WO2021172254A1 - 焼結鉱の製造方法 - Google Patents

焼結鉱の製造方法 Download PDF

Info

Publication number
WO2021172254A1
WO2021172254A1 PCT/JP2021/006552 JP2021006552W WO2021172254A1 WO 2021172254 A1 WO2021172254 A1 WO 2021172254A1 JP 2021006552 W JP2021006552 W JP 2021006552W WO 2021172254 A1 WO2021172254 A1 WO 2021172254A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
charging layer
oxygen
sinter
material charging
Prior art date
Application number
PCT/JP2021/006552
Other languages
English (en)
French (fr)
Inventor
健太 竹原
山本 哲也
隆英 樋口
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to BR112022015475A priority Critical patent/BR112022015475A2/pt
Priority to CN202180014681.5A priority patent/CN115135781A/zh
Priority to KR1020227027742A priority patent/KR20220126755A/ko
Priority to JP2022503593A priority patent/JP7384268B2/ja
Priority to EP21761195.3A priority patent/EP4112756A4/en
Priority to US17/801,141 priority patent/US20230085232A1/en
Publication of WO2021172254A1 publication Critical patent/WO2021172254A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/18Sintering; Agglomerating in sinter pots
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • C22B1/205Sintering; Agglomerating in sintering machines with movable grates regulation of the sintering process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0046Making spongy iron or liquid steel, by direct processes making metallised agglomerates or iron oxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/004Making spongy iron or liquid steel, by direct processes in a continuous way by reduction from ores
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0046Making spongy iron or liquid steel, by direct processes making metallised agglomerates or iron oxide
    • C21B13/0053On a massing grate
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0086Conditioning, transformation of reduced iron ores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction

Definitions

  • the present invention relates to a method for producing sinter by an oxygen enrichment operation in a downward suction type Dwightroid (DL) sinter.
  • the blast furnace uses an iron source such as lump ore or sinter, charges the raw material containing the iron source from the upper part of the furnace, and blows reducing gas from the lower part of the furnace to melt and reduce the iron source. It is a facility that manufactures molten iron. In general, it is necessary to allow the reducing gas to flow sufficiently in the furnace of the blast furnace in order to promote the reaction between the reducing gas and the iron source. For that purpose, it is effective to increase the air permeability in the blast furnace, and as a result, it becomes possible to improve the production rate of hot metal and reduce the cost.
  • an iron source such as lump ore or sinter
  • Patent Document 1 proposes a technique for promoting combustion and improving the yield by blowing oxygen toward the raw material charging layer on the pallet of the DL sintering machine.
  • the technique disclosed in this document is a method of enriching oxygen in the upper layer of the raw material charging layer on the pallet for the purpose of improving productivity, improving the yield, or reducing the powder generation rate at the time of crushing the sintered cake. ..
  • the position of oxygen enrichment in this known technique is limited to the ignition position to the raw material charging layer, and it is stated that the oxygen enrichment after that is ineffective, and the raw material is clear.
  • Patent Document 2 proposes a method of producing sinter by supplying gaseous fuel to the raw material charging layer on the pallet of the DL sinter. According to this method, the combustion region (combustion zone) in the raw material charging layer during sintering is widened, heat is supplemented to a portion having low strength during manufacturing, and the product strength can be improved.
  • Patent Document 3 proposes a method of producing a high-strength sinter by creating a temperature condition suitable for sintering in a raw material charging layer by simultaneously blowing a gaseous fuel together with oxygen during sintering. doing.
  • the above-mentioned conventional technique is intended to supplement the combustion melting reaction (sintering reaction) of the upper layer portion of the raw material charging layer having less heat input, and oxygen is applied to the upper layer portion only immediately after ignition. It is a way to enrich.
  • this method reduces the powder generation rate during crushing of the sintered cake, it is remarkable in reducing the strength of the entire product sintered ore after crushing, that is, reducing the powder generated during transportation and storage into the blast furnace. has no effect.
  • Patent Documents 2, 3 and 4 it is essential to use them in combination with gaseous fuel, and there is a problem in terms of cost. Further, these methods have a problem that as a result of expanding the combustion region and the melt generation region during combustion, the air permeability is lowered and the productivity is lowered.
  • Patent Document 5 proposes a method of enriching oxygen in the middle layer of the raw material charging layer as a part of the exhaust gas circulation process technology in the sintering machine. That is, in this proposal, oxygen-enriched air and circulating exhaust gas are sucked into the middle layer of the raw material charging layer, and the exhaust gas after the reaction of these gases is further sucked into the lower layer of the raw material charging layer and circulated. It is a technology to make it. However, since the oxygen concentration of the circulating exhaust gas is low, this technique causes a stagnation of the combustion reaction in the lower layer portion, and therefore, it is a method of enriching the middle layer portion with a low concentration of oxygen in advance.
  • this technique is not a technique for promoting the sintering reaction in the middle layer portion.
  • the exhaust gas circulation process in this technology is to reduce the environmental load caused by the exhaust gas from the sintering machine, and the ratio of the area that sucks oxygen-enriched air and the circulating exhaust gas is the raw material, the sintering machine, and so on. It should be designed according to the conditions of the exhaust gas treatment equipment, and the effect of the sintering reaction due to pure oxygen enrichment is not expected. Therefore, it can be said that it is originally desirable that the oxygen enrichment in the sintered raw material layer is not used in combination with the exhaust gas circulation process.
  • An object of the present invention is to increase high-strength sinter by performing appropriate oxygen enrichment at a position closer to the excretion part than the ignition position without using gaseous fuel in the operation of the sinter.
  • the purpose is to propose a method that can maintain the production rate and manufacture.
  • the inventors stopped the supply of gaseous fuel from above the sintering bed (raw material charging layer) of the sintering machine, while on oxygen enrichment.
  • the method as disclosed in Patent Document 1 that is, when the upper layer portion of the sintered bed (raw material charging layer) is enriched with oxygen at the timing of combustion, the yield is improved, but the product (sintered ore). It was found that the strength of the bed did not increase much.
  • the inventors attempted to enrich oxygen using oxygen-enriched air at the timing of combustion not only in the upper layer of the raw material charging layer but also in the middle layer and the lower layer.
  • the pulverization rate at the time of crushing is low, a certain degree of strength can be expected, and the yield is reduced, but the production is performed.
  • the rate it was found that the strength of the entire product can be dramatically increased without lowering it.
  • a sintered compound raw material containing iron ore or a carbonaceous material is charged into a raw material supply section on a pallet that is circulated and moved by a sintering machine to form a raw material charging layer, and then the raw material supply is performed.
  • the igniter arranged on the downstream side of the ore portion ignites the carbonaceous material on the upper surface (upper layer portion) of the raw material charging layer, while the upper surface of the raw material charging layer is ignited through the windbox arranged below the pallet.
  • sucking a gas introducing the gas into the raw material charging layer, and sequentially burning the carbonaceous material in the raw material charging layer to calcin the compounded raw material to produce a sinter.
  • the oxygen enrichment time in the raw material charging layer is 1 to 7 minutes in terms of the passing time of the sintered blended raw material.
  • oxygen enrichment is not performed until 4 minutes have passed after the upper surface of the charging layer is ignited.
  • the above method according to the present invention is not used in combination with the exhaust gas circulation process.
  • the oxygen concentration of the oxygen-enriched air introduced into the raw material charging layer is 25 vol. It is preferably more than%.
  • the effect of oxygen enrichment can be improved and the strength of the sinter can be improved.
  • the operation of oxygen enrichment in the raw material charging layer based on the prior art a method of assisting the combustion of coke at an early timing (immediately after ignition) to the upper part of the sintered bed (sintered raw material layer)? Since it is a technology for supplementing circulating exhaust gas, it was effective in improving the yield, but the improvement in strength could not be expected so much.
  • the method of the present invention since it is a method of performing oxygen enrichment treatment in the middle layer portion and the lower layer portion of the sintered bed (raw material charging layer), the yield (production rate) is lowered. However, the strength of the entire product (sintered ore) can be dramatically increased.
  • the treatment since the treatment is suitable for oxygen enrichment in the middle layer of the raw material charging layer, it becomes possible to alleviate the excessive heat supply, so that the strength is conversely lowered. It is possible to avoid the phenomenon of spilling. That is, in the method of the present invention, since oxygen can be effectively enriched in the middle layer of the raw material charging layer, the effect of improving the strength is enhanced.
  • the oxygen enrichment in the upper layer and / or the lower layer of the raw material charging layer has a lower effect of improving the strength than the oxygen enrichment in the middle layer, but the oxygen enrichment in the middle layer. Since it does not hinder the effect of conversion, it may be carried out in combination with this on the premise of oxygen enrichment in the middle layer.
  • the present invention is a method for producing a sintered ore by performing an oxygen enrichment operation with a downward suction type dwightroid (DL) sintering machine.
  • DL downward suction type dwightroid
  • the present invention is a method of oxygen-enriching by spraying an oxygen-enriched gas from above the raw material charging layer on the sintering machine pallet after a predetermined time has elapsed after ignition. That is, in the present invention, in the case of a normal sintering machine pallet speed (1.5 to 3.5 m / min) after the upper surface of the raw material charging layer is ignited, oxygen is oxygen after a position about 4 minutes later. It is characterized by performing oxygen enrichment by a method of supplying enriched gas, and then performing an oxygen enrichment process of continuing it on the excretion part side for a certain period of time to sinter.
  • the time when the upper surface of the raw material charging layer is ignited can be determined by measurement with a thermometer or the like, but for convenience, the time when it passes through the outlet of the ignition furnace may be ignited.
  • oxygen enrichment in the middle layer of the raw material charging layer by introducing the oxygen enriched gas at the above position, it is obtained by enriching the air obtained by directly sucking the outside air with a predetermined concentration of oxygen.
  • oxygen-enriched air or attempting to circulate the exhaust of the sintering machine, prevent abnormal combustion to unintended locations due to leakage of oxygen-enriched oxygen. Therefore, in order to realize reliable oxygen enrichment in the designated place, it is desirable to use a hood-like cover or the like to supply oxygen into the hood.
  • the oxygen concentration of the oxygen-enriched air to be introduced is 21 vol. % Or more, 50 vol. It is desirable that it is less than%. The reason is that the oxygen concentration after oxygen enrichment is 50 vol. If it exceeds%, the coke burns faster and the moving speed of the combustion zone increases, which reduces the high-temperature holding time in which the combustion region stays in each layer, and the sintering reaction does not proceed sufficiently. Then, the oxygen concentration after oxygen enrichment was 21 vol. This is because when it is less than%, the oxygen concentration is lower than that of normal air, and the oxygen concentration is lower than when the outside air is directly sucked, which lowers the sinterability.
  • sintering raw material a sintering compound raw material as shown in Table 1 adjusted so that the basicity (B2) was 2.0 was used. Then, this sintered compound raw material was granulated with a drum mixer while adding water so that the water content was 7.5 mass%, and the obtained granulated product was fired using a baking pan. In this firing test, the wind pressure was constant (6 kPa), and the oxygen concentration of the oxygen-enriched air was 30 vol. I tried to be%.
  • the oxygen enrichment in the sintered bed has passed 4 minutes after ignition in consideration of the oxygen enrichment effect in the upper layer portion (Comparative Example 2) and the lower layer portion (Invention Example 2). It is effective to carry out at a position closer to the excretion part side than the position where the sinter was performed.
  • the influence of the oxygen enrichment time in the middle layer of the sintering raw material layer is verified.
  • a sintered compound raw material (Table 1) adjusted to have SiO 2: 4.9 mass% and basicity: 2.0 was used.
  • This sintered compound raw material was granulated with a drum mixer while adding water so that the water content was 7.5 mass%, and the obtained granulated sintered raw material was subjected to a firing test using a baking pan. The firing was carried out with a constant wind pressure (6 kPa), and the oxygen concentration of the granulation sintering raw material was 30 vol. It was adjusted to% and used for the test.
  • the firing time of the base without oxygen enrichment (Comparative Example 1) was 15.5 minutes. Further, in this test, the timing of oxygen enrichment was set within the period of 5.8 to 10.6 minutes after ignition (middle layer portion), and the oxygen enrichment time at this time was 0.3 to 4.8 min. Changed to.
  • the oxygen enrichment time in the middle layer was secured at 1.0 minute or more, at least the production rate and the sinter strength (TI strength) were greatly improved. It was.
  • the oxygen enrichment time is not particularly specified, but as described above, the enrichment time for the middle layer is 4.8 minutes and the time for the lower layer is 2.5 minutes, which is 53% of 4.8 minutes, for a total of 7 minutes. Was considered to be effective.
  • the influence of the oxygen concentration during the oxygen enrichment treatment on the middle layer of the sintering raw material layer was verified.
  • a sintered blended raw material adjusted to have SiO 2 : 4.9 mass% and basicity: 2.0 was used (Table 1).
  • This sintered compound raw material was granulated with a drum mixer while adding water so that the water content was 7.5 mass%, and the obtained granulated sintered raw material was subjected to a firing test using a baking pan.
  • the firing was carried out with a constant wind pressure (6 kPa), and the oxygen concentration of the granulation sintering raw material was 30 vol.
  • the test was carried out using oxygen-enriched air adjusted to%.
  • the above-mentioned description of the present invention is mainly based on the operation of a sintering machine that does not use gas fuel, but it can also be applied to the operation of a sintering machine that also uses gas fuel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

焼結機の操業において気体燃料を用いることなく、かつ天下位置よりも排鉱部側の位置で適正な酸素富化を行うことにより、高い生産率を維持して高強度の焼結鉱を製造する方法を提案する。DL焼結機の焼結ベッド(原料装入層)中の炭材を順次に燃焼させることにより配合原料を焼成して焼結鉱を製造する方法において、焼結機上の前記原料装入層の上方から酸素富化を行う際に、該原料装入層の上表面が点火されてから4分経過した位置よりも排鉱部側寄りの位置にて酸素富化の処理を行って焼結させる。

Description

焼結鉱の製造方法
 本発明は、下方吸引式ドワイトロイド(DL)焼結機での酸素富化操業によって焼結鉱を製造する方法に関する。
 高炉は、塊鉱石や焼結鉱などの鉄源を使用し、炉上部よりその鉄源を含む原料を装入し、炉下部からは還元ガスを吹き込むことで、前記鉄源を溶融-還元して溶鉄を製造する設備である。一般に、高炉の炉内は、還元ガスと鉄源との反応を促進させるために、還元ガスが十分に流れるようにすることが必要である。そのためには、高炉内の通気性を高めることが有効であり、その結果として、溶銑の生産率の向上やコストの低下を図ることができるようになる。高炉内の通気性を高めるためには、鉄源原料の粉率を抑制することが必要であり、その粉率低下のためには強度の大きい原料を用いることが有効である。そのために、従来、高炉内に装入される鉄源原料である焼結鉱について、その強度を向上させる様々な方法が提案されている。
 例えば、特許文献1では、DL焼結機のパレット上の原料装入層に向けて酸素を吹き込むことにより燃焼を促進させ、歩留りを向上させる技術を提案している。この文献に開示の技術は、生産性の改善や歩留りの向上、あるいは焼結ケーキ破砕時の粉発生率の低減を目的として、パレット上の原料装入層上層部へ酸素富化する方法である。ただし、この既知技術における酸素富化の位置は、原料装入層への着火位置に限定されており、それより後での酸素富化は効果がない旨を述べており、また、明確な原料性状などの記載もないし、成品焼結鉱の強度、特に高炉の炉内に達するまでの輸送や貯蔵時に発生する粉を低減させる方法についてまでは言及していない。
 また、特許文献2では、DL焼結機のパレット上の原料装入層に対し、気体燃料を供給して焼結鉱を製造する方法を提案している。この方法によれば、焼結中の原料装入層中の燃焼領域(燃焼帯)が広がり、製造中に強度が小さい部分にも熱が補填され、成品強度を向上させることができるとしている。
 さらに、特許文献3では、焼結中に酸素と共に気体燃料をも同時に吹き込むことにより、原料装入層内に焼結に適した温度条件を作り出し、高強度の焼結鉱を製造する方法を提案している。
特開平2-073924号公報 特開2008-95170号公報 特開2014-31580号公報 特開2010-126773号公報 特開平9-227958号公報
 前述した従来技術、特に特許文献1に記載の技術は、入熱の少ない原料装入層上層部の燃焼溶融反応(焼結反応)を補う目的で、点火直後に限ってその上層部に対し酸素富化する方法である。この方法では、焼結ケーキ破砕時の粉発生率は低減するものの、破砕後の成品焼結鉱全体の強度の低減、すなわち高炉炉内までの輸送や貯蔵に際して発生する粉の低減には顕著な効果がない。
 また、特許文献2、3、4に開示の方法については、気体燃料との併用が必須であり、コスト上の問題がある。また、これらの方法は、燃焼中の燃焼領域・融液発生領域が拡がる結果、通気性が低くなって、生産性が低下するという課題があった。
 その他、特許文献5については、焼結機での排ガス循環プロセス技術の一環として、原料装入層の中層部に酸素富化を行う方法を提案している。即ち、この提案は、酸素富化した空気ならびに循環排気ガスを原料装入層の中層部へ吸引し、これらのガスの、反応後の排ガスをさらに原料装入層の下層部へ吸引して循環させる技術である。しかし、この技術は、循環排ガスの酸素濃度は低いことから、下層部での燃焼反応の停滞を招くため、事前に中層部に対し低濃度の酸素富化を行う方法である。そのため、この技術は、中層部での焼結反応を促進するための技術ではない。また、この技術における排ガス循環プロセスというのは、焼結機の排ガスによる環境負荷を減らすためのものであり、しかも酸素富化空気と循環排ガスを吸引する面積の比率は、原料、焼結機、排ガス処理設備条件によって設計されるべきものであり、純粋に酸素富化による焼結反応の効果を期待するものではない。従って、本来、焼結原料層への酸素富化は、排ガス循環プロセスと併用しないことが望ましいと言える。
 本発明の目的は、焼結機の操業において気体燃料を用いることなく、かつ点火位置よりも排鉱部側寄りの位置で適正な酸素富化を行うことにより、高強度の焼結鉱を高い生産率を維持して製造することができる方法を提案することにある。
 前述した課題を解決し、上掲の目的を実現するために発明者らは、焼結機の焼結ベッド(原料装入層)の上方からの気体燃料の供給を止める一方、酸素富化については行うこととして、その酸素富化の位置(タイミング)や酸素富化の時間が焼結鉱の強度や生産性などに与える影響について調査した。その結果、特許文献1に開示のような方法、すなわち、焼結ベッド(原料装入層)の上層部分が燃焼するタイミングで酸素富化した場合、歩留は向上するものの成品(焼結鉱)の強度はほとんど上昇しないことを突き止めた。このことは、前述した従来技術の下では、焼結反応が不足して強度が低かった原料装入層上層部での強度が、酸素富化によって破砕時に粉化しない程度にまでは上昇するものの、成品の強度としては原料装入層の中層部~下層部のものに比べると同程度以下にしかならず、成品全体の強度を向上させるまでにはならないためであると考えられた。
 そこで、発明者らは、原料装入層の上層部だけではなく中層部や下層部で燃焼するタイミングでの酸素富化空気を用いた酸素富化を試みた。その結果、原料装入層の中層部~下層部での酸素富化となるようにすることにより、破砕時の粉化率が低く、ある程度の強度が期待でき、しかも歩留りの低下はあるものの生産率についてはこれを低下させることなく、成品全体の強度を飛躍的に高めることができることを見出した。
 とくに、原料装入層への酸素富化を少なくとも中層部において行うようにすれば、成品全体の強度を高める効果が大きくなることを突き止め、その中層部への酸素富化を前提として、さらに必要に応じ、原料装入層の上層部への酸素富化および/または下層部への酸素富化を実施することが有効であることを突き止めた。
 即ち、本発明は、焼結機の循環移動するパレット上の原料給鉱部に鉄鉱石や炭材を含む焼結配合原料を装入して原料装入層を形成し、次いで、該原料給鉱部の下流側に配設した点火炉で前記原料装入層の上表面(上層部)の炭材に点火する一方、パレット下方に配設したウインドボックスを介して前記原料装入層上方のガスを吸引して、そのガスを該原料装入層中に導入してこの原料装入層中の炭材を順次に燃焼させることにより配合原料を焼成して焼結鉱を製造する方法において、焼結機上の前記原料装入層の上方から酸素富化を行う際に、該原料装入層の上表面が点火されてから4分経過した位置よりも排鉱部側寄りの位置にて酸素富化の処理を行って焼結させることを特徴とする焼結鉱の製造方法である。
 (1)本発明に係る上記方法については、前記原料装入層に点火されてから13分経過するまでには酸素富化を終了させることが好ましい。
 (2)本発明に係る上記方法については、原料装入層への酸素富化の時間を、焼結配合原料の通過時間にして1~7分間とすることが好ましい。
 (3)本発明に係る上記方法については、装入層の上表面が点火されてから4分経過するまでは酸素富化を行わないことが好ましい。
 (4)本発明に係る上記方法については、排ガス循環プロセスと併用しないことが好ましい。
 (5)本発明に係る上記方法については、前記原料装入層に導入する酸素富化空気の酸素濃度は25vol.%超であることが好ましい。
 前述した構成に係る本発明方法によれば、第一に、酸素富化の効果が上がり、焼結鉱の強度を向上させることができる。この点、従来技術に基づく原料装入層への酸素富化の操業は、焼結ベッド(焼結原料層)上部への早いタイミング(点火直後)でのコークスの燃焼を助勢する方法であるか、循環排気ガスを補填する技術であることから歩留の向上には有効であったが、強度の向上はあまり望めなかった。これに対し、本発明方法の場合、焼結ベッド(原料装入層)の中層部ならびに下層部への酸素富化の処理を行う方法であるから、歩留(生産率)の低下を招くことなく、成品(焼結鉱)全体の強度を飛躍的に高めることができる。特に、本発明方法においては、原料装入層の中層部への適格な酸素富化の処理であることから、過剰な熱供給を緩和することができるようになるため、強度が逆に低下してしまうという現象を回避することができる。即ち、本発明方法では、原料装入層の中層部に対して効果的な酸素富化ができることから、強度向上の効果が高くなるのである。
 なお、原料装入層の上層部への酸素富化および/または下層部への酸素富化は、中層部への酸素富化に比べて強度向上の効果は低いものの、中層部への酸素富化の効果を阻害するものではないので、中層部への酸素富化を前提としてこれと併せて実施してもよい。
DL焼結機パレット上の原料装入層の給鉱部から排鉱部に至る間の原料装入層断面の状態を示す模式図である。
 本発明は、下方吸引式のドワイトロイド(DL)焼結機による酸素富化操業を行って焼結鉱を製造する方法において、基本的には、その酸素富化の作用効果が少なくとも原料装入層の中層部分が燃焼する時に顕れるようにするための方法を提案する。そのために本発明では、まず前記原料装入層の上表面に点火し、その後、一定の時間が経過した時をもって、すなわち中層部への酸素富化を意味することとなる酸素富化ガスの吹付けを開始するようにしたのである。すなわち、点火後にパレット上の原料装入層が排鉱部側に向って一定の時間経過(移動)してから、酸素富化を開始する一方、その酸素富化は所定の時間だけ行って終了するようにしたのである。
 このように、本発明は、点火後、所定時間を経過してから焼結機パレット上の原料装入層の上方から酸素富化ガスを吹付けて酸素富化する方法である。即ち、本発明は、該原料装入層の上表面が点火されてから通常の焼結機パレットスピード(1.5~3.5m/min)の場合で、4分程経過した位置以降で酸素富化ガスを供給する方法での酸素富化を行い、それを排鉱部側に一定の時間続けるという酸素富化の処理を行って焼結させることを特徴としている。
 なお、前記原料装入層の上表面が点火した時については、温度計などによる測定によって分るが、簡便には点火炉の出口を通過した時を点火した時としてもよい。
 前記位置での酸素富化ガス導入による原料装入層中層部への酸素富化の処理に当っては、外気を直接吸引して得られる空気に対し、所定濃度の酸素を富化して得られる酸素富化空気を用いる場合であっても、また、焼結機の排気を循環しようとするいずれの場合であっても、富化する酸素の漏洩による目的としない場所への異常燃焼を防止して、指定の場所への確実な酸素富化を実現するために、フード状覆いなどを用い、そのフード内に酸素を供給するようにすることが望ましい。
 本発明において、所定の焼成時間を確保して焼結反応を十分に進行させるためには、導入する酸素富化空気の酸素濃度は21vol.%以上、50vol.%以下のものとすることが望ましい。その理由は、酸素富化後の酸素濃度が50vol.%を超えると、コークスの燃焼が早くなり、燃焼帯の移動速度が大きくなってしまうため、燃焼領域が各層でとどまる高温保持時間が減少し、焼結反応が十分に進まないためであり、一方で、酸素富化後の酸素濃度が21vol.%未満では、通常の空気よりも酸素濃度が低く、外気を直接吸引する場合よりもむしろ酸素濃度が低下しており焼結性を低下させるからである。好ましくは、23vol.%以上、50vol.%以下である。さらに好ましくは、25vol.%以上、50vol.%以下である。
 以下に、本発明に適合する好ましい中層部への酸素富化の方法について試験を行ったので、その結果について説明する。
(試験1)
 この試験では、焼結ベッド(原料装入層)を高さ方向に三等分(上層、中層、下層)に分け、それぞれの位置に酸素富化空気を導入する方式での酸素富化を行う試験を行った。まず、ベースケースとして酸素富化を行わない焼成試験(比較例1)を行い、ベース(基準)となる焼成時間(15.5分)を決定した。その焼成時間から点火作業に必要な1分間を引いた時間を3等分にした時間を酸素富化時間とした(下記式)。
酸素富化時間=(ベースの焼成時間-1)/3
 また、この試験では、焼結原料として、塩基度(B2)が2.0になるように調整した表1に示すような焼結配合原料を用いた。そして、この焼結配合原料を水分が7.5mass%となるよう水分添加を行いながらドラムミキサーにて造粒し、得られた造粒物を焼成鍋を用いて焼成した。この焼成試験では、風圧は一定(6kPa)とし、酸素富化空気の酸素濃度が30vol.%になるようした。
Figure JPOXMLDOC01-appb-T000001
 この試験の結果については表2に示した。この試験において、ベースの焼成時間は15.5分であることから、それぞれの位置への酸素富化時間は4.8分となる。そこで、その4.8分間の酸素富化を焼結原料層の上層(比較例2)、中層(発明例1)、下層(発明例2)で行ったところ、中層部に酸素富化を行った場合が、焼結鉱の強度(TI強度)が最も大きく改善可能であることが分った。このことは点火を開始した後の5.8分、すなわち点火完了後4.8分経過してからの次の4.8分の間に酸素富化を行ったときが最もよいことを意味している。結局、焼結ベッド(焼結原料層)への酸素富化は、上層部(比較例2)および下層部(発明例2)への酸素富化効果をも考慮して、点火後4分経過した位置よりも排鉱部側寄りの位置にて行うことが効果的である。
 なお、表2に示す結果からは、中層部に続く下層部への酸素富化についても中層部ほどではないものの強度の向上が認められている。このことは点火開始後10.6分(点火完了後9.6分以降)からの4.8分の間に酸素富化を行ったとしても、効果が減殺されることはないことを意味している。即ち、焼結原料層の下層部に対する酸素富化による強度上昇の効果(63.5%-61.6%=1.9)は、中層における酸素富化による強度上昇の効果(65.2%-61.6%=3.6)の53%に相当していた。
 このことは、下層部中のとくに下部では熱が過剰となり、焼結の進行による強度上昇と過熱による強度低下が相殺されることによる結果と考えられることから、該下層部に酸素富化を行う場合には、点火開始後10.6分(点火完了後9.6分)以降からの2.5分間(4.8分間×53%)に留めること、すなわち原料装入層の上表面に点火されてから13分(10.6分+2.5分)経過まで酸素富化を行うことが望ましいと考えられる。
Figure JPOXMLDOC01-appb-T000002
 以下で述べる実施例は、焼結原料層の中層部における酸素富化時間の影響を検証したものである。この実施例で用いた原料は、SiO:4.9mass%、塩基度:2.0となるように調整した焼結配合原料(表1)を用いた。この焼結配合原料を水分が7.5mass%となるように水分を添加しながらドラムミキサーにて造粒し、得られた造粒焼結原料を焼成鍋を用いて焼成試験を行った。その焼成は、風圧一定(6kPa)とし、造粒焼結原料の酸素濃度が30vol.%になるように調整して試験に供した。酸素富化を行わないベース(比較例1)の焼成時間は15.5分であった。また、この試験において、酸素富化のタイミングとしては、点火後5.8~10.6分の期間内(中層部)とし、このときにおける酸素富化の時間は0.3~4.8min.に変更した。
 その結果、表3に示すとおり、中層部への酸素富化時間を、1.0分以上を確保すると、少なくとも生産率や焼結鉱強度(TI強度)については大きな改善が認められることが分った。なお、酸素富化の時間については特に規定されないが、前述したように中層部への富化時間4.8分と下層部への4.8分の53%に当たる2.5分の合計7分間が効果的であると考えられた。
Figure JPOXMLDOC01-appb-T000003
 次に、以下に述べる実施例は、焼結原料層の中層部への酸素富化処理時の酸素濃度の影響を検証したものである。この実施例で用いた原料は、SiO:4.9mass%、塩基度:2.0となるように調整した焼結配合原料を用いた(表1)。この焼結配合原料を水分が7.5mass%となるように水分を添加しながらドラムミキサーにて造粒し、得られた造粒焼結原料を焼成鍋を用いて焼成試験を行った。その焼成は、風圧一定(6kPa)とし、造粒焼結原料の酸素濃度が30vol.%になるように調整した酸素富化空気を用いて試験に供した。この試験では実施例3と同様に点火を開始した後の5.8分、すなわち点火完了後4.8分経過してからの次の4.8分の間、酸素富化を行った。酸素富化時の酸素濃度は30~40vol.%の範囲で変更した。この結果、表4に示すとおり、酸素富化空気の濃度が40vol.%になるまで強度が向上することが明らかとなった。
Figure JPOXMLDOC01-appb-T000004
 本発明の前述した説明は、主として気体燃料を用いない焼結機の操業を前提としたが、気体燃料を併用する焼結機の操業の場合にも応用が可能である。

Claims (6)

  1.  焼結機の循環移動するパレット上の原料給鉱部に鉄鉱石や炭材を含む焼結配合原料を装入して原料装入層を形成し、次いで、該原料給鉱部の下流側に配設した点火炉で前記原料装入層の上表面(上層部)の炭材に点火する一方、パレット下方に配設したウインドボックスを介して前記原料装入層上方のガスを吸引して、そのガスを該原料装入層中に導入してこの原料装入層中の炭材を順次に燃焼させることにより配合原料を焼成して焼結鉱を製造する方法において、焼結機上の前記原料装入層の上方から酸素富化を行う際に、該原料装入層の上表面が点火されてから4分経過した位置よりも排鉱部側寄りの位置にて酸素富化の処理を行って焼結させることを特徴とする焼結鉱の製造方法。
  2.  前記原料装入層に点火されてから13分経過するまでには酸素富化を終了させることを特徴とする請求項1に記載の焼結鉱の製造方法。
  3.  原料装入層への酸素富化の時間を、焼結配合原料の通過時間にして1~7分間とすることを特徴とする請求項1または2に記載の焼結鉱の製造方法。
  4.  装入層の上表面が点火されてから4分経過するまでは酸素富化を行わないことを特徴とする請求項1~3のいずれか1項に記載の焼結鉱の製造方法。
  5.  排ガス循環プロセスと併用しないことを特徴とする請求項1~4のいずれか1項に記載の焼結鉱の製造方法。
  6.  前記原料装入層に導入する酸素富化空気の酸素濃度は、25vol.%超であることを特徴とする請求項1~5のいずれか1項に記載の焼結鉱の製造方法。
PCT/JP2021/006552 2020-02-27 2021-02-22 焼結鉱の製造方法 WO2021172254A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112022015475A BR112022015475A2 (pt) 2020-02-27 2021-02-22 Método para produzir minério sinterizado
CN202180014681.5A CN115135781A (zh) 2020-02-27 2021-02-22 烧结矿的制造方法
KR1020227027742A KR20220126755A (ko) 2020-02-27 2021-02-22 소결광의 제조 방법
JP2022503593A JP7384268B2 (ja) 2020-02-27 2021-02-22 焼結鉱の製造方法
EP21761195.3A EP4112756A4 (en) 2020-02-27 2021-02-22 PROCESS FOR MAKING SINTERED ORE
US17/801,141 US20230085232A1 (en) 2020-02-27 2021-02-22 Method for producing sintered ore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-031953 2020-02-27
JP2020031953 2020-02-27

Publications (1)

Publication Number Publication Date
WO2021172254A1 true WO2021172254A1 (ja) 2021-09-02

Family

ID=77489975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006552 WO2021172254A1 (ja) 2020-02-27 2021-02-22 焼結鉱の製造方法

Country Status (7)

Country Link
US (1) US20230085232A1 (ja)
EP (1) EP4112756A4 (ja)
JP (1) JP7384268B2 (ja)
KR (1) KR20220126755A (ja)
CN (1) CN115135781A (ja)
BR (1) BR112022015475A2 (ja)
WO (1) WO2021172254A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI842462B (zh) * 2023-03-31 2024-05-11 日商日本製鐵股份有限公司 燒結礦之製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273924A (ja) 1988-09-09 1990-03-13 Nippon Steel Corp 焼結機の酸素富化操業方法
JPH09229758A (ja) 1996-02-22 1997-09-05 Isuzu Motors Ltd 音圧予測方法
WO1998007891A1 (fr) * 1996-08-16 1998-02-26 Nippon Steel Corporation Procede pour fabriquer des minerais frittes et machine a fritter les minerais
JP2008095170A (ja) 2005-10-31 2008-04-24 Jfe Steel Kk 焼結鉱の製造方法および焼結機
JP2010126773A (ja) 2008-11-28 2010-06-10 Jfe Steel Corp 焼結鉱の製造方法
JP2014031580A (ja) 2012-07-12 2014-02-20 Jfe Steel Corp 焼結機の酸素−気体燃料供給装置
JP2015157979A (ja) * 2014-02-24 2015-09-03 Jfeスチール株式会社 焼結鉱の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3395505B2 (ja) 1996-02-26 2003-04-14 日本鋼管株式会社 無端移動型焼結機の操業方法
JP4995169B2 (ja) 2008-09-29 2012-08-08 三菱重工業株式会社 ガスタービン制御方法及び装置
JP5585503B2 (ja) * 2010-03-24 2014-09-10 Jfeスチール株式会社 焼結鉱の製造方法
KR101458355B1 (ko) 2012-09-05 2014-11-05 주식회사 에이디알에프코리아 상향링크 잡음감소 방법
JP2015157980A (ja) * 2014-02-24 2015-09-03 Jfeスチール株式会社 焼結鉱の製造方法
JP6160838B2 (ja) * 2014-09-09 2017-07-12 Jfeスチール株式会社 焼結機の保温炉への酸素富化方法および酸素富化装置
JP6406169B2 (ja) * 2015-08-21 2018-10-17 Jfeスチール株式会社 焼結鉱の製造方法
JP6730684B2 (ja) * 2017-09-26 2020-07-29 Jfeスチール株式会社 焼結鉱の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273924A (ja) 1988-09-09 1990-03-13 Nippon Steel Corp 焼結機の酸素富化操業方法
JPH09229758A (ja) 1996-02-22 1997-09-05 Isuzu Motors Ltd 音圧予測方法
WO1998007891A1 (fr) * 1996-08-16 1998-02-26 Nippon Steel Corporation Procede pour fabriquer des minerais frittes et machine a fritter les minerais
JP2008095170A (ja) 2005-10-31 2008-04-24 Jfe Steel Kk 焼結鉱の製造方法および焼結機
JP2010126773A (ja) 2008-11-28 2010-06-10 Jfe Steel Corp 焼結鉱の製造方法
JP2014031580A (ja) 2012-07-12 2014-02-20 Jfe Steel Corp 焼結機の酸素−気体燃料供給装置
JP2015157979A (ja) * 2014-02-24 2015-09-03 Jfeスチール株式会社 焼結鉱の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4112756A4

Also Published As

Publication number Publication date
EP4112756A1 (en) 2023-01-04
KR20220126755A (ko) 2022-09-16
JPWO2021172254A1 (ja) 2021-09-02
EP4112756A4 (en) 2023-01-11
CN115135781A (zh) 2022-09-30
US20230085232A1 (en) 2023-03-16
BR112022015475A2 (pt) 2022-09-27
JP7384268B2 (ja) 2023-11-21

Similar Documents

Publication Publication Date Title
JP6005897B2 (ja) 焼結鉱の製造方法
WO2021172254A1 (ja) 焼結鉱の製造方法
JP3930570B2 (ja) 焼結鉱の製造方法およびその焼結機
JP5815196B2 (ja) 焼結鉱の製造方法
JP6213734B2 (ja) 焼結鉱の製造方法
JPH08291342A (ja) 排ガス循環焼結方法
JP3395505B2 (ja) 無端移動型焼結機の操業方法
JP2000017343A (ja) 焼結鉱の2段点火式製造方法
JPH09176749A (ja) 焼結鉱の製造方法
JP2023082324A (ja) 焼結鉱の製造方法
JP2010126774A (ja) 焼結鉱の製造方法
JPH08260062A (ja) 焼結鉱の製造方法
JP2019059976A (ja) 焼結鉱の製造方法
JP7196462B2 (ja) ドワイトロイド式焼結機を用いた焼結鉱の製造方法
JP2024108630A (ja) 焼結鉱の製造方法
KR100398278B1 (ko) 저 산화도 소결광 제조 방법
JPH09279262A (ja) 焼結鉱の製造方法
JP2697550B2 (ja) 2段点火式焼結鉱製造方法
JPH11279668A (ja) 焼結鉱製造方法及び焼結機
JPH0379730A (ja) 被還元性及び耐還元粉化性に優れた焼結鉱の製造方法
CN115682728A (zh) 一种利用燃气烧结的方法
JP2023152401A (ja) 焼結鉱の製造方法
JP2697549B2 (ja) 2段点火式焼結鉱製造方法
JPH0567686B2 (ja)
JPH07286216A (ja) 排ガス循環焼結方法および排ガス循環設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761195

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503593

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227027742

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202217045706

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022015475

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022015475

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220804

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021761195

Country of ref document: EP

Effective date: 20220927