WO2021172090A1 - 偏光板およびその製造方法 - Google Patents

偏光板およびその製造方法 Download PDF

Info

Publication number
WO2021172090A1
WO2021172090A1 PCT/JP2021/005645 JP2021005645W WO2021172090A1 WO 2021172090 A1 WO2021172090 A1 WO 2021172090A1 JP 2021005645 W JP2021005645 W JP 2021005645W WO 2021172090 A1 WO2021172090 A1 WO 2021172090A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polarizing plate
polymerizable liquid
group
polarizer
Prior art date
Application number
PCT/JP2021/005645
Other languages
English (en)
French (fr)
Inventor
耕太 村野
伸行 幡中
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020227032287A priority Critical patent/KR20220140836A/ko
Priority to CN202180016124.7A priority patent/CN115136044A/zh
Publication of WO2021172090A1 publication Critical patent/WO2021172090A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a polarizing plate having a curved surface shape and a method for manufacturing the polarizing plate.
  • a polarizing plate including a polarizing element is used as a member constituting various articles in various fields such as a liquid crystal display device, an organic EL display device using an organic light emitting diode (OLED), sunglasses, and a lens filter.
  • a polarizing plate a bird is provided on at least one surface of a polarizing element in which a compound exhibiting dichroism such as iodine or a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin film via an adhesive layer.
  • a polarizing plate having a structure in which a protective layer such as an acetyl cellulose film is laminated is widely used (for example, Patent Document 1).
  • An object of the present invention is to provide a polarizing plate having a curved surface shape having excellent stackability on a surface to be laminated.
  • a polarizing plate having a curved surface shape which includes a curved surface substrate, a photoalignment film, and a polarizer in this order.
  • the polarizer is composed of a cured product of a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound having at least one polymerizable group and a dichroic dye.
  • Step of forming a photoalignment film on a curved substrate (B) A step of forming a coating film of a polymerizable liquid crystal composition containing at least one polymerizable liquid crystal compound and a dichroic dye on the photoalignment film, and (C) A step of forming a polarizer by phase-transferring a polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition to a smectic liquid crystal phase and then polymerizing the polymerizable liquid crystal compound while maintaining the smectic liquid crystal state.
  • a polarizing plate having a curved surface shape that is excellent in stackability with respect to the surface to be laminated.
  • the polarizing plate of the present invention includes a curved substrate, a photoalignment film, and a polarizer in this order. Since the photoalignment film and the polarizer are laminated on a curved substrate, the polarizing plate of the present invention is a polarizing plate having a curved surface shape at least in part.
  • the curved surface shape means a shape having a curvature exceeding 0, and includes a curved surface shape which is a developable surface and a three-dimensional curved surface shape.
  • a developable surface means a surface that can be developed into a flat surface without expanding and contracting each part of the surface, and a developable surface can be expanded to a flat surface without expanding and contracting each part of the surface.
  • a developable surface is a surface that can be developed into a plane without expanding or contracting each part of the surface. Examples of the curved surface shape include a cylindrical peripheral surface, an elliptical cylinder peripheral surface, a conical peripheral surface, and an elliptical cone circumference.
  • a surface corresponding to a part or all of a surface or the like can be mentioned, and it may be a convex curved surface or a concave curved surface.
  • a three-dimensional curved surface means a curved surface that cannot be established by deforming a plane, that is, a curved surface that is not a developable surface, and as a three-dimensional curved surface shape, a surface corresponding to a part or all of a sphere, an elliptical sphere, etc.
  • a surface corresponding to a part or all of a curved surface forming a double curve or the like can be mentioned, and it may be a convex curved surface or a concave curved surface.
  • the polarizing plate of the present invention may have a curved surface shape at least in a part thereof, may have a shape obtained by combining a planar shape and a curved surface shape, or may have a curved surface shape as a whole. good.
  • the curved surface shape included in the polarizing plate may consist of only one of the curved surface shape which is a developable surface and the three-dimensional curved surface shape, and the combination of the curved surface which is the developable surface and the three-dimensional curved surface, or is possible. It may consist of a curved surface that is a developed surface and / or a combination of a three-dimensional curved surface and a plane.
  • the polarizer constituting the polarizing plate of the present invention is composed of a cured product of a polymerizable liquid crystal composition, and is in the form of a film such as a polyvinyl alcohol resin film on which a dichroic dye widely used as a conventional polarizer is adsorbed. It is possible to easily provide a polarizing element while maintaining a high orientation order along the curved surface shape even on a substrate having a three-dimensional curved surface shape in which it is difficult to bond the polarizing elements of the above. Therefore, the effect of the present invention can be achieved more remarkably when the curved surface shape included in the polarizing plate is a three-dimensional curved surface shape that cannot be obtained by developing a flat film. Therefore, in one aspect of the present invention, the polarizing plate of the present invention includes a three-dimensional curved surface shape.
  • the curved surface shape of the polarizing plate is preferably lenticular.
  • the lenticular curved surface shape means a curved surface shape in which the curvature is constant in all directions on the curved surface.
  • Examples of the lens-shaped curved surface shape include a spherical surface, an elliptical spherical surface, a hemispherical surface, a semi-elliptical spherical surface, and the like, and may be a convex lens shape or a concave lens shape.
  • the polarizing plate of the present invention is a lens-shaped polarizing plate having excellent appearance and optical characteristics because the polarizing element is excellently laminated on the surface to be laminated and wrinkles and distortion can be suppressed in each layer constituting the polarizing plate. Can be provided.
  • the polarizing plate of the present invention preferably satisfies the formula (1). 20mm ⁇ R ⁇ 300mm (1)
  • R represents the radius of curvature of the portion of the polarizing plate having the smallest curvature.
  • the formula (1) means that the radius of curvature of the gentlest curved surface of the polarizing plate is 20 mm or more and 300 mm or less.
  • the polarizing plate of the present invention can realize high stackability of the polarizer provided on the curved surface substrate even when it has a curved surface shape having a relatively large curvature.
  • the radius of curvature R (hereinafter, also simply referred to as “radius of curvature R”) of the portion having the smallest curvature in the polarizing plate of the present invention may be, for example, 250 mm or less, or 200 mm or less.
  • the radius of curvature R is more preferably 25 mm or more, still more preferably 30 mm or more.
  • the stackability is more likely to be improved.
  • the radius of curvature R'of the portion having the largest curvature in the polarizing plate of the present invention is preferably 10 mm or more, more preferably 15 mm or more, still more preferably 20 mm or more, particularly preferably. Is 25 mm or more, particularly preferably 30 mm or more.
  • the radius of curvature R' is equal to or greater than the above lower limit value, it is easy to improve the stackability and adhesion of the polarizer to be laminated as the cured product layer (coating layer) of the polymerizable liquid crystal composition, and the cured product layer.
  • the polarizing plate of the present invention has a curved surface shape having a relatively large curvature, it is possible to realize high stackability of the polarizer provided on the curved surface base material, so that the radius of curvature R'is, for example, 250 mm or less. It may be 200 mm or less, and may be 150 mm or less.
  • the radius of curvature R'' is usually equal to or greater than the lower limit of the radius of curvature R'. And, it is not more than the upper limit value of the radius of curvature R.
  • the polarizing plate of the present invention is a polarizing plate having a curved surface shape at least in a part thereof, and includes a curved surface substrate as a base material for laminating a photoalignment film and a polarizer.
  • the curved substrate means a substrate having a surface having at least a curved surface shape, and the entire surface of the substrate may have a curved surface shape.
  • the curved surface substrate usually has a curved surface shape similar to that described above as the curved surface shape of the polarizing plate of the present invention.
  • the curved surface substrate is not particularly limited as long as it is made of a material capable of forming a desired curved surface shape, and may be appropriately selected from known materials according to the desired curved surface shape, the use of the polarizing plate, and the like.
  • a glass base material, a film base material, a metal base material, and the like can be mentioned.
  • the curved surface substrate is preferably made of a glass base material or a film base material, and more preferably made of a glass base material or a resin film base material. Since the polarizing plate of the present invention usually constitutes an article such as a display device, sunglasses, a lens filter, etc.
  • the curved substrate is translucent in terms of optical characteristics. It is preferable that it is made of a base material having.
  • the light-transmitting base material means a base material having a property of transmitting light, particularly visible light, and the light-transmitting property means transmission to light rays having a wavelength of 380 nm to 780 nm. A characteristic in which the rate is 80% or more. Further, although it depends on the configuration of the polarizing plate, it is usually preferable that it is optically isotropic.
  • Examples of the light-transmitting base material include a glass base material and a transparent resin film base material.
  • Examples of the resin constituting the resin film base material include polyolefins such as polyethylene, polypropylene, and norbornene-based polymers; polyvinyl alcohol; polyethylene terephthalate; polymethacrylic acid ester; polyacrylic acid ester; cellulose ester; polyethylene naphthalate; polycarbonate; poly. Examples thereof include sulfone; polyethersulfone; polyether ketone; polyphenylene sulfide; and polyphenylene oxide. From the viewpoint of forming a polarizer, a glass base material or a material having a hardness similar to that of a glass base material is suitable as the base material.
  • a member itself having a curved surface shape which constitutes an article such as a display device incorporating the polarizing plate of the present invention, may be used as a curved surface substrate.
  • the surface of the surface substrate may be subjected to surface treatment such as corona treatment and plasma treatment, and mold release treatment such as silicone treatment. Further, a hard coat treatment, an antireflection treatment, an antistatic treatment, or the like may be applied to the substrate surface on the side on which the polarizer is not laminated.
  • the thickness of the curved substrate may be appropriately determined according to the shape of the curved surface, the material constituting the curved substrate, the application of the polarizing plate, and the like.
  • the entire curved substrate may have the same thickness or may have different thicknesses.
  • the thickness of the curved substrate is, for example, 30 ⁇ m to 5 cm, preferably 100 ⁇ m to 3.5 cm, and more preferably 500 ⁇ m to 3 cm.
  • the polarizer constituting the polarizing plate of the present invention is composed of a cured product of a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound having at least one polymerizable group and a dichroic dye.
  • the polarizer composed of the cured product of the polymerizable liquid crystal composition is polymerized in a state where the polymerizable liquid crystal composition is coated on the surface on which the polarizer is formed and the polymerizable liquid crystal compound is oriented. It is a coating layer obtained by polymerizing.
  • the polarizer as a coating layer, it is possible to realize a high stackability of the polarizer with respect to a curved surface shape having various curvatures.
  • the stackability is high, the high orientation order of the polarizer is likely to be maintained, and excellent optical characteristics are likely to be exhibited.
  • "laminability" means that when a layer such as a polarizer is formed on a surface to be laminated, there are no wrinkles, distortions, uneven coating, etc. in the laminated layer, and the layer is lifted or peeled off from the surface to be laminated. Is a characteristic that is unlikely to occur.
  • the polymerizable liquid crystal compound is oriented so that the absorption axis of the polarizer faces in one direction in the surface direction of the curved surface of the curved substrate on which the polarizer is laminated.
  • the polymerizable liquid crystal compound constituting the polarizer is oriented so that the absorption axis of the polarizer faces in one direction
  • the polymerizable liquid crystal compound becomes a polarizer having a high degree of orientation order, and a polarizing plate having excellent optical characteristics can be obtained. Can be done.
  • the polymerizable liquid crystal compound is oriented so that the absorption axis of the polarizer is oriented in one direction.
  • the polymerizable liquid crystal compound is oriented so as to face in one direction on the plane.
  • a three-dimensional curved surface such as a spherical surface
  • the absorption axis of the polarizer is oriented in one direction on the plane
  • the absorption axis direction of the polarizer is the specific direction over the entire curved surface.
  • the polymerizable liquid crystal compound is oriented so as to face in the same direction as in one direction.
  • the fact that the absorption axes of the polarizers are oriented in one direction means that the absorption axes of the polarizers are oriented in substantially the same direction, and specifically, one connected surface. It means that the deviation of the polarizer in the absorption axis direction on the curved surface is within 15 °.
  • the polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition (hereinafter, also referred to as “polymerizable liquid crystal composition (A)”) that forms a polarizer (hereinafter, also referred to as “polymerizable liquid crystal compound (A)”).
  • the polymerizable group refers to a group that can participate in the polymerization reaction by an active radical, an acid, or the like generated from the polymerization initiator.
  • Examples of the polymerizable group of the polymerizable liquid crystal compound (A) include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, a (meth) acryloyl group, an oxylanyl group, and an oxetanyl group. And so on. Of these, a radically polymerizable group is preferable, a (meth) acryloyl group, a vinyl group, and a vinyloxy group are more preferable, and a (meth) acryloyl group is even more preferable.
  • the polymerizable liquid crystal compound (A) is preferably a compound exhibiting smectic liquid crystal properties.
  • a polarizer having a high degree of orientation order can be formed.
  • the liquid crystal state indicated by the polymerizable liquid crystal compound (A) is more preferably a higher-order smectic phase (higher-order smectic liquid crystal state).
  • the higher-order smectic phase includes smectic B phase, smectic D phase, smectic E phase, smectic F phase, smectic G phase, smectic H phase, smectic I phase, smectic J phase, smectic K phase and smectic L phase.
  • the liquid crystal display may be a thermotropic liquid crystal display or a riotropic liquid crystal display, but the thermotropic liquid crystal display is preferable in that precise film thickness control is possible.
  • the polymerizable liquid crystal compound (A) may be a monomer, but may be an oligomer or a polymer in which a polymerizable group is polymerized.
  • the polymerizable liquid crystal compound (A) is not particularly limited as long as it is a liquid crystal compound having at least one polymerizable group, and a known polymerizable liquid crystal compound can be used, but the polymerizable liquid crystal compound exhibiting smectic liquid crystal properties. Examples thereof include a compound represented by the following formula (A1) (hereinafter, may be referred to as “polymerizable liquid crystal compound (A1)”).
  • X 1 and X 2 independently represent a divalent aromatic group or a divalent alicyclic hydrocarbon group, wherein the divalent aromatic group or a divalent alicyclic hydrocarbon is used.
  • the hydrogen atom contained in the group may be substituted with a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a cyano group or a nitro group.
  • the carbon atom constituting the divalent aromatic group or divalent alicyclic hydrocarbon group may be substituted with an oxygen atom or a sulfur atom or a nitrogen atom.
  • at least one of X 1 and X 2 is a 1,4-phenylene group which may have a substituent or a cyclohexane-1,4-diyl group which may have a substituent.
  • Y 1 is a single-bonded or divalent linking group.
  • n is 1-3, when n is 2 or more, to a plurality of X 1 may be the same as each other or may be different.
  • X 2 may be the same as or different from any or all of the plurality of X 1.
  • n 2 or more, to a plurality of Y 1 may be the same as each other or may be different. From the viewpoint of liquid crystallinity, n is preferably 2 or more.
  • U 1 represents a hydrogen atom or a polymerizable group.
  • U 2 represents a polymerizable group.
  • W 1 and W 2 are single-bonded or divalent linking groups independent of each other.
  • V 1 and V 2 represent an alkanediyl group having 1 to 20 carbon atoms which may have a substituent independently of each other, and -CH 2- constituting the alkanediyl group is -O-, It may be replaced with -CO-, -S- or -NH-. ]
  • X 1 and X 2 are independent of each other and preferably have a 1,4-phenylene group or a substituent which may have a substituent. It is a good cyclohexane-1,4-diyl group, and at least one of X 1 and X 2 has a 1,4-phenylene group, which may have a substituent, or a substituent. It is also a good cyclohexane-1,4-diyl group, preferably a trans-cyclohexane-1,4-diyl group.
  • the substituents optionally contained in the 1,4-phenylene group which may have a substituent or the cyclohexane-1,4-diyl group which may have a substituent include a methyl group and an ethyl. Examples thereof include an alkyl group having 1 to 4 carbon atoms such as a group and a butyl group, a cyano group and a halogen atom such as a chlorine atom and a fluorine atom. It is preferably unsubstituted.
  • the polymerizable liquid crystal compound (A1) has a formula (A1-1) in the formula (A1). -(X 1- Y 1 ) n -X 2- (A1-1) [In the formula, X 1 , Y 1 , X 2 and n have the same meanings as described above. ] It is preferable that the portion indicated by (hereinafter, also referred to as a partial structure (A1-1)] has an asymmetric structure in that smectic liquid crystal properties are easily exhibited.
  • the polymerizable liquid crystal compound (A1) having an asymmetrical partial structure (A1-1) for example, the polymerizable liquid crystal compound (A1) in which n is 1 and one X 1 and X 2 have different structures from each other.
  • n 2 a two Y 1 are compounds of the same structure each other, have the same structure two X 1 from each other, one of X 2 is a structure different from the two X 1 the polymerizable liquid crystal compound (A1), X 1 to bind to W 1 of the two X 1 is a structure that is different from the other of X 1 and X 2, the other of X 1 and X 2 and are mutually the same structure Also mentioned is a polymerizable liquid crystal compound (A1). Further, n is 3, a compound of the same structure each other three Y 1, is any one differs from the all the other three structures of the three X 1 and one X 2 Polymerization The sex liquid crystal compound (A1) can be mentioned.
  • R a and R b independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • Y 1 is, -CH 2 CH 2 -, - more preferably COO- or a single bond, when a plurality of Y 1 are present, Y 1 which binds to X 2 is, -CH 2 CH 2 - or - It is more preferably CH 2 O ⁇ .
  • X 1 and X 2 are all identical structure, it is preferred that there are two or more Y 1 are different coupling method together.
  • there are a plurality of Y 1 are different coupling method together since the asymmetric structure, there is a tendency that the smectic liquid crystal is likely to result.
  • U 2 is a polymerizable group.
  • U 1 is a hydrogen atom or a polymerizable group, preferably a polymerizable group. Both U 1 and U 2 are preferably polymerizable groups, and both are preferably radically polymerizable groups. Examples of the polymerizable group include the same groups as those exemplified above as the polymerizable group of the polymerizable liquid crystal compound (A).
  • the polymerizable group represented by U 1 and the polymerizable group represented by U 2 may be different from each other, but are preferably the same type of group, and at least one of U 1 and U 2 is (meth). It is preferably an acryloyl group, and more preferably both are (meth) acryloyl groups. Further, the polymerizable group may be in a polymerized state or a non-polymerized state, but is preferably in a non-polymerized state.
  • the alkanediyl group represented by V 1 and V 2 includes a methylene group, an ethylene group, a propane-1,3-diyl group, a butane-1,3-diyl group, a butane-1,4-diyl group, and a pentan-. 1,5-diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group, decan-1,10-diyl group, tetradecane-1,14-diyl group Examples include groups and icosan-1,20-diyl groups.
  • V 1 and V 2 are preferably an alkanediyl group having 2 to 12 carbon atoms, and more preferably an alkanediyl group having 6 to 12 carbon atoms.
  • alkanediyl group examples include a cyano group and a halogen atom.
  • the alkanediyl group is preferably unsubstituted and is an unsubstituted linear alkanediyl group. Is more preferable.
  • W 1 and W 2 are independent of each other, preferably single-bonded, -O-, -S-, -COO- or -OCOO-, and more preferably single-bonded or -O-.
  • the polymerizable liquid crystal compound (A) is not particularly limited as long as it is a polymerizable liquid crystal compound having at least one polymerizable group, and a known polymerizable liquid crystal compound can be used, but it may exhibit smectic liquid crystal properties.
  • a structure that easily exhibits smectic liquid liquidity it is preferable to have an asymmetric molecular structure in the molecular structure, and specifically, a polymerizable structure having the following partial structures (Aa) to (Ai). It is more preferable that the liquid crystal compound is a polymerizable liquid crystal compound exhibiting smectic liquid liquid properties.
  • polymerizable liquid crystal compound (A) examples include compounds represented by formulas (A-1) to (A-25).
  • the cyclohexane-1,4-diyl group is preferably a trans form.
  • the polymerizable liquid crystal compound (A) one type may be used alone, or two or more types may be used in combination.
  • the polymerizable liquid crystal compound (A) is described in, for example, Lub or the like, Recl. Trav. Chim. It can be produced by a known method described in Pays-Bas, 115, 321-328 (1996), or Japanese Patent No. 4719156.
  • the polymerizable liquid crystal composition (A) may contain a polymerizable liquid crystal compound other than the polymerizable liquid crystal compound (A), but is polymerizable from the viewpoint of obtaining a polarizing layer having a high degree of orientation order.
  • the ratio of the polymerizable liquid crystal compound (A) to the total mass of the total polymerizable liquid crystal compound contained in the liquid crystal composition (A) is preferably 51% by mass or more, more preferably 70% by mass or more, still more preferable. Is 90% by mass or more.
  • the polymerizable liquid crystal composition (A) contains two or more kinds of polymerizable liquid crystal compounds (A), at least one of them may be a polymerizable liquid crystal compound (A1), and all of them may be a polymerizable liquid crystal compound. It may be (A1).
  • the liquid crystal property may be temporarily maintained even at a temperature equal to or lower than the liquid crystal-crystal phase transition temperature.
  • the content of the polymerizable liquid crystal compound in the polymerizable liquid crystal composition (A) is preferably 40 to 99.9% by mass, more preferably 60 to 9% by mass, based on the solid content of the polymerizable liquid crystal composition (A). It is 99% by mass, more preferably 70 to 99% by mass.
  • the solid content means the total amount of the components excluding the volatile components such as the solvent from the polymerizable liquid crystal composition (A).
  • the polymerizable liquid crystal composition for forming a retardation layer refers to the total amount of components excluding volatile components such as a solvent from the target composition.
  • the polymerizable liquid crystal composition (A) that forms a polarizer contains a dichroic dye.
  • the dichroic dye means a dye having a property that the absorbance in the major axis direction and the absorbance in the minor axis direction of the molecule are different.
  • the dichroic dye that can be used in the present invention is not particularly limited as long as it has the above-mentioned properties, and may be a dye or a pigment. Further, two or more kinds of dyes or pigments may be used in combination, dyes and pigments may be used in combination, only one kind may be used, or two or more kinds may be used in combination. .. Further, the dichroic dye may have a polymerizable property or a liquid crystal property.
  • the dichroic dye preferably has a maximum absorption wavelength ( ⁇ MAX ) in the range of 300 to 700 nm.
  • dichroic pigments include acridine pigments, oxazine pigments, cyanine pigments, naphthalene pigments, azo pigments, anthraquinone pigments and the like.
  • the azo dye examples include a monoazo dye, a bisazo dye, a trisazo dye, a tetrakisazo dye, a stilbene azo dye, and the like, and a bisazo dye and a trisazo dye are preferable, and for example, a compound represented by the formula (I) (hereinafter, "compound").
  • compound a compound represented by the formula (I) (hereinafter, "compound”).
  • compound a compound represented by the formula (I) (hereinafter, "compound”).
  • compound a compound represented by the formula (I) (hereinafter, "compound”).
  • compound a bisazo dye and a trisazo dye
  • K 1 (-N N-K 2 )
  • p -N N-K 3 (I)
  • K 1 and K 3 may independently have a phenyl group which may have a substituent, a naphthyl group which may have a substituent or a substituent. Represents a good monovalent
  • K 2 is a p-phenylene group which may have a substituent, a naphthalene-1,4-diyl group which may have a substituent, or a divalent heterocycle which may have a substituent.
  • p represents an integer of 1 to 4.
  • the plurality of K 2s may be the same or different from each other.
  • Examples of the monovalent heterocyclic group include a group obtained by removing one hydrogen atom from a heterocyclic compound such as quinoline, thiazole, benzothiazole, thienothiazole, imidazole, benzimidazole, oxazole, and benzoxazole.
  • Examples of the divalent heterocyclic group include a group obtained by removing two hydrogen atoms from the heterocyclic compound.
  • Phenyl group in K 1 and K 3, a naphthyl group and a monovalent heterocyclic group, and p- phenylene group in K 2, as a naphthalene-1,4-diyl group and a divalent substituent heterocyclic group has optionally Is an alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms having a polymerizable group, an alkenyl group having 1 to 4 carbon atoms; Alkoxy group; alkoxy group having 1 to 20 carbon atoms having a polymerizable group; alkyl fluoride group having 1 to 4 carbon atoms such as trifluoromethyl group; cyano group; nitro group; halogen atom; amino group, diethylamino group, pyrrolidino Substituent or unsubstituted amino group such as a group (A substituted amino group is an amino group having one or two alkyl groups having 1 to 6 carbon atoms and
  • the polymerizable group include an acryloyl group, a metaacryloyl group, an acryloyloxy group, and a metaacryloyloxy group.
  • B 1 to B 30 are independent of each other, hydrogen atom, alkyl group having 1 to 6 carbon atoms, alkenyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 4 carbon atoms, cyano group, nitro group, substitution or Represents an unsubstituted amino group (the definition of a substituted amino group and an unsubstituted amino group is as described above), a chlorine atom or a trifluoromethyl group.
  • n1 to n4 represent integers of 0 to 3 independently of each other.
  • n1 is 2 or more, a plurality of B 2 may be the same or different from each other, If n2 is 2 or more, plural B 6 may be the same or different from each other, If n3 is 2 or more, plural B 9 may be the same or different from each other, When n4 is 2 or more, the plurality of B 14s may be the same or different from each other. ]
  • R 1 to R 8 independently represent a hydrogen atom, -R x , -NH 2 , -NHR x , -NR x 2 , -SR x or a halogen atom.
  • R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • R 9 to R 15 independently represent a hydrogen atom, -R x , -NH 2 , -NHR x , -NR x 2 , -SR x or a halogen atom.
  • R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • R 16 to R 23 independently represent a hydrogen atom, -R x , -NH 2 , -NHR x , -NR x 2 , -SR x or a halogen atom.
  • R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms of Rx includes a methyl group, an ethyl group, a propyl group, a butyl group and a pentyl group. And a hexyl group and the like, and examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, a toluyl group, a xsilyl group and a naphthyl group.
  • a compound represented by the formula (I-12) and a compound represented by the formula (I-13) are preferable.
  • D 1 and D 2 represent groups represented by any of the formulas (I-12a) to (I-12d) independently of each other.
  • n5 represents an integer of 1 to 3.
  • D 3 and D 4 represent groups represented by any of the formulas (I-13a) to (1-13h) independently of each other.
  • n6 represents an integer of 1 to 3.
  • the azo dye has high linearity and is suitable for producing a polarizer having excellent polarization performance. Therefore, in one embodiment of the present invention, the dichroic dye contained in the composition for forming a polarizing layer that forms a polarizer is preferably an azo dye.
  • the weight average molecular weight of the dichroic dye is usually 300 to 2000, preferably 400 to 1000.
  • the dichroic dye contained in the polymerizable liquid crystal composition (A) forming a polarizer is preferably hydrophobic.
  • the hydrophobic dichroic dye means a dye having a solubility in 100 g of water at 25 ° C. of 1 g or less.
  • the content of the dichroic dye in the polymerizable liquid crystal composition (A) can be appropriately determined depending on the type of the dichroic dye to be used and the like, but is preferably 0. It is 1 to 50 parts by mass, more preferably 0.1 to 20 parts by mass, and further preferably 0.1 to 12 parts by mass. When the content of the dichroic dye is within the above range, the orientation of the polymerizable liquid crystal compound is not easily disturbed, and a polarizer having a high degree of orientation order can be obtained.
  • the polymerizable liquid crystal composition (A) for forming a polarizer may contain a polymerization initiator.
  • the polymerization initiator is a compound capable of initiating the polymerization reaction of the polymerizable liquid crystal compound, and the photopolymerization initiator is preferable in that the polymerization reaction can be started under lower temperature conditions.
  • Specific examples thereof include photopolymerization initiators capable of generating active radicals or acids by the action of light, and among them, photopolymerization initiators that generate radicals by the action of light are preferable.
  • the polymerization initiator can be used alone or in combination of two or more.
  • a known photopolymerization initiator can be used as the photopolymerization initiator.
  • a self-cleaving type photopolymerization initiator and a hydrogen abstraction type photopolymerization initiator are used as the photopolymerization initiator that generates active radicals.
  • Self-cleaving benzoin compounds, acetophenone compounds, hydroxyacetophenone compounds, ⁇ -aminoacetophenone compounds, oxime ester compounds, acylphosphine oxide compounds, azo compounds, etc. are used as self-cleaving photopolymerization initiators. Can be used.
  • a hydrogen abstraction type photopolymerization initiator a hydrogen abstraction type benzophenone compound, a benzoin ether compound, a benzyl ketal compound, a dibenzosverone compound, an anthraquinone compound, a xanthone compound, a thioxanthone compound, a halogenoacetophenone compound.
  • Compounds, dialkoxyacetophenone compounds, halogenobis imidazole compounds, halogenotriazine compounds, triazine compounds and the like can be used.
  • an iodonium salt, a sulfonium salt, or the like can be used as the photopolymerization initiator that generates an acid.
  • the reaction at a low temperature is preferable from the viewpoint of preventing the dissolution of the dye, and the self-cleaving photopolymerization initiator is preferable from the viewpoint of the reaction efficiency at a low temperature, and in particular, an acetophenone compound, a hydroxyacetophenone compound, and ⁇ -aminoacetophenone.
  • System compounds and oxime ester compounds are preferable.
  • photopolymerization initiator examples include the following.
  • Benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether and benzoin isobutyl ether; 2-Hydroxy-2-methyl-1-phenylpropan-1-one, 1,2-diphenyl-2,2-dimethoxyethane-1-one, 2-hydroxy-2-methyl-1-[4- (2- (2-) Hydroxyacetophenones such as hydroxyethoxy) phenyl] propane-1-one, 1-hydroxycyclohexylphenylketone and 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propane-1-one oligomers System compounds; ⁇ -Aminoacetophenone such as 2-methyl-2-morpholino-1- (4-methylthiophenyl) propan-1-one, 2-dimethylamino-2-benzyl-1- (4-morpholinophenyl) butan
  • a commercially available photopolymerization initiator may be used.
  • Commercially available photopolymerization initiators include Irgacure® 907, 184, 651, 819, 250, and 369, 379, 127, 754, OXE01, OXE02, OXE03 (manufactured by BASF); Omnirad BCIM, Esasure 1001M, Esasure KIP160 (IDM Resins BV); Sakeol® BZ, Z, and BEE (Seiko Kagaku Co., Ltd.); Kayacure® BP100, and UVI-6992 (registered trademark) Dow Chemical Co., Ltd.); Adeka Aptomer SP-152, N-1717, N-1919, SP-170, Adeka Arkuru's NCI-831, Adeka Arkuru's NCI-930 (made by ADEKA Co., Ltd.); TAZ-A , And TAZ-PP (manufactured by Nippon Sibel Hegner Co.
  • the content of the polymerization initiator in the polymerizable liquid crystal composition (A) is preferably 1 to 10 parts by mass, more preferably 1 to 8 parts by mass, and further preferably 1 to 8 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. It is 2 to 8 parts by mass, particularly preferably 4 to 8 parts by mass. When the content of the polymerization initiator is within the above range, the polymerization reaction of the polymerizable liquid crystal compound can be carried out without significantly disturbing the orientation of the polymerizable liquid crystal compound.
  • the polymerization rate of the polymerizable liquid crystal compound in the present invention is preferably 60% or more, more preferably 65% or more, still more preferably 70% or more, from the viewpoint of line contamination and handling during production.
  • the polarizer contains a leveling agent. That is, the polymerizable liquid crystal composition (A) for forming a polarizer preferably contains a leveling agent.
  • the leveling agent has a function of adjusting the fluidity of the polymerizable liquid crystal composition (A) and flattening the coating film obtained by applying the polymerizable liquid crystal composition (A).
  • the polarizing element contains a leveling agent, a smooth polarizing element that is less likely to cause coating unevenness can be obtained even on curved surfaces of various shapes, especially curved surfaces having a relatively large curvature. Therefore, the appearance characteristics and optical characteristics of the polarizing plate can be obtained. Can be advantageous for improvement.
  • the leveling agent include a surfactant, and at least one selected from the group consisting of a leveling agent containing a polyacrylate compound as a main component and a leveling agent containing a fluorine atom-containing compound as a main component is preferable.
  • the leveling agent can be used alone or in combination of two or more.
  • leveling agent containing a polyacrylate compound as a main component examples include “BYK-350”, “BYK-352”, “BYK-353”, “BYK-354”, “BYK-355”, and “BYK-358N”. , “BYK-361N”, “BYK-380”, “BYK-381” and “BYK-392” (BYK Chemie).
  • leveling agent containing a fluorine atom-containing compound as a main component examples include “Megafuck (registered trademark) R-08", “R-30”, “R-90”, “F-410”, and the same.
  • F-411, “F-443”, “F-445”, “F-470”, “F-471”, “F-477”, “F-479”, “F-479” “F-482” and “F-483” DIC Co., Ltd.
  • Surflon (registered trademark) S-381", “S-382", “S-383", “S-393”, “SC-101", “SC-105", “KH-40” and “SA-100” AGC Seimi Chemical Co., Ltd.
  • E1830", “E5844” Daikin Fine Chemical Laboratory Co., Ltd.
  • Examples include “Ftop EF301”, “Ftop EF303”, “Ftop EF351" and “Ftop EF352" (Mitsubishi Materials Electronics Chemical Co., Ltd.).
  • the content thereof is preferably 0.05 to 5 parts by mass and 0.05 to 3 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. More preferred.
  • the content of the leveling agent is within the above range, the polymerizable liquid crystal compound tends to be easily oriented, unevenness is less likely to occur, and a smoother polarizer tends to be obtained.
  • the polymerizable liquid crystal composition (A) may contain additives other than the leveling agent.
  • additives include polymerizable non-liquid crystal compounds, photosensitizers, antioxidants, mold release agents, stabilizers, colorants such as bluing agents, flame retardants and lubricants.
  • the content of the other additives is more than 0% and 20% by mass with respect to the solid content of the polymerizable liquid crystal composition (A). It is preferably less than or equal to, more preferably more than 0% and 10% by mass or less.
  • the polymerization reaction of the polymerizable liquid crystal compound can be further promoted.
  • the photosensitizer include xanthone compounds such as xanthone and thioxanthone (eg, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, etc.); anthracene, alkoxy group-containing anthracene (eg, dibutoxyanthracene, etc.) and other anthracene compounds; Examples thereof include phenothiazine and rubrene.
  • the photosensitizer can be used alone or in combination of two or more.
  • the content thereof may be appropriately determined according to the type and amount of the polymerization initiator and the polymerizable liquid crystal compound, but the polymerizable liquid crystal compound 100 With respect to the parts by mass, 0.1 to 30 parts by mass is preferable, 0.5 to 10 parts by mass is more preferable, and 0.5 to 8 parts by mass is further preferable.
  • the polymerizable liquid crystal composition (A) can be produced by a conventionally known method for preparing a polarizer-forming composition, and is usually a polymerizable liquid crystal compound, a dichroic dye, and, if necessary, a polymerization initiator. And the above additives and the like can be prepared by mixing and stirring. Further, since a compound exhibiting smectic liquid crystal property generally has a high viscosity, the viscosity is adjusted by adding a solvent from the viewpoint of improving the coatability of the polymerizable liquid crystal composition (A) and facilitating the formation of a polarizer. You may.
  • the solvent used in the polymerizable liquid crystal composition (A) can be appropriately selected depending on the solubility of the polymerizable liquid crystal compound and the dichroic dye used.
  • alcohol solvents such as water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone.
  • Ester solvents such as propylene glycol methyl ether acetate and ethyl lactate, ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, methyl amyl ketone and methyl isobutyl ketone, aliphatic hydrocarbon solvents such as pentane, hexane and heptane, toluene. , Aromatic hydrocarbon solvents such as xylene, nitrile solvents such as acetonitrile, ether solvents such as tetrahydrofuran and dimethoxyethane, and chlorinated hydrocarbon solvents such as chloroform and chlorobenzene.
  • the content of the solvent is preferably 100 to 1900 parts by mass, more preferably 150 to 900 parts by mass, and further preferably 180 to 180 parts by mass with respect to 100 parts by mass of the solid content of the polymerizable liquid crystal composition (A). It is 600 parts by mass.
  • the polarizer is preferably a polarizer having a high degree of orientation order.
  • a Bragg peak derived from a higher-order structure such as a hexatic phase or a crystal phase can be obtained in an X-ray diffraction measurement of a polarizing element having a high degree of orientation order.
  • the Bragg peak means a peak derived from the plane periodic structure of molecular orientation. Therefore, it is preferable that the polarizer constituting the polarizing plate of the present invention shows a Bragg peak in the X-ray diffraction measurement.
  • the polymerizable liquid crystal compound or a polymer thereof is oriented so that the polarizer shows a Bragg peak in the X-ray diffraction measurement, and emits light. It is more preferable that the molecules of the polymerizable liquid crystal compound are oriented in the absorption direction in a "horizontal orientation".
  • a polarizer having a plane period interval of molecular orientation of 3.0 to 6.0 ⁇ is preferable.
  • a high degree of orientation order showing a Bragg peak can be realized by controlling the type of the polymerizable liquid crystal compound used, the type and amount of the dichroic dye, and the type and amount of the polymerization initiator.
  • the polarizer is, for example, forming a coating film of the polymerizable liquid crystal composition (A) on a photoalignment film provided on a curved substrate, removing a solvent from the coating film, and forming a polymerizable liquid crystal compound. It can be obtained by a method including a phase transition to a liquid crystal phase (smetic phase) and polymerization of a polymerizable liquid crystal compound while maintaining the liquid crystal phase.
  • the polymerizable liquid crystal composition (A) As a method of applying the polymerizable liquid crystal composition (A) on the photoalignment film, even on a curved surface having a relatively large curvature or a concave curved surface, coating unevenness is unlikely to occur, and the polymerizable liquid crystal composition (A) can be applied. From the viewpoint of easily obtaining a uniform coating film, it is preferable to adopt a coating method such as a spin coating method, a spray method, or a dip coating method.
  • a dry coating film is formed by removing the solvent by drying or the like under the condition that the polymerizable liquid crystal compound contained in the coating film obtained from the polymerizable liquid crystal composition (A) does not polymerize.
  • the drying method include a natural drying method, a ventilation drying method, a heat drying method and a vacuum drying method.
  • the temperature is raised to a temperature equal to or higher than the temperature at which the polymerizable liquid crystal compound undergoes a phase transition to the liquid phase, and then the temperature is lowered, so that the polymerizable liquid crystal compound is phased into the liquid crystal phase (smetic phase). Transfer.
  • a phase transition may be carried out after the solvent is removed from the coating film, or may be carried out at the same time as the solvent is removed.
  • the light irradiated to the dry coating film includes the type of the polymerizable liquid crystal compound contained in the dry coating film (particularly, the type of the polymerizable group contained in the polymerizable liquid crystal compound), the type of the polymerization initiator, and the type of the polymerization initiator. It is appropriately selected according to the amount thereof and the like.
  • Specific examples thereof include one or more types of active energy rays and active electron beams selected from the group consisting of visible light, ultraviolet light, infrared light, X-rays, ⁇ -rays, ⁇ -rays and ⁇ -rays.
  • ultraviolet light is preferable because it is easy to control the progress of the polymerization reaction and it is possible to use a photopolymerization apparatus widely used in the art.
  • the polymerization temperature can be controlled by irradiating light while cooling the dry coating film by an appropriate cooling means.
  • a patterned polarizing layer can also be obtained by masking or developing during photopolymerization.
  • Examples of the light source of the active energy ray include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, a halogen lamp, a carbon arc lamp, a tungsten lamp, a gallium lamp, an excima laser, and a wavelength range.
  • Examples thereof include an LED light source that emits 380 to 440 nm, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, and a metal halide lamp.
  • the ultraviolet irradiation intensity is usually 10 to 3,000 mW / cm 2 .
  • the ultraviolet irradiation intensity is preferably an intensity in a wavelength region effective for activating the polymerization initiator.
  • the time for irradiating light is usually 0.1 seconds to 10 minutes, preferably 1 second to 5 minutes, more preferably 5 seconds to 3 minutes, and even more preferably 10 seconds to 1 minute.
  • the integrated light intensity is 10 to 3,000 mJ / cm 2 , preferably 50 to 2,000 mJ / cm 2 , and more preferably 100 to 1,000 mJ / cm. It is 2.
  • the polymerizable liquid crystal compound is polymerized while maintaining the liquid crystal state of the liquid crystal phase, particularly the smectic phase, preferably the higher smectic phase, and a polarizer is formed.
  • the polarizer obtained by polymerizing the polymerizable liquid crystal compound while maintaining the liquid crystal state of the smectic phase is obtained from the conventional host guest type polarizing film, that is, the liquid crystal state of the nematic phase due to the action of the dichroic dye.
  • the polarization performance is high as compared with the polarizing layer.
  • the strength is excellent as compared with the one coated only with the dichroic dye or the lyotropic liquid crystal.
  • the thickness of the polarizer can be appropriately selected depending on the display device to be applied, and is preferably a film of 0.1 to 5 ⁇ m, more preferably 0.3 to 4 ⁇ m, and further preferably 0.5 to 3 ⁇ m. be.
  • the film thickness of the polarizer is at least the above lower limit value, it is easy to prevent the necessary light absorption from being obtained, and when it is at least the above upper limit value, the orientation due to the decrease in the orientation regulation force by the photoalignment film is achieved. It is easy to suppress the occurrence of defects.
  • the polarizing plate of the present invention uses a photoalignment film as the alignment film.
  • a photo-alignment film that can arbitrarily control the direction of the orientation-regulating force by selecting the polarization direction of the polarized light to be irradiated, the surface of the alignment film such as the rubbing alignment film that has been widely used conventionally as the alignment film is physically formed.
  • the orientation angle can be controlled accurately to easily obtain a high-quality alignment film. Since it is easy to obtain, it is possible to form a polarizer with higher orientation accuracy.
  • the polarizers are usually laminated adjacent to each other on the photoalignment film in order to suppress the decrease in the orientation regulating force due to the photoalignment film and sufficiently improve the alignment accuracy.
  • the photoalignment film is, for example, a composition containing a polymer, oligomer or monomer having a photoreactive group (hereinafter, also referred to as “polymer having a photoreactive group”) and a solvent (hereinafter, “for forming a photoalignment film”). It is obtained by applying a "composition”) on a curved substrate and irradiating it with polarized light (preferably polarized UV).
  • the polymer or the like contained in the composition for forming a photoalignment film has the same reactive group (for example, (meth) acryloyl group) as the polymerizable group of the polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition (A). Then, the adhesion between the photoalignment film and the polarizer tends to be improved, which may be advantageous in suppressing the occurrence of floating or peeling of the polarizer in the curved polarizing plate.
  • a photoreactive group is a group that produces a liquid crystal alignment ability when irradiated with light.
  • Specific examples thereof include groups involved in photoreactions that are the origin of liquid crystal orientation ability such as molecular orientation induction or isomerization reaction, dimerization reaction, photocrosslinking reaction or photodecomposition reaction generated by light irradiation. Of these, groups involved in the dimerization reaction or photocrosslinking reaction are preferable because they are excellent in orientation.
  • a photoreactive group involved in the photodimerization reaction is preferable, and a photoalignment film having a relatively small amount of polarized light required for photoalignment and excellent thermal stability and stability over time can be easily obtained.
  • a cinnamoyl group and a chalcone group are preferable.
  • the polymer having a photoreactive group a polymer having a cinnamoyl group such that the terminal portion of the polymer side chain has a cinnamic acid structure is particularly preferable.
  • the number average molecular weight of the polymer having a photoreactive group forming the photoalignment film is preferably 20,000 to 100,000, more preferably 22,000 or more, still more preferably 25,000 or more, and even more preferably 90,000 or less. , More preferably 80,000 or less.
  • the number average molecular weight of the polymer having a photoreactive group is within the above range, the adhesion to the layer adjacent to the photoalignment film is likely to be improved, and the curved substrate and the polarizer are adhered to each other via the photoalignment film. A well-laminated polarizing plate can be obtained.
  • the number average molecular weight of the polymer having a photoreactive group can be controlled by the amount of the monomer used in the composition for forming a photoalignment film, the type and amount of the polymerization initiator, and the like.
  • the "number average molecular weight of the polymer having a photoreactive group" referred to here substantially corresponds to the number average molecular weight of the polymer constituting the cured photoalignment film, and is measured by gel permeation chromatography or the like. It can be calculated by measuring the cured photoalignment film itself using an instrument.
  • a photoalignment-inducing layer can be formed by applying the composition for forming a photoalignment film on a curved substrate, for example.
  • the solvent contained in the composition include the same solvents as those exemplified above as the solvent that can be used when forming the polarizer, and are appropriately selected depending on the solubility of the polymer having a photoreactive group or the like. can do.
  • the content of the polymer having a photoreactive group in the composition for forming a photoalignment film can be appropriately adjusted depending on the type of the polymer and the thickness of the target photoalignment film, but the mass of the composition for forming a photoalignment film. On the other hand, it is preferably at least 0.2% by mass, and more preferably in the range of 0.3 to 10% by mass.
  • the composition for forming a photoalignment film may contain a polymer material such as polyvinyl alcohol or polyimide or a photosensitizer as long as the characteristics of the photoalignment film are not significantly impaired.
  • the polymerizable liquid crystal composition (A) is applied on the photoalignment film.
  • a method similar to the method of applying to the coating film and the method of removing the solvent from the formed coating film can be mentioned.
  • Polarized light irradiation is performed by directly irradiating polarized UV from the composition for forming a photoalignment film applied on a curved surface substrate, but also by irradiating polarized light from the curved surface substrate side and transmitting the polarized light. It may be in the form of Further, it is particularly preferable that the polarized light is substantially parallel light.
  • the wavelength of polarized light to be irradiated is preferably in the wavelength range in which a photoreactive group such as a polymer having a photoreactive group can absorb light energy. Specifically, UV (ultraviolet rays) having a wavelength in the range of 250 to 400 nm is particularly preferable.
  • Examples of the light source used for the polarized light irradiation include xenon lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, ultraviolet light lasers such as KrF and ArF, and high-pressure mercury lamps, ultra-high pressure mercury lamps and metal halide lamps. preferable.
  • a high-pressure mercury lamp, an ultra-high pressure mercury lamp, and a metal halide lamp are preferable because they have a high emission intensity of ultraviolet rays having a wavelength of 313 nm.
  • Polarized UV can be irradiated by irradiating the light from the light source through an appropriate polarizer.
  • a polarizing element a polarizing filter, a polarizing prism such as Gran Thomson or Gran Tailor, or a wire grid type polarizing element can be used.
  • the thickness of the photoalignment film is preferably 10 to 5000 nm, more preferably 10 to 1000 nm, and even more preferably 30 to 300 nm.
  • the orientation regulating force can be exerted while exhibiting good adhesion at the interface with the polarizer or the interface with the curved substrate, and the polarizer can be arranged with a high orientation order. Can be formed.
  • the polarizing plate of the present invention may include a layer other than the curved substrate, the photoalignment film and the polarizer as long as it does not affect the effect of the present invention.
  • examples of such other layers include a protective layer for the purpose of protecting or reinforcing the polarizer, a hard coat layer, a primer layer, an adhesive layer, and the like.
  • the polarizing plate of the present invention is, for example, (A) Step of forming a photoalignment film on a curved substrate, (B) A step of forming a coating film of a polymerizable liquid crystal composition containing at least one polymerizable liquid crystal compound and a dichroic dye on the photoalignment film, and (C) A step of forming a polarizer by phase-transferring a polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition to a smectic liquid crystal phase and then polymerizing the polymerizable liquid crystal compound while maintaining the smectic liquid crystal state. It can be manufactured by the method including.
  • the steps (a), (b) and (c) are a method for forming a photoalignment film on a curved substrate, a method for forming a coating film of the polymerizable liquid crystal composition (A), and a polymerizable liquid crystal composition, respectively.
  • a method for forming a polarizer from the coating film of the object (A) it can be carried out according to each method described in the previous paragraph.
  • the present invention also covers an elliptical polarizing plate including the polarizing plate of the present invention and a retardation layer having a 1/4 wave plate function.
  • the retardation layer is preferably a coating layer, and more preferably a cured product of a polymerizable liquid crystal composition containing at least one polymerizable liquid crystal compound.
  • the retardation layer is a coating layer, wrinkles and distortions are less likely to occur in the curved retardation layer, and the retardation layer tends to be a retardation layer capable of exhibiting high optical characteristics.
  • the retardation layer having a 1/4 wave plate function is defined by the following equation (2): 100 nm ⁇ Re (550) ⁇ 170 nm (2) [In equation (2), Re ( ⁇ ) represents the in-plane retardation value of the retardation layer at the wavelength ⁇ nm] Means the layer that satisfies. By satisfying the above formula (2), it becomes a retardation layer that functions as a ⁇ / 4 plate, and the effect of improving the specular hue when an elliptical polarizing plate including the retardation layer is applied to an organic EL display device or the like ( The effect of suppressing coloring) tends to increase.
  • a more preferable range of the in-plane retardation value of the retardation layer is 130 nm ⁇ Re (550) ⁇ 150 nm.
  • the retardation layer has the following equations (3) and (4): Re (450) / Re (550) ⁇ 1.00 (3) 1.00 ⁇ Re (650) / Re (550) (4) [In the equation, Re ( ⁇ ) represents the in-plane retardation value of the retardation layer at the wavelength ⁇ nm] It is preferable to satisfy.
  • the retardation layer satisfies the equations (3) and (4), the retardation layer has a so-called inverse wavelength dispersion in which the in-plane retardation value at a short wavelength is smaller than the in-plane retardation value at a long wavelength. Show sex.
  • Re (450) / Re (550) is preferably 0.70 or more, more preferably 0., from the viewpoint of improving the inverse wavelength dispersibility and further enhancing the effect of improving the reflected hue in the front direction of the elliptical polarizing plate. It is 78 or more, preferably 0.92 or less, more preferably 0.90 or less, still more preferably 0.87 or less, particularly preferably 0.86 or less, and even more preferably 0.85 or less. Further, Re (650) / Re (550) is preferably 1.01 or more, more preferably 1.02 or more.
  • the in-plane retardation value can be adjusted by adjusting the film thickness d of the retardation layer.
  • Re ( ⁇ ) (nx ( ⁇ ) -ny ( ⁇ )) ⁇ d (d represents the thickness of the target retardation layer, and nx is formed by the retardation layer.
  • the refractive index ellipse it represents the main refractive index at a wavelength of ⁇ nm in the direction parallel to the plane of the retardation layer, and ny is parallel to the plane of the retardation layer in the refractive index ellipse formed by the retardation layer.
  • the desired in-plane retardation value (Re ( ⁇ ): position at the wavelength ⁇ (nm)).
  • the three-dimensional refractive index and the film thickness d may be adjusted.
  • the polymerizable liquid crystal compound for forming the retardation layer can be appropriately selected from conventionally known polymerizable liquid crystal compounds in the field of retardation film, depending on the desired optical characteristics.
  • the polymerizable liquid crystal compound is a liquid crystal compound having a polymerizable group.
  • the polymerizable liquid crystal compound generally, the polymer (cured product) obtained by polymerizing the polymerizable liquid crystal compound alone in a state of being oriented in a specific direction is opposite to that of the polymerizable liquid crystal compound exhibiting positive wavelength dispersibility. Examples thereof include polymerizable liquid crystal compounds exhibiting wavelength dispersibility. In the present invention, only one of the polymerizable liquid crystal compounds may be used, or both types of the polymerizable liquid crystal compound may be mixed and used.
  • Examples of the polymerizable liquid crystal compound that can form a retardation layer in the present invention include polymerizable liquid crystal compounds as described in JP-A-2011-207765.
  • the retardation layer is a polymerizable liquid crystal composition for forming a retardation layer containing a polymerizable liquid crystal compound, a solvent, an additive such as a polymerization initiator and a leveling agent, if necessary (hereinafter, "polymerizable liquid crystal composition (hereinafter,” polymerizable liquid crystal composition (hereinafter, “polymerizable liquid crystal composition”).
  • B) polymerizable liquid crystal composition
  • B) is applied onto a base material or an alignment film, the coating film is dried, and the polymerizable liquid crystal compound in the polymerizable liquid crystal composition (B) is oriented, and then the orientation state is determined. It can be obtained by polymerizing a polymerizable liquid crystal compound by irradiating light or the like while holding the mixture.
  • Examples of the solvent, polymerization initiator, additive and the like constituting the polymerizable liquid crystal composition (B) include a solvent, a polymerization initiator and an additive which can be used for the polymerizable liquid crystal composition (A) forming a polarizer. The same as those illustrated in the above can be mentioned.
  • the alignment film used to form the retardation layer is preferably a photoalignment film from the viewpoint of easily applying a desired orientation regulating force to various curved surface shapes with high accuracy.
  • Examples of the photo-alignment film and the method for forming the retardation layer on the photo-alignment film include the same photo-alignment films, methods, and conditions as exemplified in the method for forming the polarizer, and the desired orientation can be used. It may be appropriately selected according to the regulating force, the configuration of the retardation layer, and the like.
  • the thickness of the retardation layer can be appropriately selected depending on the display device or the like to which it is applied, but from the viewpoint of adhesion, thinning, etc., it is preferably 0.1 to 5 ⁇ m, more preferably 0.2 to 4 ⁇ m, and even more preferably 0.2 to 4 ⁇ m. It is 0.4 to 3 ⁇ m.
  • the elliptical polarizing plate of the present invention has a retardation layer formed directly on the polarizing plate of the present invention via an alignment film, or is photoaligned on a retardation layer formed on a curved substrate via an alignment film. It is preferable that the polarizer is formed through the film. Rather than bonding the separately prepared polarizing plates and the retardation layer via, for example, an adhesive layer, the polymerizable liquid crystal composition (B) is applied onto a curved polarizing plate to form a retardation layer. Or when the polarizing plate of the present invention and the retardation layer are laminated by applying the polymerizable liquid crystal composition (A) on a curved substrate on which the retardation layer is formed to form a polarizer.
  • the elliptical polarizing plate of the present invention preferably does not include an adhesive layer between the polarizer and the retardation layer.
  • the slow axis (optical axis) of the retardation layer and the absorption axis of the polarizer it is preferable to laminate the slow axis (optical axis) of the retardation layer and the absorption axis of the polarizer so as to be substantially 45 °.
  • the function as an elliptical polarizing plate can be obtained by laminating the slow axis (optical axis) of the retardation layer and the absorption axis of the polarizer so as to be substantially 45 °. It should be noted that substantially 45 ° is usually in the range of 45 ⁇ 5 °.
  • the polarizing plate and the elliptical polarizing plate of the present invention can be used for liquid crystal display devices such as flexible image display devices, various display devices such as organic EL display devices, sunglasses, lens filters and the like.
  • the polarizing plate and / or the elliptical polarizing plate of the present invention is used for the above-mentioned various uses, the polarizing plate and / or the elliptical polarizing plate of the present invention produced separately may be incorporated into various articles, or the members constituting the various articles are curved.
  • the polarizing plate and / or the elliptical polarizing plate of the present invention as a substrate, it may be incorporated as a constituent member of various articles.
  • the flexible image display device having the elliptical polarizing plate of the present invention preferably further has a window and a touch panel touch sensor.
  • the flexible image display device is composed of, for example, a laminated body for a flexible image display device and an organic EL display panel, and the laminated body for the flexible image display device is arranged on the visual side with respect to the organic EL display panel and is configured to be bendable. Has been done.
  • the laminated body for a flexible image display device may include a window, a touch panel touch sensor, and the like in addition to the elliptical polarizing plate of the present invention described above.
  • the stacking order thereof is arbitrary, but it is preferable that the windows, the elliptical polarizing plate, and the touch panel touch sensor are laminated in the order of the window, the touch panel touch sensor, and the elliptical polarizing plate from the visual side.
  • the elliptical polarizing plate is present on the visual side of the touch panel touch sensor because the pattern of the touch panel touch sensor is difficult to be visually recognized and the visibility of the displayed image is improved.
  • Each member can be laminated using an adhesive, an adhesive, or the like.
  • the laminated body for a flexible image display device can be provided with a light-shielding pattern formed on at least one surface of any one of the windows, the elliptical polarizing plate, and the touch panel touch sensor.
  • the window is arranged on the visual side of the flexible image display device and plays a role of protecting other components from external impacts or environmental changes such as temperature and humidity.
  • glass has been used as such a protective layer, but a window in a flexible image display device is not rigid and rigid like glass, but has flexible characteristics.
  • the window is made of a flexible transparent substrate and may include a hard coat layer on at least one surface.
  • the transparent substrate preferably has a visible light transmittance of 70% or more, and more preferably 80% or more.
  • Any transparent polymer film can be used as the transparent base material.
  • polyamide films, polyamideimide films or polyimide films, polyester films, olefin films, acrylic films, and cellulose films, which are excellent in transparency and heat resistance, are preferable. It is also preferable to disperse inorganic particles such as silica, organic fine particles, rubber particles and the like in the polymer film.
  • the thickness of the transparent base material is preferably 5 to 200 ⁇ m, more preferably 20 to 100 ⁇ m.
  • a hard coat layer may be provided on at least one surface of the transparent base material constituting the window.
  • the thickness of the hard coat layer is not particularly limited, and may be, for example, 2 to 100 ⁇ m. When the thickness of the hard coat layer is within the above range, it is easy to secure sufficient impact resistance, scratch resistance and bending resistance.
  • the hard coat layer can be formed by curing a composition for forming a hard coat containing a reactive material that forms a crosslinked structure by irradiating with active energy rays or heat energy, but those by curing with active energy rays are preferable. ..
  • An active energy ray is defined as an energy ray capable of decomposing a compound that generates an active species to generate an active species. Examples of the active energy rays include visible light, ultraviolet rays, infrared rays, X-rays, ⁇ -rays, ⁇ -rays, ⁇ -rays and electron beams, and ultraviolet rays are particularly preferable.
  • the composition for forming a hard coat usually contains at least one compound of a radically polymerizable compound and a cationically polymerizable compound, and a polymerization initiator.
  • the radically polymerizable compound, the cationically polymerizable compound and the polymerization initiator are not particularly limited, and conventionally known ones can be mentioned.
  • the hard coat composition can further comprise one or more selected from the group consisting of solvents and additives.
  • the solvent is not limited to one known as a solvent for a composition for forming a hard coat in the field of optical films, as long as it can dissolve or disperse the polymerizable compound or the polymerization initiator. Can be used.
  • the additive include inorganic particles, leveling agents, stabilizers, surfactants, antistatic agents, lubricants, antifouling agents and the like.
  • the touch panel touch sensor is used as an input means.
  • various types such as a resistive film method, a surface acoustic wave method, an infrared method, an electromagnetic induction method, and a capacitance method have been proposed, and any method may be used. Of these, the capacitance method is preferable.
  • the capacitive touch panel touch sensor is divided into an active region and an inactive region located outside the active region.
  • the active area is an area corresponding to the area where the screen is displayed on the display panel (display unit), the area where the user's touch is sensed, and the inactive area is the area where the screen is not displayed on the display device (non-active area). This is the area corresponding to the display unit).
  • the touch panel touch sensor has a substrate having flexible characteristics; a sensing pattern formed in an active region of the substrate; and an external drive circuit formed in an inactive region of the substrate via the sensing pattern and a pad portion. Each sensing line for connecting can be included.
  • the substrate having flexible characteristics, the sensing pattern, and each sensing line are not particularly limited, and materials applicable to each technical field can be selected.
  • the substrate having flexible characteristics for example, a substrate made of the same material as the transparent substrate of the window can be used.
  • the substrate of the touch panel touch sensor preferably has a toughness of 2,000 MPa% or more from the viewpoint of suppressing cracks in the touch panel touch sensor, and more preferably a toughness of 2,000 MPa% to 30,000 MPa%.
  • toughness is defined as the lower area of the curve to the fracture point by the stress-strain curve obtained through the tensile experiment of the polymer material.
  • Each layer (window, elliptical polarizing plate, touch panel touch sensor) forming the laminated body for the flexible image display device can be formed by an adhesive.
  • Adhesives include water-based adhesives, organic solvent-based adhesives, solvent-free adhesives, solid adhesives, solvent volatilization adhesives, moisture-curable adhesives, heat-curable adhesives, anaerobic curable adhesives, and active energy rays.
  • General-purpose adhesives such as curable adhesives, hardener-mixed adhesives, heat-melt adhesives, pressure-sensitive adhesives (adhesives), and re-wet adhesives can be used.
  • water-based solvent volatilization type adhesives active energy ray-curable adhesives, and pressure-sensitive adhesives are preferably used.
  • the thickness of the adhesive layer can be appropriately adjusted according to the required adhesive strength and the like, but is usually 0.01 ⁇ m to 500 ⁇ m, preferably 0.1 ⁇ m to 300 ⁇ m.
  • the type and thickness of the adhesives constituting each adhesive layer may be the same or different.
  • Example 1 (1) Preparation of composition for forming an alignment film The following components were mixed, and the obtained mixture was stirred at 80 ° C. for 1 hour to obtain a composition for forming a photoalignment film.
  • the composition for forming a photoalignment film was applied to the corona-treated surface using a spin coater, and then dried in a drying oven set at 120 ° C. for 1 minute to obtain a coating film for a photoalignment film.
  • polarized UV irradiation device SPOT CURE SP-7; manufactured by Ushio Denki Co., Ltd.
  • polarized UV is applied to the lens at an integrated light amount of 50 mJ / cm 2 (313 nm standard). Irradiation was performed to form a photoalignment film.
  • the composition for forming a polarizer was applied onto the obtained photoalignment film using a spin coater, and then dried in a drying oven set at 110 ° C. for 1 minute.
  • the obtained polarizing plate was confirmed side by side so as to be paranicol and crossnicol through another polarizing plate separately prepared by the method described in paragraph [0321] of Japanese Patent Application Laid-Open No. 2015-163935, and had polarization performance. I confirmed that it was there.
  • Example 2 The same as in Example 1 except that the surface of the glass concave lens (SLB-30-70N manufactured by OptoSigma) was subjected to corona treatment (AGF-B10, manufactured by Kasuga Electric Co., Ltd.) was used as a curved substrate. A polarizing plate composed of a curved substrate / a photoalignment film / a polarizer was obtained. Similar to Example 1, it was confirmed that it had polarization performance, and the laminated state was evaluated. The results are shown in Table 1.
  • Example 3 The same as in Example 1 except that the surface of the glass concave lens (SLB-30-100N manufactured by OptoSigma) was subjected to corona treatment (AGF-B10, manufactured by Kasuga Electric Co., Ltd.) was used as a curved substrate. A polarizing plate composed of a curved substrate / a photoalignment film / a polarizer was obtained. Similar to Example 1, it was confirmed that it had polarization performance, and the laminated state was evaluated. The results are shown in Table 1.
  • Example 4 The same as in Example 1 except that the surface of the glass concave lens (SLB-30-200N manufactured by OptoSigma) was subjected to corona treatment (AGF-B10, manufactured by Kasuga Electric Co., Ltd.) was used as a curved substrate. A polarizing plate composed of a curved substrate / a photoalignment film / a polarizer was obtained. Similar to Example 1, it was confirmed that it had polarization performance, and the laminated state was evaluated. The results are shown in Table 1.
  • Example 5 Same as in Example 1 except that a substrate having a corona treatment (AGF-B10, manufactured by Kasuga Electric Co., Ltd.) on the surface of a glass convex lens (SLB-30-70P manufactured by OptoSigma) was used as a curved substrate. A polarizing plate composed of a curved substrate / a photoalignment film / a polarizer was obtained. Similar to Example 1, it was confirmed that it had polarization performance, and the laminated state was evaluated. The results are shown in Table 1.
  • a corona treatment A polarizing plate composed of a curved substrate / a photoalignment film / a polarizer was obtained. Similar to Example 1, it was confirmed that it had polarization performance, and the laminated state was evaluated. The results are shown in Table 1.
  • Example 6 The same as in Example 1 except that a substrate having a corona treatment (AGF-B10, manufactured by Kasuga Electric Co., Ltd.) on the surface of a glass convex lens (SLB-30-200P manufactured by OptoSigma) was used as a curved substrate. A polarizing plate composed of a curved substrate / a photoalignment film / a polarizer was obtained. Similar to Example 1, it was confirmed that it had polarization performance, and the laminated state was evaluated. The results are shown in Table 1.
  • a corona treatment A polarizing plate composed of a curved substrate / a photoalignment film / a polarizer was obtained. Similar to Example 1, it was confirmed that it had polarization performance, and the laminated state was evaluated. The results are shown in Table 1.
  • Comparative Example 1 (1) Production of Iodine PVA Polarizing Plate A 30 ⁇ m-thick polyvinyl alcohol film (average degree of polymerization of about 2400, saponification degree of 99.9 mol% or more) is uniaxially stretched about 5 times by dry stretching and further tensioned. Was immersed in pure water at 40 ° C. for 40 seconds. Then, the dyeing treatment was carried out by immersing the dyeing aqueous solution having a mass ratio of iodine / potassium iodide / water of 0.044 / 5.7 / 100 at 28 ° C. for 30 seconds.
  • a water-based adhesive was injected between the obtained polarizer and a cycloolefin film (ZF14 manufactured by Nippon Zeon Corporation) and bonded with a nip roll. While maintaining the tension of the obtained laminate at 430 N / m, it was dried at 60 ° C. for 2 minutes to obtain an iodine PVA type polarizer having a cycloolefin film as a protective film on one side.
  • the above-mentioned water-based adhesive contains 100 parts of water, 3 parts of carboxyl group-modified polyvinyl alcohol (Kuraray Poval KL318; manufactured by Kuraray Co., Ltd.) and a water-soluble polyamide epoxy resin (Smiley's resin 650; manufactured by Sumika Chemtex Co., Ltd.). It was prepared by adding 1.5 parts (an aqueous solution having a solid content concentration of 30%).
  • the curved substrate / adhesive layer / iodine PVA is the same as in Example 3 except that the iodine PVA type polarizing plate and the curved substrate used in Example 3 are bonded with an adhesive (25 ⁇ m) manufactured by Lintec Corporation.
  • a polarizing plate made of a type polarizer was obtained. Similar to Example 1, it was confirmed that it had polarization performance, and the laminated state was evaluated. The results are shown in Table 1.
  • Example 8 On the curved substrate used in Example 3, a 2% by mass aqueous solution (composition for forming an alignment film) of polyvinyl alcohol (polyvinyl alcohol 1000 completely saponified type, manufactured by Wako Pure Chemical Industries, Ltd.) was applied by a spin coating method. After drying, a coating film having a thickness of 100 nm was formed. Subsequently, the following rubbing treatment was performed on the surface of the obtained coating film to try to prepare an alignment film, but the rubbing treatment could not be sufficiently performed due to the shape of the curved substrate.
  • polyvinyl alcohol polyvinyl alcohol 1000 completely saponified type, manufactured by Wako Pure Chemical Industries, Ltd.
  • the rubbing process uses a semi-automatic rubbing device (trade name: LQ-008 type, manufactured by Joyo Engineering Co., Ltd.) and a cloth (trade name: YA-20-RW, manufactured by Yoshikawa Kako Co., Ltd.) to push the amount to 0.
  • the procedure was performed under the conditions of .15 mm, rotation speed 500 rpm, and 16.7 mm / s.
  • the composition for forming a polarizer is applied onto the rubbing alignment film obtained by the above rubbing treatment in the same manner as in Example 1, dried and polymerized to obtain a polarizing plate composed of a curved substrate / rubbing alignment film / polarizer. Obtained. As in the case of Example 1, when the polarization performance was confirmed, it did not have the polarization performance. In addition, the laminated state was evaluated. The results are shown in Table 1.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

曲面基板、光配向膜および偏光子をこの順に含む、曲面形状を有する偏光板であって、 前記偏光子が少なくとも1つの重合性基を有する重合性液晶化合物と二色性色素とを含む重合性液晶組成物の硬化物から構成され、 前記偏光子が積層される曲面基板の曲面の面方向に対して該偏光子の吸収軸が一方向に向くよう前記重合性液晶化合物が配向している偏光板。

Description

偏光板およびその製造方法
 本発明は、曲面形状を有する偏光板および前記偏光板の製造方法に関する。
 偏光子を含んで構成される偏光板は、液晶表示装置、有機発光ダイオード(OLED)を用いた有機EL表示装置の他、サングラスやレンズフィルター等多岐にわたる分野において種々の物品を構成する部材として利用されている。従来、このような偏光板として、ポリビニルアルコール系樹脂フィルムにヨウ素や二色性染料等の二色性を示す化合物を吸着配向させた偏光子の少なくとも一方の面に、接着層を介して、トリアセチルセルロースフィルム等の保護層を積層した構成を有する偏光板が広く用いられている(例えば、特許文献1)。
特開2008-527401号公報
 近年、偏光板の用途が多岐にわたるに従い、その用途によっては平面形状ではなく曲面形状の物品に偏光板を設けることが求められるようになってきた。しかしながら、曲面形状に偏光板を設ける場合に特許文献1に記載されるようなフィルム状の偏光板を用いると、曲面に貼合する際にしわや歪みが生じやすく、外観上および光学特性上の欠陥となるのみならず、偏光板を積層する面との密着性低下の原因ともなり得る。このようなフィルム状の偏光板を用いる際のしわや歪みの発生およびこれに起因する問題は、可展面ではなく三次元曲面に偏光板を設ける場合において特に顕著になりやすい。
 本発明は、被積層面に対する積層性に優れる曲面形状を有する偏光板を提供することを目的とする。
 本発明者等は、上記課題を解決するために鋭意検討した結果、本発明を完成するに至った。すなわち、本発明は、以下の態様を包含する。
[1]曲面基板、光配向膜および偏光子をこの順に含む、曲面形状を有する偏光板であって、
 前記偏光子が少なくとも1つの重合性基を有する重合性液晶化合物と二色性色素とを含む重合性液晶組成物の硬化物から構成され、
 前記偏光子が積層される曲面基板の曲面の面方向に対して該偏光子の吸収軸が一方向に向くよう前記重合性液晶化合物が配向している偏光板。
[2]曲面形状が三次元曲面形状である、前記[1]に記載の偏光板。
[3]曲面形状がレンズ状である、前記[1]または[2]に記載の偏光板。
[4]式(1):
 20mm ≦ R ≦300mm   (1)
 [式(1)中、Rは偏光板において最も曲率が小さい部分の曲率半径を表す]
を満たす、前記[1]~[3]のいずれかに記載の偏光板。
[5]偏光子が更にレベリング剤を含む、前記[1]~[4]のいずれかに記載の偏光板。
[6]二色性色素がアゾ色素である、前記[1]~[5]のいずれかに記載の偏光板。
[7]偏光子がX線解析測定においてブラッグピークを示す、前記[1]~[6]のいずれかに記載の偏光板。
[8]前記[1]~[7]のいずれかに記載の偏光板と1/4波長板機能を有する位相差層とを含む楕円偏光板。
[9](a)曲面基板上に光配向膜を形成する工程、
(b)光配向膜上に、少なくとも1つの重合性液晶化合物と二色性色素とを含む重合性液晶組成物の塗膜を形成する工程、および、
(c)前記重合性液晶組成物に含まれる重合性液晶化合物をスメクチック液晶相に相転移させた後、スメクチック液晶状態を保持したまま重合性液晶化合物を重合させることにより偏光子を形成する工程
を含み、
 前記偏光子が積層される曲面基板の曲面の面方向に対して該偏光子の吸収軸が一方向に向くよう前記重合性液晶化合物が配向している、曲面形状を有する偏光板の製造方法。
[10]前記[8]記載の楕円偏光板を有するフレキシブル画像表示装置。
[11]ウインドウとタッチパネルタッチセンサとを更に有する、前記[10]に記載のフレキシブル画像表示装置。
 本発明によれば、被積層面に対する積層性に優れる曲面形状を有する偏光板を提供することができる。
 以下、本発明の実施の形態について、詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更をすることができる。
 本発明の偏光板は、曲面基板、光配向膜および偏光子をこの順に含む。光配向膜および偏光子は曲面基板上に積層されるため、本発明の偏光板は少なくとも一部に曲面形状を有する偏光板である。
 本発明において、曲面形状とは0を超える曲率を有する形状を意味し、可展面である曲面形状および三次元曲面形状が含まれる。可展面とは面の各部を伸縮することなしに平面に展開することができる面を意味し、可展面可展面とは、面の各部を伸縮することなしに平面に展開することができる面可展面とは、面の各部を伸縮することなしに平面に展開することができる面である曲面形状としては、例えば、円筒周面、楕円筒周面、円錐周面および楕円錐周面等の一部または全部に相当する面が挙げられ、凸状の曲面であっても凹状の曲面であってもよい。三次元曲面とは、平面の変形では成立しない曲面、すなわち可展面ではない曲面を意味し、三次元曲面形状としては、球面および楕円球面等の一部または全部に相当する面、断面が放物線や双曲線等をなす曲面の一部または全部に相当する面などが挙げられ、凸状の曲面であっても凹状の曲面であってもよい。なお、本発明の偏光板は、少なくともその一部に曲面形状を有していればよく、平面形状と曲面形状とを組み合わせた形状であってもよく、偏光板全体が曲面形状であってもよい。また、偏光板に含まれる曲面形状が可展面である曲面形状または三次元曲面形状のいずれか一方のみからなってもよく、可展面である曲面と三次元曲面との組み合わせ、または、可展面である曲面および/または三次元曲面と平面との組み合わせからなってもよい。
 本発明の偏光板を構成する偏光子は重合性液晶組成物の硬化物から構成されており、従来偏光子として広く使用されている二色性色素を吸着させたポリビニルアルコール樹脂フィルム等のフィルム状の偏光子を貼合させることが困難な立体的な曲面形状の基板に対しても、その曲面形状に沿って高い配向秩序を保ちながら偏光子を容易に設けることが可能となる。このため、偏光板に含まれる曲面形状が平面状のフィルムを展開することによって得ることのできない三次元曲面形状である場合に、本発明の効果はより顕著に達成され得る。したがって、本発明の一態様において、本発明の偏光板は三次元曲面形状を含む。
 本発明の一態様において、偏光板が有する曲面形状はレンズ状であることが好ましい。レンズ状の曲面形状とは、該曲面における全方向において曲率が一定である曲面形状を意味する。レンズ状の曲面形状としては、例えば、球面、楕円球面、半球面、半楕円球面等が挙げられ、凸状のレンズ状であっても凹状のレンズ状であってもよい。本発明の偏光板は、被積層面に対する偏光子の積層性に優れ、偏光板を構成する各層においてしわや歪みの発生を抑制し得るため外観的特性および光学特性に優れるレンズ状の偏光板を提供することができる。
 本発明の一態様において、本発明の偏光板は式(1)を満たすことが好ましい。
 20mm ≦ R ≦ 300mm   (1)
[式(1)中、Rは偏光板において最も曲率が小さい部分の曲率半径を表す。]
 式(1)は、偏光板が有する最も緩やかな曲面における曲率半径が20mm以上300mm以下であることを意味する。本発明の偏光板は、曲率が比較的大きな曲面形状を有する場合であっても、曲面基板上に設けられる偏光子の高い積層性を実現し得る。このため、本発明の偏光板において最も曲率が小さな部分の曲率半径R(以下、単に「曲率半径R」ともいう)は、例えば250mm以下であってもよく、200mm以下であってもよい。また、曲率半径Rは、より好ましくは25mm以上、さらに好ましくは30mm以上である。曲率半径Rが上記下限値以上であると積層性がより向上しやすい。
 本発明の偏光板において最も曲率が大きな部分の曲率半径R’(以下、単に「曲率半径R’」ともいう)は、好ましくは10mm以上、より好ましくは15mm以上、さらに好ましくは20mm以上、特に好ましくは25mm以上、とりわけ好ましくは30mm以上である。曲率半径R’が上記下限値以上であると、重合性液晶組成物の硬化物層(コーティング層)として積層される偏光子の被積層面に対する積層性や密着性をより高めやすく、硬化物層である偏光子の剥がれや浮きを生じ難い偏光板が得られやすい。本発明の偏光板は、曲率が比較的大きな曲面形状を有する場合であっても、曲面基材上に設けられる偏光子の高い積層性を実現し得るため、曲率半径R’は、例えば250mm以下であってよく、200mm以下であってよく、150mm以下であってもよい。
 なお、偏光板に含まれる曲面形状がレンズ状の曲面形状など曲面の全方向において同一の曲率を有する形状である場合、その曲率半径R’’は、通常、上記曲率半径R’の下限値以上、かつ、上記曲率半径Rの上限値以下である。
 本発明の偏光板は、少なくともその一部に曲面形状を有する偏光板であり、光配向膜および偏光子を積層するための基材として曲面基板を含む。本発明において、曲面基板とは、少なくとも一部が曲面形状である面を有する基板を意味し、基板の面全体が曲面形状からなっていてもよい。曲面基板は、通常、本発明の偏光板が有する曲面形状として先に記載したものと同様の曲面形状を有する。
 曲面基板は、所望の曲面形状を形成し得る材料からなるものであれば特に限定されるものではなく、所望する曲面形状、偏光板の用途等に応じて公知の材料から適宜選択すればよい。例えば、ガラス基材、フィルム基材、金属基材等が挙げられる。種々の曲面形状を形成しやすい観点から、曲面基板は、好ましくはガラス基材またはフィルム基材からなり、より好ましくはガラス基材または樹脂フィルム基材からなる。本発明の偏光板は、通常、曲面基板を取り除くことなく表示装置やサングラス、レンズフィルター等の光を透過することが求められる物品を構成するため、光学特性の点において、曲面基板は透光性を有する基材からなることが好ましい。
 なお、本発明において透光性を有する基材とは、光、特に可視光を透過し得る特性を有する基材を意味し、透光性とは、波長380nm~780nmにわたる光線に対しての透過率が80%以上となる特性をいう。また、偏光板の構成によっても異なるが、通常、光学的に等方的であることが好ましい。
 透光性を有する基材としては、ガラス基材、透明樹脂フィルム基材等が挙げられる。
 樹脂フィルム基材を構成する樹脂としては、例えば、ポリエチレン、ポリプロピレン、ノルボルネン系ポリマー等のポリオレフィン;ポリビニルアルコール;ポリエチレンテレフタレート;ポリメタクリル酸エステル;ポリアクリル酸エステル;セルロースエステル;ポリエチレンナフタレート;ポリカーボネート;ポリスルフォン;ポリエーテルスルホン;ポリエーテルケトン;ポリフェニレンスルフィド;およびポリフェニレンオキシド等が挙げられる。偏光子を形成する観点からは、基材としてガラス基材や、それに類似する硬度を有する素材が適している。
 本発明の偏光板を組み込む表示装置等の物品を構成する、曲面形状を有する部材自体を曲面基板として用いてもよい。
 表面基板の表面には、コロナ処理、プラズマ処理等の表面処理、シリコーン処理のような離型処理等が施されていてもよい。また、偏光子が積層されない側の基板面に、ハードコート処理、反射防止処理、帯電防止処理等がなされてもよい。
 曲面基板の厚みは、曲面形状、曲面基板を構成する材料、偏光板の用途等に応じて適宜決定すればよい。曲面基板全体が同じ厚みを有していても、異なる厚みを有していてもよい。曲面基板の厚みは、例えば30μm~5cm、好ましくは100μm~3.5cm、より好ましくは500μm~3cmである。
 本発明の偏光板を構成する偏光子は、少なくとも1つの重合性基を有する重合性液晶化合物と二色性色素とを含む重合性液晶組成物の硬化物から構成される。重合性液晶組成物の硬化物から構成される偏光子は、後述するように、偏光子を形成する面上に重合性液晶組成物を塗布して、重合性液晶化合物を配向させた状態で重合させることにより得られるコーティング層である。偏光子をコーティング層として形成することにより、種々の曲率を有する曲面形状に対して偏光子の高い積層性を実現し得る。積層性が高いと、偏光子の高い配向秩序が保持されやすく、優れた光学特性を発現しやすい。なお、本発明において「積層性」とは、被積層面上に偏光子等の層を形成する場合において、積層した層においてしわや歪み、塗布ムラ等がなく、被積層面からの浮きや剥がれが生じ難い特性をいう。
 偏光子において重合性液晶化合物は、該偏光子が積層される曲面基板の曲面の面方向において該偏光子の吸収軸が一方向に向くよう配向している。偏光子を構成する重合性液晶化合物が偏光子の吸収軸が一方向に向くよう配向していると、重合性液晶化合物の配向秩序度が高い偏光子となり、光学特性に優れる偏光板を得ることができる。
 ここで、偏光子の吸収軸が一方向に向くよう重合性液晶化合物が配向しているとは、可展面である曲面においては、該曲面を平面に展開した場合に偏光子の吸収軸が該平面上の一方向に向くよう、重合性液晶化合物が配向していることを意味する。また、球面等の三次元曲面においては、該曲面を一方向から平面視した場合に偏光子の吸収軸が該平面上の一方向に向き、曲面全域において偏光子の吸収軸方向が前記特定の一方向と同一方向に向くよう重合性液晶化合物が配向していることを意味する。本明細書において、偏光子の吸収軸が一方向に向くとは、偏光子の吸収軸方向が実質的に同一方向に向いている状態を意味し、具体的には、面としてつながった1つの曲面における偏光子の吸収軸方向のズレが15°以内であることをいう。
 本発明において、偏光子を形成する重合性液晶組成物(以下、「重合性液晶組成物(A)」ともいう)に含まれる重合性液晶化合物(以下、「重合性液晶化合物(A)」ともいう)は、少なくとも1つの重合性基を有する化合物である。ここで、重合性基とは、重合開始剤から発生する活性ラジカルや酸などによって重合反応に関与し得る基のことをいう。重合性液晶化合物(A)が有する重合性基としては、例えば、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、(メタ)アクリロイル基、オキシラニル基、オキセタニル基等が挙げられる。中でも、ラジカル重合性基が好ましく、(メタ)アクリロイル基、ビニル基、ビニルオキシ基がより好ましく、(メタ)アクリロイル基がさらに好ましい。
 本発明において、重合性液晶化合物(A)はスメクチック液晶性を示す化合物であることが好ましい。スメクチック液晶性を示す重合性液晶化合物を用いることにより、配向秩序度の高い偏光子を形成することができる。より高い配向秩序度を実現し得る観点から、重合性液晶化合物(A)の示す液晶状態は、高次スメクチック相(高次スメクチック液晶状態)であることがより好ましい。ここで、高次スメクチック相とは、スメクチックB相、スメクチックD相、スメクチックE相、スメクチックF相、スメクチックG相、スメクチックH相、スメクチックI相、スメクチックJ相、スメクチックK相およびスメクチックL相を意味し、これらの中でも、スメクチックB相、スメクチックF相およびスメクチックI相がより好ましい。液晶性はサーモトロピック性液晶でもリオトロピック性液晶でもよいが、緻密な膜厚制御が可能な点でサーモトロピック性液晶が好ましい。また、重合性液晶化合物(A)はモノマーであってもよいが、重合性基が重合したオリゴマーであってもポリマーであってもよい。
 重合性液晶化合物(A)としては、少なくとも1つの重合性基を有する液晶化合物であれば特に限定されず、公知の重合性液晶化合物を用いることができるが、スメクチック液晶性を示す重合性液晶化合物として、例えば、下記式(A1)で表される化合物(以下、「重合性液晶化合物(A1)」ということがある)が挙げられる。
  U-V-W-(X-Y-X-W-V-U   (A1)
[式(A1)中、
 XおよびXは、互いに独立して、2価の芳香族基または2価の脂環式炭化水素基を表し、ここで、該2価の芳香族基または2価の脂環式炭化水素基に含まれる水素原子は、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシ基、シアノ基またはニトロ基に置換されていてもよく、該2価の芳香族基または2価の脂環式炭化水素基を構成する炭素原子が、酸素原子または硫黄原子または窒素原子に置換されていてもよい。ただし、XおよびXのうち少なくとも1つは、置換基を有していてもよい1,4-フェニレン基または置換基を有していてもよいシクロヘキサン-1,4-ジイル基である。
 Yは、単結合または二価の連結基である。
 nは1~3であり、nが2以上の場合、複数のXは互いに同じであってもよいし、異なっていてもよい。Xは、複数のXのうちのいずれかまたは全てと同じであってもよいし、異なっていてもよい。また、nが2以上の場合、複数のYは互いに同じであってもよいし、異なっていてもよい。液晶性の観点からnは2以上が好ましい。
 Uは、水素原子または重合性基を表わす。
 Uは、重合性基を表わす。
 WおよびWは、互いに独立して、単結合または二価の連結基である。
 VおよびVは、互いに独立して、置換基を有していてもよい炭素数1~20のアルカンジイル基を表し、該アルカンジイル基を構成する-CH-は、-O-、-CO-、-S-または-NH-に置き換わっていてもよい。]
 重合性液晶化合物(A1)において、XおよびXは、互いに独立して、好ましくは、置換基を有していてもよい1,4-フェニレン基、または、置換基を有していてもよいシクロヘキサン-1,4-ジイル基であり、XおよびXのうちの少なくとも1つは、置換基を有していてもよい1,4-フェニレン基、または、置換基を有していてもよいシクロヘキサン-1,4-ジイル基であり、トランス-シクロへキサン-1,4-ジイル基であることが好ましい。置換基を有していてもよい1,4-フェニレン基、または、置換基を有していてもよいシクロへキサン-1,4-ジイル基が任意に有する置換基としては、メチル基、エチル基およびブチル基などの炭素数1~4のアルキル基、シアノ基および塩素原子、フッ素原子などのハロゲン原子が挙げられる。好ましくは無置換である。
 また、重合性液晶化合物(A1)は、式(A1)中、式(A1-1):
-(X-Y-X-    (A1-1)
〔式中、X、Y、Xおよびnはそれぞれ上記と同じ意味を示す。〕
で示される部分〔以下、部分構造(A1-1)ともいう〕が非対称構造であることが、スメクチック液晶性を発現し易い点で好ましい。
 部分構造(A1-1)が非対称構造である重合性液晶化合物(A1)としては、例えば、nが1であり、1つのXとXとが互いに異なる構造である重合性液晶化合物(A1)が挙げられる。また、nが2であり、2つのYが互いに同じ構造である化合物であって、2つのXが互いに同じ構造であり、1つのXはこれら2つのXとは異なる構造である重合性液晶化合物(A1)、2つのXのうちのWに結合するXが、他方のXおよびXとは異なる構造であり、他方のXとXとは互いに同じ構造である重合性液晶化合物(A1)も挙げられる。さらに、nが3であり、3つのYが互いに同じ構造である化合物であって、3つのXおよび1つのXのうちのいずれか1つが他の3つの全てと異なる構造である重合性液晶化合物(A1)が挙げられる。
 Yは、-CHCH-、-CHO-、-CHCHO-、-COO-、-OCOO-、単結合、-N=N-、-CR=CR-、-C≡C-、-CR=N-または-CO-NR-が好ましい。RおよびRは、互いに独立して、水素原子または炭素数1~4のアルキル基を表わす。Yは、-CHCH-、-COO-または単結合であることがより好ましく、複数のYが存在する場合、Xと結合するYは、-CHCH-または-CHO-であることがより好ましい。XおよびXが全て同一構造である場合、互いに異なる結合方式である2以上のYが存在することが好ましい。互いに異なる結合方式である複数のYが存在する場合には、非対称構造となるため、スメクチック液晶性が発現しやすい傾向にある。
 Uは、重合性基である。Uは、水素原子または重合性基であり、好ましくは重合性基である。UおよびUがともに重合性基であることが好ましく、ともにラジカル重合性基であることが好ましい。重合性基としては、重合性液晶化合物(A)が有する重合性基として先に例示した基と同様のものが挙げられる。Uで示される重合性基とUで示される重合性基とは、互いに異なっていてもよいが、同じ種類の基であることが好ましく、UおよびUの少なくとも一方が(メタ)アクリロイル基であることが好ましく、両方が(メタ)アクリロイル基であることがより好ましい。また、重合性基は重合している状態であってもよいし、未重合の状態であってもよいが、好ましくは未重合の状態である。
 VおよびVで表されるアルカンジイル基としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、デカン-1,10-ジイル基、テトラデカン-1,14-ジイル基およびイコサン-1,20-ジイル基等が挙げられる。VおよびVは、好ましくは炭素数2~12のアルカンジイル基であり、より好ましくは炭素数6~12のアルカンジイル基である。
 該アルカンジイル基が任意に有する置換基としては、シアノ基およびハロゲン原子等が挙げられるが、該アルカンジイル基は、無置換であることが好ましく、無置換の直鎖状アルカンジイル基であることがより好ましい。
 WおよびWは、互いに独立に、単結合、-O-、-S-、-COO-または-OCOO-が好ましく、単結合または-O-がより好ましい。
 重合性液晶化合物(A)としては、少なくとも1つの重合性基を有する重合性液晶化合物であれば特に限定されず、公知の重合性液晶化合物を用いることができるが、スメクチック液晶性を示すことが好ましく、スメクチック液晶性を示しやすい構造としては、分子構造中に非対称性の分子構造を有することが好ましく、具体的には下記(A-a)~(A-i)の部分構造を有する重合性液晶化合物であってスメクチック液晶性を示す重合性液晶化合物であることがより好ましい。高次スメクチック液晶性を示しやすいという観点から(A-a)、(A-b)または(A-c)の部分構造を有することがより好ましい。なお、下記(A-a)~(A-i)において、*は結合手(単結合)を表す。
Figure JPOXMLDOC01-appb-C000001
 重合性液晶化合物(A)としては、具体的には例えば、式(A-1)~式(A-25)で表される化合物が挙げられる。重合性液晶化合物(A)がシクロヘキサン-1,4-ジイル基を有する場合、そのシクロヘキサン-1,4-ジイル基は、トランス体であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 これらの中でも、式(A-2)、式(A-3)、式(A-4)、式(A-5)、式(A-6)、式(A-7)、式(A-8)、式(A-13)、式(A-14)、式(A-15)、式(A-16)および式(A-17)で表される化合物からなる群より選ばれる少なくとも1種が好ましい。重合性液晶化合物(A)として、1種を単独で用いてもよく、2種以上を組合せて用いてもよい。
 重合性液晶化合物(A)は、例えば、Lub等、Recl.Trav.Chim.Pays-Bas、115、321-328(1996)、または特許第4719156号などに記載の公知の方法で製造できる。
 本発明において重合性液晶組成物(A)は、重合性液晶化合物(A)以外の他の重合性液晶化合物を含んでいてもよいが、配向秩序度の高い偏光層を得る観点から、重合性液晶組成物(A)に含まれる全重合性液晶化合物の総質量に対する重合性液晶化合物(A)の割合は、好ましくは51質量%以上であり、より好ましくは70質量%以上であり、さらに好ましくは90質量%以上である。
 重合性液晶組成物(A)が2種以上の重合性液晶化合物(A)を含む場合、そのうちの少なくとも1種が重合性液晶化合物(A1)であってもよく、その全てが重合性液晶化合物(A1)であってもよい。複数の重合性液晶化合物を組合せることにより、液晶-結晶相転移温度以下の温度でも一時的に液晶性を保持することができる場合がある。
 重合性液晶組成物(A)における重合性液晶化合物の含有量は、重合性液晶組成物(A)の固形分に対して、好ましくは40~99.9質量%であり、より好ましくは60~99質量%であり、さらに好ましくは70~99質量%である。重合性液晶化合物の含有量が上記範囲内であると、重合性液晶化合物の配向性が高くなる傾向がある。なお、本明細書において、固形分とは、重合性液晶組成物(A)から溶剤等の揮発性成分を除いた成分の合計量をいう。以下、位相差層形成用の重合性液晶組成物等においても同様に、対象とする組成物から溶剤等の揮発性成分を除いた成分の合計量をいう。
 本発明において、偏光子を形成する重合性液晶組成物(A)は二色性色素を含む。ここで、二色性色素とは、分子の長軸方向における吸光度と、短軸方向における吸光度とが異なる性質を有する色素を意味する。本発明において用い得る二色性色素は、上記性質を有するものであれば特に制限されず、染料であっても、顔料であってもよい。また、2種以上の染料または顔料をそれぞれ組合せて用いてもよいし、染料と顔料とを組合せて用いてもよく、それぞれ1種のみを用いても、2種以上を組み合わせて用いてもよい。また、二色性色素は、重合性を有していてもよいし、液晶性を有していてもよい。
 二色性色素としては、300~700nmの範囲に極大吸収波長(λMAX)を有するものが好ましい。このような二色性色素としては、アクリジン色素、オキサジン色素、シアニン色素、ナフタレン色素、アゾ色素およびアントラキノン色素等が挙げられる。
 アゾ色素としては、モノアゾ色素、ビスアゾ色素、トリスアゾ色素、テトラキスアゾ色素およびスチルベンアゾ色素等が挙げられ、ビスアゾ色素およびトリスアゾ色素が好ましく、例えば、式(I)で表される化合物(以下、「化合物(I)」ともいう。)が挙げられる。
 K(-N=N-K-N=N-K   (I)
[式(I)中、KおよびKは、互いに独立に、置換基を有していてもよいフェニル基、置換基を有していてもよいナフチル基または置換基を有していてもよい1価の複素環基を表わす。Kは、置換基を有していてもよいp-フェニレン基、置換基を有していてもよいナフタレン-1,4-ジイル基または置換基を有していてもよい2価の複素環基を表わす。pは1~4の整数を表わす。pが2以上の整数である場合、複数のKは互いに同一でも異なっていてもよい。可視域に吸収を示す範囲で-N=N-結合が-C=C-、-COO-、-NHCO-、-N=CH-結合に置き換わっていてもよい。]
 1価の複素環基としては、例えば、キノリン、チアゾール、ベンゾチアゾール、チエノチアゾール、イミダゾール、ベンゾイミダゾール、オキサゾール、ベンゾオキサゾールなどの複素環化合物から1個の水素原子を除いた基が挙げられる。2価の複素環基としては、前記複素環化合物から2個の水素原子を除いた基が挙げられる。
 KおよびKにおけるフェニル基、ナフチル基および1価の複素環基、並びにKにおけるp-フェニレン基、ナフタレン-1,4-ジイル基および2価の複素環基が任意に有する置換基としては、炭素数1~20のアルキル基、重合性基を有する炭素数1~20のアルキル基、炭素数1~4のアルケニル基;メトキシ基、エトキシ基、ブトキシ基などの炭素数1~20のアルコキシ基;重合性基を有する炭素数1~20のアルコキシ基;トリフルオロメチル基などの炭素数1~4のフッ化アルキル基;シアノ基;ニトロ基;ハロゲン原子;アミノ基、ジエチルアミノ基、ピロリジノ基などの置換または無置換アミノ基(置換アミノ基とは、炭素数1~6のアルキル基を1つまたは2つ有するアミノ基、重合性基を有する炭素数1~6のアルキル基を1つまたは2つ有するアミノ基、あるいは2つの置換アルキル基が互いに結合して炭素数2~8のアルカンジイル基を形成しているアミノ基を意味する。無置換アミノ基は-NHである。)等が挙げられる。なお、前記重合性基としては、アクリロイル基、メタアクリロイル基、アクリロイルオキシ基、メタアクリロイルオキシ基等が挙げられる。
 化合物(I)の中でも、以下の式(I-1)~式(I-8)のいずれかで表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000007
[式(I-1)~(I-8)中、
 B~B30は、互いに独立して、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルケニル基、炭素数1~4のアルコキシ基、シアノ基、ニトロ基、置換または無置換のアミノ基(置換アミノ基および無置換アミノ基の定義は前記のとおり)、塩素原子またはトリフルオロメチル基を表わす。
 n1~n4は、互いに独立に0~3の整数を表わす。
 n1が2以上である場合、複数のBは互いに同一でも異なっていてもよく、
 n2が2以上である場合、複数のBは互いに同一でも異なっていてもよく、
 n3が2以上である場合、複数のBは互いに同一でも異なっていてもよく、
 n4が2以上である場合、複数のB14は互いに同一でも異なっていてもよい。]
 前記アントラキノン色素としては、式(I-9)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000008
[式(I-9)中、
 R~Rは、互いに独立して、水素原子、-R、-NH、-NHR、-NR 、-SRまたはハロゲン原子を表わす。
 Rは、炭素数1~4のアルキル基または炭素数6~12のアリール基を表わす。]
 前記オキサゾン色素としては、式(I-10)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000009
[式(I-10)中、
 R~R15は、互いに独立して、水素原子、-R、-NH、-NHR、-NR 、-SRまたはハロゲン原子を表わす。
 Rは、炭素数1~4のアルキル基または炭素数6~12のアリール基を表わす。]
 前記アクリジン色素としては、式(I-11)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000010
[式(I-11)中、
 R16~R23は、互いに独立して、水素原子、-R、-NH、-NHR、-NR 、-SRまたはハロゲン原子を表わす。
 Rは、炭素数1~4のアルキル基または炭素数6~12のアリール基を表わす。]
 式(I-9)、式(I-10)および式(I-11)において、Rの炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基およびヘキシル基等が挙げられ、炭素数6~12のアリール基としては、フェニル基、トルイル基、キシリル基およびナフチル基等が挙げられる。
 前記シアニン色素としては、式(I-12)で表される化合物および式(I-13)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000011
[式(I-12)中、
 DおよびDは、互いに独立に、式(I-12a)~式(I-12d)のいずれかで表される基を表わす。
Figure JPOXMLDOC01-appb-C000012
n5は1~3の整数を表わす。]
Figure JPOXMLDOC01-appb-C000013
[式(I-13)中、
 DおよびDは、互いに独立に、式(I-13a)~式(1-13h)のいずれかで表される基を表わす。
Figure JPOXMLDOC01-appb-C000014
n6は1~3の整数を表わす。]
 これらの二色性色素の中でも、アゾ色素は直線性が高いため偏光性能に優れる偏光子の作製に好適である。したがって、本発明の一実施態様において、偏光子を形成する偏光層形成用組成物に含まれる二色性色素は、好ましくはアゾ色素である。
 本発明において、二色性色素の重量平均分子量は、通常、300~2000であり、好ましくは400~1000である。
 本発明の一実施態様において、偏光子を形成する重合性液晶組成物(A)に含まれる二色性色素は疎水性であることが好ましい。二色性色素が疎水性であると、二色性色素と重合性液晶化合物との相溶性が向上し、二色性色素と重合性液晶化合物が均一な相状態を形成し、高い配向秩序度を有する偏光子を得ることができる。なお、本発明において、疎水性の二色性色素とは、25℃、100gの水に対する溶解度が1g以下である色素を意味する。
 重合性液晶組成物(A)における二色性色素の含有量は、用いる二色性色素の種類などに応じて適宜決定し得るが、重合性液晶化合物100質量部に対して、好ましくは0.1~50質量部であり、より好ましくは0.1~20質量部であり、さらに好ましくは0.1~12質量部である。二色性色素の含有量が、上記範囲内であると、重合性液晶化合物の配向を乱し難く、高い配向秩序度を有する偏光子を得ることができる。
 本発明において、偏光子を形成するための重合性液晶組成物(A)は、重合開始剤を含有していてもよい。重合開始剤は、重合性液晶化合物の重合反応を開始し得る化合物であり、より低温条件下で重合反応を開始できる点において光重合開始剤が好ましい。具体的には、光の作用により活性ラジカルまたは酸を発生できる光重合開始剤が挙げられ、中でも、光の作用によりラジカルを発生する光重合開始剤が好ましい。重合開始剤は単独または二種以上組合せて使用できる。
 光重合開始剤としては、公知の光重合開始剤を用いることができ、例えば、活性ラジカルを発生する光重合開始剤としては、自己開裂型の光重合開始剤、水素引き抜き型の光重合開始剤がある。
 自己開裂型の光重合開始剤として、自己開裂型のベンゾイン系化合物、アセトフェノン系化合物、ヒドロキシアセトフェノン系化合物、α-アミノアセトフェノン系化合物、オキシムエステル系化合物、アシルホスフィンオキサイド系化合物、アゾ系化合物等を使用できる。また、水素引き抜き型光重合開始剤として、水素引き抜き型のベンゾフェノン系化合物、ベンゾインエーテル系化合物、ベンジルケタール系化合物、ジベンゾスベロン系化合物、アントラキノン系化合物、キサントン系化合物、チオキサントン系化合物、ハロゲノアセトフェノン系化合物、ジアルコキシアセトフェノン系化合物、ハロゲノビスイミダゾール系化合物、ハロゲノトリアジン系化合物、トリアジン系化合物等を使用できる。
 酸を発生する光重合開始剤としては、ヨードニウム塩およびスルホニウム塩等を使用できる。
 この中でも、色素の溶解を防ぐ観点から低温での反応が好ましく、低温での反応効率の観点から自己開裂型の光重合開始剤が好ましく、特にアセトフェノン系化合物、ヒドロキシアセトフェノン系化合物、α-アミノアセトフェノン系化合物、オキシムエステル系化合物が好ましい。
 光重合開始剤としては、具体的には例えば、以下のものが挙げられる。
 ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルおよびベンゾインイソブチルエーテル等のベンゾイン系化合物;
 2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1,2-ジフェニル-2,2-ジメトキシエタン-1-オン、2-ヒドロキシ-2-メチル-1-〔4-(2-ヒドロキシエトキシ)フェニル〕プロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトンおよび2-ヒドロキシ-2-メチル-1-〔4-(1-メチルビニル)フェニル〕プロパン-1-オンのオリゴマー等のヒドロキシアセトフェノン系化合物;
 2-メチル-2-モルホリノ-1-(4-メチルチオフェニル)プロパン-1-オン、2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン等のα-アミノアセトフェノン系化合物;
 1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のオキシムエステル系化合物;
 2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイドおよびビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド等のアシルホスフィンオキサイド系化合物;
 ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’,4,4’-テトラ(tert-ブチルパーオキシカルボニル)ベンゾフェノンおよび2,4,6-トリメチルベンゾフェノン等のベンゾフェノン化合物;
 ジエトキシアセトフェノンなどのジアルコキシアセトフェノン系化合物;
 2,4-ビス(トリクロロメチル)-6-(4-メトキシフェニル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(4-メトキシナフチル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(4-メトキシスチリル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチ_ル)-6-〔2-(5-メチルフラン-2-イル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(フラン-2-イル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(4-ジエチルアミノ-2-メチルフェニル)エテニル〕-1,3,5-トリアジンおよび2,4-ビス(トリクロロメチル)-6-〔2-(3,4-ジメトキシフェニル)エテニル〕-1,3,5-トリアジン等のトリアジン系化合物。光重合開始剤は、例えば上記の光重合開始剤から重合性液晶組成物(A)に含まれる重合性液晶化合物との関係において適宜選択すればよい。
 また、市販の光重合開始剤を用いてもよい。市販の光重合開始剤としては、イルガキュア(Irgacure)(登録商標)907、184、651、819、250、および369、379、127、754、OXE01、OXE02、OXE03(BASF社製);Omnirad BCIM、Esacure 1001M、Esacure KIP160(IDM Resins B.V.社製);セイクオール(登録商標)BZ、Z、およびBEE(精工化学株式会社製);カヤキュアー(kayacure)(登録商標)BP100、およびUVI-6992(ダウ・ケミカル株式会社製);アデカオプトマーSP-152、N-1717、N-1919、SP-170、アデカアークルズNCI-831、アデカアークルズNCI-930(株式会社ADEKA製);TAZ-A、およびTAZ-PP(日本シイベルヘグナー株式会社製);並びに、TAZ-104(株式会社三和ケミカル製);等が挙げられる。
 重合性液晶組成物(A)における重合開始剤の含有量は、重合性液晶化合物100質量部に対して、好ましくは1~10質量部であり、より好ましくは1~8質量部、さらに好ましくは2~8質量部、特に好ましくは4~8質量部である。重合開始剤の含有量が上記の範囲内であると、重合性液晶化合物の配向を大きく乱すことなく、重合性液晶化合物の重合反応を行うことができる。
 本発明における重合性液晶化合物の重合率は、製造時のライン汚染や取扱いの観点から、60%以上であることが好ましく、65%以上がより好ましく、70%以上がさらに好ましい。
 本発明において、偏光子はレベリング剤を含んでいることが好ましい。すなわち、偏光子を形成するための重合性液晶組成物(A)は、好ましくはレベリング剤を含む。レベリング剤は、重合性液晶組成物(A)の流動性を調整し、該重合性液晶組成物(A)を塗布することにより得られる塗膜をより平坦にする機能を有する。偏光子がレベリング剤を含むことにより、種々の形状の曲面、特に曲率の比較的大きな曲面などにおいても、塗布ムラを生じ難く平滑な偏光子が得られるため、偏光板の外観的特性および光学特性の向上に有利となり得る。
 レベリング剤としては、具体的には界面活性剤が挙げられ、ポリアクリレート化合物を主成分とするレベリング剤およびフッ素原子含有化合物を主成分とするレベリング剤からなる群から選ばれる少なくとも1種が好ましい。レベリング剤は単独または2種以上組合せて使用できる。
 ポリアクリレート化合物を主成分とするレベリング剤としては、例えば、“BYK-350”、“BYK-352”、“BYK-353”、“BYK-354”、“BYK-355”、“BYK-358N”、“BYK-361N”、“BYK-380”、“BYK-381”および“BYK-392”(BYK Chemie社)が挙げられる。
 フッ素原子含有化合物を主成分とするレベリング剤としては、例えば、“メガファック(登録商標)R-08”、同“R-30”、同“R-90”、同“F-410”、同“F-411”、同“F-443”、同“F-445”、同“F-470”、同“F-471”、同“F-477”、同“F-479”、同“F-482”および同“F-483”(DIC(株));“サーフロン(登録商標)S-381”、同“S-382”、同“S-383”、同“S-393”、同“SC-101”、同“SC-105”、“KH-40”および“SA-100”(AGCセイミケミカル(株));“E1830”、“E5844”((株)ダイキンファインケミカル研究所);“エフトップEF301”、“エフトップEF303”、“エフトップEF351”および“エフトップEF352”(三菱マテリアル電子化成(株))が挙げられる。
 重合性液晶組成物(A)がレベリング剤を含有する場合、その含有量は、重合性液晶化合物100質量部に対して、0.05~5質量部が好ましく、0.05~3質量部がより好ましい。レベリング剤の含有量が上記の範囲内であると、重合性液晶化合物を配向させやすく、かつ、ムラが生じ難く、より平滑な偏光子を得られる傾向がある。
 重合性液晶組成物(A)は、レベリング剤以外の他の添加剤を含有してよい。他の添加剤としては、例えば、重合性非液晶化合物、光増感剤、酸化防止剤、離型剤、安定剤、ブルーイング剤等の着色剤、難燃剤および滑剤などが挙げられる。重合性液晶組成物(A)が他の添加剤を含有する場合、他の添加剤の含有量は、重合性液晶組成物(A)の固形分に対して、0%を超えて20質量%以下であることが好ましく、より好ましくは0%を超えて10質量%以下である。
 重合性液晶組成物(A)に光増感剤を配合することにより重合性液晶化合物の重合反応をより促進させることができる。光増感剤としては、キサントン、チオキサントンなどのキサントン化合物(例えば、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントンなど);アントラセン、アルコキシ基含有アントラセン(例えば、ジブトキシアントラセンなど)などのアントラセン化合物;フェノチアジンおよびルブレン等が挙げられる。光増感剤は単独または2種以上組合せて使用できる。
 重合性液晶組成物(A)が光増感剤を含む場合、その含有量は、重合開始剤および重合性液晶化合物の種類およびその量に応じて適宜決定すればよいが、重合性液晶化合物100質量部に対して、0.1~30質量部が好ましく、0.5~10質量部がより好ましく、0.5~8質量部がさらに好ましい。
 重合性液晶組成物(A)は、従来公知の偏光子形成用組成物の調製方法により製造することができ、通常、重合性液晶化合物および二色性色素、並びに、必要に応じて重合開始剤および上記添加剤等を混合、撹拌することにより調製することができる。また、一般にスメクチック液晶性を示す化合物は粘度が高いため、重合性液晶組成物(A)の塗布性を向上させて偏光子の形成を容易にする観点から、溶剤を加えることにより粘度調整を行ってもよい。
 重合性液晶組成物(A)に用いる溶剤は、用いる重合性液晶化合物および二色性色素の溶解性等に応じて適宜選択することができる。具体的には例えば、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール溶剤、酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチル等のエステル溶剤、アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、メチルアミルケトン、メチルイソブチルケトン等のケトン溶剤、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶剤、トルエン、キシレン等の芳香族炭化水素溶剤、アセトニトリル等のニトリル溶剤、テトラヒドロフラン、ジメトキシエタン等のエーテル溶剤、および、クロロホルム、クロロベンゼン等の塩素化炭化水素溶剤などが挙げられる。これらの溶剤は、単独または2種以上組合せて使用できる。溶剤の含有量は、重合性液晶組成物(A)の固形分100質量部に対して、好ましくは100~1900質量部であり、より好ましくは150~900質量部であり、さらに好ましくは180~600質量部である。
 本発明において、偏光子は配向秩序度の高い偏光子であることが好ましい。配向秩序度の高い偏光子は、X線回折測定においてヘキサチック相やクリスタル相といった高次構造由来のブラッグピークが得られる。ブラッグピークとは、分子配向の面周期構造に由来するピークを意味する。したがって、本発明の偏光板を構成する偏光子はX線回折測定においてブラッグピークを示すことが好ましい。すなわち、本発明の偏光板を構成する偏光子においては、重合性液晶化合物またはその重合体が、X線回折測定において該偏光子がブラッグピークを示すように配向していることが好ましく、光を吸収する方向に重合性液晶化合物の分子が配向する「水平配向」していることがより好ましい。本発明においては分子配向の面周期間隔が3.0~6.0Åである偏光子が好ましい。ブラッグピークを示すような高い配向秩序度は、用いる重合性液晶化合物の種類、二色性色素の種類やその量、および重合開始剤の種類やその量等を制御することにより実現し得る。
 偏光子は、例えば、曲面基材上に設けられた光配向膜上に重合性液晶組成物(A)の塗膜を形成すること、該塗膜から溶剤を除去すること、重合性液晶化合物を液晶相(スメクチック相)に相転移させること、および、前記液晶相を保持したまま重合性液晶化合物を重合させることを含む方法により得ることができる。
 重合性液晶組成物(A)を光配向膜上に塗布する方法としては、曲率が比較的大きな曲面や凹状の曲面に対しても、塗布ムラを生じ難く、重合性液晶組成物(A)の均一な塗膜を得やすい観点から、スピンコーティング法、スプレー法、ディップコーティング法などの塗布法を採用することが好ましい。
 次いで、重合性液晶組成物(A)から得られた塗膜中に含まれる重合性液晶化合物が重合しない条件で、溶剤を乾燥等によって除去することにより、乾燥塗膜が形成される。乾燥方法としては、自然乾燥法、通風乾燥法、加熱乾燥および減圧乾燥法等が挙げられる。
 さらに、重合性液晶化合物を液体相に相転移させるため、重合性液晶化合物が液体相に相転移する温度以上まで昇温した後降温し、該重合性液晶化合物を液晶相(スメクチック相)に相転移させる。かかる相転移は、前記塗膜中の溶剤除去後に行ってもよいし、溶剤の除去と同時に行ってもよい。
 重合性液晶化合物の液晶状態を保持したまま、重合性液晶化合物を重合させることにより、重合性液晶組成物(A)の硬化物として偏光子が形成される。重合方法としては光重合法が好ましい。光重合において、乾燥塗膜に照射する光としては、当該乾燥塗膜に含まれる重合性液晶化合物の種類(特に、該重合性液晶化合物が有する重合性基の種類)、重合開始剤の種類およびそれらの量等に応じて適宜選択される。その具体例としては、可視光、紫外光、赤外光、X線、α線、β線およびγ線からなる群より選択される1種以上の活性エネルギー線や活性電子線が挙げられる。中でも、重合反応の進行を制御し易い点や、光重合装置として当分野で広範に用いられているものが使用できるという点で、紫外光が好ましく、紫外光によって、光重合可能なように、重合性液晶組成物(A)に含有される重合性液晶化合物や重合開始剤の種類を選択しておくことが好ましい。また、重合時に、適切な冷却手段により乾燥塗膜を冷却しながら、光照射することで、重合温度を制御することもできる。光重合の際、マスキングや現像を行うなどによって、パターニングされた偏光層を得ることもできる。
 前記活性エネルギー線の光源としては、例えば、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ハロゲンランプ、カーボンアーク灯、タングステンランプ、ガリウムランプ、エキシマレーザー、波長範囲380~440nmを発光するLED光源、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等が挙げられる。
 紫外線照射強度は、通常、10~3,000mW/cmである。紫外線照射強度は、好ましくは重合開始剤の活性化に有効な波長領域における強度である。光を照射する時間は、通常0.1秒~10分であり、好ましくは1秒~5分、より好ましくは5秒~3分、さらに好ましくは10秒~1分である。このような紫外線照射強度で1回または複数回照射すると、その積算光量は、10~3,000mJ/cm、好ましくは50~2,000mJ/cm、より好ましくは100~1,000mJ/cmである。
 光重合を行うことにより、重合性液晶化合物は、液晶相、特にスメクチック相、好ましくは高次スメクチック相の液晶状態を保持したまま重合し、偏光子が形成される。重合性液晶化合物がスメクチック相の液晶状態を保持したまま重合して得られる偏光子は、前記二色性色素の作用にも伴い、従来のホストゲスト型偏光フィルム、すなわち、ネマチック相の液晶状態からなる偏光層と比較して、偏光性能が高いという利点がある。さらに、二色性色素やリオトロピック液晶のみを塗布したものと比較して、強度に優れるという利点もある。
 偏光子の厚みは、適用される表示装置に応じて適宜選択でき、好ましくは0.1~5μmの膜であり、より好ましくは0.3~4μmであり、さらに好ましくは0.5~3μmである。偏光子の膜厚が、上記の下限値以上であると、必要な光吸収が得られなくなることを防止しやすく、上記の上限値以下であると、光配向膜による配向規制力の低下による配向欠陥の発生を抑制しやすい。
 偏光子を形成する際に、配向膜上に重合性液晶組成物(A)を塗布することにより、重合性液晶化合物および二色性色素を所望の方向に配向させやすくなる。本発明の偏光板は配向膜として光配向膜を用いる。照射する偏光の偏光方向を選択することにより配向規制力の方向を任意に制御し得る光配向膜を用いることにより、配向膜として従来広く用いられているラビング配向膜などの配向膜表面を物理的に変化させることにより配向規制力を備える配向膜を設けることが困難な曲面形状、例えば曲率の大きな曲面や凹状の曲面などにおいても、精度よく配向角を制御して品質の高い配向膜を容易に得やすいため、配向精度のより高い偏光子を形成し得る。光配向膜による配向規制力の低下を抑え、配向精度を十分に高めるために、本発明の偏光板において、通常、偏光子は光配向膜上に隣接して積層される。
 光配向膜は、例えば、光反応性基を有するポリマー、オリゴマーまたはモノマー(以下、「光反応性基を有するポリマー等」ともいう)と溶剤とを含む組成物(以下、「光配向膜形成用組成物」ともいう)を曲面基板上に塗布し、偏光(好ましくは、偏光UV)を照射することで得られる。光配向膜形成用組成物に含まれるポリマー等が、重合性液晶組成物(A)に含まれる重合性液晶化合物が有する重合性基と同じ反応性基(例えば、(メタ)アクリロイル基)を有すると、光配向膜と偏光子との間の密着力が向上する傾向にあり、曲面形状の偏光板において偏光子の浮きや剥がれの発生を抑制する上で有利となり得る。
 光反応性基とは、光照射することにより液晶配向能を生じる基をいう。具体的には、光照射により生じる分子の配向誘起または異性化反応、二量化反応、光架橋反応もしくは光分解反応等の液晶配向能の起源となる光反応に関与する基が挙げられる。中でも、二量化反応または光架橋反応に関与する基が、配向性に優れる点で好ましい。光反応性基として、不飽和結合、特に二重結合を有する基が好ましく、炭素-炭素二重結合(C=C結合)、炭素-窒素二重結合(C=N結合)、窒素-窒素二重結合(N=N結合)および炭素-酸素二重結合(C=O結合)からなる群より選ばれる少なくとも1つを有する基が特に好ましい。
 C=C結合を有する光反応性基としては、ビニル基、ポリエン基、スチルベン基、スチルバゾール基、スチルバゾリウム基、カルコン基及びシンナモイル基等が挙げられる。C=N結合を有する光反応性基としては、芳香族シッフ塩基、芳香族ヒドラゾンなどの構造を有する基が挙げられる。N=N結合を有する光反応性基としては、アゾベンゼン基、アゾナフタレン基、芳香族複素環アゾ基、ビスアゾ基、ホルマザン基、及び、アゾキシベンゼン構造を有する基等が挙げられる。C=O結合を有する光反応性基としては、ベンゾフェノン基、クマリン基、アントラキノン基及びマレイミド基等が挙げられる。これらの基は、アルキル基、アルコキシ基、アリール基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基、ハロゲン化アルキル基などの置換基を有していてもよい。
 中でも、光二量化反応に関与する光反応性基が好ましく、光配向に必要な偏光照射量が比較的少なく、かつ、熱安定性や経時安定性に優れる光配向膜が得られやすいという点で、シンナモイル基およびカルコン基が好ましい。光反応性基を有するポリマー等としては、ポリマー側鎖の末端部が桂皮酸構造となるようなシンナモイル基を有するものが特に好ましい。
 光配向膜を形成する光反応性基を有するポリマーの数平均分子量は、好ましくは20000~100000であり、より好ましくは22000以上であり、さらに好ましくは25000以上であり、また、より好ましくは90000以下、さらに好ましくは80000以下である。光反応性基を有するポリマーの数平均分子量が上記範囲内であると、光配向膜に隣接する層との密着性が向上しやすく、曲面基板と偏光子とが光配向膜を介して密着性よく積層された偏光板を得ることができる。光反応性基を有するポリマーの数平均分子量は、光配向膜形成用組成物に用いるモノマーの量、重合開始剤の種類や量等により制御できる。
 なお、ここでいう「光反応性基を有するポリマーの数平均分子量」は、実質的に、硬化した光配向膜を構成しているポリマーの数平均分子量に相当し、ゲル浸透クロマトグラフィー等の測定機器を用いて、硬化した光配向膜自体を測定することにより算出することができる。
 光配向膜形成用組成物を、例えば、曲面基板上に塗布することにより光配向誘起層を形成することができる。該組成物に含まれる溶剤としては、偏光子を形成する際に用い得る溶剤として先に例示した溶剤と同様のものが挙げられ、光反応性基を有するポリマー等の溶解性に応じて適宜選択することができる。
 光配向膜形成用組成物中の光反応性基を有するポリマー等の含有量は、ポリマー等の種類や目的とする光配向膜の厚みによって適宜調節できるが、光配向膜形成用組成物の質量に対して、少なくとも0.2質量%とすることが好ましく、0.3~10質量%の範囲がより好ましい。光配向膜の特性が著しく損なわれない範囲で、光配向膜形成用組成物は、ポリビニルアルコールやポリイミドなどの高分子材料や光増感剤を含んでいてもよい。
 光配向膜形成用組成物を曲面基板上に塗布する方法、および、塗布された光配向膜形成用組成物から溶剤を除去する方法としては、重合性液晶組成物(A)を光配向膜上に塗布する方法および形成された塗膜から溶剤を除去する方法と同様の方法が挙げられる。
 偏光の照射は、曲面基板上に塗布された光配向膜形成用組成物から溶剤を除去したものに直接偏光UVを照射する形式でも、曲面基板側から偏光を照射し、偏光を透過させて照射する形式でもよい。また、当該偏光は、実質的に平行光であると特に好ましい。照射する偏光の波長は、光反応性基を有するポリマー等の光反応性基が、光エネルギーを吸収し得る波長領域のものがよい。具体的には、波長250~400nmの範囲のUV(紫外線)が特に好ましい。当該偏光照射に用いる光源としては、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、KrF、ArFなどの紫外光レーザーなどが挙げられ、高圧水銀ランプ、超高圧水銀ランプおよびメタルハライドランプがより好ましい。これらの中でも、高圧水銀ランプ、超高圧水銀ランプおよびメタルハライドランプが、波長313nmの紫外線の発光強度が大きいため好ましい。前記光源からの光を、適当な偏光子を通過して照射することにより、偏光UVを照射することができる。かかる偏光子としては、偏光フィルターやグラントムソン、グランテーラーなどの偏光プリズムやワイヤーグリッドタイプの偏光子を用いることができる。
 なお、偏光照射を行う時にマスキングを行えば、液晶配向の方向が異なる複数の領域(パターン)を形成することもできる。
 光配向膜の厚みは、好ましくは10~5000nmであり、より好ましくは10~1000nmであり、さらに好ましくは30~300nmである。光配向膜の厚みが上記範囲であると、偏光子との界面または曲面基板との界面の良好な密着性を発現しつつ、配向規制力を発揮することができ、高い配向秩序で偏光子を形成できる。
 本発明の偏光板は、本発明の効果に影響を及ぼさない範囲において、曲面基板、光配向膜および偏光子以外の層を含んでいてもよい。そのような他の層としては、例えば、偏光子を保護したり、補強したりすることなど目的とした保護層、ハードコート層、プライマー層や粘接着層等が挙げられる。
 本発明の偏光板は、例えば、
(a)曲面基板上に光配向膜を形成する工程、
(b)光配向膜上に、少なくとも1つの重合性液晶化合物と二色性色素とを含む重合性液晶組成物の塗膜を形成する工程、および、
(c)前記重合性液晶組成物に含まれる重合性液晶化合物をスメクチック液晶相に相転移させた後、スメクチック液晶状態を保持したまま重合性液晶化合物を重合させることにより偏光子を形成する工程
を含む方法により製造することができる。
 上記工程(a)、(b)および(c)は、それぞれ、曲面基板上への光配向膜の形成方法、重合性液晶組成物(A)の塗膜の形成方法、および、重合性液晶組成物(A)の塗膜から偏光子を形成する方法として先の段落に記載した各方法に従い実施することができる。
 本発明は、本発明の偏光板と1/4波長板機能を有する位相差層とを含む楕円偏光板も対象とする。
 本発明の楕円偏光板において位相差層はコーティング層であることが好ましく、少なくとも1種の重合性液晶化合物を含む重合性液晶組成物の硬化物であることがより好ましい。位相差層がコーティング層であると、曲面形状の位相差層においてしわや歪みが発生し難く、高い光学特性を発現し得る位相差層となりやすい。
 本発明において、1/4波長板機能を有する位相差層とは、下記式(2):
 100nm≦Re(550)≦170nm   (2)
〔式(2)中、Re(λ)は波長λnmにおける位相差層の面内位相差値を表す〕
を満たす層を意味する。上記式(2)を満たすことにより、λ/4板として機能する位相差層となり、該位相差層を含む楕円偏光板を有機EL表示装置等に適用した場合の正面反射色相を向上させる効果(着色を抑制させる効果)が高まりやすい。位相差層の面内位相差値のさらに好ましい範囲は、130nm≦Re(550)≦150nmである。
 また、位相差層が下記式(3)および(4):
 Re(450)/Re(550)≦1.00   (3)
 1.00≦Re(650)/Re(550)   (4)
〔式中、Re(λ)は波長λnmにおける位相差層の面内位相差値を表す〕
を満たすことが好ましい。位相差層が式(3)および(4)を満たす場合、当該位相差層は、短波長での面内位相差値が長波長での面内位相差値よりも小さくなる、いわゆる逆波長分散性を示す。このような位相差層を有する楕円偏光板は、有機EL表示装置等に組み込んだ場合の正面色相に優れる傾向にある。逆波長分散性が向上し、楕円偏光板の正面方向の反射色相の向上効果をより高め得る観点から、Re(450)/Re(550)は、好ましくは0.70以上、より好ましくは0.78以上であり、また、好ましくは0.92以下、より好ましくは0.90以下、さらに好ましくは0.87以下、特に好ましくは0.86以下、より特に好ましくは0.85以下である。また、Re(650)/Re(550)は、好ましくは1.01以上、より好ましくは1.02以上である。
 上記面内位相差値は、位相差層の膜厚dによって調整することができる。面内位相差値は、式Re(λ)=(nx(λ)-ny(λ))×d(dは対象とする位相差層の厚みを表し、nxは、該位相差層が形成する屈折率楕円体において、位相差層の平面に平行な方向の波長λnmにおける主屈折率を表し、nyは、位相差層が形成する屈折率楕円体において、位相差層の平面に対して平行であり、且つ、前記nxの方向に対して直交する方向の波長λnmにおける屈折率を表す)によって決定されることから、所望の面内位相差値(Re(λ):波長λ(nm)における位相差層の面内位相差値)を得るには、3次元屈折率と膜厚dとを調整すればよい。
 本発明において、位相差層を形成するための重合性液晶化合物としては、所望する光学特性に応じて、位相差フィルムの分野において従来公知の重合性液晶化合物から適宜選択することができる。
 重合性液晶化合物は、重合性基を有する液晶化合物である。重合性液晶化合物としては、一般に、該重合性液晶化合物を単独で特定方向に配向した状態で重合することにより得られる重合体(硬化物)が、正波長分散性を示す重合性液晶化合物と逆波長分散性を示す重合性液晶化合物とが挙げられる。本発明においては、どちらか一方の種類の重合性液晶化合物のみを使用してもよく、両方の種類の重合性液晶化合物を混合して用いてもよい。
 本発明において位相差層を形成し得る重合性液晶化合物としては、例えば、特開2011-207765に記載されるような重合性液晶化合物等が挙げられる。
 位相差層は、重合性液晶化合物、溶剤、必要に応じて重合開始剤、レベリング剤等の添加剤等を含む位相差層形成用の重合性液晶組成物(以下、「重合性液晶組成物(B)」ともいう)を、基材または配向膜上に塗布し、該塗膜を乾燥し、かつ、重合性液晶組成物(B)中の重合性液晶化合物を配向させた後、配向状態を保持したまま光照射等により重合性液晶化合物を重合させることにより得ることができる。
 重合性液晶組成物(B)を構成する溶剤、重合開始剤および添加剤等としては、偏光子を形成する重合性液晶組成物(A)に用い得る溶剤、重合開始剤および添加剤等として先に例示したものと同様のものが挙げられる。
 種々の曲面形状に対して、所望の配向規制力を精度よく付与しやすい観点から、位相差層を形成するために用いる配向膜は、光配向膜であることが好ましい。光配向膜や該光配向膜上に位相差層を形成する方法としては、偏光子を形成するための方法において例示した光配向膜、方法および条件等と同様のものが挙げられ、所望する配向規制力や位相差層の構成等に応じて適宜選択すればよい。
 位相差層の厚みは適用される表示装置等に応じて適宜選択できるが、密着性および薄膜化等の観点から、好ましくは0.1~5μm、より好ましくは0.2~4μm、さらに好ましくは0.4~3μmである。
 本発明の楕円偏光板は、位相差層が本発明の偏光板上に配向膜を介して直接形成されてなるか、曲面基板上に配向膜を介して形成された位相差層上に光配向膜を介して偏光子が形成されてなることが好ましい。別々に作製した偏光板と位相差層とを、例えば粘接着層を介して貼合するのではなく、曲面形状の偏光板上に重合性液晶組成物(B)を塗布して位相差層を形成する、または、位相差層を形成した曲面基板上に重合性液晶組成物(A)を塗布して偏光子を形成することにより、本発明の偏光板と位相差層とを積層する際に、曲面形状の積層面におけるしわや歪みの発生を抑え、外観的特性および光学特性に優れる楕円偏光板を得ることができる。したがって、本発明の楕円偏光板は、好ましくは偏光子と位相差層との間に粘接着層を含まない。
 本発明の偏光子と位相差層とを積層する場合、位相差層の遅相軸(光軸)と偏光子の吸収軸とを実質的に45°となるように積層することが好ましい。位相差層の遅相軸(光軸)と偏光子の吸収軸とを実質的に45°となるように積層することによって、楕円偏光板としての機能を得ることができる。なお、実質的に45°とは通常45±5°の範囲である。
 本発明の偏光板および楕円偏光板は、フレキシブル画像表示装置等の液晶表示装置や有機EL表示装置等の各種表示装置、サングラス、レンズフィルター等に用いることができる。上記各種用途に本発明の偏光板および/または楕円偏光板を用いる場合、別途作製した本発明の偏光板および/または楕円偏光板を各種物品に組み込んでもよいし、各種物品を構成する部材を曲面基板として本発明の偏光板および/または楕円偏光板を作製することにより各種物品の一構成部材として組み込んでもよい。
 本発明の楕円偏光板を有するフレキシブル画像表示装置は、ウインドウとタッチパネルタッチセンサとを更に有することが好ましい。フレキシブル画像表示装置は、例えば、フレキシブル画像表示装置用積層体と、有機EL表示パネルとからなり、有機EL表示パネルに対して視認側にフレキシブル画像表示装置用積層体が配置され、折り曲げ可能に構成されている。フレキシブル画像表示装置用積層体としては、上述の本発明の楕円偏光板に加え、ウインドウ、タッチパネルタッチセンサ等が含まれ得る。それらの積層順は任意であるが、視認側からウインドウ、楕円偏光板、タッチパネルタッチセンサの順、または、ウインドウ、タッチパネルタッチセンサ、楕円偏光板の順に積層されていることが好ましい。
 タッチパネルタッチセンサの視認側に楕円偏光板が存在すると、タッチパネルタッチセンサのパターンが視認されにくくなり表示画像の視認性がよくなるので好ましい。それぞれの部材は接着剤、粘着剤等を用いて積層することができる。また、フレキシブル画像表示装置用積層体は、前記ウインドウ、楕円偏光板、タッチパネルタッチセンサのいずれかの層の少なくとも一面に形成された遮光パターンを具備することができる。
 ウインドウは、フレキシブル画像表示装置の視認側に配置され、その他の構成要素を外部からの衝撃または温湿度等の環境変化から保護する役割を担っている。従来、このような保護層としてはガラスが使用されてきたが、フレキシブル画像表示装置におけるウインドウはガラスのようにリジッドで堅いものではなく、フレキシブルな特性を有する。前記ウインドウは、フレキシブルな透明基材からなり、少なくとも一面にハードコート層を含んでいてもよい。
 前記透明基材は、70%以上の可視光線透過率を有することが好ましく、より好ましくは80%以上の可視光線透過率を有する。前記透明基材として、透明性のある任意の高分子フィルムを使用可能である。中でも、透明性および耐熱性に優れたポリアミドフィルム、ポリアミドイミドフィルムまたはポリイミドフィルム、ポリエステル系フィルム、オレフィン系フィルム、アクリルフィルム、セルロース系フィルムが好ましい。高分子フィルム中に、シリカ等の無機粒子、有機微粒子、ゴム粒子等を分散させることも好ましい。
 前記透明基材の厚さは、好ましくは5~200μm、より好ましくは20~100μmである。
 前記ウインドウを構成する透明基材の少なくとも一面にはハードコート層が設けられていてもよい。ハードコート層の厚さは特に限定されず、例えば、2~100μmであってもよい。前記ハードコート層の厚さが前記範囲内であると、十分な耐衝撃性、耐擦傷性および耐屈曲性を確保しやすい。
 前記ハードコート層は、活性エネルギー線或いは熱エネルギーを照射して架橋構造を形成する反応性材料を含むハードコート形成用組成物の硬化により形成することができるが、活性エネルギー線硬化によるものが好ましい。活性エネルギー線とは、活性種を発生する化合物を分解して活性種を発生させることができるエネルギー線と定義される。活性エネルギー線としては、可視光、紫外線、赤外線、X線、α線、β線、γ線及び電子線などを挙げることができ、紫外線が特に好ましい。前記ハードコート形成用組成物は、通常、ラジカル重合性化合物およびカチオン重合性化合物の少なくとも1種の化合物、並びに、重合開始剤を含有する。ラジカル重合性化合物、カチオン重合性化合物および重合開始剤としては、特に限定されず、従来公知のものが挙げられる。前記ハードコート組成物はさらに溶剤および添加剤からなる群から選択される1つ以上をさらに含むことができる。前記溶剤は、前記重合性化合物や重合開始剤を溶解または分散させることができるものであれば、光学フィルムの分野においてハードコートを形成するための組成物の溶剤として知られているものを制限なく使用することができる。前記添加剤としては、無機粒子、レベリング剤、安定剤、界面活性剤、帯電防止剤、潤滑剤、防汚剤などが挙げられる。
 タッチパネルタッチセンサは入力手段として用いられる。タッチパネルタッチセンサとしては、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式、静電容量方式等様々な様式が提案されており、いずれの方式でも構わない。中でも静電容量方式が好ましい。静電容量方式タッチパネルタッチセンサは、活性領域および前記活性領域の外郭部に位置する非活性領域に区分される。活性領域は表示パネルで画面が表示される領域(表示部)に対応する領域であって、使用者のタッチが感知される領域であり、非活性領域は表示装置で画面が表示されない領域(非表示部)に対応する領域である。タッチパネルタッチセンサは、フレキシブルな特性を有する基板と;前記基板の活性領域に形成された感知パターンと;前記基板の非活性領域に形成され、前記感知パターンとパッド部を介して外部の駆動回路と接続するための各センシングラインを含むことができる。
 フレキシブルな特性を有する基板、感知パターンおよび各センシングラインは、特に制限されず、それぞれ当該技術分野で適用可能な材料を選択できる。
 フレキシブルな特性を有する基板としては、例えば、前記ウインドウの透明基板と同様の材料から構成される基板が使用できる。タッチパネルタッチセンサの基板は、靱性が2,000MPa%以上のものがタッチパネルタッチセンサのクラック抑制の面から好ましく、靱性が2,000MPa%~30,000MPa%のものがより好ましい。ここで、靭性は、高分子材料の引張実験を通じて得られる応力(MPa)-ひずみ(%)曲線(Stress-strain curve)で破壊点までの曲線の下部面積として定義される。
 前記フレキシブル画像表示装置用積層体を形成する各層(ウインドウ、楕円偏光板、タッチパネルタッチセンサ)は粘接着剤によって形成することができる。粘接着剤としては、水系接着剤、有機溶剤系、無溶剤系接着剤、固体接着剤、溶剤揮散型接着剤、湿気硬化型接着剤、加熱硬化型接着剤、嫌気硬化型、活性エネルギー線硬化型接着剤、硬化剤混合型接着剤、熱溶融型接着剤、感圧型接着剤(粘着剤)、再湿型接着剤等汎用に使用されているものが使用できる。中でも、水系溶剤揮散型接着剤、活性エネルギー線硬化型接着剤、粘着剤が好ましく用いられる。粘接着剤層の厚さは、求められる接着力等に応じて適宜調節することができるが、通常、0.01μm~500μm、好ましくは0.1μm~300μmである。前記フレキシブル画像表示装置用積層体に粘接着剤層が複数存在する場合、各粘接着剤層を構成する粘接着剤の種類および厚みは同じであっても異なっていてもよい。
 以下、実施例および比較例により本発明をさらに詳細に説明する。実施例および比較例中の「%」および「部」は、特記しない限り、「質量%」および「質量部」である。
1.実施例1
(1)配向膜形成用組成物の調製
 下記成分を混合し、得られた混合物を80℃で1時間攪拌することにより、光配向膜形成用組成物を得た。
・下記に示す光反応性基を有するポリマー(数平均分子量 約28000) 2部
Figure JPOXMLDOC01-appb-C000015
・溶剤:o-キシレン 98部
(2)偏光子形成用組成物の調製
 下記成分を混合し、80℃で1時間攪拌することで、偏光子形成用組成物を得た。
 二色性色素には、特開2013-101328号公報の実施例に記載される、下記の二色性色素(1)、二色性色素(2)および二色性色素(3)を用いた。
・式(1-6)で表される重合性液晶化合物 75部
Figure JPOXMLDOC01-appb-C000016
・式(1-7)で表される重合性液晶化合物 25部
Figure JPOXMLDOC01-appb-C000017
・下記に示す二色性色素(1) 2.8部
Figure JPOXMLDOC01-appb-C000018
・下記に示す二色性色素(2) 2.8部
Figure JPOXMLDOC01-appb-C000019
・下記に示す二色性色素(3) 2.8部
Figure JPOXMLDOC01-appb-C000020
・重合開始剤:2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(イルガキュア369;チバスペシャルティケミカルズ社製) 6部
・レベリング剤:ポリアクリレート化合物(BYK-361N;BYK-Chemie社製) 1.2部
・溶剤:シクロペンタノン 250部
(3)偏光板の製造
 ガラス製凹型レンズ(オプトシグマ社製SLB-30―50N)の表面にコロナ処理(AGF-B10、春日電機株式会社製)を施した基板を曲面基板として用いた。コロナ処理が施された表面に、スピンコーターを用いて上記光配向膜形成用組成物を塗布した後、120℃に設定した乾燥オーブンで1分間乾燥し、光配向膜用塗膜を得た。該光配向膜用塗膜上に偏光UV照射装置(SPOT CURE SP-7;ウシオ電機株式会社製)を用いて、レンズに対して偏光UVを、50mJ/cm2(313nm基準)の積算光量で照射して光配向膜を形成した。
 得られた光配向膜上に、スピンコーターを用いて上記偏光子形成用組成物を塗布した後、110℃に設定した乾燥オーブンで1分間乾燥した。その後、高圧水銀ランプ(ユニキュアVB-15201BY-A、ウシオ電機株式会社製)を用いて、紫外線を照射(窒素雰囲気下、波長:365nm、波長365nmにおける積算光量:1000mJ/cm2)することにより、重合性液晶化合物および二色性色素が配向した偏光子を形成し、曲面基板/光配向膜/偏光子からなる偏光板を得た。
 得られた偏光板について、特開2015-163935号の段落[0321]に記載の方法で別途作成した別の偏光板越しにパラニコル、クロスニコルとなるように並べて確認し、偏光性能を有していることを確認した。
(4)積層状態の評価
 得られた偏光板について、目視にて積層状態を確認した。結果を表1に示す。
 ○:シワ、塗布ムラが観察されない。
 △:若干の塗布ムラが観察される。
 ×:多数のシワが観察される。
2.実施例2
 ガラス製凹型レンズ(オプトシグマ社製SLB-30―70N)の表面にコロナ処理(AGF-B10、春日電機株式会社製)を施した基板を曲面基板とした以外は実施例1と同様にして、曲面基板/光配向膜/偏光子からなる偏光板を得た。実施例1と同様に、偏光性能を有していることを確認し、積層状態を評価した。結果を表1に示す。
3.実施例3
 ガラス製凹型レンズ(オプトシグマ社製SLB-30―100N)の表面にコロナ処理(AGF-B10、春日電機株式会社製)を施した基板を曲面基板とした以外は実施例1と同様にして、曲面基板/光配向膜/偏光子からなる偏光板を得た。実施例1と同様に、偏光性能を有していることを確認し、積層状態を評価した。結果を表1に示す。
4.実施例4
 ガラス製凹型レンズ(オプトシグマ社製SLB-30―200N)の表面にコロナ処理(AGF-B10、春日電機株式会社製)を施した基板を曲面基板とした以外は実施例1と同様にして、曲面基板/光配向膜/偏光子からなる偏光板を得た。実施例1と同様に、偏光性能を有していることを確認し、積層状態を評価した。結果を表1に示す。
5.実施例5
 ガラス製凸型レンズ(オプトシグマ社製SLB-30―70P)の表面にコロナ処理(AGF-B10、春日電機株式会社製)を施した基板を曲面基板として用いた以外は実施例1と同様にして、曲面基板/光配向膜/偏光子からなる偏光板を得た。実施例1と同様に、偏光性能を有していることを確認し、積層状態を評価した。結果を表1に示す。
6.実施例6
 ガラス製凸型レンズ(オプトシグマ社製SLB-30―200P)の表面にコロナ処理(AGF-B10、春日電機株式会社製)を施した基板を曲面基板として用いた以外は実施例1と同様にして、曲面基板/光配向膜/偏光子からなる偏光板を得た。実施例1と同様に、偏光性能を有していることを確認し、積層状態を評価した。結果を表1に示す。
7.比較例1
(1)ヨウ素PVA型偏光板の製造
 厚さ30μmのポリビニルアルコールフィルム(平均重合度約2400、ケン化度99.9モル%以上)を、乾式延伸により約5倍に一軸延伸し、さらに緊張状態を保ったまま、40℃の純水に40秒間浸漬した。その後、ヨウ素/ヨウ化カリウム/水の質量比が0.044/5.7/100の染色水溶液に28℃で30秒間浸漬して染色処理を行った。次に、ヨウ化カリウム/ホウ酸/水の質量比が11.0/6.2/100のホウ酸水溶液に70℃で120秒間浸漬した。引き続き、8℃の純水で15秒間洗浄した後、300Nの張力で保持した状態で、60℃で50秒間、次いで75℃で20秒間乾燥して、ポリビニルアルコールフィルムにヨウ素が吸着配向している厚さ12μmの偏光子を得た。
 得られた偏光子と、シクロオレフィンフィルム(日本ゼオン株式会社製 ZF14)の間に水系接着剤を注入し、ニップロールで貼り合わせた。得られた貼合物の張力を430N/mに保ちながら、60℃で2分間乾燥して、片面に保護フィルムとしてシクロオレフィンフィルムを有するヨウ素PVA型偏光子を得た。なお、上記水系接着剤は、水100部に、カルボキシル基変性ポリビニルアルコール(クラレポバール KL318;株式会社クラレ製)3部と、水溶性ポリアミドエポキシ樹脂(スミレーズレジン650;住化ケムテックス株式会社製、固形分濃度30%の水溶液)1.5部とを添加して調製した。
 上記ヨウ素PVA型偏光板と実施例3で用いた曲面基板とをリンテック社製粘着剤(25μm)にて貼合したこと以外は実施例3と同様にして、曲面基板/粘着剤層/ヨウ素PVA型偏光子からなる偏光板を得た。実施例1と同様に、偏光性能を有していることを確認し、積層状態を評価した。結果を表1に示す。
8.比較例2
 実施例3で用いた曲面基板上に、ポリビニルアルコール(ポリビニルアルコール1000完全ケン化型、和光純薬工業株式会社製)の2質量%水溶液(配向膜形成用組成物)をスピンコート法により塗布し、乾燥後、厚さ100nmの塗膜を形成した。続いて、得られた塗膜の表面に、下記ラビング処理を行って配向膜の作成を試みたが、曲面基板の形によりラビング処理が十分にできなかった。なお、ラビング処理は、半自動ラビング装置(商品名:LQ-008型、常陽工学株式会社製)を用いて、布(商品名:YA-20-RW、吉川化工株式会社製)によって、押し込み量0.15mm、回転数500rpm、16.7mm/sの条件で行った。
 上記ラビング処理により得られたラビング配向膜上に、実施例1と同様にして偏光子形成用組成物を塗布し、乾燥および重合を行い、曲面基板/ラビング配向膜/偏光子からなる偏光板を得た。実施例1と同様に、偏光性能を確認したところ、偏光性能を有していなかった。また、積層状態を評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000021

Claims (11)

  1.  曲面基板、光配向膜および偏光子をこの順に含む、曲面形状を有する偏光板であって、
     前記偏光子が少なくとも1つの重合性基を有する重合性液晶化合物と二色性色素とを含む重合性液晶組成物の硬化物から構成され、
     前記偏光子が積層される曲面基板の曲面の面方向に対して該偏光子の吸収軸が一方向に向くよう前記重合性液晶化合物が配向している偏光板。
  2.  曲面形状が三次元曲面形状である、請求項1に記載の偏光板。
  3.  曲面形状がレンズ状である、請求項1または2に記載の偏光板。
  4.  式(1):
     20mm ≦ R ≦300mm   (1)
     [式(1)中、Rは偏光板において最も曲率が小さい部分の曲率半径を表す]
    を満たす、請求項1~3のいずれかに記載の偏光板。
  5.  偏光子が更にレベリング剤を含む、請求項1~4のいずれかに記載の偏光板。
  6.  二色性色素がアゾ色素である、請求項1~5のいずれかに記載の偏光板。
  7.  偏光子がX線解析測定においてブラッグピークを示す、請求項1~6のいずれかに記載の偏光板。
  8.  請求項1~7のいずれかに記載の偏光板と1/4波長板機能を有する位相差層とを含む楕円偏光板。
  9.  (a)曲面基板上に光配向膜を形成する工程、
    (b)光配向膜上に、少なくとも1つの重合性液晶化合物と二色性色素とを含む重合性液晶組成物の塗膜を形成する工程、および、
    (c)前記重合性液晶組成物に含まれる重合性液晶化合物をスメクチック液晶相に相転移させた後、スメクチック液晶状態を保持したまま重合性液晶化合物を重合させることにより偏光子を形成する工程
    を含み、
     前記偏光子が積層される曲面基板の曲面の面方向に対して該偏光子の吸収軸が一方向に向くよう前記重合性液晶化合物が配向している、曲面形状を有する偏光板の製造方法。
  10.  請求項8記載の楕円偏光板を有するフレキシブル画像表示装置。
  11.  ウインドウとタッチパネルタッチセンサとを更に有する、請求項10に記載のフレキシブル画像表示装置。
PCT/JP2021/005645 2020-02-25 2021-02-16 偏光板およびその製造方法 WO2021172090A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227032287A KR20220140836A (ko) 2020-02-25 2021-02-16 편광판 및 그 제조 방법
CN202180016124.7A CN115136044A (zh) 2020-02-25 2021-02-16 偏光板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020029560 2020-02-25
JP2020-029560 2020-02-25

Publications (1)

Publication Number Publication Date
WO2021172090A1 true WO2021172090A1 (ja) 2021-09-02

Family

ID=77490052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005645 WO2021172090A1 (ja) 2020-02-25 2021-02-16 偏光板およびその製造方法

Country Status (5)

Country Link
JP (1) JP2021135503A (ja)
KR (1) KR20220140836A (ja)
CN (1) CN115136044A (ja)
TW (1) TW202141086A (ja)
WO (1) WO2021172090A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI797010B (zh) * 2022-04-28 2023-03-21 大陸商業成科技(成都)有限公司 曲面光學結構及其製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103729A (ja) * 2004-01-14 2012-05-31 Transitions Optical Inc 偏光デバイスおよびその偏光デバイスの製造法
WO2016114346A1 (ja) * 2015-01-16 2016-07-21 Dic株式会社 重合性組成物及びそれを用いた光学異方体
JP2018045210A (ja) * 2016-09-16 2018-03-22 富士フイルム株式会社 車両用の投映像表示用システム
WO2019225555A1 (ja) * 2018-05-22 2019-11-28 住友化学株式会社 屈曲可能な光学積層体及びその製造方法
JP2019203933A (ja) * 2018-05-21 2019-11-28 富士フイルム株式会社 偏光放射性膜形成用組成物、偏光放射性膜、光学積層体、表示装置、加飾部材および立体加飾部材

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2335408T3 (es) 2004-12-21 2010-03-26 Corning Incorporated Productos de polarizacion de la luz y procedimiento para fabricar los mismos.
JP2010262094A (ja) * 2009-05-01 2010-11-18 Sumitomo Chemical Co Ltd 偏光板、ならびにそれを用いた液晶パネルおよび液晶表示装置
JP2019124905A (ja) * 2017-06-14 2019-07-25 住友化学株式会社 光学フィルム
JP6589033B2 (ja) * 2017-11-10 2019-10-09 住友化学株式会社 表示装置
JP2019194685A (ja) * 2018-04-25 2019-11-07 住友化学株式会社 偏光板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103729A (ja) * 2004-01-14 2012-05-31 Transitions Optical Inc 偏光デバイスおよびその偏光デバイスの製造法
WO2016114346A1 (ja) * 2015-01-16 2016-07-21 Dic株式会社 重合性組成物及びそれを用いた光学異方体
JP2018045210A (ja) * 2016-09-16 2018-03-22 富士フイルム株式会社 車両用の投映像表示用システム
JP2019203933A (ja) * 2018-05-21 2019-11-28 富士フイルム株式会社 偏光放射性膜形成用組成物、偏光放射性膜、光学積層体、表示装置、加飾部材および立体加飾部材
WO2019225555A1 (ja) * 2018-05-22 2019-11-28 住友化学株式会社 屈曲可能な光学積層体及びその製造方法

Also Published As

Publication number Publication date
KR20220140836A (ko) 2022-10-18
TW202141086A (zh) 2021-11-01
CN115136044A (zh) 2022-09-30
JP2021135503A (ja) 2021-09-13

Similar Documents

Publication Publication Date Title
CN113302528B (zh) 圆偏光板及使用其的有机el显示装置
CN112368143B (zh) 层叠体
WO2019082745A1 (ja) 偏光フィルム及びその製造方法
JP7198683B2 (ja) 積層体
CN112204438A (zh) 偏光膜及其制造方法、偏光板以及显示装置
WO2021172090A1 (ja) 偏光板およびその製造方法
CN111279233B (zh) 偏光膜的制造方法及偏光膜
TW202032177A (zh) 積層體及圖像顯示裝置
TW201936906A (zh) 聚合性液晶組成物、偏光膜及其製造方法、偏光板、以及顯示裝置
WO2021020264A1 (ja) 偏光フィルムおよびその製造方法
JPWO2019082744A1 (ja) 偏光フィルムの製造方法及び偏光フィルム
WO2020022009A1 (ja) 積層体
WO2021251122A1 (ja) 偏光フィルムおよび楕円偏光板
JP2021196602A (ja) 偏光フィルムおよび楕円偏光板
JP7139404B2 (ja) 光吸収異方性板
WO2020022010A1 (ja) 積層体
WO2021256199A1 (ja) 偏光膜、偏光板、光学積層体、楕円偏光板、有機el表示装置およびフレキシブル画像表示装置
JP2022127209A (ja) 偏光板および画像表示装置
WO2022163398A1 (ja) 重合性液晶組成物、偏光膜、偏光フィルム、円偏光板ならびに表示装置
JP2021179611A (ja) 円偏光板および表示装置
CN114839710A (zh) 光学层叠体
JP2023130873A (ja) 光学積層体およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761118

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227032287

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761118

Country of ref document: EP

Kind code of ref document: A1