料送り通路122の成形材料Mmを加熱する加熱部124とを有する。供給容器126の円錐台状部分126aの端部には、材料送り通路122の個数に応じた三個の開口部126cが設けられている。
 加熱部124は、図示の実施形態のように、各材料送り通路122の通路幅方向の両側に設けることが、成形材料Mmの迅速かつ均一な予熱を実現するとの観点から好ましい。この予備加熱装置121も、各材料送り通路122を形成する対をなす通路形成部材123のうちの少なくとも一方が可動であり、各材料送り通路122の通路幅を調整できるように構成されている。なお、図示は省略するが、二つ又は四つ以上の材料送り通路を設けることも可能である。
 図54に、第1実施形態の第2変形例の予備加熱装置221を示す。図54の予備加熱装置221では、駆動ローラ及び従動ローラを含む複数個のローラ223bと、それらのローラ223bに巻き掛けられた無端環状のベルトである通路形成部材223とを含む一対のベルトコンベア223aが設けられている。そして、それらのベルトコンベア223aの間に、成形材料Mmが通る材料送り通路222が区画されている。
 一対のベルトコンベア223aのそれぞれは、ローラ223bの駆動ローラでベルトとしての通路形成部材223を回転駆動し、それにより、成形材料Mmは、一対のベルトコンベア223a間に挟まれながら、その間の材料送り通路222を通って搬送される。材料送り通路222を通過した成形材料Mmは、ホッパー等のシリンダ供給用の供給容器226に投入される。この供給容器226は、先述した予備加熱装置21の供給容器26と同様の円錐台状部分226a及び円筒状部分226bを有し、さらに、円錐台状部分226aの上端部に、ベルトコンベア223aからの成形材料Mmを受け入れる円筒状等の開口部226cが設けられている。なお、この例では、成形材料Mmを材料送り通路222で水平方向に送った後に、供給容器226に投入するものとしているが、一対のベルトコンベア223aを水平方向に対して傾斜ないし直交する向きに配置して、材料送り通路222での材料通過方向を水平方向に対して傾斜ないし直交する方向としてもよい。
 ベルトコンベア223aよりも通路幅方向の外側には、加熱部224が配置されている。加熱部224を先述した熱風加熱式ヒータとする場合、通路形成部材223としての各ベルトは、加熱ガスを通すことができるように、たとえば、先述したような網状部材等で構成することができる。これにより、材料送り通路222を通る成形材料Mmに加熱ガスが送られて、該成形材料Mmを有効に加熱することができる。
 また、この予備加熱装置221は、一対のベルトコンベア223a間の間隔である材料送り通路222の通路幅を調整するため、図54に白抜き矢印で示すように、一対のベルトコンベア223aのうちの少なくとも一方を、それに含まれる通路形成部材223とともに動かすことができるように構成されている。
 以上に述べた、第1実施形態の第1変形例の予備加熱装置121、第1実施形態の第2変形例の予備加熱装置221は、先述した予備加熱装置21についての制御と同様に制御することができる。
(第2実施形態の予備加熱装置)
 次いで、第2実施形態の予備加熱装置について図面を用いてより詳細に説明する。
 図55に例示する第2実施形態の予備加熱装置60は、図40に示す第1実施形態の予備加熱装置21と同様に、射出装置1のスクリュ12の回転軸線方向(図55の左右方向)で、シリンダ11の成形材料を射出する先端部14とは逆側の後端部に取り付けられる。より詳細には、この予備加熱装置60は、シリンダ11上にて、図56に示すように、シリンダ11の後端部で周方向の一部に設けられた貫通孔状の供給口11aに接続されており、当該供給口11aに、実質的に球状もしくは円柱状その他の形状の樹脂ペレット等の成形材料Mmを供給するものである。
 ここで、予備加熱装置60は、図55~57に示すように、成形材料Mmが通る材料用通路61と、材料用通路61内の成形材料Mmを加熱するべく、過熱水蒸気Ssを材料用通路61内に導入する過熱水蒸気導入口62とを有するものである。材料用通路61内で成形材料Mmは、過熱水蒸気導入口62から導入された過熱水蒸気Ssで加熱される。これにより、成形材料Mmをシリンダ11内に供給する前に、成形材料Mmの予熱を行うことができる。
 過熱水蒸気導入口62から材料用通路61内に導入される過熱水蒸気は、図示しない過熱水蒸気発生装置等で、水が沸騰し気化した水蒸気にさらに熱を加えることにより発生させることができる。一般に、加熱空気(熱風)等は対流伝熱で加熱対象物を加熱するのに対し、過熱水蒸気は、対流伝熱のみならず、さらに輻射伝熱及び凝縮伝熱で加熱対象物を加熱し、加熱空気等と比べて熱エネルギーが極めて大きい。ここでは、過熱水蒸気導入口62から導入される過熱水蒸気で、成形材料Mmを加熱することから、成形材料Mmの温度が短時間のうちに所定の温度まで上昇する。その結果として、この実施形態では、成形材料Mmの予熱が瞬時に行われるので、射出成形機による成形のサイクルを短縮することができる。このことは、特にハイサイクル成形で適用した場合に有利である。
 たとえば、過熱水蒸気発生装置は、断熱された筐体内にシーズヒータ等の加熱機器を設けた構造を有するものとすることができる。この場合、過熱水蒸気発生装置では、ボイラ等から送られてきた飽和水蒸気を加熱して、過熱水蒸気を発生させることができる。
 過熱水蒸気導入口62には、射出装置を含む射出成形機に設けられ得る過熱水蒸気発生装置で発生させた過熱水蒸気を供給することができる他、射出装置が設置される工場等の設置場所における所定の設備で別途発生した過熱水蒸気を供給してもよい。
 予備加熱装置60は、図示の例のように、材料用通路61の周囲に設けられた円筒その他の筒状等の通路区画壁部63をさらに有することができる。この通路区画壁部63の内側には、材料用通路61が区画されて設けられている。特にこの例では、円筒状の通路区画壁部63は、その中心軸線が、たとえば水平方向であるスクリュ12の回転軸線方向(図55~57の左右方向)とほぼ平行になるように横向きに配置されている。このような通路区画壁部63の内側の材料用通路61では、成形材料Mmは上記の回転軸線方向に移動することにより、成形材料Mmが通る方向である材料通行方向が当該回転軸線方向と平行になる。但し、材料用通路61での材料通行方向は、後述する実施形態のように、スクリュ12の回転軸線方向に対して直交する鉛直方向になるように、材料用通路61を設けることができる他、図示は省略するが、スクリュ12の回転軸線方向に対して傾斜する方向になるように、材料用通路61を斜めに設けることもできる。
 なお、図57に示すように、材料用通路61の材料通行方向の後端側(図55~57では右側)には、通路区画壁部63の周方向の一部をくり抜いて形成した孔状の通路入口61aが設けられている。この通路入口61aには、実質的に円錐台状のホッパー61bが取り付けられ得る。
 材料用通路61の材料通行方向の先端側(図55~57では左側)には、通路区画壁部63の周方向の一部に外周側に向かって突出して設けられて材料通行方向に直交する方向の下方側である先端側に向けて先細りになる通路出口61cが設けられている。
 また、予備加熱装置60はさらに、材料用通路61内で成形材料Mmを材料通行方向に送る搬送機構をさらに有するものとすることができる。この第2実施形態では、搬送機構の一例として、材料用通路61内に予熱用スクリュ64を設けている。搬送機構は予熱用スクリュ64の他、図示は省略するがベルトコンベア等としてもよい。
 図示の予熱用スクリュ64は、材料用通路61内で材料通行方向に沿う軸線の周りに回転駆動される回転軸65と、回転軸65の外周面上に立てて設けられ、上記の軸線の周囲で螺旋状等の所定の形状で延びるフライト66とを含むものであるが、予熱用スクリュ64の形状はこれに限らない。この予熱用スクリュ64では、モータ等の駆動源67によって回転駆動されると、材料用通路61内で成形材料Mmは、図56に示すように、回転軸65の外周側で、回転軸65の外周面上に設けられたフライト66により、材料通行方向に搬送される。
 この第2実施形態の予熱用スクリュ64は、中空の回転軸65としている。具体的には、回転軸65は、図57から解かるように、その内側の内部空間68と、内部空間68を区画する円筒状の周壁部69と、その周壁部69に該周壁部69を貫通して形成された複数個の連通孔70とを有するものである。そしてここでは、過熱水蒸気導入口62は、予熱用スクリュ64、より詳細には、予熱用スクリュ64の回転軸65の回転軸線方向の先端面に設けられている。たとえば、予熱用スクリュ64における回転軸65の回転軸線方向の先端部を、通路区画壁部63の端面に設けた開口部63aから通路区画壁部63の外部に露出させて位置させ、その先端部に過熱水蒸気導入口62を設けることができる。
 このような予熱用スクリュ64が配置された材料用通路61では、過熱水蒸気導入口62から材料用通路61内に導入された過熱水蒸気Ssは一旦、材料用通路61内で予熱用スクリュ64の回転軸65の内部空間68に流れる。そして、内部空間68に流入した過熱水蒸気Ssは、内部空間68から、周壁部69に設けた複数個の連通孔70により当該連通孔70を通って、回転軸65の外周側に送られる。回転軸65の外周側では、フライト66で材料通行方向に搬送されている成形材料Mmが、連通孔70を通過した過熱水蒸気Ssにより加熱される。
 なお、予熱用スクリュ64は、回転軸65の外周面からのフライト66の外周縁の高さ(予熱用スクリュ64の溝深さ)が、成形材料Mmの一個分の長さ以上、かつ、成形材料Mmの二個分の長さ未満とすることが好ましい。この場合、回転軸65の外周側で、複数個の成形材料Mmが予熱用スクリュ64の径方向に重なり合うことが抑制されるので、たとえば回転軸65の連通孔70から外周側に送られる過熱水蒸気により、材料用通路61を通る各成形材料Mmをより一層有効に加熱することができる。それにより、シリンダ11の先端部14から射出される溶融状態の成形材料に、未溶融のものが混じることを効果的に抑制できるので、成形品の外観不良や強度の低下を防止することができる。
 また、予熱用スクリュ64の径方向でフライト66の外周縁と通路区画壁部63の内周面との間の隙間は、成形材料Mmの一個分の長さよりも狭くすることが好適である。これにより、回転軸線方向で成形材料Mmがフライト66を乗り越えてしまうことを抑制できる。なお、フライト66の外周縁と通路区画壁部63の内周面とは、それぞれが接触しないように微小な隙間が設けられている。
 さらに、予熱用スクリュ64の回転軸65の外周面から通路区画壁部63の内周面までの距離も、成形材料Mmの一個分の長さ以上、かつ、成形材料Mmの二個分の長さ未満とすることが好ましい。
 成形材料Mmの一個分の長さは、成形材料Mmの最も短い寸法とすることが好ましい。たとえば、成形材料Mmがほぼ球状である場合はその直径とし、又は、断面に楕円ないし長円を含む異形の球状である場合はその最も短い短辺側の直径とすることが好ましい。あるいは、成形材料Mmが円柱もしくは角柱その他の柱状であって、その直径もしくは幅と高さのうちの短いほうの寸法を成形材料Mmの一個分の長さとすることがある。
 上述した過熱水蒸気導入口62、通路区画壁部63及び予熱用スクリュ64に代えて、図58に示す第2実施形態の第1変形例の過熱水蒸気導入口162、通路区画壁部163及び予熱用スクリュ164とすることもできる。図58では、通路区画壁部163は、通路区画壁部163を貫通する貫通孔状の過熱水蒸気導入口162が、周方向及び回転軸線方向に複数個設けられている。予熱用スクリュ164は、その回転軸165が中空又は中実のいずれであってもよいが、先述したような連通孔70を有しない。また、通路区画壁部163の端面には開口部が設けられておらず、回転軸165は、その回転軸線方向の先端部が通路区画壁部163の内側で終端する。図58に示す第2実施形態の第1変形例では、通路区画壁部163に設けられた過熱水蒸気導入口162から、材料用通路61内に過熱水蒸気が導入される。これにより、回転軸165の外周側で搬送される成形材料Mmが加熱される。図58に示す第2実施形態の第1変形例は、過熱水蒸気導入口162、通路区画壁部163及び予熱用スクリュ164の構造を除いて、図55~57に示すものと実質的に同じ構成を有する。
 あるいは、図59に示すように、図55~57に示すものでさらに、通路区画壁部263に複数個の貫通孔状の過熱水蒸気導入口262を設けたものとしてもよい。図59に示す第2実施形態の第2変形例では、予熱用スクリュ64の回転軸65の外周側で搬送される成形材料Mmは、通路区画壁部263の過熱水蒸気導入口262及び、予熱用スクリュ64の過熱水蒸気導入口62により、予熱用スクリュ64の径方向(図59の上下方向)の内側及び外側の両側から過熱水蒸気が送られて加熱される。図59の第2実施形態の第2変形例は、通路区画壁部263に過熱水蒸気導入口262を設けたことを除いて、図55~57に示すものとほぼ同じ構成である。
 上述したように、予熱用スクリュ64の周壁部69の連通孔70や、通路区画壁部163、263の過熱水蒸気導入口162、262は、周壁部69又は通路区画壁部163、263の周方向及び回転軸線方向に均等に分散させて多数個設けることが好ましい。そのような予熱用スクリュ64や通路区画壁部163、263を実現するため、周壁部69及び/又は通路区画壁部163、263は、たとえば、正面視で正方形その他の多角形等の形状の複数個の孔部を有する円筒状の網状部材、又は、いわゆるパンチングメタルのような、金属製等の板材にプレス加工等で複数個の孔部を形成した円筒状の板状部材等で構成することができる。網状部材では強度不足である場合、網状部材をハニカム状又は格子状等の補強部材と重ね合わせたもので、周壁部69及び/又は通路区画壁部163、263を構成してもよい。
 たとえば、射出装置1のシリンダ11での可塑化能力が高く、シリンダ11への成形材料Mmの供給をより速い速度で行うことが求められる場合、上記の予熱用スクリュ64、164の外径を大きくすることにより対応することができる。あるいは、図60に材料用通路を上方側から見た断面図で示すように、一つの通路出口361cに成形材料Mmを送る材料用通路361を、たとえばその周囲の通路区画壁部363及びその内側の予熱用スクリュ364とともに、図60に示す第2実施形態の第3変形例では、通路出口361cの周囲に四つの直線状の材料用通路361を、互いに90°の角度で離して配置しているが、材料用通路361の個数や配置態様は適宜変更することができる。複数の材料用通路361を設けた場合、それぞれの材料用通路361内に過熱水蒸気が導入されるように、過熱水蒸気導入口を設ける。この例では、たとえば、各通路区画壁部363に複数の過熱水蒸気導入口を設けることができる。また、過熱水蒸気用の排出口を設けてもよい。
 ところで、材料用通路61で成形材料Mmを加熱する過熱水蒸気は、先述したように成形材料Mmを高速で昇温させることができる。他方、過熱水蒸気で加熱された成形材料Mmは、たとえば100℃よりも低い温度になると結露が生じ得る。
 このような結露による水分の除去等を目的として、材料用通路61を通過して過熱水蒸気で加熱された成形材料Mmを乾燥ないし、さらに加熱するため、この第2実施形態の予備加熱装置60はさらに、図56に示すように、過熱水蒸気で加熱されて材料用通路61を通過した後に成形材料Mmが通る材料送り通路22と、材料送り通路22を通る成形材料Mmを加熱する加熱部24とを有する。この第2実施形態では、成形材料Mmは、先述の材料用通路61を回転軸線方向に通過した後、自重により材料用通路61の通路出口61cから材料送り通路22に落下して入り、材料送り通路22を通る。ここでは、材料用通路61での材料通行方向と、材料送り通路22で成形材料Mmが通る方向である材料通過方向(図56の上下方向)とは直交し、成形材料Mmは材料送り通路22を鉛直方向に通過する。
 この材料送り通路22は、互いに対向して配置されて相互間に材料送り通路22が区画される対をなす通路形成部材23を有する。そして、加熱部24は、材料送り通路22から通路形成部材23を隔てた通路幅方向の外側に配置されている。通路形成部材23及び加熱部24は、過熱水蒸気で加熱されて材料用通路61を通過した成形材料Mmを乾燥する機能を有する他、当該成形材料Mmをさらに加熱する機能をも有する。ここでいう通路幅方向は、互いに平行に並ぶ通路形成部材23の整列方向であって、材料送り通路22での材料通過方向に直交する方向(図56の左右方向)を意味する。図示の実施形態では、材料送り通路22、通路形成部材23及び加熱部24は、断熱材等からなる箱状の筐体25の内部に収容されて配置されている。
 なお、材料送り通路22を区画形成する対をなす通路形成部材23の少なくとも一方は可動とすることができ、これにより、材料送り通路22は、対をなす通路形成部材23の相互間の間隔であるその通路幅を調整可能に構成されている。通路形成部材23の少なくとも一方は、たとえば、筐体25の内部でその取付け箇所との間にユーザがスペーサを配置すること等による手動で、又は、モータその他のアクチュエータ等を用いた自動で、通路幅方向に動かすことができるようにしてもよい。材料送り通路22の通路幅を調整可能にすると、様々な寸法形状がある多様な成形材料Mmのそれぞれに応じた適切な通路幅を設定することができる。たとえば、図56に示すように、成形材料Mmの一個分が通過できる程度の通路幅としたときは、成形材料Mmが材料送り通路22をほぼ一列に整列した姿勢で通過し、この際に通路形成部材23の通路幅方向の外側の加熱部24で、成形材料Mmの多くが有効に加熱されることになる。
 材料送り通路22の通路幅は、成形材料Mmの一個分の長さ以上、かつ、成形材料Mmの二個分の長さ未満とすることが好ましい。この場合、材料送り通路22で、複数個の成形材料Mmが通路幅方向に重なり合うことが抑制されるので、それらの成形材料Mmの多くを、より一層有効に加熱することができる。
 材料送り通路22の材料通過方向の先端側(図56の下端側)で筐体25の下面には、ホッパー等の供給容器26が設けられている。供給容器26は、図示の例では、たとえば内外形がともに円錐台状である円錐台状部分26aと、円錐台状部分26aの小径側の端部に形成された円筒状部分26bとを有するものである。供給容器26は、その周壁が断熱材からなるか又は周壁の表面を断熱材で覆うこと等により、断熱材を含むことが好ましい。供給容器26は、材料送り通路22を通過した成形材料Mmを、円錐台状部分26aに受け入れた後、その先の円筒状部分26bに通してシリンダ11の内部に供給する。円錐台状部分26aの端部には、材料送り通路22とほぼ同程度の幅の開口部26cが形成されており、材料送り通路22を通過した成形材料Mmは、その開口部26cから供給容器26内に入る。
 図示の例では、成形材料Mmは材料送り通路22を通過して供給容器26を経た後に、シリンダ11の内部に供給される。つまりここでは、予備加熱装置60で予熱された成形材料Mmがシリンダ11の内部に供給されることになる。但し、供給容器26の形状はこれに限らず、適宜変更することができるとともに、供給容器26を省略することもある。仮に供給容器26を省略して無くした場合、筐体がシリンダ上に配置されて、材料送り通路の材料通過方向の先端側がシリンダの供給口に直接的に連通される。この場合、成形材料は、材料送り通路を通過した直後にシリンダの内部に供給される。
 ここで、加熱部24は、一方の通路形成部材23の通路幅方向の外側で材料送り通路22の片側だけに配置することも可能であるが、この第2実施形態では、各通路形成部材23の通路幅方向の外側で材料送り通路22の両側にそれぞれ配置されている。そのほうが、成形材料Mmを両側の加熱部24で迅速に加熱できるので、材料送り通路22の成形材料Mmの通過速度を比較的速くしたとしても、成形材料Mmを有効に加熱することができる。なお、材料送り通路22の材料通過方向の先端側で、成形材料Mmが所望の温度になるように、加熱部24等の条件が設定される。
 加熱部24は、通路形成部材23を介して成形材料Mmを加熱できるものであれば、その加熱方式については特に問わない。たとえば、高温の空気等の加熱ガスを送る熱風加熱式ヒータ、高周波誘電加熱等の電熱式ヒータ、ハロゲンランプやセラミックヒータ等の赤外線加熱式ヒータ、レーザ加熱式ヒータ等を採用することができる。加熱部24を赤外線加熱式ヒータ又はレーザ加熱式ヒータとする場合、通路形成部材23は、ガラス等の光ないしレーザが透過する半透明もしくは透明の材料で構成することができる。なお、加熱部24の配置は、図56の例に限らず、筐体25の外部に配置し、熱風を材料送り通路22に流すようにしてもよい。
 図示の予備加熱装置60では、一例として、熱風加熱式ヒータを含む加熱部24を有するものとしている。熱風加熱式ヒータは具体的には、たとえば、コンプレッサから送られる圧縮空気をシーズヒータ等で加熱することにより、熱風が得られるものとすることができる。熱風の温度調整は、シーズヒータの出力を変更することにより可能である。熱風加熱式ヒータは、成形材料Mmをより有効に乾燥できる点で好ましい。
 この場合、通路形成部材23は、熱風加熱式ヒータから送られる加熱ガスを、材料送り通路22に通すため、通路幅方向に当該通路形成部材23を貫通する複数個の通気孔を有するものとすることができる。これにより、加熱部24からの加熱ガスは、通路形成部材23の通気孔を通って材料送り通路22に流れるので、当該加熱ガスで材料送り通路22の成形材料Mmを加熱することができる。
 具体的には通路形成部材23は、たとえば、図45(a)に示すように、いわゆるパンチングメタルのように、金属製等の板材23aにプレス加工等で複数個の通気孔23bを形成した板状部材とすることもできる。この場合、加工態様等の調整により、板材23aに、規則的に配置された複数個の通気孔23bを形成することができる。
 あるいは、通路形成部材23は、図45(b)に示すように、たとえば線材23cを格子状等に配置して、それらの間に、正面視で正方形その他の多角形等の形状の複数個の通気孔23bを設けた網状部材としてもよい。仮にそのような網状部材の厚みが薄く、通路形成部材23で材料送り通路22を形成するに必要な強度が当該網状部材に不足している場合、当該網状部材と補強部材とを重ね合わせて、それらの網状部材と補強部材とで通路形成部材23を構成することができる。補強部材は加熱ガスを通すことができれば、ハニカム状又は格子状等の種々の形状とすることができる。たとえば、補強部材の網目は、網状部材の網目よりも粗いものであってもかまわない。図示の網状部材は、複数個の通気孔23bが、正面視で縦方向(図45(b)の上下方向)及び、当該縦方向に直交する横方向(図45(b)の左右方向)に配列し、規則的に並んで配置されている。
 たとえば、網状の通路形成部材23で材料送り通路22を区画形成した場合、図46に示すように、複数個の成形材料Mmは、通路形成部材23の横方向に拡がって、同図に矢印で示すように、通路形成部材23の縦方向である材料通過方向に移動する。なお、対をなす通路形成部材23の相互間で通路形成部材23の横方向における材料送り通路22の各側部には、通路形成部材23の横方向での材料送り通路22の領域を区画する角棒状等の通路区画部材22aを配置している。
 上述した網状や板状の通路形成部材23のように、正面視で通気孔23bを均等に分散させて規則的に配置したときは、熱風加熱式ヒータとした加熱部24からの加熱ガスを材料送り通路22に、通路形成部材23の縦方向及び横方向で均等に送ることができる。それにより、材料送り通路22を通る複数個の成形材料Mmの多くに、加熱ガスを吹き付けることができて、それらの成形材料Mmをより一層効果的に加熱することができる。
 この第2実施形態では、シリンダ11の内部でのスクリュ12による成形材料の可塑化が進行するに従って、供給容器26からシリンダ11の内部に供給される。それに伴い、材料用通路61を通過した成形材料Mmが順次に、材料送り通路22を通って加熱部24で加熱された後に、供給容器26に投入される。この場合、材料送り通路22を通過する成形材料Mmの速度は、シリンダ11の内部での成形材料Mmの可塑化の速度に依存し得るが、当該成形材料Mmの通過速度は、先述したような通路幅の変更により調整することもできる。また必要に応じて、成形材料Mmの材料送り通路22を通過する速度及び、それに影響される成形材料Mmの加熱の程度を調整するため、図示は省略するが、材料送り通路22と供給容器26との間に、材料送り通路22から供給容器26への成形材料Mmの供給を調整するスクリュ状等のフィーダーその他の供給調整機を設けてもよい。
 また図示は省略するが、通路幅は一定のままで材料送り通路22の位置を変更させる機構があってもよい。材料送り通路22の位置を変更することにより、単位時間当たりの成形材料の通過量を調整することができる。
 ところで、予備加熱装置60は、先述のように、材料送り通路22を通る成形材料Mmを冷却する冷却部(図示せず)を有する。詳細には、冷却部は、図56に示す、材料送り通路22等を収容する筐体25の外部に配置することができ、また、冷却部から筐体25の内部へ延びる配管等を用いることで、冷却部で発生させた冷却媒体を筐体25の内部へ流入させ、材料送り通路22を通る成形材料Mmを冷却することができる。冷却部が発生する冷却媒体は、冷風だけでなく成形材料Mmの温度より低い風、例えば常温の風であってもよい。
 また、冷却部は、予備加熱装置21に設けてもよいが、加熱部24が冷風等の常温もしくは冷却ガスGcを送れる構造にすることによって実現することができる。
 また、第2実施形態において、予備加熱装置60、360、460は、先述した第1実施形態の予備加熱装置21についての制御と同様に制御することができる。つまり、予備加熱装置60、360、460は、加熱部24及び/又は冷却部を制御する制御部をさらに備えることができる。またより詳細には、制御部は、作動状態検出機構、滞留検出機構、及び/又は温度情報検出機構により得られる信号により、加熱部24及び/又は冷却部を制御することができる。
 第2実施形態の作動状態検出機構は、たとえば何らかの理由により、射出成形機の作動が停止した場合に射出装置1の作動状態を検出する。当該検出は、たとえば射出装置1の動作状況を発信する発信部、より詳細には射出装置1の計量モータ31や射出モータ41の動作状況を発信する発信部を設けることにより行うことができる。
 また滞留検出機構は、たとえば何らかの理由により、材料送り通路22内で成形材料Mmが滞留した場合に成形材料Mmの滞留に関する情報を検出する。当該検出は、材料送り通路22内の成形材料Mmの滞留を検出するセンサを用いることで行うことができる。ただし、第2実施形態の予備加熱装置60では、次に説明するように、そもそも、予備加熱装置60に、材料送り通路22内の成形材料Mmの滞留を防止する機構を設けることが好ましい。
 すなわち、第2実施形態のような、複数個の通気孔23bを有する網状もしくは板状等の通路形成部材23では、それによって形成される材料送り通路22にて、成形材料Mmが通気孔23bに引っ掛かること等に起因して、通路形成部材23の横方向の少なくとも一部で成形材料Mmの詰まり等の滞留が発生することがある。材料送り通路22での成形材料Mmの滞留は、成形材料Mmの過剰な加熱、ひいては成形材料Mmの溶融を招くおそれがある。
 それゆえに、予備加熱装置60には、材料送り通路22での成形材料Mmの滞留を防止する滞留防止機構を設けることが好ましい。
 滞留防止機構としては、たとえば図47~50に示すように、射出成形機の作動時に継続的に、又は、必要なときだけ断続的に、対をなす通路形成部材23の少なくとも一方を変位させて、他方の通路形成部材23に対する一方の通路形成部材23の相対的な位置及び/又は向きを変化させる駆動部とすることができる。なおここでは、その駆動源の図示は省略する。
 図47に示すところでは、一方の通路形成部材23の通路幅方向の外側で、当該通路形成部材23の横方向の両側部にそれぞれ、角棒状の可動用部材22bを設けている。そして、成形材料Mmが材料送り通路22を通過している間、それらの可動用部材22bで一方の通路形成部材23を、図47(b)及び(c)に矢印で示すように、通路形成部材23の横方向に動かすことで、一方の通路形成部材23の、他方の通路形成部材23に対する相対位置が変化する。これにより、成形材料Mmが通気孔23bに引っ掛かったとしても、一方の通路形成部材23の移動でその引っ掛かりが外れて、成形材料Mmの滞留が防止される。
 また、一方の通路形成部材23を、通路形成部材23の横方向ではなく、材料通過方向と平行な縦方向(上下方向)に動かすようにしてもよい。
 図48に示す滞留防止機構では、一方の通路形成部材23の通路幅方向の外側で、当該通路形成部材23の縦方向の両端部のそれぞれに、角棒状の可動用部材22bを設けている。この滞留防止機構は、成形材料Mmの通過中に、図48(b)及び(c)に示すように、可動用部材22bで一方の通路形成部材23を通路幅方向に動かし、一方の通路形成部材23の、他方の通路形成部材23に対する相対位置を変化させる。このとき、材料送り通路22の通路幅が微小に増減する。なお、図48の滞留防止機構は、先述したような通路幅を調整するために通路形成部材23を可動させる機構としても用いることができる。
 図49の滞留防止機構は、一方の通路形成部材23の通路幅方向の外側で、当該通路形成部材23の縦方向の両端部のそれぞれに設けた角棒状の可動用部材22bと、材料送り通路22の材料通過方向の中央位置等の途中位置で当該通路形成部材23と通路区画部材22aとの間に挟み込んで配置されて、通路形成部材23の横方向に延びる円柱状等の支点部材22cとを有するものである。ここでは、支点部材22cは、通路区画部材22aに取り付けられている。この場合、図49(b)及び(c)に示すように、各可動用部材22bを通路幅方向で相互に逆向きに動かすと、一方の通路形成部材23は、支点部材22cの周りで回動変位し、他方の通路形成部材23に対して斜めになるように向きが変化する。より詳細には、一方の通路形成部材23の縦方向の一端部が、他方の通路形成部材23に対して接近もしくは離隔したとき、一方の通路形成部材23の縦方向の他端部は、他方の通路形成部材23に対して離隔もしくは接近するように、一方の通路形成部材23の向きが変化する。なお、これに伴い、材料送り通路22の通路幅は材料通過方向で一定ではなくなるときがある。このような滞留防止機構でも、成形材料Mmの滞留を有効に防止することができる。
 図50の滞留防止機構は、図49とほぼ同様の構成を有するものであるが、支点部材22cが、通路区画部材22aではなく一方の通路形成部材23に固定されて取り付けられている。そして図51では、可動用部材22bを動かさずに、支点部材22cを回転駆動することで、支点部材22cとともに一方の通路形成部材23が支点部材22cの周りで回動変位し、図49と実質的に同様にして他方の通路形成部材23に対する向きが変化する。
 あるいは、滞留防止機構は、図51(a)に示すように、通路形成部材23の少なくとも一方の通路幅方向の外側に配置されて、当該通路形成部材23を所定の周期等で打ち付ける衝撃付与部28で構成することもできる。図示の衝撃付与部28は、他方の通路形成部材23の通路幅方向の外側で当該通路形成部材23と平行に設けられて、一個以上の貫通孔28aが形成された板状部材28bと、板状部材28bの貫通孔28a内を通って配置されて、他方の通路形成部材23に対して離隔・接近変位する一本以上のピン状部材28cを含むものである。一方の通路形成部材23の通路幅方向の外側にも、同様の衝撃付与部28を設けてもよい。
 また、滞留防止機構は、図51(b)に示すように、通路形成部材23の少なくとも一方、たとえば他方の通路形成部材23の通路幅方向の外側の表面に取り付けられて、当該通路形成部材23に振動を与える一個以上の振動子等の振動付与部29で構成してもよい。
 そしてまた、滞留防止機構としては、図52(a)に示すように、通路形成部材23の少なくとも一方の通路幅方向の外側に配置されて、気体を異なる流量で、通路形成部材23の通気孔23bに通して材料送り通路22の成形材料Mmに当てる送風部30とすることもできる。この送風部30は、図52(b)又は(c)に示すように、材料送り通路22の成形材料Mmに送る気体の流量を経時的に変化させ、それにより、気体を成形材料Mmに強弱をつけて当てることができるものである。なお、送風部30から成形材料Mmへ気体を送るに当っては、図52(b)のように、流量がゼロである期間と流量が多い期間とを周期的に繰り返してもよいし、又は、図52(c)のように、流量が少ない期間と流量が多い期間とを周期的に繰り返してもよい。滞留防止機構としての送風部30を別途設けることもできるが、先述した熱風加熱式ヒータとした加熱部24を送風部30とし、当該加熱部24を滞留防止機構としても使用することもできる。加熱部24を予熱及び滞留防止機構として兼用した場合、送風部30からの気体は、加熱部24からの加熱ガスに相当する。
 また、先述した冷却部を、単に送風するための構造にすることによって送風部30とし、当該冷却部を滞留防止機構としても使用することもできる。冷却部を冷却及び滞留防止機構として兼用した場合、送風部30からの気体は、冷却部からの冷却ガスに相当する。
 図47~52に示すような上述した滞留防止機構は、それらのうちの一つを予備加熱装置60で採用することができる他、それらの複数を組み合わせて採用することもできる。つまり、予備加熱装置60は、図47~52に示す滞留防止機構のうちの一つ以上を含むことができる。
 また、予備加熱装置60には、材料送り通路22での成形材料Mmの滞留を検出する滞留検出機構を設けることが好ましい。滞留検出機構としては、たとえば、温度、カメラによる画像、赤外線又は、レーザ等により滞留を検出するセンサとすることができる。
 滞留検出機構のそのようなセンサは、材料送り通路22の材料通過方向の先端側の部分、つまり、供給容器26よりも材料通過方向の手前における材料送り通路22近傍の箇所に設けることが好適である。より詳細には、図46に示すように、かかるセンサ23dは、たとえば、材料送り通路22の材料通過方向の先端側で、通路形成部材23の通路幅方向の外側に、通路形成部材23の横方向に互いに間隔をおいて複数個設けることができる。これにより、通路形成部材23の横方向で成形材料Mmの滞留が生じている箇所を早期に見つけることができる。
 仮に滞留検出機構のセンサ23dを温度センサとする場合、その温度センサで、材料送り通路22の材料通過方向の先端側の部分に位置する成形材料Mmの温度を測定できるように、当該温度センサを配置することが好ましい。ここでいう成形材料Mmの温度は、成形材料Mm自体の温度、通路形成部材23の温度、又は、通路形成部材23の通気孔23b内の空間における温度とすることができる。接触式の温度センサの場合、成形材料Mm自体の温度又は通路形成部材23の温度を測定するには、たとえば、温度センサを通路形成部材23の通気孔23bに通してその先端が成形材料Mmに接触するように、又は、温度センサの先端が通路形成部材23に接触するように、当該温度センサを配置する。
 なお、滞留検出機構のセンサ23dが温度センサの場合には、予備加熱装置60が備えることができる温度情報検出機構で用いることができる温度センサと兼用することができる。つまり、温度センサを兼用する場合、予備加熱装置60は、滞留検出機構としての温度センサにより、成形材料Mmの滞留を検出し、制御部が、滞留検出機構より得られる成形材料Mmの滞留の検出に基づいて、加熱部24を制御することにより、加熱部24による加熱を停止することができる。そして、温度情報検出機構が材料送り通路22内の成形材料Mmの温度に関する情報を検出した場合、具体的にはたとえば、温度センサにより測定される成形材料Mmの温度が所定の基準を満たした場合には、制御部は、当該温度に関する情報に基づいて、冷却部を制御して成形材料Mmを冷却することができる。
 先述した滞留防止機構は、射出成形機の作動中に常に継続的に作動させることができ、又は、滞留検出機構により材料送り通路22での成形材料Mmの滞留が検出されたとき等の特定のタイミングで間欠的に作動させることができる。
 また、予備加熱装置60では、温度情報検出機構が温度に関する情報を検出するために、たとえば温度センサを材料送り通路22内に設けることができる(上述のように、滞留検出機構のセンサ23dを温度センサとする場合には兼用してもよい)。より詳細には、かかる温度センサで、材料送り通路22の材料通過方向の先端側の部分に位置する成形材料Mmの温度を測定できるように、当該温度センサを配置することが好ましい。ここでいう成形材料Mmの温度は、成形材料Mm自体の温度、通路形成部材23の温度、又は、通路形成部材23の通気孔23b内の空間における温度とすることができる。接触式の温度センサの場合、成形材料Mm自体の温度又は通路形成部材23の温度を測定するには、たとえば、温度センサを通路形成部材23の通気孔23bに通してその先端が成形材料Mmに接触するように、又は、温度センサの先端が通路形成部材23に接触するように、当該温度センサを配置する。
 また、第2実施形態では、制御部は、加熱部24及び/又は冷却部の他、さらに過熱水蒸気の導入も制御することが好ましく、また、制御部は、作動状態検出機構より検出された射出装置1の作動の停止に関する情報に基づいて、及び/又は滞留検出機構より検出された成形材料Mmの滞留に関する情報に基づいて、加熱部24および過熱水蒸気の導入を制御することが好ましい。かかる情報を制御部が受信した場合には、制御部により、加熱部24による加熱を停止し、且つ、過熱水蒸気の導入を停止するように制御することで、成形材料Mmが融解し融着することをより防止することができる。
 ところで、図示は省略するが、材料送り通路は複数設けることもできる。この場合、材料送り通路の一つ当たりの面積を小さくすることができて、予備加熱装置の小型化を実現することができる。たとえば、互いに平行に並ぶ二つ以上の材料送り通路を設けたときは、各材料送り通路の通路幅方向の両側にヒータを設けることが、成形材料Mmの迅速かつ均一な予熱を実現するとの観点から好ましい。
 一方、図61に示す第2実施形態の第4変形例のように、上述した材料送り通路を省略し、材料用通路61の通路出口61cを直接的に、供給容器26の開口部26cに接続してもよい。図61の予備加熱装置260は、図56の予備加熱装置60の筐体25及びその内部構造(すなわち、材料送り通路22、通路形成部材23及び加熱部24)を省略したことを除いて、図56のものと実質的に同様の構成を有するものである。図61に示す予備加熱装置260では、過熱水蒸気Ssで加熱されながら材料用通路61を通過した成形材料Mmは、供給容器26を経て、シリンダ11の内部に供給される。この場合、材料用通路61の通路出口61cに、図示しない熱風加熱式ヒータを設けて、そこで成形材料Mmの乾燥を行うことも可能である。また図示は省略するが、さらに供給容器26も省略して、材料用通路の通路出口をシリンダの供給口に接続することも可能である。
 なお、この変形例では、温度情報検出機構が温度に関する情報を検出するために、たとえば温度センサを材料用通路61内に設けることができる。より詳細には、その温度センサで、材料用通路61の材料通過方向の先端側の部分に位置する成形材料Mmの温度を測定できるように、当該温度センサを配置することが好ましい。ここでいう成形材料Mmの温度は、成形材料Mm自体の温度、予熱用スクリュ64の温度、又は、予熱用スクリュ64の連通孔70内の空間における温度とすることができる。接触式の温度センサの場合、成形材料Mm自体の温度又は予熱用スクリュ64の温度を測定するには、たとえば、温度センサを予熱用スクリュ64の連通孔70に通してその先端が成形材料Mmに接触するように、又は、温度センサの先端が予熱用スクリュ64に接触するように、当該温度センサを配置する。
 図62に、第2実施形態の第5変形例の予備加熱装置460を示す。図62の予備加熱装置460は、予熱用スクリュ等の搬送機構を有しないものであり、成形材料Mmが自身の自重により下方側に落下しながら、材料用通路461を通過する。ここでは、材料用通路461の材料通行方向は、材料送り通路22の材料通過方向と同様に鉛直方向と平行な方向としているが、材料用通路461を成形材料Mmが通ることができれば鉛直方向に対して傾斜させることもできる。
 予備加熱装置460では、たとえば、材料用通路461の周囲の通路区画壁部463に複数の過熱水蒸気導入口462が設けられている。過熱水蒸気Ssは、かかる過熱水蒸気導入口462から材料用通路461内に送られ、成形材料Mmを加熱する。
 このような材料用通路461及び過熱水蒸気導入口462を有する予備加熱装置460でも、筐体25及びその内部構造(すなわち、材料送り通路22、通路形成部材23及び加熱部24)、並びに/又は、供給容器26を省略してもよい。
(第3実施形態の予備加熱装置)
 次いで、第3実施形態の予備加熱装置について図面を用いてより詳細に説明する。
 図63に例示する第3実施形態の予備加熱装置81は、図40に示す第1実施形態の予備加熱装置21と同様に、射出装置1のスクリュ12の回転軸線方向(図63の左右方向)で、シリンダ11の成形材料Mmを射出する先端部14とは逆側の後端部に取り付けられる。より詳細には、この予備加熱装置81は、シリンダ11上にて、図63に示すように、シリンダ11の後端部で周方向の一部に設けられた貫通孔状の供給口11aに接続されており、当該供給口11aに、実質的に球状もしくは円柱状その他の形状の樹脂ペレット等の成形材料Mmを供給するものである。
 この第3実施形態では、予備加熱装置81は、図64に示すように成形材料Mmが通る材料送り通路82を有するものである。材料送り通路82は、例えば金属で形成された配管などの管状体83の内周面によって区画されている(換言すれば、材料送り通路82は管状体83の内部に形成されている)。そして、材料送り通路82は、成形材料Mmと加熱媒体Ghとが合流する合流部82aと、合流部82aで合流した成形材料Mmと加熱媒体Ghとを混合させ、加熱媒体Ghで該成形材料Mmを加熱するインラインの混合部82bと、を有する。したがって、成形材料Mmは、図64に示すように、材料通過方向上流(図64の左側)から下流(図64の右側)へ材料送り通路82を通ってシリンダ11の供給口11aに供給され、その途中において、加熱媒体Ghと合流する合流部82a、次いで、成形材料Mmと加熱媒体Ghとを混合する混合部82bを通過する。
 このような構成を有する予備加熱装置81では、シリンダ11の内部に供給する成形材料Mmを、その供給前に予め加熱することができる。その結果、予熱された成形材料Mmは、供給口11aを通ってシリンダ11の内部に供給された後に当該内部で短時間のうちに十分に溶融して、シリンダ11の先端部から射出されるので、成形のサイクルの短縮化を実現することができる。
 ここで、材料送り通路82は、図示の例では、材料通過方向上流から下流に向かって、鉛直方向(図64では上下方向)に延びる第1部分821と、第1部分821の鉛直方向下端(材料通過方向下流側)に続いて、水平方向(図64では左右方向)に延びる第2部分822と、第2部分822の材料通過方向下流側に続いて、鉛直方向に延びる第3部分823と、を有する。第1部分821は、鉛直方向上端において、成形材料Mmが材料送り通路82内に供給され、また、第2部分822は合流部82aおよび混合部82bを有し、さらに第3部分823は上下方向下端において後述する供給容器26に連結している。
 なお、材料送り通路82の大きさは、搬送する成形材料Mmの量、加熱する温度などによって任意にすることができる。また、材料送り通路82は、図64に示す形状に限らず、任意の形状にすることができる。さらに、材料送り通路82を形成する管状体83の周囲には断熱材を設けることができる。
 材料送り通路82中の合流部82aは、加熱部84で加熱された加熱媒体Ghが、加熱部84から熱媒送り通路84aで送られて、材料通過方向上流から下流への搬送中の成形材料Mmと合流する部分である。
 加熱媒体Ghとしては、加熱ガス、具体的には、空気、不活性ガスなどの気体を加熱したもの、または過熱水蒸気などを用いることができるが、加熱媒体Ghとしては、合流部82aで成形材料Mmと合流し材料通過方向下流へ流動可能であれば特に限定されない。また、加熱媒体Ghは、予備加熱装置81が有する加熱部84によって加熱されたものであり、当該加熱部84としては、例えば熱風加熱式ヒータを用いることができる。熱風加熱式ヒータは具体的には、たとえば、コンプレッサから送られる圧縮空気をシーズヒータ等で加熱することにより、熱風が得られるものとすることができる。熱風の温度調整は、シーズヒータの出力を変更することにより可能である。また、加熱媒体Ghは、予備加熱装置81が有する熱媒送り通路84aを通って合流部82aに送られるが、加熱部84と合流部82aとの間の当該熱媒送り通路84aは、例えば、断熱材が周囲に設けられた、金属で形成された配管84b等で区画され得る。
 加熱媒体Ghは、加熱部84で生成された後、図64の熱媒送り通路84aを介して、材料送り通路82の合流部82aへ送られる。
 なお、合流部82aでは、上述のように材料送り通路82から熱媒送り通路84aが分岐しているが、合流部82aと熱媒送り通路84aとの間には、成形材料Mmが熱媒送り通路84aに送られないようにするための、網などの通過防止部を設けることができる。
 混合部82bは、合流部82aで合流した成形材料Mmと加熱媒体Ghとをインラインで混合させ、加熱媒体Ghで該成形材料Mmを加熱する部分である。合流部82aを設けることにより、成形材料Mmは、加熱媒体Ghと当該合流部82aで合流し加熱媒体Ghとともに材料通過方向に送られることで、成形材料Mmと加熱媒体Ghとが接触し、成形材料Mmは部分的には加熱され得る。しかし、成形材料Mmの加熱はそのような加熱媒体Ghとの接触だけでは、十分均一に、また、短時間のうちに効率的に行われにくい。そこで、材料送り通路82に混合部82bも設けることで、成形材料Mmおよび加熱媒体Ghの流れを均質化し、成形材料Mmを均一に昇温させることができる。また、効果的に混ざり合わされることで、成形材料Mmの表面全体から十分に加熱され、高速昇温が可能となる。
 混合部82bとしては、図64の例では、駆動部を有しないインライン混合器である静止型混合器が用いられている。図示の例での静止型混合器は、具体的には、材料送り通路82内に設けられた複数の螺旋状にねじられた板82cを含んでおり、このような螺旋状の板82cを含むことで、成形材料Mmと加熱媒体Ghとの流れが分割、転換、反転されながら混合部82bを通過し、成形材料Mmを短時間のうちに効率的に、均一に加熱することができる。
 螺旋状の板82cは、図65に示すように(図65では2枚の板を示している)、平板を、軸周りに略180°ねじって螺旋状になった形状を有し、当該軸が材料送り通路82での材料通過方向に沿うように、当該螺旋状の板82cが配置される。また、隣り合う螺旋状の板82cは、相互に、軸周りのねじり方向が逆になっており、また、相互に、板82cの端部が略直交する向きで接合されている。このような螺旋状の板82cを含む静止型混合器は、当該螺旋状の板82cが複数枚含まれることが好ましく、これにより成形材料Mmと加熱媒体Ghとを効果的に混合することができる。また、螺旋状の板82cは、金属で形成することができる。但し、静止型混合器は、上述したような螺旋状にねじられた板82cに限らず、たとえば加熱媒体の流れの方向を変化させること及び/又は材料送り通路82を部分的に狭くすること等により、成形材料Mmと加熱媒体との接触効率を高めることができるものであればよい。
 なお、第3実施形態において混合部82bとしては、成形材料Mmと加熱媒体Ghとをインラインで混合可能であれば上記の混合器に限定されず任意のものを用いることができ、駆動部を有していても有していなくてもよい。また好ましくは、駆動部を有しないインラインで混合可能な混合器である。このような混合器を用いることで、例えば、材料送り通路82として成形材料Mmの既存の搬送路などを利用してそこに当該混合器を設けることができ、少ない設備導入コストとすることができる。
 また、第3実施形態の予備加熱装置81は、成形材料Mmを材料送り通路82の上流から下流へ搬送する搬送器85を備えており、図64の例では、当該搬送器85は、成形材料Mmを気体圧送する気体圧送器である。気体圧送器85は、より詳細には、コンプレッサ(図示は省略)等により製造した圧縮気体Gpを図66に示すように気体圧送器85に導入し、圧縮気体Gpを、材料送り通路82の材料通過方向下流側(図66では右側)に向けて吐出側気体流Gbを生成することで(換言すれば、吐出側気体流Gbを生成するための吐出口が材料通過方向下流側に向いている)、圧縮気体Gpを吐出側気体流Gbを吐出した吐出部よりも上流側(図66では左側)が負圧になる。それにより、気体圧送器85よりも材料通過方向上流側において下流側へ吸引される吸引側気体流Gfが生じ、材料送り通路82の材料通過方向上流側に存在する成形材料Mmを下流側へ搬送する。
 そして、第3実施形態では、図64に示すように、気体圧送器85は、材料送り通路82内の合流部82aより上流側に設けられることにより、気体圧送器85が、材料送り通路82の材料通過方向上流に存在する成形材料Mmを、合流部82aへ吸引して搬送し、次いで、加熱媒体Ghとともに混合部82bを通過させて、材料送り通路82の下流側へ圧送して搬送する。また、気体圧送器85は、材料送り通路82内の合流部82aより上流側に設けられることにより、加熱媒体Ghの材料通過方向上流への逆流を防ぐことができる。
 このように搬送器85として成形材料Mmを気体圧送する気体圧送器を用いることにより、例えば、成形材料Mmの既存の搬送路などを利用でき、少ない設備導入コストとすることができる。
 なお、搬送器85として気体圧送器を用いる場合には、圧縮気体Gpは特に限定されず空気を用いることができる。また、材料送り通路82は、材料通過方向下流側であってシリンダ11の供給口11aの前に、例えば図41に示す例では供給容器26に、加熱媒体Ghが排出される排出口(図示は省略)を設けることができるが、当該排出口を、搬送のために導入した気体圧送器85由来の気体の排気としても用いることができる。
 また、第3実施形態の第1変形例では、予備加熱装置181において、搬送器185としての気体圧送器を、図67に示すように材料送り通路182中の混合部182bよりも材料通過方向下流側に設けており、気体圧送器185よりも材料通過方向上流側に生じる、下流側への吸引力により、成形材料Mmを、材料送り通路182中の合流部182a、混合部182bを経由して搬送させることができる。
 また、第3実施形態の第2変形例では、上述の気体圧送器に代えて、予備加熱装置281中の搬送器285として図68に示すようにフィードスクリュ285を用いており、材料送り通路282の材料通過方向上流にフィードスクリュ285を設けることにより、成形材料Mmを、材料送り通路282中を押し出すように、合流部282a、混合部282bを経由して搬送させることができる。なお、図68に示すフィードスクリュ285は、成形材料Mmを回転することで移動させるスクリュ285aと、当該スクリュ285aを内包する円筒状のシリンダ285bと、当該スクリュ285aを回転させる駆動部285cとを備える。また、フィードスクリュ285は、シリンダ285bの駆動部285c側の開口部285dに供給容器227(ホッパー)が接続され、当該供給容器227より成形材料Mmが供給される。さらに、フィードスクリュ285は、シリンダ285bの先端部側の開口部285eに材料送り通路282が接続され、当該開口部285eから材料送り通路282へ成形材料Mmが送り出される。
 ところで、第3実施形態においては、材料送り通路82の材料通過方向の下流側(図64の下端側)には、ホッパー等のシリンダ供給用の供給容器26が設けられている。供給容器26は、図示の例では、たとえば内外形がともに円錐台状である円錐台状部分26aと、円錐台状部分26aの小径側の端部に形成された円筒状部分26bとを有するものである。供給容器26は、材料送り通路82を通過した成形材料Mmを、円錐台状部分26aに受け入れた後、その先の円筒状部分26bに通してシリンダ11の内部に供給する。円錐台状部分26aの端部には、材料送り通路82とほぼ同程度の幅の開口部26cが形成されており、材料送り通路82を通過した成形材料Mmは、その開口部26cから供給容器26内に入る。
 また、材料送り通路82の材料通過方向の上流側には、複数個の成形材料Mmを蓄えて該成形材料Mmを適正量で材料送り通路82に供給するホッパー等の通路供給用の供給容器27が、搬送器85前に載置されている。
 図示の例では、成形材料Mmは、通路供給用の供給容器27から予備加熱装置81に供給される。そして、予備加熱装置81に供給された成形材料Mmは、予熱されながら材料送り通路82を通過し、シリンダ供給用の供給容器26を経た後に、シリンダ11の内部に供給される。つまりここでは、予備加熱装置81で予熱された成形材料Mmがシリンダ11の内部に供給されることになる。但し、供給容器26及び/又は供給容器27の形状はこれに限らず、適宜変更することができるとともに、供給容器26及び/又は供給容器27を省略することもある。仮にシリンダ用の供給容器26を省略して無くした場合、予備加熱装置がシリンダ上に配置されて、材料送り通路の材料通過方向の先端側がシリンダの供給口に直接的に連通される。この場合、予備加熱装置で予熱された成形材料Mmは、当該予熱の直後にシリンダの内部に供給される。
 なお、図64に示す第3実施形態では、シリンダ11の内部でのスクリュ12等による可塑化が進行するに従って、成形材料Mmがシリンダ供給用の供給容器26からシリンダ11の内部に供給される。それに伴い、通路供給用の供給容器27内の成形材料Mmが順次に、材料送り通路82を通って加熱部84で加熱された後に、シリンダ供給用の供給容器26に投入される。この場合、材料送り通路82を通過する成形材料Mmの速度は、シリンダ11の内部での成形材料Mmの可塑化の速度に依存し得るが、当該成形材料Mmの通過速度は、先述したような搬送器85により調整することもできる。また必要に応じて、成形材料Mmの材料送り通路82を通過する速度及び、それに影響される成形材料Mmの加熱の程度を調整するため、図示は省略するが、材料送り通路82と供給容器26との間に、材料送り通路82から供給容器26への成形材料Mmの供給を調整するスクリュ状等のフィーダーその他の供給調整機を設けてもよい。
 ところで、予備加熱装置81は、先述のように、材料送り通路82を通る成形材料Mmを冷却する冷却部(図示せず)を有する。詳細には、冷却部は、図64に示す、材料送り通路82を区画する管状体83の外部に配置することができ、また、冷却部から材料送り通路82や熱媒送り通路84aの内部へ延びる配管等を用いることで、冷却部で発生させた冷却媒体を材料送り通路82へ流入させ、材料送り通路82を通る成形材料Mmを冷却することができる。冷却部が発生する冷却媒体は、冷風だけでなく成形材料Mmの温度より低い風、例えば常温の風であってもよい。
 また、冷却部は、予備加熱装置81に設けてもよいが、加熱部24が冷風等の常温もしくは冷却ガスGcを送れる構造にすることによって実現することができる。
 また、第3実施形態の予備加熱装置81、181、281は、先述した第1実施形態の予備加熱装置21についての制御と同様に制御することができる。つまり、予備加熱装置81、181、281は、加熱部84及び/又は冷却部を制御する制御部をさらに備えることができる。またより詳細には、制御部は、作動状態検出機構、滞留検出機構、及び/又は温度情報検出機構により得られる信号により、加熱部84及び/又は冷却部を制御することができる。
 第3実施形態の作動状態検出機構は、たとえば何らかの理由により、射出成形機の作動が停止した場合に射出装置1の作動状態を検出する。当該検出は、たとえば射出装置1の動作状況を発信する発信部、より詳細には射出装置1の計量モータ31や射出モータ41の動作状況を発信する発信部を設けることにより行うことができる。
 また滞留検出機構は、たとえば何らかの理由により、材料送り通路82内で成形材料Mmが滞留した場合に成形材料Mmの滞留に関する情報を検出する。当該検出は、材料送り通路82内の成形材料Mmの滞留を検出するセンサを用いることで行うことができる。
 すなわち、第3実施形態において、予備加熱装置81には、材料送り通路82での成形材料Mmの滞留を検出する滞留検出機構(図示は省略する)を設けることが好ましい。滞留検出機構としては、たとえば、温度等により滞留を検出するセンサとすることができる。滞留検出機構を設けることにより、例えば成形材料Mmが滞留した場合などにおいて、成形材料Mmの温度が過昇温したときに早期に発見することができる。なお、ここでいう成形材料Mmの温度は、成形材料Mm自体の温度、材料送り通路中の空間における温度、又は材料送り通路を形成する管状体の温度とすることができる。
 滞留検出機構のそのようなセンサは、材料送り通路82の合流部82aまたは混合部82b、あるいはその下流側近傍の箇所に設けることが好適である。
 なお、滞留検出機構のセンサが温度センサの場合には、予備加熱装置81が備えることができる温度情報検出機構で用いることができる温度センサと兼用することができる。つまり、温度センサを兼用する場合、予備加熱装置81は、滞留検出機構としての温度センサにより、成形材料Mmの滞留を検出し、制御部が、滞留検出機構より得られる成形材料Mmの滞留の検出に基づいて、加熱部84を制御することにより、加熱部84による加熱を停止することができる。そして、温度情報検出機構が材料送り通路82内の成形材料Mmの温度に関する情報を検出した場合、具体的にはたとえば、温度センサにより測定される成形材料Mmの温度が所定の基準を満たした場合には、制御部は、当該温度に関する情報に基づいて、冷却部を制御して成形材料Mmを冷却することができる。
 また、予備加熱装置81は、温度情報検出機構が温度に関する情報を検出するために、たとえば温度センサを材料送り通路82内に設けることができる(上述のように、滞留検出機構のセンサを温度センサとする場合には兼用してもよい)。より詳細には、かかる温度センサで、材料送り通路82の合流部82aまたは混合部82b、あるいはその下流側近傍の箇所に設けることが好適である。ここでいう成形材料Mmの温度は、成形材料Mm自体の温度、材料送り通路中の空間における温度、又は材料送り通路を形成する管状体の温度とすることができる。
(射出装置)
 上述したような予備加熱装置21等を適用することができる射出装置1は、図40等に例示するように、主として、予備加熱装置21と、予備加熱装置21から供給された成形材料を内部で溶融させるシリンダ11と、シリンダ11の内部で回転駆動されて成形材料を可塑化するスクリュ12と、スクリュ12の回転軸線方向の後方側(図40の右側)に配置された計量モータ31と、計量モータ31のさらに後方側に配置された射出モータ41とを備える。
 シリンダ11の周囲には、シリンダ11の内部でスクリュ12により可塑化される成形材料を加熱する加熱器13が配置されている。シリンダ11は回転軸線方向の先端側(図40の左側)に内外径が小さくなる先端部14を有し、その先端部14の周囲にも加熱器13が配置される。また、シリンダ11は回転軸線方向の後端側には、貫通孔状の供給口11aが設けられており、そこに先述の予備加熱装置21が取り付けられている。
 計量モータ31及び射出モータ41はそれぞれ、スライドベース101上に立てた姿勢で互いに間隔をおいて配置された二枚のモータ支持プレート32、42のそれぞれの回転軸線方向の後端側の背面に固定されている。スクリュ12は、計量モータ31により回転駆動されるとともに、射出モータ41により進退駆動される。二枚のモータ支持プレート32、42は、計量モータ31を隔てた上方側及び下方側の複数箇所でロッド51、52により互いに連結されている。
 計量モータ31は、主に、ロータ33と、ロータ33の周囲に配置されたステータ34と、ロータ33及びステータ34の周囲を取り囲み、内表面にステータ34が設けられたステータフレーム35とを含む。計量モータ31のロータ33はその回転軸線方向の各端部で、ステータフレーム35の内側に軸受33aにより支持されている。また、このロータ33は、計量スプライン軸36の周囲にスプライン結合されており、この計量スプライン軸36は、スクリュ12が取り付けられたスクリュ取付部37に連結されている。なお、計量スプライン軸36の外周面の回転軸線方向の後端部には、ロータ33の内周面に設けられたキー溝に対応する一個以上のキー36aが形成されている。これにより、計量モータ31からスクリュ12に回転駆動力が伝達されて、スクリュ12を回転させることができる。
 射出モータ41は、主に、ロータ43と、ロータ43の周囲に配置されたステータ44と、ロータ43及びステータ44の周囲を取り囲んで設けられて、内表面にステータ44が設けられたステータフレーム45とを有するものである。ロータ43はその回転軸線方向の各端部で、ステータフレーム45の内側に軸受43aにより支持されている。射出モータ41は、ロータ43が駆動軸に接続されている。この駆動軸は、より詳細には、円筒状のロータ43の内周側に設けた溝部43bでスプライン結合された射出スプライン軸46と、射出スプライン軸46に連結されたねじ軸48と、計量スプライン軸36の内側に軸受49を介して回転自在に取り付けられた回転軸50とを有する。ねじ軸48に螺合するねじナット47は、後述する圧力検出器38を介してモータ支持プレート42に取り付けられる。この構造により、射出モータ41による回転駆動力が、スクリュ12の回転軸線方向の直線駆動力に変換されて、スクリュ12に伝達される。
 なお、射出モータ41のステータフレーム45とモータ支持プレート42との間には、圧力検出器38を配置している。この圧力検出器38はモータ支持プレート42及びねじナット47のそれぞれに取り付けられて、射出モータ41からスクリュ12への駆動力の伝達経路で当該圧力検出器38に作用する荷重を検出する。圧力検出器38とステータフレーム45との間には、筒状部分39を介在させて設けている。
 また、回転軸線方向で上記の駆動軸とは反対側に位置する射出モータ41のステータフレーム45の後端面には、ロータ43と軸部45bで連結されてロータ43の回転を検出するエンコーダ45aが設けられている。
 なお、上述したような予備加熱装置21等を射出装置1が備える場合には、加熱部24及び/又は冷却部を制御する制御部を、予備加熱装置21が備えるのではなく、代わりに、射出装置1が備えることもできる。そして、加熱部24及び/又は冷却部を制御する制御部を射出装置1が代わりに備える場合の制御部は、予備加熱装置21が当該制御部を備える場合の制御部が行う先述の制御と同じように、制御を行うことができる。
 このような射出装置1を備える射出成形機による成形過程の一例を述べると、前回の成形過程の後半に既にシリンダ11の内部に成形材料が所定の量で計量されて配置された状態で、図示しない金型装置を閉じて型締状態とする型締工程を行う。次いで、スクリュ12の前進により成形材料を金型装置内に向けて射出し、成形材料を金型装置内のキャビティに充填する充填工程と、スクリュ12をさらに前進させてシリンダ11の先端部14の内部にある成形材料を所定の圧力に保持する保圧工程とを順次に行う。
 そしてその後、金型装置内に充填された成形材料を冷却させて硬化させ、成形品を得る冷却工程を行う。この際に、予備加熱装置21からシリンダ11内に別途供給した成形材料を、加熱器13による加熱下でスクリュ12の回転によりシリンダ11の先端部14に向けて送りながら溶融させ、所定の量の成形材料を先端部14に配置する計量工程が行われる。
 ここにおいて、第1実施形態、第2実施形態、第3実施形態では、シリンダ11内に供給される成形材料が、予備加熱装置21、60、81より既に適切な温度に加熱されている。それ故に、スクリュ12を高速で回転させ、成形材料を短時間のうちにシリンダ11の先端部14に送ったとしても、成形材料を十分に可塑化することができる。これにより、計量に要する時間が短くなり、成形サイクルの短縮化を実現することができる。
 なおその後は、金型装置を開いて型開状態とし、エジェクタ装置等により金型装置から成形品を取り出す取出工程を行う。
 1 射出装置
 11 シリンダ
 11a 供給口
 12 スクリュ
 13 加熱器
 14 先端部
 21、121、221 予備加熱装置
 22、122、222 材料送り通路
 22a 通路区画部材
 22b 可動用部材
 23、123、223 通路形成部材
 223a ベルトコンベア
 223b ローラ
 23a 板材
 23b 通気孔
 23c 線材
 23d センサ
 24、124、224 ヒータ、加熱部
 25、125 筐体
 26、27、126、127、226、227 供給容器
 26a、126a、226a 円錐台状部分
 26b、126a、226b 円筒状部分
 26c、126c、226c 開口部
 27a 筒部
 27b テーパ部
 28 衝撃付与部
 28a 貫通孔
 28b 板状部材
 28c ピン状部材
 29 振動付与部
 30 送風部
 31 計量モータ
 32 モータ支持プレート
 33 ロータ
 33a 軸受
 34 ステータ
 35 ステータフレーム
 36 計量スプライン軸
 36a キー
 37 スクリュ取付部
 38 圧力検出器
 39 筒状部分
 41 射出モータ
 42 モータ支持プレート
 43 ロータ
 43a 軸受
 43b 溝部
 44 ステータ
 45 ステータフレーム
 45a エンコーダ
 45b 軸部
 46 射出スプライン軸
 47 ねじナット
 48 ねじ軸
 49 軸受
 50 回転軸
 51、52 ロッド
 60、260、360、460 予備加熱装置
 61、361、461 材料用通路
 61a 通路入口
 61b ホッパー
 61c、361c 通路出口
 62、162、262、462 過熱水蒸気導入口
 63、163、263、363、463 通路区画壁部
 63a 開口部
 64、164、364 予熱用スクリュ
 65、165 回転軸
 66、166 フライト
 67 駆動部
 68 内部空間
 69 周壁部
 70 連通孔
 81、181、281 予備加熱装置
 82、182、282 材料送り通路
 821 第1部分
 822 第2部分
 823 第3部分
 82a、182a、282a 合流部
 82b、182b、282b 混合部
 82c 板
 83 管状体
 84 ヒータ、加熱部
 84a 熱媒送り通路
 84b 配管
 85、185、285 搬送器
 285a スクリュ
 285b シリンダ
 285c 駆動部
 285d、285e 開口部
 101 スライドベース
 Mm 成形材料
 Gh 加熱ガス、加熱媒体
 Gc 冷却ガス
 Gp 圧縮気体
 Gb 吐出側気体流
 Gf 吸引側気体流
 Ss 過熱水蒸気
 Tm 成形材料の融点
 Tu 許容上限値

Claims (41)

  1.  成形材料を予熱する予備加熱装置であって、
     前記予備加熱装置は、
     成形材料が通る材料送り通路と、
     前記材料送り通路を通る成形材料を加熱するヒータと
    を有し、
     前記材料送り通路は、互いに対向して配置され、相互間に前記材料送り通路が区画される対をなす通路形成部材を有し、
     対をなす前記通路形成部材のうちの少なくとも一方が可動であり、前記通路形成部材間の通路幅を調整可能に構成されてなる予備加熱装置。
  2.  前記ヒータが、各通路形成部材の通路幅方向の外側で前記材料送り通路を挟んで両側に設けられてなる請求項1に記載の予備加熱装置。
  3.  前記予備加熱装置がさらに、前記材料送り通路を通過した成形材料を受け入れて該成形材料を射出装置のシリンダの内部に供給する供給容器を有する請求項1又は2に記載の予備加熱装置。
  4.  前記予備加熱装置がさらに、前記材料送り通路と前記供給容器との間に、前記材料送り通路から前記供給容器への成形材料の供給を調整する供給調整機を有する請求項3に記載の予備加熱装置。
  5.  前記予備加熱装置が、互いに並んで配置された複数の前記材料送り通路を有する請求項1~4のいずれか一項に記載の予備加熱装置。
  6.  前記予備加熱装置が、前記材料送り通路での成形材料の滞留を防止する滞留防止機構を含む請求項1~5のいずれか一項に記載の予備加熱装置。
  7.  前記滞留防止機構が、対をなす前記通路形成部材の少なくとも一方を変位させて、一方の前記通路形成部材の、他方の前記通路形成部材に対する相対的な位置及び/又は向きを変化させる駆動部を含む請求項6に記載の予備加熱装置。
  8.  前記滞留防止機構が、対をなす前記通路形成部材の少なくとも一方に衝撃を与える衝撃付与部を含む請求項6又は7に記載の予備加熱装置。
  9.  前記滞留防止機構が、対をなす前記通路形成部材の少なくとも一方に振動を与える振動付与部を含む請求項6~8のいずれか一項に記載の予備加熱装置。
  10.  前記通路形成部材が、該通路形成部材を通路幅方向に貫通する複数個の通気孔を有し、
     前記滞留防止機構が、気体を前記通気孔に通して前記材料送り通路内の成形材料に当てるとともに、前記気体の流量を変化させることが可能な送風部を含む請求項6~9のいずれか一項に記載の予備加熱装置。
  11.  前記ヒータが、加熱ガスを前記通気孔に通して前記材料送り通路に送る熱風加熱式ヒータを含み、
     前記気体が前記加熱ガスであり、前記送風部が前記熱風加熱式ヒータである請求項10に記載の予備加熱装置。
  12.  前記予備加熱装置が、前記材料送り通路での成形材料の滞留を検出する滞留検出機構を含む請求項1~11のいずれか一項に記載の予備加熱装置。
  13.  対をなす前記通路形成部材が、相互間で成形材料を挟みながら搬送するベルトコンベアを含む請求項1~12のいずれか一項に記載の予備加熱装置。
  14.  成形材料を予熱する予備加熱装置であって、
     前記予備加熱装置は、成形材料が通る材料送り通路を有し、
     前記材料送り通路は、
    成形材料と加熱媒体とが合流する合流部と、
    前記合流部で合流した該成形材料と加熱媒体とを混合させ、加熱媒体で該成形材料を加熱するインラインの混合部と、
    を有する、予備加熱装置。
  15.  前記混合部が静止型混合器である、請求項14に記載の予備加熱装置。
  16.  成形材料を前記材料送り通路の材料通過方向上流から下流へ搬送する搬送器を備える、請求項14または15に記載の予備加熱装置。
  17.  前記搬送器が、成形材料を気体圧送する気体圧送器であり、
     前記気体圧送器は、前記材料送り通路内の前記合流部より材料通過方向上流側、または、前記混合部の材料通過方向下流側に設けられる、請求項16に記載の予備加熱装置。
  18.  前記搬送器がフィードスクリュである、請求項16に記載の予備加熱装置。
  19.  前記静止型混合器は、前記材料送り通路内に設けられた複数の螺旋状にねじられた板を含む、請求項15~18のいずれかに記載の予備加熱装置。
  20.  前記加熱媒体が、加熱ガスである、請求項14~19のいずれかに記載の予備加熱装置。
  21.  前記予備加熱装置がさらに、前記材料送り通路を通過した成形材料を受け入れて該成形材料を射出装置のシリンダの内部に供給する供給容器を有する請求項14~20のいずれかに記載の予備加熱装置。
  22.  前記予備加熱装置がさらに、前記材料送り通路と前記供給容器との間に、前記材料送り通路から前記供給容器への成形材料の供給を調整する供給調整機を有する請求項21に記載の予備加熱装置。
  23.  成形材料を予熱する予備加熱装置であって、
     前記予備加熱装置は、
     成形材料が通る材料用通路と、
     前記材料用通路内の成形材料を加熱する過熱水蒸気を、当該材料用通路内に導入する過熱水蒸気導入口と
    を有する予備加熱装置。
  24.  前記予備加熱装置はさらに、
     過熱水蒸気で加熱されて前記材料用通路を通過した成形材料が通る材料送り通路と、
     前記材料送り通路を通る成形材料を加熱するヒータと
    を有する請求項23に記載の予備加熱装置。
  25.  前記予備加熱装置がさらに、前記材料送り通路を通過した成形材料を受け入れて該成形材料を射出装置のシリンダの内部に供給する供給容器を有する請求項24に記載の予備加熱装置。
  26.  前記予備加熱装置は、前記材料用通路内で成形材料を材料通行方向に送る搬送機構をさらに有する請求項23~25のいずれか一項に記載の予備加熱装置。
  27.  前記搬送機構は予熱用スクリュを含む請求項26に記載の予備加熱装置。
  28.  前記予熱用スクリュは、外周側で成形材料が搬送され、前記過熱水蒸気導入口が設けられた回転軸を有し、
     前記回転軸は、
     前記過熱水蒸気導入口から過熱水蒸気が導入される内部空間と、
     前記内部空間を区画する円筒状の周壁部と、
     前記周壁部に該周壁部を貫通して形成され、前記内部空間に導入された過熱水蒸気を該内部空間から当該回転軸の外周側に送る複数個の連通孔と
    を有する請求項27に記載の予備加熱装置。
  29.  前記材料用通路は、当該材料用通路の周囲に設けられ、該材料用通路を区画する通路区画壁部を有し、
     前記通路区画壁部に、前記過熱水蒸気導入口が設けられてなる請求項23~28のいずれか一項に記載の予備加熱装置。
  30.  前記予備加熱装置は、複数の前記材料用通路と、各材料用通路内に過熱水蒸気を導入する前記過熱水蒸気導入口とを有する請求項23~29のいずれか一項に記載の予備加熱装置。
  31.  成形材料を予熱する予備加熱装置であって、
     前記予備加熱装置は、
     成形材料が通る材料送り通路と、
     前記材料送り通路を通る成形材料を加熱する加熱部と、
     前記材料送り通路を通る成形材料を冷却する冷却部と、
    を有する、予備加熱装置。
  32.  前記加熱部及び/又は前記冷却部を制御する制御部をさらに備える、請求項31に記載の予備加熱装置。
  33.  前記予備加熱装置は、射出装置の作動状態を検出する作動状態検出機構をさらに備え、
     前記制御部は、前記作動状態検出機構より検出された前記射出装置の作動の停止に関する情報に基づいて制御する、請求項32に記載の予備加熱装置。
  34.  前記制御部は、前記作動状態検出機構より検出された前記射出装置の作動の停止に関する情報に基づいて前記加熱部を制御する、請求項33に記載の予備加熱装置。
  35.  前記材料送り通路での成形材料の滞留を検出する滞留検出機構をさらに備え、
     前記制御部は、前記滞留検出機構より検出された前記成形材料の滞留に関する情報に基づいて制御する、請求項32~34のいずれかに記載の予備加熱装置。
  36.  前記制御部は、前記滞留検出機構より検出された前記成形材料の滞留に関する情報に基づいて前記加熱部を制御する、請求項35に記載の予備加熱装置。
  37.  前記材料送り通路内の成形材料の温度に関する情報を検出する温度情報検出機構をさらに備え、
     前記制御部は、前記温度情報検出機構より検出された前記成形材料の温度に関する情報に基づいて制御する、請求項32~36のいずれかに記載の予備加熱装置。
  38.  前記制御部は、前記温度情報検出機構より検出された前記成形材料の温度に関する情報に基づいて前記冷却部を制御する、請求項37に記載の予備加熱装置。
  39.  前記温度情報検出機構が検出する、前記成形材料の温度に関する情報は、成形材料の温度の実測値と所定の許容上限値との比較により決定される情報である、請求項37または38に記載の予備加熱装置。
  40.  請求項1~39のいずれか一項に記載の予備加熱装置と、前記予備加熱装置で予熱された成形材料を溶融するシリンダとを備え、前記シリンダで溶融された成形材料を金型装置に射出する射出装置。
  41.  シリンダの内部で回転駆動されるスクリュ、及び、シリンダの周囲に設けられてシリンダの内部の成形材料を加熱する加熱器をさらに備える請求項40に記載の射出装置。
PCT/JP2021/007546 2020-02-28 2021-02-26 予備加熱装置および射出装置 WO2021172568A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180017445.9A CN115151399A (zh) 2020-02-28 2021-02-26 预热装置及注射装置
JP2022503373A JPWO2021172568A1 (ja) 2020-02-28 2021-02-26
DE112021001337.8T DE112021001337T5 (de) 2020-02-28 2021-02-26 Vorwärmvorrichtung und einspritzvorrichtung

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2020-034172 2020-02-28
JP2020034177 2020-02-28
JP2020034172 2020-02-28
JP2020034170 2020-02-28
JP2020034171 2020-02-28
JP2020-034170 2020-02-28
JP2020-034177 2020-02-28
JP2020-034171 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021172568A1 true WO2021172568A1 (ja) 2021-09-02

Family

ID=77491630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007546 WO2021172568A1 (ja) 2020-02-28 2021-02-26 予備加熱装置および射出装置

Country Status (4)

Country Link
JP (1) JPWO2021172568A1 (ja)
CN (1) CN115151399A (ja)
DE (1) DE112021001337T5 (ja)
WO (1) WO2021172568A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10146864A (ja) * 1996-11-18 1998-06-02 Mitsubishi Heavy Ind Ltd 射出成形機の射出装置
JP2000127194A (ja) * 1998-10-26 2000-05-09 Sekisui Chem Co Ltd 熱可塑性樹脂成形品の製造方法およびこの製造方法に用いる熱可塑性樹脂成形品の製造装置
JP2002154136A (ja) * 2000-11-21 2002-05-28 Fuji Seiki Kk 射出成形機
JP2010131987A (ja) * 2008-11-05 2010-06-17 Kawata Mfg Co Ltd 気流通路形成構造、ホッパユニット、および気流形成方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104915A (ja) 1985-10-29 1987-05-15 Asahi Chem Ind Co Ltd ポリエチレンテレフタレ−ト繊維の製造方法
JPH08142139A (ja) 1994-11-14 1996-06-04 Kobe Steel Ltd 長繊維強化熱可塑性樹脂用射出成形装置
JPH08323721A (ja) * 1995-05-31 1996-12-10 Maezawa Kasei Ind Co Ltd 熱可塑性樹脂とセメントを混練した組成物の成形方法
JP3434418B2 (ja) * 1996-07-24 2003-08-11 東芝機械株式会社 同方向回転2軸押出機による高融点樹脂の脱水システム
TW462915B (en) 1997-12-25 2001-11-11 Haruna Co Ltd Injection molding machine, injection molding system, pellet supply unit, injection molding method and injection molding product
CN2371120Y (zh) * 1999-03-17 2000-03-29 黄福全 带瓶输送装置新结构
JP4550877B2 (ja) * 2007-06-05 2010-09-22 株式会社名機製作所 射出成形方法
JP4676479B2 (ja) * 2007-12-05 2011-04-27 株式会社名機製作所 射出成形機における加熱筒の排気装置
DE102008039970A1 (de) * 2008-08-27 2010-03-04 Krones Ag Transportvorrichtung und Verfahren zum geordneten Transport von Artikeln
JP2014046631A (ja) * 2012-09-03 2014-03-17 Aisin Seiki Co Ltd 射出成形装置
CN109467063A (zh) * 2017-09-07 2019-03-15 江苏中能硅业科技发展有限公司 生产氮化硅的流化床反应器及其装置系统和方法
CN107521083B (zh) * 2017-09-30 2023-06-23 福清市融城益峰机械有限公司 纤维管道生产装置及其生产工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10146864A (ja) * 1996-11-18 1998-06-02 Mitsubishi Heavy Ind Ltd 射出成形機の射出装置
JP2000127194A (ja) * 1998-10-26 2000-05-09 Sekisui Chem Co Ltd 熱可塑性樹脂成形品の製造方法およびこの製造方法に用いる熱可塑性樹脂成形品の製造装置
JP2002154136A (ja) * 2000-11-21 2002-05-28 Fuji Seiki Kk 射出成形機
JP2010131987A (ja) * 2008-11-05 2010-06-17 Kawata Mfg Co Ltd 気流通路形成構造、ホッパユニット、および気流形成方法

Also Published As

Publication number Publication date
DE112021001337T5 (de) 2022-12-15
CN115151399A (zh) 2022-10-04
JPWO2021172568A1 (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
JP6758312B2 (ja) 射出成形システムおよび部品製造方法
TWI397463B (zh) 塑膠材料處理之裝置及過程
CN108368683B (zh) 源于回收塑料的热粘结多孔结构和制造方法
CN101081541A (zh) 一种挤出机
WO2021172568A1 (ja) 予備加熱装置および射出装置
EP3381644B1 (en) Molding machine screw
CZ238797A3 (cs) Zařízení k tepelnému zpracování sypkých materiálů obsahujících plasty
JP6710173B2 (ja) 繊維強化樹脂成形体の製造装置および製造方法、ならびに、繊維強化樹脂混練物の搬送機構
KR101839722B1 (ko) 비철금속소재의 냉각 시스템
KR102059286B1 (ko) 부품 몰딩 방법
CN114222655B (zh) 挤出用于增材制造构件的纤维增强塑料材料的方法和挤出装置
JP2013237241A (ja) 繊維強化樹脂成形品の製造装置および製造方法
WO2022210790A1 (ja) 材料予熱装置及び、射出成形機
JP2011098499A (ja) 樹脂供給装置、射出成形装置、及び樹脂成形品の製造方法
JP2022149990A (ja) 材料予熱装置及び、射出装置
ITRE990111A1 (it) Macchina per realizzare miscugli di resina sintetica e fibre rinforzanti.
KR101137195B1 (ko) 합성수지패널 제조장치
JP2013237240A (ja) 成形用原料の加熱搬送装置
JP2022149991A (ja) 材料予熱装置および射出装置
JP7240442B2 (ja) 可塑化装置
KR20150021665A (ko) 생산성능이 향상된 제환기
KR101760776B1 (ko) 예열구조를 갖는 고무압출장치
WO2022203080A1 (ja) 材料予熱装置及び、射出装置
JP2018183938A (ja) 可塑化装置
JP2023062254A (ja) タイヤコード繊維製造用押出機のスクリュ及びタイヤコード繊維製造用押出機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503373

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21761451

Country of ref document: EP

Kind code of ref document: A1