WO2021172081A1 - スラリー - Google Patents

スラリー Download PDF

Info

Publication number
WO2021172081A1
WO2021172081A1 PCT/JP2021/005579 JP2021005579W WO2021172081A1 WO 2021172081 A1 WO2021172081 A1 WO 2021172081A1 JP 2021005579 W JP2021005579 W JP 2021005579W WO 2021172081 A1 WO2021172081 A1 WO 2021172081A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
slurry
secondary battery
woven fabric
group
Prior art date
Application number
PCT/JP2021/005579
Other languages
English (en)
French (fr)
Inventor
章 山川
明人 山元
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2021172081A1 publication Critical patent/WO2021172081A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a slurry that can be used for forming a secondary battery separator, a separator for a secondary battery formed by using the slurry, a method for manufacturing the separator, and a secondary battery provided with the separator.
  • a separator that insulates the positive electrode and the negative electrode while holding the electrolytic solution is used in a power storage device such as a lithium ion secondary battery.
  • a separator is required to ensure electrical insulation.
  • the battery functions when lithium ions move through this separator, it is also required to ensure transparency.
  • Patent Document 1 describes that a non-woven fabric made of polyolefin such as polypropylene is used as a separator.
  • the softening point of polypropylene is 155 ° C., and when the inside of the battery exceeds the softening point and becomes an abnormally high temperature, the pores of the non-woven fabric formed of polypropylene are softened and closed. As a result, the flow of lithium ions between the electrodes can be stopped and the function of the battery can be safely stopped. This is called the "shutdown function". However, if the temperature inside the battery rises even after the flow of lithium ions is stopped, the separator shrinks (shrinks) and melts (melts down), losing the function of insulating the positive electrode and the negative electrode. As a result, the electrodes may be short-circuited and thermal runaway may occur.
  • lithium-ion secondary batteries have been considered to be installed in hybrid vehicles and electric vehicles in addition to information-related devices such as smartphones and laptop computers. Therefore, the voltage and capacity are further increased. Is required. For this reason, the separator is required to have heat resistance that can maintain the insulating function even in an abnormally high temperature environment.
  • microfibers having a melting point (decomposition temperature if there is no melting point) of 150 ° C. or higher and having a specific fiber diameter, a binder, and water. If a slurry containing the mixture is used, a non-woven fabric having excellent heat resistance can be obtained even if it is thin, and if the structure obtained by laminating the non-woven fabric on a porous base material is used as a separator for a secondary battery, a battery is obtained. It was found that the function of insulating the positive electrode and the negative electrode can be maintained even when the temperature inside becomes abnormally high, and the short circuit of the electrodes can be prevented. This disclosure has been completed based on these findings.
  • the present disclosure provides a slurry containing the following microfibers, a binder, and water.
  • Fine fiber The melting point (decomposition temperature if there is no melting point) is 150 ° C. or higher, and the following formula (1) is satisfied.
  • y indicates the cumulative frequency of the fine fiber having a fiber diameter of 1 ⁇ m or less measured by a laser diffraction type particle size distribution measuring device
  • x indicates the cumulative frequency of the fine fiber having a fiber diameter of 2 ⁇ m or less measured by the above method.
  • the fiber diameter is the diameter equivalent to a volume sphere obtained by laser diffraction type particle size distribution measurement).
  • the present disclosure also provides the slurry having an average fiber diameter of 0.01 to 1 ⁇ m and an average length of 0.01 to 2 mm.
  • the present disclosure also provides the slurry in which the microfibers are aramid fibers.
  • the present disclosure also provides the slurry in which the binder is an aqueous binder.
  • the binder is also selected from a polysaccharide derivative (1), a compound having a structural unit represented by the following formula (2), and a compound having a structural unit represented by the following formula (3).
  • the slurry which is at least one kind is provided.
  • R represents a hydroxyl group, a carboxyl group, a phenyl group, an N-substituted or unsubstituted carbamoyl group, or a 2-oxo-1-pyrrolidinyl group).
  • n represents an integer of 2 or more
  • L represents an ether bond or a (-NH-) group).
  • the present disclosure also provides the slurry in which the binder is at least one selected from cellulose, starch, glycogen, and derivatives thereof.
  • the present disclosure also provides a non-woven fabric containing a solidified product of the slurry.
  • the present disclosure also provides a separator for a secondary battery, which comprises a laminate of the nonwoven fabric and a porous substrate.
  • the present disclosure also discloses a separator for a secondary battery including a laminate of a non-woven fabric containing a solidified product of the slurry and the porous base material through a step of applying the slurry to the surface of the porous base material and drying the slurry.
  • a method for manufacturing a separator for a secondary battery is provided.
  • the present disclosure also provides a secondary battery provided with the separator for the secondary battery.
  • the slurry of the present disclosure contains microfibers having a specific melting point (decomposition temperature if there is no melting point) and a specific fiber diameter, a binder, and water. Therefore, the non-woven fabric formed by using the slurry uniformly contains the fine fibers, thereby exhibiting excellent heat resistance. Then, even if the thickness of the non-woven fabric is reduced, the same heat resistance as the conventional one can be maintained. Further, the separator for a secondary battery provided with the non-woven fabric and the porous base material can extremely reduce the degree of deformation of the non-woven fabric due to shrinkage, melting, etc. even in an abnormally high temperature environment, and thus has an insulating function by the separator. Can be retained.
  • the secondary battery provided with the separator can prevent a short circuit of the electrodes even in a high temperature environment, and can prevent the occurrence of thermal runaway due to the short circuit of the electrodes. That is, it is excellent in safety. Further, since the non-woven fabric constituting the separator maintains excellent heat resistance even when thinned, the separator can be thinned by thinning the non-woven fabric, and the secondary battery provided with the separator can be thinned. It can be made lighter, smaller, or larger in capacity. Therefore, the separator for a secondary battery of the present disclosure can be suitably used for information-related devices such as smartphones and notebook computers, hybrid vehicles, electric vehicles, and the like. In particular, when a secondary battery provided with the separator is used in an electric vehicle, it is possible to significantly reduce the weight, which makes it possible to dramatically improve fuel efficiency.
  • the slurry of the present disclosure contains microfibers, a binder and water.
  • the slurry of the present disclosure may contain other components in addition to the above components.
  • the fine fibers have a melting point (decomposition temperature if there is no melting point) of 150 ° C. or higher, preferably 200 ° C. or higher, more preferably 250 ° C. or higher, and particularly preferably 300 ° C. or higher.
  • the upper limit of the melting point is, for example, 500 ° C.
  • the fine fibers satisfy the following formula (1). y> 0.97x (1) (In the formula, y indicates the cumulative frequency of the fine fiber having a fiber diameter of 1 ⁇ m or less measured by a laser diffraction type particle size distribution measuring device, and x indicates the cumulative frequency of the fine fiber having a fiber diameter of 2 ⁇ m or less measured by the above method. show)
  • the fine fibers preferably satisfy the following formula (1'), and particularly preferably the following formula (1 "), in that they contribute to the thinning of the separator (or the miniaturization of the secondary battery). .. y> 0.98x (1') y> 0.99x (1 ")
  • the average fiber diameter of the fine fibers is not particularly limited, but is, for example, 0.01 to 1 ⁇ m. Among them, it has more excellent heat resistance (or shape retention in a high temperature environment), and the separator is thinned.
  • the upper limit of the average fiber diameter is preferably 0.85 ⁇ m, particularly preferably 0.7 ⁇ m, in terms of contributing to (or contributing to the miniaturization of the secondary battery).
  • the lower limit of the average fiber diameter is preferably 0.05 ⁇ m, particularly preferably 0.1 ⁇ m.
  • SEM, TEM is used to take an electron microscope image of a sufficient number (for example, 100 or more) of the microfibers, and the diameter (diameter) of these microfibers. Is obtained by measuring and arithmetically averaging.
  • the average length of the fine fibers is not particularly limited, but is, for example, 0.01 to 2 mm, and among them, it has more excellent heat resistance (for example, shape retention in a high temperature environment), and the separator is thinned.
  • the upper limit of the average length is more preferably 1.5 mm, particularly preferably 1.0 mm, and most preferably 0.8 mm in terms of contributing to (or contributing to the miniaturization of the secondary battery).
  • the lower limit of the average length is more preferably 0.03 mm, particularly preferably 0.07 mm, and most preferably 0.1 mm.
  • the average length of the fine fibers is measured by taking an electron microscope image of a sufficient number (for example, 100 or more) of the fine fibers using an electron microscope (SEM, TEM).
  • the length of the microfibers should be measured in a linearly stretched state, but in reality, many of them are bent, so the projected diameter and projection of the microfibers from the electron microscope image using an image analyzer.
  • the average aspect ratio (average length / average fiber diameter) of the fine fibers is not particularly limited, but is, for example, 10 to 2000, and among them, more excellent heat resistance (for example, shape retention in a high temperature environment) can be obtained.
  • the average aspect ratio is such that a non-woven fabric having sufficient heat resistance can be formed even if the thickness is thinner, which contributes to the thinning of the separator (or the miniaturization of the secondary battery).
  • the upper limit is more preferably 1500, particularly preferably 1000, and most preferably 900.
  • the lower limit of the average aspect ratio is more preferably 50, particularly preferably 100, most preferably 500, and particularly preferably 600.
  • fine fibers examples include cellulose fibers, aramid fibers, polyphenylene sulfide fibers, polyimide fibers, fluorine fibers, glass fibers, carbon fibers, polyp-phenylene benzoxazole fibers, polyether ether ketone fibers, liquid crystal polymer fibers and the like. Be done. These can be used alone or in combination of two or more.
  • the fine fibers preferably contain at least aramid fibers. This is because the aramid fiber has excellent heat resistance and can be easily made into fine fibers.
  • the aramid fiber is a fiber composed of a polymer having a structure in which two or more aromatic rings are bonded via an amide bond (that is, a total aromatic polyamide), and the total aromatic polyamide has a meta type and a para type. included.
  • the total aromatic polyamide is, for example, a polymer having a structural unit represented by the following formula (a).
  • Ar 1 and Ar 2 indicate the same or different aromatic rings, or groups in which two or more aromatic rings are bonded via a single bond or a linking group.
  • the aromatic ring examples include an aromatic hydrocarbon ring having 6 to 10 carbon atoms such as a benzene ring and a naphthalene ring.
  • the aromatic ring has various substituents [eg, halogen atom, alkyl group (eg, C 1-4 alkyl group), oxo group, hydroxyl group, substituted oxy group (eg, C 1-4 alkoxy group, C 1-4).
  • Acyloxy group, etc. carboxyl group, substituted oxycarbonyl group (eg, C 1-4 alkoxycarbonyl group), cyano group, nitro group, substituted or unsubstituted amino group (eg, mono or di C 1-4 alkylamino group) , Sulf group, etc.].
  • an aromatic or non-aromatic heterocycle may be condensed on the aromatic ring.
  • linking group examples include a divalent hydrocarbon group (for example, a linear or branched alkylene group having 1 to 18 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 18 carbon atoms, and the like. ), A carbonyl group (-CO-), an ether bond (-O-), an ester bond (-COO-), -NH-, -SO 2-, and the like.
  • a divalent hydrocarbon group for example, a linear or branched alkylene group having 1 to 18 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 18 carbon atoms, and the like.
  • a carbonyl group -CO-
  • an ether bond -O-
  • ester bond -COO-
  • the aramid fiber can be produced, for example, by reacting a halide of at least one aromatic dicarboxylic acid with at least one aromatic diamine (for example, solution polymerization, interfacial polymerization, etc.).
  • aromatic dicarboxylic acid examples include isophthalic acid, terephthalic acid, 1,4-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, and 3,3'-biphenyldicarboxylic acid.
  • aromatic dicarboxylic acid examples include 4,4'-diphenyl ether dicarboxylic acid.
  • aromatic diamine acid examples include p-phenylenediamine, m-phenylenediamine, 4,4'-diaminobiphenyl, 2,4-diaminodiphenylamine, 4,4'-diaminobenzophenone, and 4,4'-diaminodiphenyl ether. , 4,4'-Diaminodiphenylmethane, 4,4'-diaminodiphenylamine, 4,4'-diaminodiphenylsulfone, 2,4-diaminotoluene, 2,6-naphthalenediamine, 1,5-naphthalenediamine and the like. ..
  • the aramid fiber can be produced by spinning the all-aromatic polyamide into a fibrous form (for example, through steps such as spinning, washing, and drying) by a well-known and commonly used method. Further, after being spun into a fibrous form, crushing treatment or the like can be performed as needed.
  • a non-woven fabric having sufficient heat resistance for example, shape retention in a high temperature environment
  • the binder of the present disclosure exerts an effect of imparting an appropriate viscosity to improve coatability by adding it to the composition for forming a heat-resistant layer, and further imparts adhesiveness to make the fine fibers porous. It is a compound that exerts an action of adhering to the surface of the base material layer.
  • the binder has a melting point (decomposition temperature if there is no melting point) of, for example, 160 ° C. or higher. (Preferably 180 ° C. or higher, particularly preferably 200 ° C. or higher), it is preferable to use a binder.
  • the upper limit of the melting point of the binder is, for example, 400 ° C.
  • the viscosity (at 25 ° C., 60 rpm) of the 1 wt% aqueous solution is preferably, for example, 100 to 5000 mPa ⁇ s, particularly preferably 500 to 3000 mPa ⁇ s, and most preferably 1000 to 2500 mPa. ⁇ S.
  • binder examples include non-aqueous binders such as fluorine-based binders (for example, polyvinylidene fluoride, etc.), polyester-based binders, epoxy-based binders, acrylic-based binders, vinyl ether-based binders, and water-based binders.
  • fluorine-based binders for example, polyvinylidene fluoride, etc.
  • polyester-based binders epoxy-based binders
  • acrylic-based binders acrylic-based binders
  • vinyl ether-based binders vinyl ether-based binders
  • water-based binders water-based binders
  • aqueous binder examples include a polysaccharide derivative (1), a compound having a structural unit represented by the following formula (2), a compound having a structural unit represented by the following formula (3), and the like. These can be used alone or in combination of two or more.
  • R represents a hydroxyl group, a carboxyl group, a phenyl group, an N-substituted or unsubstituted carbamoyl group, or a 2-oxo-1-pyrrolidinyl group).
  • n represents an integer of 2 or more
  • L represents an ether bond or a (-NH-) group).
  • N- substituted carbamoyl group -CONHCH (CH 3) 2, -CON (CH 3) such as 2 groups
  • N-C 1-4 alkyl-substituted carbamoyl group examples include N-C 1-4 alkyl-substituted carbamoyl group.
  • the carboxyl group may form a salt with an alkali metal.
  • n is an integer of 2 or more, for example, an integer of 2 to 5, preferably an integer of 2 to 3. Therefore, [C n H 2n] group in the formula (3) is an alkylene group having 2 or more carbon atoms, dimethylene group, methylmethylene group, dimethylmethylene group, trimethylene group and the like.
  • the compound having the structural unit represented by the above formula (2) and the compound having the structural unit represented by the following formula (3) are each represented by the structural unit represented by the formula (2) and the structural unit (3). It may have a structural unit other than the represented structural unit.
  • Examples of the compound having a structural unit represented by the above formula (2) include styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), methyl methacrylate butadiene rubber (MBR), and butadiene rubber (BR). Diene-shaped rubber such as polyacrylic acid, sodium polyacrylate, acrylic acid / maleic acid copolymer / sodium salt, acrylic acid / sulfonic acid copolymer / sodium salt and other acrylic polymers; polyacrylamide, poly-N Acrylamide-based polymers such as -isopropylacrylamide, poly-N, N-dimethylacrylamide; polyvinylpyrrolidone and the like can be mentioned.
  • SBR styrene-butadiene rubber
  • NBR acrylonitrile-butadiene rubber
  • MRR methyl methacrylate butadiene rubber
  • BR butadiene rubber
  • Diene-shaped rubber such as polyacrylic acid, sodium
  • Examples of the compound having a structural unit represented by the above formula (3) include polyalkylene glycols such as polyethylene glycol and polypropylene glycol; polyethyleneimine and the like.
  • the polysaccharide derivative (1) is a compound formed by polymerizing two or more monosaccharides by glycosidic bonds.
  • the polysaccharide derivative (1) is preferably a compound in which glucose (for example, ⁇ -glucose or ⁇ -glucose) is polymerized by a glycosidic bond, or a derivative thereof, and in particular, cellulose, starch, glycogen, or At least one selected from these derivatives is preferred.
  • the use of cellulose or a derivative thereof is excellent in heat resistance, and by adding a small amount, the composition for forming a heat-resistant layer is imparted with excellent adhesive strength and viscosity. It is preferable in that it can be used.
  • Examples of the cellulose or its derivative include compounds having a structural unit represented by the following formula (1-1).
  • R 1 to R 3 represent the same or different alkyl groups having hydrogen atoms, hydroxyl groups or carboxyl groups and having 1 to 5 carbon atoms.
  • the hydroxyl groups and carboxyl groups are alkali metals and salts. May form
  • alkyl group having 1 to 5 carbon atoms examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, a t-butyl group, a pentyl group, and the like.
  • the hydroxyl group and the carboxyl group may form a salt with an alkali metal, for example, the -OH group may form a salt with sodium to form a -ONa group, and the -COOH group may form a sodium. It may form a salt to form a -COONa group.
  • cellulose derivative examples include hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, and alkali metal salts thereof (for example, sodium carboxymethyl cellulose).
  • water-based binders are preferable as the binders of the present disclosure, and among them, the effect of imparting viscosity is excellent, the coatability of the heat-resistant layer-forming composition can be improved by adding a small amount, and the fine fibers are made of a porous group.
  • the polysaccharide derivative (1) is preferable, and cellulose or a derivative thereof is particularly preferable, because it can exert an action of adhering to the surface of the material layer and has excellent heat resistance.
  • the slurry of the present disclosure contains the fine fibers, the binder, and water.
  • the slurry is prepared, for example, by mixing fine fibers, a binder, and water, and using an ultra-high pressure homogenizer or the like to apply a mechanical shearing force of a processing pressure of 30 to 300 MPa to clofibrillate the fine fibers. be able to.
  • the content of the fine fibers in the slurry is, for example, 0.1 to 5.0% by weight, and in particular, an increase in air permeability can be suppressed and the permeability of the electrolytic solution can be improved.
  • the lower limit of the content of the fine fibers is preferably 0.3% by weight, particularly preferably 0.5% by weight.
  • the upper limit of the content of the fine fibers is preferably 5% by weight, particularly preferably 4.5% by weight, and most preferably 4% by weight.
  • the content of the binder in the slurry is, for example, 0.01 to 5% by weight, and the lower limit of the content of the binder is preferably 0. It is 05% by weight, particularly preferably 0.08% by weight, most preferably 0.1% by weight, and particularly preferably 0.15% by weight. Further, the upper limit of the content of the binder is preferably 1.0% by weight, more preferably 0. It is 7% by weight, particularly preferably 0.6% by weight, most preferably 0.4% by weight, and particularly preferably 0.3% by weight.
  • the slurry contains fine fibers and a binder in the above range, the binding property between the fine fibers is improved as compared with the case where only the fine fibers are used.
  • a separator for a secondary battery which is a laminate of a non-woven fabric made of a solidified slurry and a porous base material, is produced using the slurry, the strength of the non-woven fabric is increased and the non-woven fabric is manufactured. Improves adhesion to porous substrates. Therefore, the obtained separator for a secondary battery is particularly excellent in heat resistance (for example, shape retention in a high temperature environment).
  • the binder content is less than the above range, the strength of the non-woven fabric tends to decrease.
  • the non-woven fabric and the porous base material tend to be easily peeled off, and it tends to be difficult to maintain the shape of the porous base material in a high temperature environment.
  • the viscosity of the slurry at a temperature of 25 ° C. and a shear rate of 100 (1 / s) is, for example, 10 to 10000 mPa ⁇ s, and in particular, from the viewpoint of enabling uniform coating, it is preferably 50 to 5000 mPa ⁇ s. , Particularly preferably 150 to 3000 mPa ⁇ s.
  • the viscosity of the slurry can be controlled by adjusting the water content.
  • the non-volatile content concentration in the slurry can be appropriately adjusted according to the thickness of the non-woven fabric to be formed, and is, for example, 0.5 to 5% by weight.
  • the slurry may contain other components (for example, a dispersant, a surfactant, etc.) in addition to the fine fibers and the binder as the non-volatile component, but the slurry contains the above-mentioned total amount of the non-volatile component contained in the slurry.
  • the ratio of the total content of the fine fibers and the binder is, for example, 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more, particularly preferably 80% by weight or more, and most preferably 90% by weight or more. , Especially preferably 95% by weight or more.
  • the slurry contains at least water as a volatile component. This is because water has a small environmental load and is excellent in safety.
  • the slurry may contain an organic solvent other than water as a volatile component, but the content of the organic solvent is preferably, for example, 50% by weight or less of the total amount of the volatile components contained in the slurry, and is particularly preferable. Is 30% by weight or less, most preferably 10% by weight or less.
  • the slurry is excellent in dispersibility (particularly, dispersibility of fine fibers).
  • the slurry is placed in a screw tube bottle (capacity 6 mL, manufactured by AS ONE Co., Ltd., No. 2) up to a height of 30 mm from the bottom, and the lid is closed.
  • the width of the upper layer (aqueous phase) above the separation interface of the slurry is, for example, 15 mm or less, preferably 9 mm or less, particularly preferably 5 mm or less, most preferably. It is 3 mm or less. Therefore, if the slurry is used, a non-woven fabric containing fine fibers can be formed uniformly, and the binding property between the fine fibers can be further improved to form a non-woven fabric having high strength.
  • the non-woven fabric of the present disclosure contains a solidified product of the above slurry.
  • the non-woven fabric may contain components other than the solidified fabric, but the proportion of the solidified fabric in the total amount of the non-woven fabric is, for example, 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more, particularly. It is preferably 80% by weight or more, most preferably 90% by weight or more, and particularly preferably 95% by weight or more.
  • the non-woven fabric can be formed by applying the slurry and solidifying it (specifically, by volatilizing and removing the volatile matter).
  • the non-woven fabric has excellent heat resistance and can maintain the shape of the non-woven fabric (for example, a sheet-like shape) without softening or melting even in a high temperature environment.
  • the non-woven fabric is porous, and the porosity of the non-woven fabric is, for example, 30 to 90% by volume, preferably 35 to 80% by volume. If the porosity exceeds the above range, the strength tends to decrease in a high temperature environment. On the other hand, when the porosity is lower than the above range, the permeability of lithium ions tends to deteriorate and the electrical resistance tends to increase.
  • air permeability exceeds the above range, the permeability of lithium ions tends to deteriorate and the electrical resistance tends to increase.
  • the air permeability is lower than the above range, the strength tends to decrease, and the effect of suppressing the shrinkage of the porous substrate in a high temperature environment tends to be insufficient.
  • the thickness of the non-woven fabric is, for example, 0.5 to 20 ⁇ m, and is preferable in that the strength of the non-woven fabric can be ensured and the effect of sufficiently suppressing the shrinkage of the porous substrate in a high temperature environment can be exhibited. It is more than 1 ⁇ m and 10 ⁇ m or less, more preferably 1.5 to 10 ⁇ m, and particularly preferably 2 to 10 ⁇ m. Further, the upper limit of the thickness is preferably 10 ⁇ m in that the air permeability can be improved, the packing density of the electrodes can be improved, and the secondary battery can be further miniaturized. , More preferably 8 ⁇ m, particularly preferably 6 ⁇ m, most preferably 5 ⁇ m, and particularly preferably 4.5 ⁇ m.
  • the non-woven fabric is extremely lightweight and has a basis weight of, for example, 10 g / m 2 or less, and is preferably 9 g / m 2 or less, particularly preferably 7 g / m 2 or less, most preferably, in terms of contributing to weight reduction of the battery. Is 5 g / m 2 or less.
  • the lower limit of the basis weight is, for example, 0.1 g / m 2 .
  • the non-woven fabric Since the non-woven fabric has the above characteristics, it can be suitably used as a constituent component of a separator for a secondary battery.
  • the separator for a secondary battery of the present disclosure includes a laminate of the above-mentioned non-woven fabric and a porous base material.
  • the porous substrate will be described in detail later.
  • the separator may contain components other than the non-woven fabric and the porous base material.
  • the separator includes a non-woven fabric layer made of the non-woven fabric and a porous base material layer made of a porous base material.
  • the separator uniformly contains fine fibers having a specific fiber diameter in the non-woven fabric layer.
  • the separator uniformly contains fine fibers having a specific fiber diameter in the non-woven fabric layer, it exhibits excellent heat resistance and has a shrinkage rate at 130 ° C. (for example, a shrinkage rate in the MD direction of a porous substrate, Specifically, the shrinkage rate by the method described in Examples) is, for example, 20% or less, preferably 15% or less, particularly preferably 12% or less, and most preferably 10% or less. Therefore, the shape of the separator can be maintained even in a high temperature environment, and a short circuit of the electrodes due to deformation of the separator can be prevented.
  • a shrinkage rate at 130 ° C. for example, a shrinkage rate in the MD direction of a porous substrate, Specifically, the shrinkage rate by the method described in Examples
  • the shrinkage rate by the method described in Examples is, for example, 20% or less, preferably 15% or less, particularly preferably 12% or less, and most preferably 10% or less. Therefore, the shape of the separator can be maintained even in a high temperature environment,
  • the air permeability of the secondary battery separator is, for example, 50 to 4000 sec / 100 mL.
  • the upper limit of the air permeability is preferably 1000 sec / 100 mL, more preferably 800 sec / 100 mL, further preferably 600 sec / 100 mL, particularly preferably 500 sec / 100 mL, and most preferably 400 sec / 100 mL.
  • the lower limit of air permeability is preferably 70 sec / 100 mL. Therefore, the rate of increase in air permeability is extremely small, and the electrolyte permeability is excellent.
  • the separator for a secondary battery can maintain excellent heat resistance even if the thickness of the non-woven fabric layer is thinned (for example, even if the thickness of the non-woven fabric layer is thinned to more than 1 ⁇ m and 3 ⁇ m or less).
  • the separator for the secondary battery is very lightweight. Therefore, the weight of the secondary battery provided with the separator for the secondary battery can be reduced, which contributes to the improvement of fuel efficiency of the electric vehicle or the like using the secondary battery.
  • the separator for a secondary battery can ensure sufficient heat resistance even if the non-woven fabric is thinned, the total thickness of the separator for a secondary battery can be, for example, 10 to 50 ⁇ m, preferably 15 while maintaining the heat resistance. It can be thinned to ⁇ 30 ⁇ m. Therefore, the separator for a secondary battery can increase the filling density of the battery and contributes to the miniaturization of the secondary battery.
  • the porous substrate has a gap that allows lithium ions to move between electrodes, and when the inside of the secondary battery becomes abnormally high temperature, the porous base material softens to eliminate the gap. It is a member that exerts a "shutdown function" that stops the flow of lithium ions between electrodes by closing it.
  • the size of the voids in the porous substrate is, for example, 0.01 to 1 ⁇ m, preferably 0.02 to 0.06 ⁇ m. If the size of the void exceeds the above range, the insulating property tends to decrease and a short circuit tends to occur easily. On the other hand, when the size of the void is less than the above range, the electric resistance tends to increase.
  • the porosity of the porous substrate is, for example, 20 to 70% by volume, preferably 30 to 60% by volume. If the porosity exceeds the above range, the strength tends to be insufficient. On the other hand, when the porosity is lower than the above range, the permeability of lithium ions tends to deteriorate and the electrical resistance tends to increase.
  • the air permeability of the porous substrate is, for example, 10 to 600 sec / 100 mL, preferably 50 to 400 sec / 100 mL, and particularly preferably 50 to 350 sec / 100 mL.
  • the air permeability exceeds the above range, the permeability of lithium ions tends to deteriorate and the electrical resistance tends to increase.
  • the air permeability is lower than the above range, the strength tends to be insufficient.
  • the porous base material is a material that is insoluble in an electrolytic solution and is a base material that softens in a high temperature environment.
  • a thermoplastic polymer is preferable.
  • the thermoplastic polymer include polyolefins such as polyethylene and polypropylene; polyesters such as polyethylene terephthalate; and aliphatic polyamides such as 2,6-nylon.
  • the material of the porous base material is appropriately selected and used from the thermoplastic polymers according to a desired shutdown temperature.
  • a desired shutdown temperature For example, when the shutdown temperature is set to 150 ° C., it is preferable to use a thermoplastic polymer having a melting point or a softening temperature of 140 to 150 ° C.
  • the thickness of the porous substrate is, for example, 5 to 40 ⁇ m, preferably 8 to 30 ⁇ m. If the thickness exceeds the above range, the electrical resistance of the battery tends to increase and the volume capacity tends to decrease. On the other hand, if the thickness is less than the above range, the strength tends to be insufficient.
  • the porous base material is produced, for example, by a method in which a material (for example, polyolefin) of the porous base material is heated and melted to form an extruded film, and the obtained film is stretched to make it porous. can do.
  • a material for example, polyolefin
  • the secondary battery separator is, for example, a step of applying the slurry to the surface of a porous base material and drying it to form a laminate of a non-woven fabric made of a solidified product of the slurry and the porous base material. Can be manufactured after.
  • the method for applying the above slurry is not particularly limited, and can be applied by, for example, a printing method, a coating method, or the like. Specific examples thereof include screen printing method, mask printing method, offset printing method, inkjet printing method, flexo printing method, gravure printing method, silk screen printing method, stamping, dispense, squeegee method, spraying, and brush coating. Further, the coating may be performed by a film applicator, a bar coater, a die coater, a comma coater, a gravure coater or the like.
  • the above slurry may be applied to at least one surface of the porous base material, and among them, the total thickness of the separator for a secondary battery can be thinned, and the filling density of the battery can be increased. From the viewpoint of contributing to the miniaturization of the next battery, it is preferable to apply it only to one surface of the porous base material.
  • the method for drying the slurry is not particularly limited, and examples thereof include heating, depressurization, and ventilation.
  • the heating temperature and heating time, decompression degree and decompression time, air volume, air velocity, air temperature, type and dryness of gas to be blown, area to be blown, direction of air blow, etc. can be arbitrarily selected. ..
  • the secondary battery of the present disclosure is a power generation element including a positive electrode in which a positive electrode active material layer is arranged in a positive electrode current collector, a negative electrode in which a negative electrode active material layer is arranged in a negative electrode current collector, a separator, and an electrolytic solution. Is included in the exterior body.
  • the secondary battery is characterized in that the above-mentioned separator for a secondary battery is used as the separator.
  • the secondary battery is a wound battery in which a positive electrode, a negative electrode, and a separator are laminated and wound, and the positive electrode, the negative electrode, and a separator are laminated and wound together with an electrolytic solution in a container such as a can.
  • a laminated battery in which a sheet-like material is enclosed together with an electrolytic solution inside a relatively flexible exterior body may be used.
  • the secondary battery is excellent in safety because it includes the above-mentioned separator for the secondary battery having excellent heat resistance (for example, shape retention in a high temperature environment). Further, the separator for the secondary battery is lightweight and thin. Therefore, the secondary battery is light, and the filling density of the electrodes can be improved, so that the secondary battery can be miniaturized.
  • the secondary battery it is possible to reduce the weight of information-related devices such as smartphones and laptop computers, hybrid vehicles, electric vehicles, etc. while maintaining high safety.
  • an electric vehicle using the secondary battery can be significantly reduced in weight, thereby dramatically improving fuel efficiency.
  • Preparation Example 1 (Preparation of fine fibers) 9.9 L of water was added to 100 g of a pulp-like product (average fiber length 0.3 mm, average fiber diameter 10 ⁇ m) of aromatic polyamide fiber (manufactured by Toray DuPont Co., Ltd.) and stirred well. The obtained dispersion was treated with a high-pressure homogenizer at 20 ° C. and 200 MPa to prepare a 1.0 wt% fine aramid fiber (1) suspension. The SEM image of the obtained fine aramid fiber (1) is shown in FIG. Further, the obtained fine aramid fiber (1) was measured with a laser diffraction type particle size distribution measuring device (LA-960, manufactured by HORIBA, Ltd.). The results are shown in FIG.
  • LA-960 laser diffraction type particle size distribution measuring device
  • Example 1 (Preparation of slurry) To 1484 g of water, 15.89 g of CMC (dry weight loss: 5.6%, 1 wt% aqueous solution viscosity: 1000 to 2000 mPa ⁇ s, manufactured by Daisel Finechem Co., Ltd., product number: 1380) was added, and at 3000 rpm using a disper. A 1.0 wt% CMC aqueous solution was prepared by stirring for 30 minutes. To 1 part by weight of this 1.0% by weight CMC aqueous solution, 9 parts by weight of the 1.0% by weight fine aramid fiber (1) suspension obtained in Preparation Example 1 was added, and the mixture was stirred at 3000 rpm for 30 minutes using a disper. The slurry (1) was obtained.
  • CMC dry weight loss: 5.6%, 1 wt% aqueous solution viscosity: 1000 to 2000 mPa ⁇ s, manufactured by Daisel Finechem Co., Ltd., product number: 1380
  • a polyethylene microporous membrane (1) manufactured by Double Scope Co., Ltd., thickness: 20 ⁇ m, air permeability: 235 sec / 100 mL
  • the obtained slurry (1) was coated on one side of 1) at a speed of 240 mm / sec using an automatic coating device (manufactured by Tester Sangyo Co., Ltd., model number: PI-1210) (coating thickness). : 125 ⁇ m).
  • the coated slurry (1) was dried in a constant temperature bath at 60 ° C. for 20 minutes. As a result, a non-woven fabric / polyethylene laminate made of a solidified product of the slurry (1) was obtained, and this was used as a separator (1).
  • Examples 2 and 3 Preparation of separator
  • a non-woven fabric / polyethylene laminate made of a solidified product of the slurry (1) was obtained in the same manner as in Example 1 except that the coating thickness was changed as shown in Table 1 below. .. These were designated as separators (2) and (3), respectively.
  • Comparative Example 1 (Preparation of slurry) To 3 parts by weight of the 1.0% by weight fine aramid fiber (2), 1 part by weight of the 1.0% by weight CMC aqueous solution and 1 part by weight of water obtained by the same method as in Example 1 were added, and a disper was used. The slurry (2) was obtained by stirring at 3000 rpm for 30 minutes.
  • a non-woven fabric / polyethylene laminate made of a solidified product of the slurry (2) was obtained in the same manner as in Example 1 except that the slurry (2) was used instead of the slurry (1). These were used as a separator (4).
  • Comparative Example 2 (Preparation of Separator) In the step (preparation of separator), a non-woven fabric / polyethylene laminate made of a solidified product of the slurry (2) was obtained in the same manner as in Comparative Example 1 except that the coating thickness was changed as shown in Table 1 below. .. These were designated as a separator (5).
  • Comparative Example 3 (Preparation of Separator) Only the polyethylene microporous membrane (1) was used as the separator (6) without laminating the non-woven fabric.
  • the non-woven fabric surface of the obtained separator was photographed in a range of 3 cm ⁇ 3 cm at a resolution of 300 pixels ⁇ 300 pixels with a black drawing paper as a background, and the pixels on which the aramid fiber was placed were counted as follows.
  • the aramid fiber appears white, and the lining is transparent and black in the part where the aramid fiber is not placed.
  • the gray scale is obtained by taking the average of the R value (0 to 255), G value (0 to 255), and B value (0 to 255) of the image and designating the values as the R value, G value, and B value. It became. This value is called lightness.
  • Dispersibility index Number of pixels on which aramid fiber is mounted / Total number of pixels ⁇ Dispersibility evaluation criteria> ⁇ (Good): When the dispersibility index exceeds 0.97 ⁇ (Yes): When the dispersibility index exceeds 0.9 and 0.97 or less ⁇ (No): The dispersibility index is 0.9 or less case
  • Air permeability test The air permeability was measured by a method conforming to JIS P8117 using a Garley type densometer B type manufactured by Tester Sangyo Co., Ltd. The number of seconds was measured with a digital auto counter. The smaller the air permeability (garley value) value, the higher the air permeability.
  • the separators obtained in the examples have excellent heat resistance, and even if the thickness of the non-woven fabric is reduced (even if the thickness of the non-woven fabric is reduced to 3 ⁇ m or less), the shrinkage rate can be suppressed to an extremely low value. ..
  • Fine fiber The melting point (decomposition temperature if there is no melting point) is 150 ° C. or higher, and the following formula (1) is satisfied.
  • y indicates the cumulative frequency of the fine fiber having a fiber diameter of 1 ⁇ m or less measured by a laser diffraction type particle size distribution measuring device
  • x indicates the cumulative frequency of the fine fiber having a fiber diameter of 2 ⁇ m or less measured by the above method.
  • the fiber diameter is the diameter equivalent to a volume sphere obtained by laser diffraction type particle size distribution measurement).
  • y indicates the cumulative frequency of the fine fiber having a fiber diameter of 1 ⁇ m or less measured by a laser diffraction type particle size distribution measuring device
  • x indicates the cumulative frequency of the fine fiber having a fiber diameter of 2 ⁇ m or less measured by the above method.
  • the fiber diameter is the diameter equivalent to a volume sphere obtained by laser diffraction type particle size distribution measurement).
  • the binder is at least one selected from a polysaccharide derivative (1), a compound having a structural unit represented by the formula (2), and a compound having a structural unit represented by the formula (3).
  • the non-volatile content concentration of the slurry is 0.5 to 5% by weight, and the ratio of the total content of the fine fibers and the binder to the total non-volatile content is 50% by weight or more [1].
  • the slurry may contain an organic solvent, but the content of the organic solvent is 50% by weight or less of the total amount of volatile matter contained in the slurry, any one of [1] to [16].
  • the non-woven fabric according to any one of [18] to [21] which has a thickness of 0.5 to 20 ⁇ m.
  • the porous substrate is a porous substrate made of a thermoplastic polymer having a melting point or a softening temperature of 140 to 150 ° C. [26] 24] or [25].
  • the separator for a secondary battery [27] The separator for a secondary battery according to [24] or [25], wherein the porous base material is a porous base material made of polyolefin having a melting point or a softening temperature of 140 to 150 ° C. [28] The separator for a secondary battery according to any one of [24] to [27], wherein the thickness of the porous substrate is 5 to 40 ⁇ m.
  • the slurry according to any one of [1] to [17] is applied to the surface of the porous substrate and dried, and then the non-woven fabric containing the solidified product of the slurry and the porous substrate are subjected to a step.
  • the non-woven fabric By using the slurry of the present disclosure, it is possible to produce a non-woven fabric having excellent heat resistance even if the thickness is thin. Further, the non-woven fabric thus obtained is useful as a separator for a secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

耐熱性に優れる二次電池用セパレータを形成するスラリーを提供する。 本開示のスラリーは、下記微小繊維と、バインダと、水とを含む。微小繊維:融点(融点がないものは分解温度)が150℃以上であり、下記式(1)を満たす。 y>0.97x (1) (式中、yはレーザー回折式粒度分布測定装置で測定した、微小繊維の繊維径が1μm以下の累積頻度を示し、xは前記方法で測定した微小繊維の繊維径が2μm以下の累積頻度を示す。尚、前記繊維径は、レーザー回折式粒度分布測定で得られる体積球相当径である)

Description

スラリー
 本開示は、二次電池セパレータを形成する用途に使用できるスラリー、前記スラリーを用いて形成される二次電池用セパレータ、前記セパレータの製造方法、及び前記セパレータを備えた二次電池に関する。本開示は、2020年2月25日に日本に出願した、特願2020−029478号の優先権を主張し、その内容をここに援用する。
 リチウムイオン二次電池のような蓄電デバイスには、電解液を保持しながら正極と負極を絶縁するセパレータが用いられている。このようなセパレータには電気絶縁性を担保することが求められる。その他、リチウムイオンがこのセパレータを通過して移動することで電池が機能するため、透過性を担保することも求められる。
 特許文献1には、ポリプロピレンなどのポリオレフィンで形成された不織布をセパレータとして使用することが記載されている。
 ポリプロピレンの軟化点は155℃であり、電池内が前記軟化点を超えて異常高温となった場合には、ポリプロピレンで形成された不織布の孔は、ポリプロピレンが軟化して塞がる。これにより、電極間のリチウムイオンの流れを停止させて安全に電池の機能を停止させることができる。これを「シャットダウン機能」という。しかし、リチウムイオンの流れを停止させた後も更に電池内の温度が上昇する場合には、セパレータは収縮(シュリンク)し、溶融(メルトダウン)して、正極と負極を絶縁する機能が失われることにより、電極が短絡し、熱暴走が生じる恐れがあった。
 また、近年、リチウムイオン二次電池は、スマートフォンやノートパソコンなどの情報関連機器に加え、ハイブリッド車や電気自動車にも搭載することが検討されていることから、より一層の高電圧化、大容量化が求められている。このことから、セパレータには、異常高温環境下でも絶縁機能を保持できる耐熱性が求められている。
特開2015−128055号公報
 従って、本開示の目的は、耐熱性に優れる二次電池用セパレータを形成できるスラリーを提供することにある。
 本開示の他の目的は、耐熱性及び透過性に優れる二次電池用セパレータを形成できるスラリーを提供することにある。
 本開示の他の目的は、耐熱性に優れる二次電池用セパレータを提供することにある。
 本開示の他の目的は、耐熱性及び透過性に優れる二次電池用セパレータを提供することにある。
 本開示の他の目的は、前記二次電池用セパレータの製造方法を提供することにある。
 本開示の他の目的は、前記二次電池用セパレータを備えた二次電池を提供することにある。
 本発明者等は上記課題を解決するため鋭意検討した結果、融点(融点がないものは分解温度)が150℃以上であり、且つ特定の繊維径を有する微小繊維と、バインダと、水とを含むスラリーを使用すれば、薄くても、耐熱性に優れた不織布が得られること、前記不織布を多孔質基材に積層して得られる構造体を、二次電池用セパレータとして使用すれば、電池内が異常高温となった場合にも、正極と負極を絶縁する機能を維持することができ、電極の短絡を防止することができることを見いだした。本開示はこれらの知見に基づいて完成させたものである。
 すなわち、本開示は、下記微小繊維と、バインダと、水とを含むスラリーを提供する。
微小繊維:融点(融点がないものは分解温度)が150℃以上であり、下記式(1)を満たす。
 y>0.97x     (1)
(式中、yはレーザー回折式粒度分布測定装置で測定した、微小繊維の繊維径が1μm以下の累積頻度を示し、xは前記方法で測定した微小繊維の繊維径が2μm以下の累積頻度を示す。尚、前記繊維径は、レーザー回折式粒度分布測定で得られる体積球相当径である)
 本開示は、また、前記微小繊維の平均繊維径が0.01~1μm、平均長さが0.01~2mmである前記スラリーを提供する。
 本開示は、また、前記微小繊維がアラミド繊維である前記スラリーを提供する。
 本開示は、また、前記バインダが水系バインダである前記スラリーを提供する。
 本開示は、また、前記バインダが、多糖類誘導体(1)、下記式(2)で表される構成単位を有する化合物、及び下記式(3)で表される構成単位を有する化合物から選択される少なくとも1種である前記スラリーを提供する。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは水酸基、カルボキシル基、フェニル基、N−置換又は無置換カルバモイル基、又は2−オキソ−1−ピロリジニル基を示す)
Figure JPOXMLDOC01-appb-C000004
(式中、nは2以上の整数を示し、Lはエーテル結合又は(−NH−)基を示す)
 本開示は、また、前記バインダが、セルロース、デンプン、グリコーゲン、及びこれらの誘導体から選択される少なくとも1種である前記スラリーを提供する。
 本開示は、また、前記スラリーの固化物を含む不織布を提供する。
 本開示は、また、前記不織布と多孔質基材との積層体を備える、二次電池用セパレータを提供する。
 本開示は、また、前記スラリーを、多孔質基材の表面に塗布し、乾燥させる工程を経て、前記スラリーの固化物を含む不織布と多孔質基材との積層体を備える二次電池用セパレータを得る、二次電池用セパレータの製造方法を提供する。
 本開示は、また、前記二次電池用セパレータを備えた二次電池を提供する。
 本開示のスラリーは特定の融点(融点がないものは分解温度)と、特定の繊維径とを備える微小繊維と、バインダと、水とを含む。そのため、前記スラリーを用いて形成される不織布は前記微小繊維を均一に含有し、これにより優れた耐熱性を示す。そして、前記不織布は厚みを薄化しても、従来と同等の耐熱性を維持することができる。
 そして、前記不織布と多孔質基材とを備える二次電池用セパレータは、異常高温環境下においても、前記不織布が収縮や溶融等による変形の程度を極めて小さくすることができるので、セパレータによる絶縁機能を保持することができる。
 従って、前記セパレータを備えた二次電池は、高温環境下でも、電極の短絡を防止することができ、電極の短絡による熱暴走の発生を防止することができる。すなわち、安全性に優れる。
 また、前記セパレータを構成する不織布は、薄化しても優れた耐熱性が維持されるので、不織布を薄化することで前記セパレータを薄化することができ、前記セパレータを備えた二次電池の軽量化、小型化、或いは大容量化に対応することができる。
 そのため、本開示の二次電池用セパレータは、スマートフォンやノートパソコンなどの情報関連機器、ハイブリッド車や電気自動車等に好適に利用できる。
 特に、前記セパレータを備えた二次電池を電気自動車に利用する場合は、大幅な軽量化が可能であり、それにより燃費を飛躍的に向上することが可能となる。
調製例1で得られた微小アラミド繊維(1)のSEM画像(a)と、比較調製例1の微小アラミド繊維(2)のSEM画像(b)を示す図である。 調製例1で得られた微小アラミド繊維(1)と、比較調製例1の微小アラミド繊維(2)のレーザー回折法による粒度分布測定結果を示す図である。
 [スラリー]
 本開示のスラリーは、微小繊維と、バインダと、水とを含む。本開示のスラリーは前記成分以外にも他の成分を含有していても良い。
 〈微小繊維〉
 前記微小繊維は、融点(融点がないものは分解温度)が150℃以上であり、好ましくは200℃以上、更に好ましくは250℃以上、特に好ましくは300℃以上である。尚、前記融点の上限値は、例えば500℃である。
 前記微小繊維は、下記式(1)を満たす。
 y>0.97x     (1)
(式中、yはレーザー回折式粒度分布測定装置で測定した、微小繊維の繊維径が1μm以下の累積頻度を示し、xは前記方法で測定した微小繊維の繊維径が2μm以下の累積頻度を示す)
 尚、前記繊維径は、レーザー回折式粒度分布測定で得られる体積球相当径(=体積相当球の直径)である。
 前記微小繊維は、セパレータの薄化に資する(若しくは、二次電池の小型化に資する)点で、下記式(1’)を満たすことが好ましく、とりわけ下記式(1”)を満たすことが好ましい。
 y>0.98x     (1’)
 y>0.99x     (1”)
 前記微小繊維の平均繊維径は、特に限定されないが、例えば0.01~1μmであり、なかでも、より優れた耐熱性(或いは、高温環境下における形状保持性)を有し、セパレータの薄化に資する(若しくは、二次電池の小型化に資する)点で、平均繊維径の上限値は、0.85μmが好ましく、0.7μmが特に好ましい。また、平均繊維径の下限値は、0.05μmが好ましく、0.1μmが特に好ましい。尚、微小繊維の平均繊維径は、電子顕微鏡(SEM、TEM)を用いて十分な数(例えば、100個以上)の微小繊維について電子顕微鏡像を撮影し、これらの微小繊維の径(直径)を計測し、算術平均することにより求められる。
 前記微小繊維の平均長さは、特に限定されないが、例えば0.01~2mmであり、なかでも、より優れた耐熱性(例えば、高温環境下における形状保持性)を有し、セパレータの薄化に資する(若しくは、二次電池の小型化に資する)点で、平均長さの上限値は、1.5mmがより好ましく、1.0mmが特に好ましく、0.8mmが最も好ましい。また、平均長さの下限値は、0.03mmがより好ましく、0.07mmが特に好ましく、0.1mmが最も好ましい。尚、微小繊維の平均長さは、電子顕微鏡(SEM、TEM)を用いて十分な数(例えば、100個以上)の微小繊維の電子顕微鏡像を撮影して、前記微小繊維の長さを計測し、算術平均することにより求められる。微小繊維の長さは、直線状に伸ばした状態で計測すべきであるが、現実には屈曲しているものが多いため、電子顕微鏡像から画像解析装置を用いて微小繊維の投影径及び投影面積を算出し、円柱体を仮定して下記式から算出するものとする。
 長さ=投影面積/投影径
 前記微小繊維の平均アスペクト比(平均長さ/平均繊維径)は、特に限定されないが、例えば10~2000であり、なかでも、より優れた耐熱性(例えば、高温環境下における形状保持性)を有し、より厚みが薄くても、十分な耐熱性を有する不織布を形成することができ、よりセパレータの薄化に資する(若しくは、二次電池の小型化に資する)点で、平均アスペクト比の上限値は、1500がより好ましく、1000が特に好ましく、900が最も好ましい。また、平均アスペクト比の下限値は、50がより好ましく、100が特に好ましく、500が最も好ましく、600がとりわけ好ましい。
 前記微小繊維としては、例えば、セルロース繊維、アラミド繊維、ポリフェニレンサルファイド繊維、ポリイミド繊維、フッ素繊維、ガラス繊維、炭素繊維、ポリp−フェニレンベンズオキサゾール繊維、ポリエーテルエーテルケトン繊維、液晶ポリマー繊維等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。
 前記微小繊維としては、なかでも、少なくともアラミド繊維を含むことが好ましい。アラミド繊維は、耐熱性に優れ、微小繊維化が容易なためである。
 前記アラミド繊維は、2個以上の芳香環がアミド結合を介して結合した構造を有するポリマー(すなわち、全芳香族ポリアミド)からなる繊維であり、前記全芳香族ポリアミドにはメタ型及びパラ型が含まれる。前記全芳香族ポリアミドは、例えば、下記式(a)で表される構成単位を有するポリマーである。
Figure JPOXMLDOC01-appb-C000005
 上記式中、Ar、Arは同一又は異なって芳香環、又は2個以上の芳香環が単結合又は連結基を介して結合した基を示す。
 前記芳香環としては、例えば、ベンゼン環、ナフタレン環等の炭素数6~10の芳香族炭化水素環が挙げられる。前記芳香環は種々の置換基[例えば、ハロゲン原子、アルキル基(例えば、C1−4アルキル基)、オキソ基、ヒドロキシル基、置換オキシ基(例えば、C1−4アルコキシ基、C1−4アシルオキシ基等)、カルボキシル基、置換オキシカルボニル基(例えば、C1−4アルコキシカルボニル基)、シアノ基、ニトロ基、置換又は無置換アミノ基(例えば、モノ又はジC1−4アルキルアミノ基)、スルホ基等]を有していてもよい。更に、前記芳香環には芳香族性又は非芳香属性の複素環が縮合していてもよい。
 前記連結基としては、例えば、二価の炭化水素基(例えば、炭素数1~18の直鎖状又は分岐鎖状のアルキレン基、炭素数3~18の二価の脂環式炭化水素基等)、カルボニル基(−CO−)、エーテル結合(−O−)、エステル結合(−COO−)、−NH−、−SO−等が挙げられる。
 前記アラミド繊維は、例えば、少なくとも1種の芳香族ジカルボン酸のハロゲン化物に、少なくとも1種の芳香族ジアミンを反応(例えば、溶液重合、界面重合等)させることにより製造することができる。
 前記芳香族ジカルボン酸としては、例えば、イソフタル酸、テレフタル酸、1,4−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、4,4’−ビフェニルジカルボン酸、3,3’−ビフェニルジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸等が挙げられる。
 前記芳香族ジアミン酸としては、例えば、p−フェニレンジアミン、m−フェニレンジアミン、4,4’−ジアミノビフェニル、2,4−ジアミノジフェニルアミン、4,4’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルアミン、4,4’−ジアミノジフェニルスルホン、2,4−ジアミノトルエン、2,6−ナフタレンジアミン、1,5−ナフタレンジアミン等が挙げられる。
 前記アラミド繊維は、上記全芳香族ポリアミドを周知慣用の方法により(例えば、紡糸、洗浄、乾燥処理等の工程を経て)繊維状に紡糸することにより製造できる。また、繊維状に紡糸された後は、必要に応じて解砕処理等を施すことができる。前記アラミド繊維としては、より厚みが薄くても、十分な耐熱性(例えば、高温環境下における形状保持性)を有する不織布を形成することができ、よりセパレータの薄化に資する(若しくは、二次電池の小型化に資する)点で、超高圧ホモジナイザー等により強力な機械的剪断力を加えミクロフィブリル化することが好ましい。
 〈バインダ〉
 本開示のバインダは、耐熱層形成用組成物に添加することにより、適度な粘度を付与して塗布性を向上させる効果を発揮し、更に、粘着性を付与して、上記微小繊維を多孔質基材層の表面に固着させる作用を発揮する化合物である。
 耐熱層(B)の耐熱性を発現させる点において、耐熱性に優れたバインダを使用することは必須でないが好ましく、前記バインダとして、融点(融点がないものは分解温度)が、例えば160℃以上(好ましくは180℃以上、特に好ましくは200℃以上)であるバインダを使用することが好ましい。尚、バインダの融点(融点がないものは分解温度)の上限は、例えば400℃である。
 前記バインダとしては、1重量%水溶液の粘度(25℃、60回転/分における)が、例えば100~5000mPa・sであることが好ましく、特に好ましくは500~3000mPa・s、最も好ましくは1000~2500mPa・sである。
 前記バインダには、例えば、フッ素系バインダ(例えば、ポリフッ化ビニリデン等)、ポリエステル系バインダ、エポキシ系バインダ、アクリル系バインダ、ビニルエーテル系バインダ等の非水系バインダや、水系バインダが挙げられる。前記バインダとしては、なかでも、環境負荷が小さく、安全性に優れる点で水系バインダを使用することが好ましい。
 前記水系バインダとしては、例えば、多糖類誘導体(1)、下記式(2)で表される構成単位を有する化合物、下記式(3)で表される構成単位を有する化合物等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは水酸基、カルボキシル基、フェニル基、N−置換又は無置換カルバモイル基、又は2−オキソ−1−ピロリジニル基を示す)
Figure JPOXMLDOC01-appb-C000007
(式中、nは2以上の整数を示し、Lはエーテル結合又は(−NH−)基を示す)
 前記N−置換カルバモイル基としては、−CONHCH(CH、−CON(CH基等の、N−C1−4アルキル置換カルバモイル基が挙げられる。
 前記カルボキシル基はアルカリ金属と塩を形成していてもよい。
 前記nは2以上の整数であり、例えば2~5の整数、好ましくは2~3の整数である。従って、式(3)中の[C2n]基は炭素数2以上のアルキレン基であり、ジメチレン基、メチルメチレン基、ジメチルメチレン基、トリメチレン基等が挙げられる。
 上記式(2)で表される構成単位を有する化合物、及び下記式(3)で表される構成単位を有する化合物は、それぞれ、式(2)で表される構成単位や式(3)で表される構成単位以外の構成単位を有していてもよい。
 上記式(2)で表される構成単位を有する化合物としては、例えば、スチレン・ブタジエンゴム(SBR)、アクリロニトリル・ブタジエンゴム(NBR)、メタクリル酸メチル・ブタジエンゴム(MBR)、ブタジエンゴム(BR)等のジエン形ゴム;ポリアクリル酸、ポリアクリル酸ナトリウム、アクリル酸/マレイン酸共重合体・ナトリウム塩、アクリル酸/スルホン酸共重合体・ナトリウム塩等のアクリル系ポリマー;ポリアクリルアミド、ポリ−N−イソプロピルアクリルアミド、ポリ−N,N−ジメチルアクリルアミド等のアクリルアミド系ポリマー;ポリビニルピロリドン等が挙げられる。
 上記式(3)で表される構成単位を有する化合物としては、例えば、ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコール;ポリエチレンイミンなどが挙げられる。
 前記多糖類誘導体(1)は、2個以上の単糖類がグリコシド結合によって重合してなる化合物である。前記多糖類誘導体(1)は、なかでも、グルコース(例えば、α−グルコース、又はβ−グルコース)がグリコシド結合によって重合してなる化合物、若しくはその誘導体が好ましく、特に、セルロース、デンプン、グリコーゲン、若しくはこれらの誘導体から選択される少なくとも1種が好ましい。
 前記多糖類誘導体(1)としては、とりわけ、セルロース又はその誘導体を使用することが耐熱性に優れ、少量を添加することにより、耐熱層形成用組成物に優れた粘着力及び粘度を付与することができる点で好ましい。
 前記セルロース、又はその誘導体としては、例えば、下記式(1−1)で表される構成単位を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
(式中、R~Rは、同一又は異なって、水素原子、ヒドロキシル基又はカルボキシル基を有する炭素数1~5のアルキル基を示す。尚、前記ヒドロキシル基及びカルボキシル基はアルカリ金属と塩を形成していてもよい)
 前記炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、等が挙げられる。
 前記ヒドロキシル基及びカルボキシル基はアルカリ金属と塩を形成していてもよく、例えば、−OH基は、ナトリウムと塩を形成して−ONa基となっていてもよく、−COOH基は、ナトリウムと塩を形成して−COONa基となっていてもよい。
 前記セルロースの誘導体としては、具体的には、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、及びこれらのアルカリ金属塩(例えば、カルボキシメチルセルロースナトリウム)等が挙げられる。
 以上より、本開示のバインダとしては水系バインダが好ましく、なかでも、粘性付与効果に優れ、少量の添加で耐熱層形成用組成物の塗布性を向上させることができる点、微小繊維を多孔質基材層の表面に固着させる作用を発揮することができる点、及び、耐熱性に優れる点で、多糖類誘導体(1)が好ましく、とりわけセルロース又はその誘導体が好ましい。
 [スラリー]
 本開示のスラリーは、前記微小繊維と、前記バインダと、水とを含む。
 前記スラリーは、例えば、微小繊維とバインダと水とを混合し、超高圧ホモジナイザー等を用い、処理圧30~300MPaの機械的剪断力を加えることにより、微小繊維をクロフィブリル化することにより調製することができる。
 スラリー中における前記微小繊維の含有量は、例えば0.1~5.0重量%であり、なかでも、透気度の上昇を抑制することができ、電解液浸透性を向上することができる点において、前記微小繊維の含有量の下限値は、好ましくは0.3重量%、特に好ましくは0.5重量%である。また、前記微小繊維の含有量の上限値は、好ましくは5重量%、特に好ましくは4.5重量%、最も好ましくは4重量%である。
 スラリー中における前記バインダの含有量は、例えば0.01~5重量%であり、なかでも、均一な塗工を可能とする点おいて、前記バインダの含有量の下限値は、好ましくは0.05重量%、特に好ましくは0.08重量%、最も好ましくは0.1重量%、とりわけ好ましくは0.15重量%である。また、透気度の上昇を抑制することができ、電解液浸透性を向上することができる点において、前記バインダの含有量の上限値は、好ましくは1.0重量%、より好ましくは0.7重量%、特に好ましくは0.6重量%、最も好ましくは0.4重量%、とりわけ好ましくは0.3重量%である。
 バインダを過剰に用いるとセパレータの空隙を塞ぎ、電気抵抗が増大する傾向がある。また、バインダの使用量が過少であると、多孔質基材との密着性が不十分となる傾向がある。
 前記スラリーは微小繊維とバインダとを上記範囲で含有するため、微小繊維のみの場合に比べて、微小繊維間の結着性が向上する。これにより、前記スラリーを用いてスラリーの固化物からなる不織布と多孔質基材との積層体である二次電池用セパレータを製造した場合には、前記不織布の強度が高められ、且つ、前記不織布の多孔質基材への密着性が向上する。そのため、得られる二次電池用セパレータは耐熱性(例えば、高温環境下における形状保持性)に特に優れる。一方、バインダの含有量が上記範囲を下回る場合は、前記不織布の強度が低下する傾向がある。その上、前記不織布と多孔質基材とが剥離し易くなり、高温環境下において多孔質基材の形状を保持することが困難となる傾向がある。
 前記スラリーの、温度25℃、せん断速度100(1/s)における粘度は、例えば10~10000mPa・sであり、なかでも、均一な塗工を可能とする点において、好ましくは50~5000mPa・s、特に好ましくは150~3000mPa・sである。前記スラリーの粘度は、水の含有量を調整することでコントロールすることができる。
 前記スラリー中の不揮発分濃度は、形成する不織布の厚さに応じて適宜調整することができるが、例えば0.5~5重量%である。
 前記スラリーは、不揮発分として前記微小繊維と前記バインダ以外にも他の成分(例えば、分散剤、界面活性剤等)を含有していても良いが、前記スラリーに含まれる不揮発分全量における、前記微小繊維と前記バインダの合計含有量の占める割合は、例えば50重量%以上、好ましくは60重量%以上、更に好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上、とりわけ好ましくは95重量%以上である。
 また、前記スラリーは、揮発分として少なくとも水を含有する。水は、環境負荷が小さく、安全性に優れるためである。前記スラリーは揮発分として、水以外にも有機溶剤を含有していても良いが有機溶剤の含有量は、スラリーに含まれる揮発成分全量の、例えば50重量%以下であることが好ましく、特に好ましくは30重量%以下、最も好ましくは10重量%以下である。
 前記スラリーは分散性(特に、微小繊維の分散性)に優れ、例えば前記スラリーをスクリュー管瓶(容量6mL、アズワン(株)製、No.2)に、底部から30mmの高さまで入れ、蓋を閉めて25℃(±2℃)で7日間静置した場合の、スラリーの分離界面より上層(水相)の幅は、例えば15mm以下、好ましくは9mm以下、特に好ましくは5mm以下、最も好ましくは3mm以下である。そのため、前記スラリーを使用すれば、均一に微小繊維を含有する不織布を形成することができ、更に微小繊維間の結着性を向上して、高い強度を有する不織布を形成することができる。
 前記スラリーは上記特性を併せ持つため、二次電池用セパレータ(特に、耐熱性に優れる二次電池用セパレータ(=二次電池用耐熱性セパレータ))の形成に好適に使用することができる。
 [不織布]
 本開示の不織布は、上記スラリーの固化物を含む。前記不織布は前記固化物以外の成分を含んでいても良いが、不織布全量における前記固化物の占める割合は、例えば50重量%以上、好ましくは60重量%以上、更に好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上、とりわけ好ましくは95重量%以上である。
 前記不織布は、上記スラリーを塗工し、固化させることにより(具体的には、揮発分を揮発させて除去することにより)、形成することができる。
 前記不織布は耐熱性に優れ、高温環境下でも軟化或いは溶融することなく、不織布の形状(例えば、シート状の形状)を保持することができる。
 前記不織布は多孔性であり、不織布の空隙率は、例えば30~90体積%、好ましくは35~80体積%である。空隙率が上記範囲を上回ると、高温環境下における強度が低下する傾向がある。一方、空隙率が上記範囲を下回ると、リチウムイオンの透過性が悪化し電気抵抗が増大する傾向がある。
 前記不織布の透気度(=透気抵抗度)は、例えば1~1000sec/100mL、好ましくは1~500sec/100mL、特に好ましくは1~300sec/100mL、最も好ましくは1~100sec/100mLである。透気度が上記範囲を上回ると、リチウムイオンの透過性が悪化して、電気抵抗が増大する傾向がある。一方、透気度が上記範囲を下回ると、強度が低下して、高温環境下における多孔質基材の収縮を抑制する効果が不十分となる傾向がある。
 前記不織布の厚みは、例えば0.5~20μmであり、不織布の強度を担保して、高温環境下における多孔質基材の収縮を抑制する効果を十分に発揮することができる点において、好ましくは1μm超、10μm以下、より好ましくは1.5~10μm、特に好ましくは2~10μmである。また、前記厚みの上限値は、透気度を向上することができる点、及び電極の充填密度を向上することができ、二次電池をより一層小型化することができる点で、好ましくは10μm、より好ましくは8μm、特に好ましくは6μm、最も好ましくは5μm、とりわけ好ましくは4.5μmである。
 前記不織布は非常に軽量であり、その坪量は例えば10g/m以下であり、電池の軽量化に資する点において、好ましくは9g/m以下、特に好ましくは7g/m以下、最も好ましくは5g/m以下である。また、坪量の下限値は、例えば0.1g/mである。
 前記不織布は上記特性を兼ね備えるため、二次電池用セパレータの構成成分として好適に使用することができる。
 [二次電池用セパレータ]
 本開示の二次電池用セパレータは、上記不織布と多孔質基材との積層体を含む。尚、多孔質基材は後に詳述する。前記セパレータは、不織布と多孔質基材以外の構成成分を含んでいても良い。
 すなわち、前記セパレータは、上記不織布からなる不織布層と、多孔質基材からなる多孔質基材層とを含む。
 そして、前記セパレータは、不織布層において特定の繊維径を有する微小繊維を均一に含有する。例えば、前記セパレータの不織布層について、3cm×3cmの範囲を300ピクセル×300ピクセルの解像度で写真撮影し、微小繊維が乗っている画素をカウントし、下記式から算出される微小繊維の分散性指標は、例えば0.9超であり、好ましくは0.97超である。
 分散性指標=微小繊維が乗っている画素数/全画素数
 前記セパレータは上記の通り、特定の繊維径を有する微小繊維を不織布層に均一に含有するため、優れた耐熱性を示し、130℃における収縮率(例えば、多孔質基材のMD方向収縮率、具体的には実施例に記載の方法による収縮率)は、例えば20%以下、好ましくは15%以下、特に好ましくは12%以下、最も好ましくは10%以下である。そのため、高温環境下でもセパレータの形状を保持することができ、セパレータが変形することによる電極の短絡を防止することができる。
 また、前記二次電池用セパレータの透気度は、例えば50~4000sec/100mLである。透気度の上限値は、好ましくは1000sec/100mL、より好ましくは800sec/100mL、更に好ましくは600sec/100mL、特に好ましくは500sec/100mL、最も好ましくは400sec/100mLである。透気度の下限値は、好ましくは70sec/100mLである。そのため、透気度の上昇率が極めて小さく、電解液浸透性に優れる。
 更に、前記二次電池用セパレータは不織布層の厚みを薄化しても(例えば、不織布層の厚みを1μm超、3μm以下にまで薄化しても)、優れた耐熱性を維持することができる。
 更にまた、前記二次電池用セパレータは非常に軽量である。そのため、前記二次電池用セパレータを備える二次電池を軽量化することができ、前記二次電池を利用する電気自動車等の燃費向上に資する。
 前記二次電池用セパレータは、不織布を薄化しても十分な耐熱性を担保することができるため、耐熱性を維持しつつ二次電池用セパレータの総厚みを、例えば10~50μm、好ましくは15~30μmまで薄化することができる。そのため、前記二次電池用セパレータは、電池の充填密度を高めることができ、二次電池の小型化に資する。
 〈多孔質基材〉
 前記多孔質基材は、リチウムイオン二次電池において、リチウムイオンが電極間を移動可能とする空隙を備え、且つ、二次電池内が異常高温となった場合には、軟化して前記空隙を塞ぐことで電極間のリチウムイオンの流れを停止させる「シャットダウン機能」を発揮する部材である。
 前記多孔質基材の空隙の大きさは、例えば0.01~1μm、好ましくは0.02~0.06μmである。空隙の大きさが上記範囲を上回ると絶縁性が低下して、短絡し易くなる傾向がある。一方、空隙の大きさが上記範囲を下回ると、電気抵抗が増大する傾向がある。
 前記多孔質基材の空隙率は、例えば20~70体積%であり、好ましくは30~60体積%である。空隙率が上記範囲を上回ると、強度が不十分となる傾向がある。一方、空隙率が上記範囲を下回ると、リチウムイオンの透過性が悪化して電気抵抗が増大する傾向がある。
 前記多孔質基材の透気度は、例えば10~600sec/100mL、好ましくは50~400sec/100mL、特に好ましくは50~350sec/100mLである。透気度が上記範囲を上回ると、リチウムイオンの透過性が悪化し電気抵抗が増大する傾向がある。一方、透気度が上記範囲を下回ると、強度が不十分となる傾向がある。
 前記多孔質基材は、電解液に不溶性を示す材料であって、高温環境下では軟化する材料からなる基材である。前記材料としては、例えば熱可塑性ポリマーが好ましい。前記熱可塑性ポリマーとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリエチレンテレフタレート等のポリエステル;2,6−ナイロン等の脂肪族ポリアミド等が挙げられる。
 前記多孔質基材の材料は、前記熱可塑性ポリマーのなかから、所望のシャットダウン温度に応じて適宜選択して使用することが好ましい。例えば、シャットダウン温度を150℃に設定する場合は、融点若しくは軟化温度が140~150℃である熱可塑性ポリマーを使用することが好ましい。
 前記多孔質基材の厚みは、例えば5~40μm、好ましくは8~30μmである。厚みが上記範囲を上回ると電池の電気抵抗が上がり、また体積容量が低下する傾向がある。一方、厚みが上記範囲を下回ると、強度が不十分となる傾向がある。
 前記多孔質基材は、例えば、前記多孔質基材の材料(例えば、ポリオレフィン)を加熱・溶融して押出しフィルムを形成し、得られたフィルムを延伸することによって多孔質化せしめる方法等によって製造することができる。
 [二次電池用セパレータの製造方法]
 前記二次電池用セパレータは、例えば、上記スラリーを、多孔質基材の表面に塗布し、乾燥させて、前記スラリーの固化物からなる不織布と多孔質基材との積層体を形成する工程を経て製造することができる。
 上記スラリーを塗布する方法としては、特に制限がなく、例えば、印刷法、コーティング法等により行うことができる。具体的には、スクリーン印刷法、マスク印刷法、オフセット印刷法、インクジェット印刷法、フレキソ印刷法、グラビア印刷法、シルクスクリーン印刷法、スタンピング、ディスペンス、スキージ法、噴霧、刷毛塗り等が挙げられる。また、フィルムアプリケーター、バーコーター、ダイコーター、コンマコーター、グラビアコーター等により塗工してもよい。
 上記スラリーは、多孔質基材の少なくとも一方の面に塗布すればよいが、なかでも、二次電池用セパレータの総厚みを薄化することができ、電池の充填密度を高めることができ、二次電池の小型化に資する点において、多孔質基材の一方の面のみに塗布することが好ましい。
 スラリーを乾燥させる方法としては、特に限定されないが、加熱、減圧、送風等の方法が挙げられる。加熱温度や加熱時間、減圧度や減圧時間、送風量、送風速度、送風温度、送風する気体の種類や乾燥度、送風する対象となる領域、送風の方向等は、任意に選択することができる。
 [二次電池]
 本開示の二次電池は、正極活物質層が正極集電体に配置された正極と、負極活物質層が負極集電体に配置された負極と、セパレータと、電解液とを含む発電要素を、外装体内部に含むものである。そして、前記二次電池は、セパレータとして上述の二次電池用セパレータを使用することを特徴とする。
 前記二次電池は、正極、負極、及びセパレータを積層して巻回したものを、電解液と共に缶などの容器に封入した巻回型電池であっても、正極、負極、及びセパレータを積層したシート状物を、電解液と共に、比較的柔軟な外装体内部に封じ込めた積層型電池であってもよい。
 前記二次電池は、耐熱性(例えば、高温環境下における形状保持性)に優れた上述の二次電池用セパレータを備えるため安全性に優れる。また、前記二次電池用セパレータは軽量であり、且つ厚みが薄い。そのため、前記二次電池は軽く、その上、電極の充填密度を向上することができるので、二次電池の小型化に対応することができる
 そのため、前記二次電池を使用すれば、スマートフォンやノートパソコンなどの情報関連機器、ハイブリッド車や電気自動車等を、安全性を高く維持しつつ、軽量化することができる。例えば、前記二次電池を利用する電気自動車は、大幅な軽量化が可能であり、それにより燃費を飛躍的に向上することができる。
 以上、本開示の各構成及びそれらの組み合わせ等は一例であって、本開示の主旨から逸脱しない範囲において、適宜、構成の付加、省略、置換、及び変更が可能である。また、本開示は、実施形態によって限定されることはなく、特許請求の範囲の記載によってのみ限定される。
 以下、実施例により本開示をより具体的に説明するが、本開示はこれらの実施例により限定されるものではない。
 調製例1(微小繊維の調製)
 芳香族ポリアミド繊維(東レ・デュポン(株)製)のパルプ状物(平均繊維長0.3mm、平均繊維径10μm)100gに水9.9Lを加えてよく攪拌した。得られた分散液を高圧ホモジナイザーで20℃、200MPaで処理し、1.0重量%微小アラミド繊維(1)懸濁液を調製した。
 得られた微小アラミド繊維(1)のSEM画像を図1に示す。また、得られた微小アラミド繊維(1)をレーザー回折式粒度分布測定装置(LA−960、(株)堀場製作所製)で測定した。結果を図2に示す。前記方法で測定した微小繊維の繊維径が1μm以下の累積頻度(y)、前記方法で測定した微小繊維の繊維径が2μm以下の累積頻度(x)は、下記式を満たした。
 y=1.00x
 比較調製例1(微小繊維の調製)
 微小アラミド繊維(2)(ダイセルファインケム(株)製、商品名:ティアラ、品番:KY400S)のSEM画像を図1に示す。また、前記微小アラミド繊維(2)をレーザー回折式粒度分布測定装置(LA−960、(株)堀場製作所製)で測定した。結果を図2に示す。前記方法で測定した微小繊維の繊維径が1μm以下の累積頻度(y)、前記方法で測定した微小繊維の繊維径が2μm以下の累積頻度(x)は、下記式を満たした。
 y=0.96x
 実施例1
 (スラリーの調製)
 水1484gに、CMC(乾燥減量:5.6%、1重量%水溶液粘度:1000~2000mPa・s、ダイセルファインケム(株)製、品番:1380)を15.89g加え、ディスパーを用いて、3000rpmで30分撹拌することで1.0重量%CMC水溶液を調製した。
 この1.0重量%CMC水溶液1重量部に調製例1で得られた1.0重量%微小アラミド繊維(1)懸濁液を9重量部添加し、ディスパーを用いて、3000rpmで30分撹拌することでスラリー(1)を得た。
 (セパレータの作製)
 多孔質基材として、コロナ放電処理を施したポリエチレン微多孔膜(1)(ダブル・スコープ(株)製、厚み:20μm、透気度:235sec/100mL)を使用し、前記ポリエチレン微多孔膜(1)の片面に、得られたスラリー(1)を、自動塗工装置(テスター産業(株)製、型番:PI−1210)を用いて、240mm/secの速度で塗工した(塗工厚み:125μm)。
 次に、塗工されたスラリー(1)を、60℃の恒温槽で20分間乾燥させた。これにより、スラリー(1)の固化物からなる不織布/ポリエチレン積層体を得、これをセパレータ(1)とした。
 実施例2,3(セパレータの作製)
 (セパレータの作製)工程において、塗工厚みを、下記表1に記載の通りに変更した以外は実施例1と同様にして、スラリー(1)の固化物からなる不織布/ポリエチレン積層体を得た。これらをそれぞれ、セパレータ(2)、(3)とした。
 比較例1
 (スラリーの調製)
 1.0重量%の微小アラミド繊維(2)3重量部に、実施例1と同様の方法で得られた1.0重量%CMC水溶液1重量部と水1重量部を添加し、ディスパーを用いて、3000rpmで30分撹拌することでスラリー(2)を得た。
 (セパレータの作製)
 スラリー(1)に代えてスラリー(2)を使用した以外は実施例1と同様にして、スラリー(2)の固化物からなる不織布/ポリエチレン積層体を得た。これらをセパレータ(4)とした。
 比較例2(セパレータの作製)
 (セパレータの作製)工程において、塗工厚みを、下記表1に記載の通りに変更した以外は比較例1と同様にして、スラリー(2)の固化物からなる不織布/ポリエチレン積層体を得た。これらを、セパレータ(5)とした。
 比較例3(セパレータの作製)
 不織布を積層せず、ポリエチレン微多孔膜(1)のみをセパレータ(6)とした。
Figure JPOXMLDOC01-appb-T000009
 実施例及び比較例で得られたセパレータ(1)~(6)の、微小繊維の分散性、透気度、及び耐熱性を以下の方法で測定した。
 (微小繊維の分散性の評価)
 得られたセパレータの不織布面について、3cm×3cmの範囲を300ピクセル×300ピクセルの解像度で、黒画用紙をバックに写真撮影し、アラミド繊維が乗っている画素を以下のようにカウントした。尚、アラミド繊維は白く写り、アラミド繊維が乗ってない部分は裏地が透けて黒く写る。
 まず、画像のR値(0~255)、G値(0~255)、B値(0~255)の平均を取ってその値をR値、G値、B値に指定することでグレースケール化した。この値を明度と呼ぶ。そして、全画素の明度の平均をとり、明度の平均−3を閾値とし、明度がそれ以上のときアラミド繊維が乗っているとカウントした。
 そして、下記式から微小繊維の分散性指標を算出して、微小繊維の分散性を評価した。
 分散性指標=アラミド繊維が乗っている画素数/全画素数
〈分散性評価基準〉
 ○(良):分散性指標が0.97を超える場合
 △(可):分散性指標が0.9を超え、0.97以下の場合
 ×(不可):分散性指標が0.9以下の場合
 (透気度試験)
 透気度は、テスター産業(株)製のガーレー式デンソメーターB型を用い、JIS P8117に準拠した方法で測定した。秒数はデジタルオートカウンターで測定した。透気度(ガーレー値)の値が小さいほど空気の透過性が高いことを意味する。
 (耐熱性試験)
 実施例及び比較例で得られたセパレータ(40mm×40mmの正方形)をアルミ板上に置いた。続いて、アルミ板に乗せた前記セパレータを、130℃の恒温槽の中に入れ、30分間加熱した。そして、加熱後のセパレータの収縮率を下記式から算出し、これを耐熱性の指標とした。尚、収縮率が小さいほど耐熱性に優れることを意味する。
 収縮率(%)=[1−(加熱後のセパレータの最も収縮した部分のMD方向長さ[mm]/加熱前のセパレータのMD方向の長さ[mm])]×100
 上記結果を下記表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000010
 表2より、実施例で得られたセパレータは耐熱性に優れ、不織布の厚みを薄化しても(不織布の厚み3μm以下にまで薄化しても)、収縮率を極めて低い値に抑制できることがわかる。
 以上のまとめとして、本開示の構成及びそのバリエーションを以下に付記する。
[1] 下記微小繊維と、バインダと、水とを含むスラリー。
微小繊維:融点(融点がないものは分解温度)が150℃以上であり、下記式(1)を満たす。
 y>0.97x     (1)
(式中、yはレーザー回折式粒度分布測定装置で測定した、微小繊維の繊維径が1μm以下の累積頻度を示し、xは前記方法で測定した微小繊維の繊維径が2μm以下の累積頻度を示す。尚、前記繊維径は、レーザー回折式粒度分布測定で得られる体積球相当径である)
[2] 前記微小繊維が下記式(1’)を満たす、[1]に記載のスラリー。
 y>0.98x     (1’)
(式中、yはレーザー回折式粒度分布測定装置で測定した、微小繊維の繊維径が1μm以下の累積頻度を示し、xは前記方法で測定した微小繊維の繊維径が2μm以下の累積頻度を示す。尚、前記繊維径は、レーザー回折式粒度分布測定で得られる体積球相当径である)
[3] 前記微小繊維が下記式(1”)を満たす、[1]に記載のスラリー。
 y>0.99x     (1”)
(式中、yはレーザー回折式粒度分布測定装置で測定した、微小繊維の繊維径が1μm以下の累積頻度を示し、xは前記方法で測定した微小繊維の繊維径が2μm以下の累積頻度を示す。尚、前記繊維径は、レーザー回折式粒度分布測定で得られる体積球相当径である)
[4] 前記微小繊維の平均繊維径が0.01~1μm、平均長さが0.01~2mmである、[1]~[3]の何れか1つに記載のスラリー。
[5] 前記微小繊維の平均アスペクト比(平均長さ/平均繊維径)が10~2000である、[1]~[4]の何れか1つに記載のスラリー。
[6] 前記微小繊維がアラミド繊維である、[1]~[5]の何れか1つに記載のスラリー。
[7] 前記バインダの融点(融点がないものは分解温度)が160℃以上である、[1]~[6]の何れか1つに記載のスラリー。
[8] 前記バインダの1重量%水溶液の粘度(25℃、60回転/分における)が100~5000mPa・sである、[1]~[7]の何れか1つに記載のスラリー。
[9] 前記バインダが水系バインダである、[1]~[8]の何れか1つに記載のスラリー。
[10] 前記バインダが、多糖類誘導体(1)、式(2)で表される構成単位を有する化合物、及び式(3)で表される構成単位を有する化合物から選択される少なくとも1種である、[1]~[8]の何れか1つに記載のスラリー。
[11] 前記バインダが、セルロース、デンプン、グリコーゲン、及びこれらの誘導体から選択される少なくとも1種である、[1]~[8]の何れか1つに記載のスラリー。
[12] 前記微小繊維の含有量が0.1~5.0重量%である、[1]~[11]の何れか1つに記載のスラリー。
[13] 前記バインダの含有量が0.01~5重量%である、[1]~[12]の何れか1つに記載のスラリー。
[14] 前記スラリーの、25℃、せん断速度100(1/S)における粘度が10~10000mPa・sである、[1]~[13]の何れか1つに記載のスラリー。
[15] 前記スラリーの不揮発分濃度が0.5~5重量%である、[1]~[14]の何れか1つに記載のスラリー。
[16] 前記スラリーの不揮発分濃度が0.5~5重量%であり、前記不揮発分全量における、前記微小繊維と前記バインダの合計含有量の占める割合が50重量%以上である、[1]~[14]の何れか1つに記載のスラリー。
[17] 前記スラリーは有機溶剤を含有していてもよいが、有機溶剤の含有量はスラリーに含まれる揮発分全量の50重量%以下である、[1]~[16]の何れか1つに記載のスラリー。
[18] [1]~[17]の何れか1つに記載のスラリーの固化物を含む不織布。
[19] スラリーの固化物の含有量が50重量%以上である、[18]に記載の不織布。
[20] 空隙率が30~90体積%である、[18]又は[19]に記載の不織布。
[21] 透気度が1~1000sec/100mLである、[18]~[20]の何れか1つに記載の不織布。
[22] 厚みが0.5~20μmである、[18]~[21]の何れか1つに記載の不織布。
[23] 坪量が10g/m以下である、[18]~[22]の何れか1つに記載の不織布。
[24] [18]~[23]の何れか1つに記載の不織布と多孔質基材との積層体を備える、二次電池用セパレータ。
[25] 前記不織布に含まれる微小繊維の、下記分散性指標が0.9超である、[24]に記載の二次電池用セパレータ。
分散性指標:
前記不織布の3cm×3cmの範囲を300ピクセル×300ピクセルの解像度で写真撮影し、微小繊維が乗っている画素をカウントして、下記式から算出する。
 分散性指標=微小繊維が乗っている画素数/全画素数
[26] 前記多孔質基材が、融点若しくは軟化温度が140~150℃である熱可塑性ポリマーからなる多孔質基材である、[24]又は[25]に記載の二次電池用セパレータ。
[27] 前記多孔質基材が、融点若しくは軟化温度が140~150℃であるポリオレフィンからなる多孔質基材である、[24]又は[25]に記載の二次電池用セパレータ。
[28] 前記多孔質基材の厚みが5~40μmである、[24]~[27]の何れか1つに記載の二次電池用セパレータ。
[29] 下記方法で算出される収縮率が20%以下である、[24]~[28]の何れか1つに記載の二次電池用セパレータ。
収縮率算出方法:
セパレータ(40mm×40mmの正方形)を130℃で30分間加熱し、下記式から収縮率を算出する。
 収縮率(%)=[1−(加熱後のセパレータの最も収縮した部分のMD方向長さ[mm]/加熱前のセパレータのMD方向の長さ[mm])]×100
[30] 透気度が50~4000sec/100mLである、[24]~[29]の何れか1つに記載の二次電池用セパレータ。
[31] 総厚みが10~50μmである、[24]~[30]の何れか1つに記載の二次電池用セパレータ。
[32] [1]~[17]の何れか1つに記載のスラリーを、多孔質基材の表面に塗布し、乾燥させる工程を経て、前記スラリーの固化物を含む不織布と多孔質基材との積層体を備える二次電池用セパレータを得る、二次電池用セパレータの製造方法。
[33] [24]~[31]の何れか1つに記載の二次電池用セパレータを備えた二次電池。
 本開示のスラリーを使用すれば、厚みが薄くても優れた耐熱性を有する不織布を製造することができる。また、このようにして得られる不織布は、二次電池用セパレータとして有用である。

Claims (10)

  1.  下記微小繊維と、バインダと、水とを含むスラリー。
    微小繊維:融点(融点がないものは分解温度)が150℃以上であり、下記式(1)を満たす。
     y>0.97x     (1)
    (式中、yはレーザー回折式粒度分布測定装置で測定した、微小繊維の繊維径が1μm以下の累積頻度を示し、xは前記方法で測定した微小繊維の繊維径が2μm以下の累積頻度を示す。尚、前記繊維径は、レーザー回折式粒度分布測定で得られる体積球相当径である)
  2.  前記微小繊維の平均繊維径が0.01~1μm、平均長さが0.01~2mmである、請求項1に記載のスラリー。
  3.  前記微小繊維がアラミド繊維である、請求項1又は2に記載のスラリー。
  4.  前記バインダが水系バインダである、請求項1~3の何れか1項に記載のスラリー。
  5.  前記バインダが、多糖類誘導体(1)、下記式(2)で表される構成単位を有する化合物、及び下記式(3)で表される構成単位を有する化合物から選択される少なくとも1種である、請求項1~3の何れか1項に記載のスラリー。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水酸基、カルボキシル基、フェニル基、N−置換又は無置換カルバモイル基、又は2−オキソ−1−ピロリジニル基を示す)
    Figure JPOXMLDOC01-appb-C000002
    (式中、nは2以上の整数を示し、Lはエーテル結合又は(−NH−)基を示す)
  6.  前記バインダが、セルロース、デンプン、グリコーゲン、及びこれらの誘導体から選択される少なくとも1種である、請求項1~3の何れか1項に記載のスラリー。
  7.  請求項1~6の何れか1項に記載のスラリーの固化物を含む不織布。
  8.  請求項7に記載の不織布と多孔質基材との積層体を備える、二次電池用セパレータ。
  9.  請求項1~6の何れか1項に記載のスラリーを、多孔質基材の表面に塗布し、乾燥させる工程を経て、前記スラリーの固化物を含む不織布と多孔質基材との積層体を備える二次電池用セパレータを得る、二次電池用セパレータの製造方法。
  10.  請求項8に記載の二次電池用セパレータを備えた二次電池。
PCT/JP2021/005579 2020-02-25 2021-02-09 スラリー WO2021172081A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-029478 2020-02-25
JP2020029478A JP2021136088A (ja) 2020-02-25 2020-02-25 スラリー

Publications (1)

Publication Number Publication Date
WO2021172081A1 true WO2021172081A1 (ja) 2021-09-02

Family

ID=77490041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005579 WO2021172081A1 (ja) 2020-02-25 2021-02-09 スラリー

Country Status (3)

Country Link
JP (1) JP2021136088A (ja)
TW (1) TW202137607A (ja)
WO (1) WO2021172081A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101205A1 (ja) * 2009-03-04 2010-09-10 東レ株式会社 カーボンナノチューブ含有組成物、カーボンナノチューブ製造用触媒体およびカーボンナノチューブ水性分散液
JP2015111546A (ja) * 2013-10-29 2015-06-18 パナソニック株式会社 非水電解質二次電池用セパレータ及び非水電解質二次電池
WO2019163933A1 (ja) * 2018-02-26 2019-08-29 株式会社ダイセル 二次電池用セパレータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101205A1 (ja) * 2009-03-04 2010-09-10 東レ株式会社 カーボンナノチューブ含有組成物、カーボンナノチューブ製造用触媒体およびカーボンナノチューブ水性分散液
JP2015111546A (ja) * 2013-10-29 2015-06-18 パナソニック株式会社 非水電解質二次電池用セパレータ及び非水電解質二次電池
WO2019163933A1 (ja) * 2018-02-26 2019-08-29 株式会社ダイセル 二次電池用セパレータ

Also Published As

Publication number Publication date
TW202137607A (zh) 2021-10-01
JP2021136088A (ja) 2021-09-13

Similar Documents

Publication Publication Date Title
JP6906485B2 (ja) 二次電池用セパレータ
JP7314796B2 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP7053828B2 (ja) 微細パタンを有するセパレータ、捲回体および非水電解質電池
WO2020017614A1 (ja) 電池の電極活物質層形成用スラリー
JP4974448B2 (ja) 電子部品用セパレータの製造方法
WO2015115513A1 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP2006331759A (ja) 電子部品用セパレータ及びその製造方法
US20220238884A1 (en) Slurry
JP2021180097A (ja) 二次電池用セパレータ、セパレータの製造方法、及びセパレータを備えた二次電池
WO2021230037A1 (ja) 二次電池用セパレータ
JP2015115132A (ja) 電池用セパレータ
JP6921333B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
WO2019163933A1 (ja) 二次電池用セパレータ
WO2021172081A1 (ja) スラリー
WO2021038697A1 (ja) スラリー
JP2006351365A (ja) 電子部品用セパレータおよび電子部品
JP2016182816A (ja) 積層体及びその製造方法
WO2019065660A1 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP2023525824A (ja) 二次電池用セパレータの製造方法、それによって製造されるセパレータ、及びそれを備える二次電池
JP2022029993A (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP2021034256A (ja) スラリー
JP2014127440A (ja) 工程フィルム付きリチウムイオン二次電池用セパレータ、およびその製造方法
WO2022044791A1 (ja) 微小アラミド繊維とその製造方法、アラミド繊維水分散液、不織布、二次電池用セパレータ、及び二次電池
JP2015170441A (ja) 電池用セパレータ
JP2022048520A (ja) 非水電解質二次電池用セパレータ及び二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21760453

Country of ref document: EP

Kind code of ref document: A1