WO2021171999A1 - 導電性基体および二次電池 - Google Patents

導電性基体および二次電池 Download PDF

Info

Publication number
WO2021171999A1
WO2021171999A1 PCT/JP2021/004735 JP2021004735W WO2021171999A1 WO 2021171999 A1 WO2021171999 A1 WO 2021171999A1 JP 2021004735 W JP2021004735 W JP 2021004735W WO 2021171999 A1 WO2021171999 A1 WO 2021171999A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
conductive substrate
electrode active
material layer
secondary battery
Prior art date
Application number
PCT/JP2021/004735
Other languages
English (en)
French (fr)
Inventor
永田 佳秀
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202180016026.3A priority Critical patent/CN115176363A/zh
Priority to JP2022503237A priority patent/JP7347647B2/ja
Priority to EP21760119.4A priority patent/EP4095951A4/en
Publication of WO2021171999A1 publication Critical patent/WO2021171999A1/ja
Priority to US17/895,316 priority patent/US20220407155A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/198Sealing members characterised by the material characterised by physical properties, e.g. adhesiveness or hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/72Current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This technology relates to conductive substrates and secondary batteries.
  • a conductive resin layer is arranged between a pair of conductive ion blocking layers, and a pair of the conductive resin layers are arranged. It is electrically bonded to the conductive ion blocking layer of (see, for example, Patent Document 1). Further, in order to obtain high electron conductivity, a conductive material is embedded in the organic structure so that at least electron conductivity in the film thickness direction can be obtained (see, for example, Patent Document 2).
  • This technology was made in view of such problems, and its purpose is to provide a conductive substrate and a secondary battery capable of achieving both electrical characteristics and physical characteristics.
  • the conductive substrate of one embodiment of the present technology is a retainer containing an amorphous first super engineering plastic, and a central portion containing a conductive material and a central portion thereof, which is dispersed inside the retainer. It is provided with a plurality of coating particles including a coating portion that covers the surface and contains a crystalline second super engineering plastic.
  • the secondary battery of the embodiment of the present technology is provided with the conductive substrate of the above-described embodiment of the present technology as a current collector.
  • a plurality of coated particles are dispersed inside a retainer (amorphous first super engineering plastic). Since the coating particles include a central portion (conductive material) and a coating portion (crystalline second super engineering plastic), both electrical and physical properties can be achieved at the same time.
  • effect of the present technology is not necessarily limited to the effect described here, and may be any effect of a series of effects related to the present technology described later.
  • the conductive substrate described here is a support having conductivity. This conductive substrate is used to support the supported object and to secure the conductivity (electron conductivity) of the supported object.
  • the use of the conductive substrate is not particularly limited, but specifically, it is an electrode of an electronic device that requires current collection, and the type of the electronic device is not particularly limited, but specifically, a battery and a capacitor. And so on.
  • the battery may be a primary battery or a secondary battery.
  • the above-mentioned supported body is an active material layer for advancing an electrode reaction, and when the electronic device is a secondary battery, the above-mentioned electrode reaction is performed. , It is a charge / discharge reaction.
  • FIG. 1 schematically shows a cross-sectional structure of a conductive substrate according to an embodiment of the present technology.
  • the dimensions of the conductive substrate length in the X-axis direction and thickness in the Z-axis direction
  • the dimensions (particle size) of the coated particles 20 are deformed (particle size). (Adjusted appropriately).
  • this conductive substrate includes a holding body 10 and a plurality of coated particles 20.
  • the retainer 10 holds the plurality of coated particles 20 in a state in which the plurality of coated particles 20 are dispersed inside.
  • the retainer 10 contains any one or more of the amorphous first super engineering plastics (hereinafter, referred to as "first SEP").
  • first SEP amorphous first super engineering plastics
  • Super engineering plastic is a general term for high heat resistant plastics (high heat resistant resins) that can continuously exert functions based on physical properties even in a high temperature environment of about 150 ° C. or higher.
  • the "first SEP” is a non-crystalline super engineering plastic among the above-mentioned super engineering plastics.
  • the holding body 10 is a base body of a conductive substrate that holds a plurality of coated particles 20.
  • the holding body 10 containing the first SEP mainly functions to secure the physical properties of the conductive substrate.
  • the first SEP is amorphous, i.e., not crystalline due to the randomly arranged molecular chains, and thus physical properties such as tensile strength and flexural modulus. It has excellent physical properties from the viewpoint of physical characteristics.
  • the holding body 10 containing the first SEP flexibility (or flexibility) is ensured due to the suppression of rigidity and embrittlement, so that the holding body 10 is conductive.
  • the physical durability (physical strength) of the sex substrate is guaranteed. In this case, in particular, even if the content (dispersion amount) of the plurality of central portions 21 in the retainer 10 described later increases, the physical strength of the conductor substrate is ensured.
  • the holding body 10 prevents the conductive substrate from being damaged.
  • the breakage of the conductive substrate includes the generation of cracks, the tearing of the conductive substrate, and the collapse of the conductive substrate.
  • the type of the first SEP is not particularly limited as long as it is any one or more of the amorphous super engineering plastics.
  • Specific examples of the first SEP include polyetherimide (PEI), polysulfone (PSU), polyphenylsulfone (PPSU) and polyarylate (PAR).
  • the dimensions of the conductive substrate are mainly determined according to the length, width, and thickness of the holding body 10. .. Since the length, width, and thickness of the holding body 10 are not particularly limited, they can be arbitrarily set according to the use of the conductive substrate and the like.
  • the conductive substrate may be in the form of a film having flexibility, and since the thickness of the holding body 10 is sufficiently large, the conductive substrate may be formed. May be a plate having rigidity.
  • the plurality of coated particles 20 are dispersed inside the retainer 10, and are retained by the retainer 10.
  • the coating particles 20 include a central portion 21 and a coating portion 22.
  • the central portion 21 contains any one or more of the conductive materials.
  • the central portion 21 containing the conductive material mainly functions to ensure the conductivity of the conductive substrate, and is a so-called conductive filler.
  • the shape of the central portion 21 is not particularly limited, but specifically, any one of a spherical shape (including an elliptical shape), a needle shape, a plate shape, a scale shape, a tubular shape, a fibrous shape, a rod shape, and an indefinite shape.
  • a spherical shape including an elliptical shape
  • a needle shape including an elliptical shape
  • a plate shape a scale shape
  • a tubular shape a tubular shape
  • fibrous shape a rod shape
  • an indefinite shape One type or two or more types.
  • the shape of the central portion 21 is spherical.
  • the type of conductive material is not particularly limited, but specifically, it is a carbon material, a metal material, or the like. This is because excellent conductivity can be obtained.
  • Carbon materials include carbon nanofibers, carbon black, porous carbon, fullerenes, graphene, carbon nanotubes, and carbon microcoils.
  • Carbon nanofibers include vapor-grown carbon fibers (VGCF).
  • Carbon blacks include Ketjen black and acetylene black.
  • the carbon nanotubes include single-walled carbon nanotubes (Single wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs)), and the metal materials include nickel and stainless steel.
  • the shape of the central portion 21 is preferably fibrous. This is because the conductive paths (electron conductive paths) are easily formed due to the fact that the central portions 21 are easily electrically connected to each other inside the holding body 10, so that the conductivity of the conductive substrate is improved. ..
  • the conductive material is preferably a fibrous carbon material, and more specifically, carbon nanofibers, carbon nanotubes, and the like.
  • the dimensions (average particle size and average length) of the central portion 21 are not particularly limited, they can be arbitrarily set according to the application of the conductive substrate and the like.
  • This "average particle size” is a median diameter D50 ( ⁇ m).
  • the covering portion 22 covers the surface of the central portion 21.
  • the covering portion 22 may cover the entire surface of the central portion 21, or may cover only a part of the surface of the central portion 21. In the latter case (partially covered), a plurality of covering portions 22 may cover the surface of the central portion 21 at a plurality of locations separated from each other.
  • the covering portion 22 contains any one or more of the crystalline second super engineering plastics (hereinafter, referred to as "second SEP").
  • the "second SEP” is a super engineering plastic having crystallinity among the above-mentioned super engineering plastics.
  • the covering portion 22 covers the surface of the central portion 21 by interposing between the holding body 10 and the central portion 21.
  • the covering portion 22 containing the second SEP mainly functions to ensure the electrical characteristics of the conductive substrate by electrochemically protecting the surface of the central portion 21.
  • the second SEP has crystallinity, that is, because the molecular chains are regularly arranged, it has excellent physical properties from the viewpoint of electrochemical stability.
  • the electrochemical resistance is ensured due to the decrease in reactivity, so that the covering portion 22 causes a side reaction on the surface of the central portion 21. Is suppressed. In this case, especially when the conductive substrate is used together with the electrolytic solution in applications such as electronic devices, the decomposition reaction of the electrolytic solution on the surface of the central portion 21 is suppressed.
  • the electrochemical stability of the central portion 21 is improved by utilizing the covering portion 22, so that the electrical characteristics of the conductive substrate are improved. improves.
  • the type of the second SEP is not particularly limited as long as it is any one or more of the crystalline super engineering plastics.
  • Specific examples of the second SEP include polyphenylene sulfide (PPS), Polyetheretherketone (PEEK), Polyethersulfone (PES), and Polyamideimide (PAI).
  • the dimension of the covering portion 22 (the coating thickness which is the dimension in the coating direction on the surface of the central portion 21) is not particularly limited, it can be arbitrarily set according to the application of the conductive substrate and the like.
  • the mixing ratio of the holding body 10 (first SEP) and the plurality of central portions 21 (conductive materials) is not particularly limited.
  • the content of the plurality of central portions 21 in the conductive substrate is preferably sufficiently small, specifically, preferably 5% by weight to 25% by weight, and 5% by weight to 20% by weight. More preferably. Since sufficient conductivity can be obtained from the plurality of central portions 21 while suppressing the rigidity and embrittlement of the holding body 10, it becomes easy to ensure both physical strength and conductivity in the conductive substrate. Is.
  • the content of the plurality of central portions 21 in the conductive substrate described here is the weight of the plurality of central portions 21 when the sum of the weight of the holding body 10 and the weight of the covering portion 22 is 100% by weight. Represents what weight% corresponds to.
  • the mixing ratio of the holding body 10 (first SEP) and the plurality of covering portions 22 (second SEP) is not particularly limited.
  • the ratio R1 of the weight of the holding body 10 to the total weight of the holding body 10 and the weights of the plurality of covering portions 22 is based on the total weight of the holding body 10 and the weights of the plurality of covering portions 22. It is preferable that the weight of the plurality of covering portions 22 is larger than the ratio R2. While the reactivity of the surface of the central portion 21 is sufficiently suppressed by the covering portion 22, sufficient flexibility is obtained by the holding body 10, so that the physical strength and the electrochemical stability of the conductive substrate can be guaranteed. This is because it becomes easy to achieve both.
  • the covering portion 22 (second SEP) covers the surface of the central portion 21, the covering portion 22 suppresses the occurrence of side reactions on the surface of the central portion 21. .. Further, since a plurality of coated particles 20 (central portion 21 and covering portion 22) are dispersed inside the holding body 10 (first SEP), the holding body 10 ensures the flexibility of the conductive substrate.
  • a mixture is obtained by mixing a plurality of central portions 21 (powdered conductive material) and a plurality of pellets (second SEP).
  • a melt extrusion molding machine such as a twin-screw extruder is used to knead the mixture while heating it, and to mold the mixture.
  • the second SEP is melted by heating the mixture at a temperature higher than the melting temperature (melting point) of the second SEP.
  • a mixture is obtained by mixing the plurality of coated particles 20 and the plurality of pellets (first SEP). Subsequently, the mixture is kneaded while being heated using an extrusion molding machine such as a T-die extrusion molding machine, and the mixture is molded into a film shape or a plate shape. In this case, the first SEP is melted by heating the mixture at a temperature higher than the melting temperature (melting point) of the first SEP.
  • the melt of the first SEP is molded into a film or a plate while the plurality of coated particles 20 are dispersed in the melt of the first SEP. Therefore, since the plurality of coated particles 20 are held by the holding body 10 containing the first SEP, a conductive substrate including the holding body 10 and the plurality of coated particles 20 is completed.
  • a plurality of coated particles 20 are dispersed inside the retainer 10 (amorphous first SEP), and the coated particles 20 are the central portion 21 (conductive material) and the coated portion 22. (Crystally second SEP) is included.
  • the first SEP contains polyetherimide or the like and the second SEP contains polyphenylene sulfide or the like, sufficient flexibility can be obtained by the retainer 10 and a side reaction is sufficiently generated by the coating portion 22. Since it is suppressed by, a higher effect can be obtained.
  • the conductivity of the conductive substrate is improved due to the tendency of the conductive path to be formed, so that a higher effect can be obtained.
  • the ratio R1 is larger than the ratio R2, it becomes easy to balance the guarantee of physical strength and the guarantee of electrochemical stability in the conductive substrate, so that a higher effect can be obtained.
  • the secondary battery described here is a bipolar type secondary battery having a positive electrode active material layer and a negative electrode active material layer together with a current collector, and the secondary battery utilizes the storage and release of the electrode reactant. Battery capacity is obtained.
  • the charge capacity of the negative electrode active material layer is larger than the discharge capacity of the positive electrode active material layer in order to prevent the electrode reactant from depositing on the surface of the negative electrode active material layer during charging. .. That is, the electrochemical capacity per unit area of the negative electrode active material layer is set to be larger than the electrochemical capacity per unit area of the positive electrode active material layer.
  • the type of electrode reactant is not particularly limited, but is a light metal such as an alkali metal and an alkaline earth metal.
  • Alkali metals include lithium, sodium and potassium, and alkaline earth metals include beryllium, magnesium and calcium.
  • a secondary battery whose battery capacity can be obtained by utilizing the storage and release of lithium is a so-called lithium ion secondary battery.
  • lithium ion secondary battery lithium is occluded and released in an ionic state.
  • FIG. 2 shows a cross-sectional configuration of a secondary battery according to an embodiment of the present technology. As shown in FIG. 2, this secondary battery includes a battery element 30, a positive electrode lead 40, and a negative electrode lead 50.
  • the battery element 30 is a main part that promotes an electrode reaction, that is, a charge / discharge reaction of a secondary battery.
  • the battery element 30 mainly has a multilayer structure in which electrodes 31 are alternately laminated via a separator 32 and an electrolyte layer 33 in the height direction (Z-axis direction). More specifically, the electrodes 31 are alternately laminated via the separator 32, and the electrolyte layer 33 is interposed between the electrode 31 and the separator 32.
  • the battery element 30 includes a plurality of electrodes 31, a plurality of separators 32, and a plurality of electrolyte layers 33.
  • the electrodes 31 are a current collector 31A having a pair of surfaces (one surface and another surface) facing in opposite directions, a positive electrode active material layer 31B arranged on one surface of the current collector 31A, and the current collector. It includes a negative electrode active material layer 31C arranged on the other surface of 31A. That is, the electrode 31 is a double-sided electrode in which active material layers (positive electrode active material layer 31B and negative electrode active material layer 31C) are arranged on both sides of the current collector 31A.
  • the configuration of the current collector 31A is the same as the configuration of the conductive substrate described above.
  • the current collector 31A Since the positive electrode active material layer 31B, the current collector 31A, and the negative electrode active material layer 31C are laminated in this order, the current collector 31A has the positive electrode active material layer 31B and the negative electrode active material layer 31C having opposite polarities. Intervenes between and. As described above, the electrode 31 is a twin-bent electrode including a positive electrode active material layer 31B and a negative electrode active material layer 31C having opposite polarities.
  • the electrode 31 closest to the positive electrode lead 40 (the lowest electrode 31 in the height direction) has a positive electrode without the negative electrode active material layer 31C arranged on the current collector 31A. It is a single-sided electrode in which only the active material layer 31B is arranged. This is because the positive electrode active material layer 31B is electrically connected to the positive electrode lead 40 via the current collector 31A.
  • the electrode 31 closest to the negative electrode lead 50 (the uppermost electrode 31 in the height direction) has a negative electrode without the positive electrode active material layer 31B arranged on the current collector 31A. It is a single-sided electrode in which only the active material layer 31C is arranged. This is because the negative electrode active material layer 31C is electrically connected to the negative electrode lead 50 via the current collector 31A.
  • the battery element 30 has a multi-layer structure in which electrode elements 34 are alternately laminated via the current collector 31A in the height direction so that the uppermost layer and the lowermost layer each form the current collector 31A. have.
  • the battery element 30 includes a plurality of electrode elements 34 and a plurality of current collectors 31A.
  • the electrode element 34 has a current collector 31A, a positive electrode active material layer 31B arranged on one surface of the current collector 31A via an electrolyte layer 33, and an electrolyte layer 33 on the other surface of the current collector 31A. It includes the arranged negative electrode active material layer 31C.
  • the positive electrode active material layer 31B, the electrolyte layer 33, the separator 32, the electrolyte layer 33, and the negative electrode active material layer 31C are laminated in this order.
  • the separator 32 is arranged between the positive electrode active material layer 31B and the negative electrode active material layer 31C.
  • the electrolyte layer 33 first electrolyte layer
  • the electrolyte layer 33 second electrolyte layer
  • FIG. 2 shows a case where the number of laminated electrode elements 34 is 5 in order to simplify the illustrated contents.
  • the positive electrode active material layer 31B contains any one or more of the positive electrode active materials capable of occluding and releasing lithium, and may further contain a positive electrode binder, a positive electrode conductive agent, and the like.
  • the type of the positive electrode active material is not particularly limited, but is a lithium-containing compound such as a lithium transition metal compound.
  • This lithium transition metal compound contains one or more kinds of transition metal elements together with lithium, and may further contain one kind or two or more kinds of other elements.
  • the type of the other element is not particularly limited as long as it is an arbitrary element (excluding the transition metal element). Among them, the other elements are preferably elements belonging to groups 2 to 15 in the long periodic table.
  • the lithium transition metal compound may be an oxide, or may be any one of a phosphoric acid compound, a silicic acid compound, a boric acid compound, and the like.
  • oxides are LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 , Li , etc. 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2, Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13) O 2, LiMn 2 O 4 and Li 4 Ti 5 O 12.
  • Specific examples of the phosphoric acid compound include LiFePO 4 , LiMnPO 4 , LiFe 0.5 Mn 0.5 PO 4, and LiFe 0.3 Mn 0.7 PO 4 .
  • the positive electrode binder contains any one or more of synthetic rubber and polymer compounds.
  • the synthetic rubber is a styrene-butadiene rubber or the like
  • the polymer compound is polyvinylidene fluoride, polyimide, carboxymethyl cellulose or the like.
  • the positive electrode conductive agent contains any one or more of the conductive materials such as carbon material.
  • the carbon materials include graphite, carbon black, acetylene black and ketjen black.
  • the conductive material may be a metal material, a conductive polymer, or the like.
  • the negative electrode active material layer 31C contains any one or more of the negative electrode active materials capable of occluding and releasing lithium, and may further contain a negative electrode binder, a negative electrode conductive agent, and the like.
  • the details regarding the negative electrode binder and the negative electrode conductive agent are the same as the details regarding the positive electrode binder and the positive electrode conductive agent, respectively.
  • the type of negative electrode active material is not particularly limited, but is carbon material, metal-based material, or the like.
  • the carbon material is graphitizable carbon, non-graphitizable carbon, graphite and the like, and the graphite is natural graphite and artificial graphite and the like.
  • the metal-based material is a material containing any one or more of a metal element and a metalloid element capable of forming an alloy with lithium, and specific examples of the metal element and the metalloid element include silicon and. Such as tin.
  • the metal-based material may be a simple substance, an alloy, a compound, a mixture of two or more kinds thereof, or a material containing two or more kinds of phases thereof.
  • metallic materials include SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO v (0 ⁇ v ⁇ 2 or 0.2 ⁇ v ⁇ 1.4), LiSiO, SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSnO, Mg 2 Sn, and the like.
  • the separator 32 is a porous film that separates the positive electrode active material layer 31B and the negative electrode active material layer 31C from each other, and contains any one or more of polymer compounds such as polyethylene and polypropylene. ..
  • the separator 32 functions as an ion barrier that allows the movement of electrons and prohibits the movement of ions (lithium ions).
  • the separator 32 may be a non-woven fabric containing any one or more of aramid fiber, glass fiber, nylon fiber and the like.
  • the electrolyte layer 33 is a gel-like electrolyte containing a polymer compound together with the electrolyte, and the electrolyte is held by the polymer compound in the electrolyte layer 33. This is because high ionic conductivity can be obtained and leakage of the electrolytic solution can be prevented.
  • the electrolytic solution contains a solvent and an electrolyte salt.
  • the solvent contains any one or more of non-aqueous solvents (organic solvents) such as carbonic acid ester compounds, carboxylic acid ester compounds and lactone compounds.
  • the electrolyte salt contains any one or more of light metal salts such as lithium salt.
  • the polymer compound contains any one or more of polyvinylidene fluoride and the like.
  • the positive electrode lead 40 is connected to the lowermost electrode 31 (positive electrode active material layer 31B) which is a single-sided electrode via the current collector 31A, it is electrically connected to the positive electrode active material layer 31B. It is connected.
  • the negative electrode lead 50 is electrically connected to the negative electrode active material layer 31C because it is connected to the uppermost electrode 31 (negative electrode active material layer 31C), which is a single-sided electrode, via the current collector 31A. It is connected.
  • the positive electrode lead 40 extends to the outside of the battery element 30, and the negative electrode lead 50 extends to the outside of the battery element 30 in a direction opposite to the lead-out direction of the positive electrode lead 40. doing.
  • each of the positive electrode lead 40 and the negative electrode lead 50 may extend in a direction common to each other.
  • Each of the positive electrode lead 40 and the negative electrode lead 50 contains any one or more of the conductive materials, and the conductive material is aluminum, copper, nickel, stainless steel, or the like.
  • the shape of each of the positive electrode lead 40 and the negative electrode lead 50 is a thin plate shape, a mesh shape, or the like.
  • the secondary battery may further include any one or more of the other components (not shown).
  • the exterior member may be a rigid metal can, a flexible exterior film, or the like.
  • each of the positive electrode lead 40 and the negative electrode lead 50 is led out from the inside of the exterior member to the outside.
  • the electrode element 34 is manufactured by the procedure described below, and then the secondary battery is manufactured using the electrode element 34.
  • a paste-like positive electrode mixture slurry is prepared by putting a mixture (positive electrode mixture) of a positive electrode active material, a positive electrode binder, a positive electrode conductive agent, and the like into a solvent such as an organic solvent. Subsequently, the positive electrode mixture slurry is applied to the surface of the release base material to form the positive electrode active material layer 31B.
  • This release base material is a base material that has been subjected to a mold release treatment on one surface, and the base material is a metal foil, a polymer film, or the like. The details regarding the release base material described here will be the same thereafter.
  • the positive electrode active material layer 31B may be compression-molded using a roll press machine or the like. In this case, the positive electrode active material layer 31B may be heated, or compression molding may be repeated a plurality of times. Finally, the positive electrode active material layer 31B is peeled off from the release base material. However, here, the positive electrode active material layer 31B may be peeled from the release base material in the step of manufacturing the electrode element 34, which will be described later, without peeling the positive electrode active material layer 31B from the release base material.
  • the negative electrode active material layer 31C is produced by the same procedure as the procedure for producing the positive electrode active material layer 31B described above. Specifically, a paste-like negative electrode mixture slurry is prepared by adding a mixture (negative electrode mixture) of the negative electrode active material, the negative electrode binder, the negative electrode conductive agent, and the like to a solvent such as an organic solvent. The negative electrode active material layer 31C is formed by applying the negative electrode mixture slurry to the surface of the release base material. After that, if necessary, the negative electrode active material layer 31C may be compression-molded. Finally, the negative electrode active material layer 31C is peeled off from the release base material. However, here, the negative electrode active material layer 31C may be peeled from the release base material in the step of manufacturing the electrode element 34 described later without peeling the negative electrode active material layer 31C from the release base material.
  • an electrolytic solution is prepared by adding an electrolyte salt to the solvent.
  • the polymer compound, the electrolytic solution, and, if necessary, an additional organic solvent are mixed to prepare a sol-like coating solution.
  • the gel-like electrolyte layer 33 is produced by applying the coating solution to the surface of the positive electrode active material layer 31B, and the gel-like electrolyte layer 33 is applied to the surface of the negative electrode active material layer 31C. Layer 33 is made.
  • the positive electrode active material layer 31B on which the electrolyte layer 33 is formed, the separator 32, and the negative electrode active material layer 31C on which the electrolyte layer 33 is formed are laminated in this order on the release base material.
  • a laminate is produced.
  • the electrolyte layers 33 face each other via the separator 32.
  • the laminated body is pressed (heat pressed) while being heated in the laminating direction. Conditions such as the heating temperature and the press pressure at the time of hot pressing can be arbitrarily set. The details regarding the heat press described here will be the same thereafter.
  • the positive electrode active material layer 31B adheres to the separator 32 via the electrolyte layer 33
  • the negative electrode active material layer 31C adheres to the separator 32 via the electrolyte layer 33, so that the electrode element 34 is manufactured.
  • the release base material is peeled from the electrode element 34 (positive electrode active material layer 31B and negative electrode active material layer 31C).
  • a laminated body is produced by alternately laminating the electrode elements 34 on the release base material via the current collector 31A.
  • each of the lowermost layer and the uppermost layer is set to be the current collector 31A.
  • the laminated body is hot-pressed in the laminating direction using a press machine or the like.
  • the electrode elements 34 are brought into close contact with each other via the current collector 31A, so that the battery element 30 is manufactured.
  • the release base material is peeled off from the battery element 30.
  • the positive electrode lead 40 is connected to the current collector 31A in the lowermost layer by a welding method or the like
  • the negative electrode lead 50 is connected to the current collector 31A in the uppermost layer by a welding method or the like.
  • This welding method is any one or more than one of a laser welding method and a resistance welding method.
  • [Stabilization of secondary battery] Charge and discharge the assembled secondary battery. Various conditions such as the environmental temperature, the number of charge / discharge cycles (number of cycles), and charge / discharge conditions can be arbitrarily set. As a result, a film is formed on the surface of the negative electrode active material layer 31C and the like, so that the state of the secondary battery is electrochemically stabilized. Therefore, a secondary battery using the electrode element 34, that is, a bipolar type secondary battery is completed.
  • the current collector 31A has a configuration similar to that of the conductive substrate described above.
  • the physical characteristics of the current collector 31A are stabilized due to the guarantee of flexibility, and the current collector is suppressed due to the suppression of side reactions (decomposition reaction of the electrolytic solution).
  • the electrical characteristics of the secondary battery using 31A are improved. Therefore, since the current collector 31A has both electrical characteristics and physical characteristics, excellent cycle characteristics can be obtained.
  • the other actions and effects related to the secondary battery are the same as the other actions and effects related to the conductive substrate described above.
  • the electrolyte layer 33 which is a gel-like electrolyte, was used as the electrolyte that functions as a medium for the charge / discharge reaction.
  • an electrolytic solution which is a liquid electrolyte may be used as it is.
  • the configuration of the secondary battery using the electrolytic solution is such that the electrolyte layer 33 is omitted and the positive electrode active material layer 31B, the negative electrode active material layer 31C, and the separator 32 are each impregnated with the electrolytic solution.
  • the configuration is the same as that of the secondary battery using the layer 33.
  • the method for manufacturing a secondary battery using an electrolytic solution is a secondary battery using the electrolyte layer 33, except that the laminate is prepared without using the electrolyte layer 33 and then the laminate is impregnated with the electrolytic solution. It is the same as the manufacturing method of.
  • the laminate is housed inside the bag-shaped exterior member, and then the electrolytic solution is injected into the bag-shaped exterior member. The laminate is impregnated with an electrolytic solution.
  • a porous membrane was used as the separator 32.
  • the separator 32 may have a multilayer structure including a polymer compound layer together with the porous membrane.
  • the separator 32 having a multilayer structure is arranged on one or both of a porous membrane having a pair of surfaces (one surface and another surface) facing opposite directions and one surface and the other surface of the porous membrane. It contains a polymer compound layer. This is because the porous film easily adheres to one or both of the positive electrode active material layer 31B and the negative electrode active material layer 31C via the polymer compound layer. As a result, the stacking of the battery elements 30 is less likely to occur, so that the battery elements 30 are less likely to expand even if a decomposition reaction of the electrolytic solution occurs.
  • the polymer compound layer contains a plurality of inorganic particles together with the polymer compound, and the plurality of inorganic particles are dispersed in the polymer compound. This is because a plurality of inorganic particles dissipate heat when the secondary battery generates heat, so that the heat resistance and safety of the secondary battery are improved.
  • the polymer compound contains any one or more of polyvinylidene fluoride and the like.
  • the plurality of inorganic particles is any one of inorganic materials such as aluminum oxide (alumina), aluminum nitride, boehmite, silicon oxide (silica), titanium oxide (titania), magnesium oxide (magnesia) and zirconia oxide (zirconia). Includes type or two or more types.
  • the positive electrode active material layer 31B and the negative electrode active material layer 31C are separated from each other via the separator 32 so that the movement of electrons is permitted and the movement of ions is prohibited, so that the same effect can be obtained. Obtainable.
  • the expansion of the secondary battery due to the expansion of the battery element 30 is suppressed, and the heat resistance and safety of the secondary battery are improved.
  • the plurality of inorganic particles may be contained not only in the polymer compound but also in the porous membrane. This is because the expansion of the secondary battery is further suppressed, and the heat resistance and safety of the secondary battery are further improved.
  • a conductive substrate (FIG. 1) is produced, and a bipolar secondary battery (FIG. 2) is produced using the conductive substrate (current collector 31A), and then the conductivity thereof. The physical characteristics of the substrate and the battery characteristics of the secondary battery were evaluated.
  • second SEP polyphenylene sulfide (PPS) and polyetheretherketone (PEEK) were used.
  • the mixing ratio (weight ratio) of the plurality of central portions 21 and the plurality of pellets (second SEP) was adjusted.
  • the content (% by weight) of the plurality of central portions 21 in the conductive substrate is finally set to the value shown in Table 1.
  • the mixing ratio was adjusted.
  • the mixing ratio of the plurality of pellets (second SEP) the mixing ratio of the plurality of pellets was adjusted so that the ratio R2 became the value shown in Table 1.
  • the heating temperature was adjusted according to the type of the second SEP.
  • the covering portion 22 containing the second SEP was formed so as to cover the surface of the central portion 21, a plurality of coated particles 20 including the central portion 21 and the covering portion 22 were obtained.
  • first SEP polyetherimide
  • PSU polysulfone
  • the mixing ratio (weight ratio) of the plurality of coated particles 20 and the plurality of pellets (first SEP) was adjusted.
  • the mixing ratio of the plurality of pellets (first SEP) was adjusted so that the ratio R1 became the value shown in Table 1.
  • a plurality of pellets (second SEP) which are the forming materials of the covering portion 22 were not used, and the second SEP was used instead of the first SEP as the forming material of the holding body 10.
  • a conductive substrate was prepared by the same procedure except that (PPS) was used.
  • a conductive substrate was prepared by the same procedure except that a plurality of pellets (second SEP), which are materials for forming the covering portion 22, were not used. In these cases, since the covering portion 22 was not formed, a conductive substrate including the holding body 10 and the plurality of central portions 21 was produced.
  • a secondary battery was produced by using the above-mentioned conductive substrate as the current collector 31A by the following procedure.
  • Positive electrode active material layer First, by mixing 96 parts by mass of the positive electrode active material (lithium cobalt oxide (LiCoO 2 )), 3 parts by mass of the positive electrode binder (vinylidene fluoride), and 1 part by mass of the positive electrode conductive agent (carbon black). , Positive electrode mixture. Subsequently, a positive electrode mixture was added to a solvent (N-methyl-2-pyrrolidone which is an organic solvent), and then the solvent was stirred to prepare a paste-like positive electrode mixture slurry. Subsequently, the positive electrode mixture slurry was applied to the surface of the release base material (release film), and then the positive electrode mixture slurry was dried to form the positive electrode active material layer 31B. Finally, the positive electrode active material layer 31B was compression-molded using a roll press machine, and then the positive electrode active material layer 31B was vacuum-dried.
  • the positive electrode active material lithium cobalt oxide (LiCoO 2 )
  • 3 parts by mass of the positive electrode binder vinylene
  • an electrolyte salt lithium hexafluorophosphate (LiPF 6 )
  • LiPF 6 lithium hexafluorophosphate
  • the coating solution is applied to the surface of the positive electrode active material layer 31B formed on the release film, and then the coating solution is dried (additional solvent is volatilized and removed) to prepare the electrolyte layer 33. bottom. Further, the electrolyte layer 33 was prepared by applying a coating solution to the surface of the negative electrode active material layer 31C formed on the release film and then drying the coating solution (volatilizing and removing an additional solvent). ..
  • a laminated body was produced by alternately laminating electrode elements 34 via the current collector 31A (conductive substrate) so that each of the lowermost layer and the uppermost layer became a current collector 31A.
  • the number of laminated electrode elements 34 was set to 5 layers.
  • the positive electrode lead 40 stainless steel
  • the negative electrode lead 50 (stainless steel) is connected to the uppermost current collector 31A by laser welding.
  • 0.1C is a current value that can completely discharge the battery capacity (theoretical capacity) in 10 hours
  • 0.02C is a current value that can completely discharge the above-mentioned battery capacity in 50 hours.
  • the electrical resistivity (initial resistivity ( ⁇ ⁇ cm)) of the conductive substrate was measured in a room temperature environment in accordance with JIS K 7194.
  • test secondary battery half cell having a conductive substrate as a working electrode and a lithium metal plate as a counter electrode was produced.
  • the secondary battery for the test is disassembled to recover the conductive substrate (working electrode) from the secondary battery for the test, and then the organic solvent (dimethyl carbonate and ethanol) is used.
  • the conductive substrate was washed with. In this case, the conductive substrate was washed sequentially using dimethyl carbonate and ethanol in this order.
  • resistivity ratio resistivity after storage / initial resistivity was calculated.
  • the discharge capacity discharge capacity in the first cycle
  • the discharge capacity discharge capacity (300th discharge capacity) was measured by repeatedly charging and discharging the secondary battery until the number of cycles reached 300 cycles in the same environment.
  • the capacity retention rate (%) discharge capacity in the 300th cycle / discharge capacity in the 1st cycle) ⁇ 100 was calculated.
  • the charge / discharge conditions were the same as the charge / discharge conditions at the time of stabilization of the secondary battery described above.
  • the resistivity ratio is suppressed.
  • the breaking elongation was 0%.
  • the secondary battery using the conductive substrate (Experimental Example 6) as the current collector 31A the secondary battery was damaged due to lack of flexibility during charging and discharging, so the capacity retention rate was calculated. I could't.
  • the conductive substrate includes a plurality of coated particles 20 dispersed inside the retainer 10 (amorphous first SEP), and the coated particles 20 are the central portion 21 (conductive).
  • the material and the coating portion 22 were included, a large breaking elongation was obtained in the conductive substrate while suppressing the resistance ratio. Therefore, both the electrical characteristics and the physical characteristics of the conductive substrate are compatible.
  • the electrode reactant is not particularly limited. Specifically, as described above, the electrode reactant may be another alkali metal such as sodium and potassium, or an alkaline earth metal such as beryllium, magnesium and calcium. In addition, the electrode reactant may be another light metal such as aluminum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

導電性基体は、非結晶性の第1スーパーエンジニアリングプラスチックを含有する保持体と、その保持体の内部に分散され、導電性材料を含有する中心部とその中心部の表面を被覆すると共に結晶性の第2スーパーエンジニアリングプラスチックを含有する被覆部とを含む複数の被覆粒子とを備える。

Description

導電性基体および二次電池
 本技術は、導電性基体および二次電池に関する。
 携帯電話機などの多様な電子機器が普及しているため、小型かつ軽量であると共に高いエネルギー密度が得られる電源として、二次電池の開発が進められている。この二次電池としては、導電性基体(集電体)を介して縦方向(電極の積層方向)に電流が流れる双極型の二次電池が提案されている。電子の伝導パスが短くなると共に、高い電池電圧が得られるからである。
 双極型の二次電池に用いられる集電体の構成に関しては、様々な検討がなされている。具体的には、短絡を防止すると共に電気抵抗の増大を抑制するために、一対の導電性のイオン遮断層の間に導電性の樹脂層が配置されており、その導電性の樹脂層が一対の導電性のイオン遮断層に電気的接合されている(例えば、特許文献1参照。)。また、高い電子伝導性を得るために、少なくとも膜厚方向の電子伝導性が得られるように有機構造体中に導電材が埋設されている(例えば、特許文献2参照。)。
特開2010-277862公報 特開2010-073500号公報
 双極型の二次電池に関する課題を解決するために様々な検討がなされているが、電気的特性と物理的特性との両立に関する対策は未だ十分でないため、改善の余地がある。
 本技術はかかる問題点に鑑みてなされたもので、その目的は、電気的特性と物理的特性とを両立させることが可能である導電性基体および二次電池を提供することにある。
 本技術の一実施形態の導電性基体は、非結晶性の第1スーパーエンジニアリングプラスチックを含有する保持体と、その保持体の内部に分散され、導電性材料を含有する中心部とその中心部の表面を被覆すると共に結晶性の第2スーパーエンジニアリングプラスチックを含有する被覆部とを含む複数の被覆粒子とを備えたものである。
 本技術の一実施形態の二次電池は、上記した本技術の一実施形態の導電性基体を集電体として備えたものである。
 本技術の一実施形態の導電性基体または二次電池によれば、その導電性基体では保持体(非結晶性の第1スーパーエンジニアリングプラスチック)の内部に複数の被覆粒子が分散されており、その被覆粒子が中心部(導電性材料)および被覆部(結晶性の第2スーパーエンジニアリングプラスチック)を含んでいるので、電気的特性と物理的特性とを両立させることができる。
 なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。
本技術の一実施形態における導電性基体の構成を模式的に表す断面図である。 本技術の一実施形態における二次電池の構成を表す断面図である。
 以下、本技術の一実施形態に関して、図面を参照しながら詳細に説明する。なお、説明する順序は、下記の通りである。

 1.導電性基体
  1-1.構成
  1-2.動作
  1-3.製造方法
  1-4.作用および効果
 2.二次電池
  2-1.構成
  2-2.動作
  2-3.製造方法
  2-4.作用および効果
 3.変形例
<1.導電性基体>
 まず、本技術の一実施形態の導電性基体に関して説明する。
 ここで説明する導電性基体は、導電性を有する支持体である。この導電性基体は、被支持体を支持すると共に、その被支持体の導電性(電子伝導性)を確保するために用いられる。
 導電性基体の用途は、特に限定されないが、具体的には、集電性を要する電子デバイスの電極などであり、その電子デバイスの種類は、特に限定されないが、具体的には、電池およびキャパシタなどである。ただし、電池は、一次電池でもよいし、二次電池でもよい。導電性基体の用途が電子デバイスである場合には、上記した被支持体は、電極反応を進行させる活物質層であり、その電子デバイスが二次電池である場合には、上記した電極反応は、充放電反応である。
<1-1.構成>
 図1は、本技術の一実施形態における導電性基体の断面構成を模式的に表している。図1では、導電性基体の構成を分かりやすくするために、その導電性基体の寸法(X軸方向の長さおよびZ軸方向の厚さ)および被覆粒子20の寸法(粒径)をデフォルメ(適宜調整)している。
 この導電性基体は、図1に示したように、保持体10と、複数の被覆粒子20とを備えている。
[保持体]
 保持体10は、複数の被覆粒子20が内部に分散された状態において、その複数の被覆粒子20を保持している。
 この保持体10は、非結晶性の第1スーパーエンジニアリングプラスチック(以下、「第1SEP」と呼称する。)のうちのいずれか1種類または2種類以上を含有している。「スーパーエンジニアリングプラスチック」とは、約150℃以上の高温環境中においても物理的物性などに基づく機能を継続して発揮可能である高耐熱性プラスチック(高耐熱性樹脂)の総称である。「第1SEP」とは、上記したスーパーエンジニアリングプラスチックの中でも、非結晶性を有しているスーパーエンジニアリングプラスチックである。
 図1から明らかなように、保持体10は、複数の被覆粒子20を保持する導電性基体の母体である。これにより、第1SEPを含有している保持体10は、主に、導電性基体の物理的特性を担保する機能を果たしている。
 詳細には、第1SEPは、非結晶性を有しており、すなわち分子鎖がランダムに配列されていることに起因して結晶性を有していないため、引っ張り強度および曲げ弾性率などの物理的特性の観点において優れた物性を有している。
 これにより、第1SEPを含有している保持体10では、硬直化および脆化が抑制されることに起因して柔軟性(または可撓性)が担保されるため、その保持体10は、導電性基体の物理的耐久性(物理的強度)を担保している。この場合には、特に、後述する保持体10中における複数の中心部21の含有量(分散量)が増加しても、導電体基体の物理的強度が担保される。
 よって、保持体10により、導電性基体の破損が防止される。この導電性基体の破損とは、亀裂の発生、導電性基体の断裂および導電性基体の崩壊などである。
 第1SEPの種類は、非結晶性を有しているスーパーエンジニアリングプラスチックのうちのいずれか1種類または2種類以上であれば、特に限定されない。第1SEPの具体例は、ポリエーテルイミド(Polyetherimide(PEI))、ポリスルホン(Polysulfone (PSU))、ポリフェニルスルホン(PolyPhenylSulfone (PPSU))およびポリアリレート(Polyarylate (PAR))などである。
 なお、導電性基体の寸法(X軸方向の長さ、Y軸方向の幅およびZ軸方向の厚さ)は、主に、保持体10の長さ、幅および厚さに応じて決定される。保持体10の長さ、幅および厚さは、特に限定されないため、導電性基体の用途などに応じて任意に設定可能である。
 この場合には、保持体10の厚さが十分に小さいため、導電性基体が可撓性を有しているフィルム状でもよいし、保持体10の厚さが十分に大きいため、導電性基体が剛性を有している板状でもよい。
[複数の被覆粒子]
 複数の被覆粒子20は、保持体10の内部に分散されており、その保持体10により保持されている。この被覆粒子20は、中心部21と、被覆部22とを含んでいる。
(中心部)
 中心部21は、導電性材料のうちのいずれか1種類または2種類以上を含有している。これにより、導電性材料を含有している中心部21は、主に、導電性基体の導電性を担保する機能を果たしており、いわゆる導電性フィラーである。
 中心部21の形状は、特に限定されないが、具体的には、球状(楕円状を含む。)、針状、板状、鱗片状、管状、繊維状、棒状および不定形状などのうちのいずれか1種類または2種類以上である。図1では、中心部21の図示内容を簡略化するために、その中心部21の形状を球状としている。
 導電性材料の種類は、特に限定されないが、具体的には、炭素材料および金属材料などである。優れた導電性が得られるからである。
 炭素材料は、カーボンナノファイバー、カーボンブラック、ポーラスカーボン、フラーレン、グラフェン、カーボンナノチューブ、カーボンマイクロコイルなどである。カーボンナノファイバーは、気相成長炭素繊維(Vapor grown carbon fiber(VGCF))などである。カーボンブラックは、ケッチェンブラックおよびアセチレンブラックなどである。カーボンナノチューブは、単層カーボンナノチューブ(Single wall carbon nanotube (SWCNT)および多層カーボンナノチューブ(multi wall carbon nanotube(MWCNT))などである。金属材料は、ニッケルおよびステンレス鋼などである。
 中でも、中心部21の形状は、繊維状であることが好ましい。保持体10の内部において中心部21同士が電気的に接続されやすくなることに起因して導電性パス(電子伝導路)が形成されやすくなるため、導電性基体の導電性が向上するからである。これにより、導電性材料は、繊維状の炭素材料であることが好ましく、より具体的には、カーボンナノファイバーおよびカーボンナノチューブなどであることが好ましい。
 なお、中心部21の寸法(平均粒径および平均長さ)は、特に限定されないため、導電性基体の用途などに応じて任意に設定可能である。この「平均粒径」は、メジアン径D50(μm)である。
(被覆部)
 被覆部22は、中心部21の表面を被覆している。この被覆部22は、中心部21の表面のうちの全体を被覆していてもよいし、その中心部21の表面のうちの一部だけを被覆していてもよい。後者(一部被覆)の場合には、互いに離隔された複数の場所において複数の被覆部22が中心部21の表面を被覆していてもよい。
 また、被覆部22は、結晶性の第2スーパーエンジニアリングプラスチック(以下、「第2SEP」と呼称する。)のうちのいずれか1種類または2種類以上を含有している。「第2SEP」とは、上記したスーパーエンジニアリングプラスチックの中でも、結晶性を有しているスーパーエンジニアリングプラスチックである。
 図1から明らかなように、被覆部22は、保持体10と中心部21との間に介在することにより、その中心部21の表面を被覆している。これにより、第2SEPを含有している被覆部22は、主に、中心部21の表面を電気化学的に保護することにより、導電性基体の電気的特性を担保する機能を果たしている。
 詳細には、第2SEPは、結晶性を有しており、すなわち分子鎖が規則的に配列されているため、電気化学的な安定性の観点において優れた物性を有している。
 これにより、第2SEPを含有している被覆部22では、反応性の低下に起因して電気化学的な耐性が担保されるため、その被覆部22は、中心部21の表面における副反応の発生を抑制している。この場合には、特に、電子デバイスなどの用途において導電性基体が電解液と一緒に用いられると、中心部21の表面における電解液の分解反応が抑制される。
 よって、電解液を備えた電子デバイスに導電性基体が適用された場合において、被覆部22を利用して中心部21の電気化学的な安定性が向上するため、導電性基体の電気的特性が向上する。
 第2SEPの種類は、結晶性を有しているスーパーエンジニアリングプラスチックのうちのいずれか1種類または2種類以上であれば、特に限定されない。第2SEPの具体例は、ポリフェニレンサルファイド(Polyphenylenesulfide(PPS))、ポリエーテルエーテルケトン(Polyetheretherketone(PEEK))、ポリエーテルスルホン(Polyethersulfone(PES))および、ポリアミドイミド(Polyamideimide(PAI))などである。
 なお、被覆部22の寸法(中心部21の表面における被覆方向の寸法である被覆厚さ)は、特に限定されないため、導電性基体の用途などに応じて任意に設定可能である。
[混合比]
 ここで、保持体10(第1SEP)と複数の中心部21(導電性材料)との混合比は、特に限定されない。中でも、導電性基体中における複数の中心部21の含有量は、十分に少ないことが好ましく、具体的には、5重量%~25重量%であることが好ましく、5重量%~20重量%であることがより好ましい。保持体10の硬直化および脆化が抑制されながら、複数の中心部21により十分な導電性が得られるため、導電性基体において物理的強度の担保と導電性の担保とが両立されやすくなるからである。
 ここで説明した導電性基体中における複数の中心部21の含有量は、保持体10の重量と被覆部22の重量との総和を100重量%とした場合において、その複数の中心部21の重量が何重量%に相当するかを表している。
 また、保持体10(第1SEP)と複数の被覆部22(第2SEP)との混合比は、特に限定されない。中でも、保持体10の重量と複数の被覆部22の重量との総和に対して保持体10の重量が占める割合R1は、保持体10の重量と複数の被覆部22の重量との総和に対して複数の被覆部22の重量が占める割合R2よりも大きいことが好ましい。被覆部22により中心部21の表面の反応性が十分に抑制されながら、保持体10により十分な柔軟性が得られるため、導電性基体において物理的強度の担保と電気化学的安定性の担保とが両立されやすくなるからである。
<1-2.動作>
 この導電性基体では、複数の被覆粒子20のそれぞれの中心部21(導電性材料)により導電性が発揮される。
 この場合には、上記したように、被覆部22(第2SEP)が中心部21の表面を被覆しているため、その被覆部22により、中心部21の表面における副反応の発生が抑制される。また、保持体10(第1SEP)の内部に複数の被覆粒子20(中心部21および被覆部22)が分散されているため、その保持体10により、導電性基体の柔軟性が担保される。
<1-3.製造方法>
 導電性基体を製造する場合には、以下で説明するように、複数の被覆粒子20を作製したのち、その複数の被覆粒子20を用いて導電性基体を作製する。
 最初に、複数の中心部21(粉末状の導電性材料)と、複数のペレット(第2SEP)とを混合することにより、混合物を得る。続いて、2軸エクストルーダなどの溶融押出成型機を用いて、混合物を加熱しながら混錬すると共に、その混合物を成型する。この場合には、第2SEPの溶融温度(融点)よりも高い温度で混合物を加熱することにより、その第2SEPを溶融させる。
 これにより、第2SEPの溶融物中に複数の中心部21が分散されるため、その第2SEPの溶融物が各中心部21の表面に付着する。よって、第2SEPを含有する被覆部22が中心部21の表面を被覆するように形成されるため、その中心部21および被覆部22を含む複数の被覆粒子20が作製される。
 続いて、複数の被覆粒子20と、複数のペレット(第1SEP)とを混合することにより、混合物を得る。続いて、Tダイ押出成型機などの押出成型機を用いて混合物を加熱しながら混錬すると共に、その混合物をフィルム状または板状に成型する。この場合には、第1SEPの溶融温度(融点)よりも高い温度で混合物を加熱することにより、その第1SEPを溶融させる。
 これにより、第1SEPの溶融物中に複数の被覆粒子20が分散されながら、その第1SEPの溶融物がフィルム状または板状に成型される。よって、第1SEPを含有する保持体10により複数の被覆粒子20が保持されるため、その保持体10および複数の被覆粒子20を備えた導電性基体が完成する。
<1-4.作用および効果>
 この導電性基体によれば、保持体10(非結晶性の第1SEP)の内部に複数の被覆粒子20が分散されており、その被覆粒子20が中心部21(導電性材料)および被覆部22(結晶性の第2SEP)を含んでいる。
 この場合には、上記したように、中心部21(導電性材料)により導電性が担保されながら、保持体10(第1SEP)により柔軟性が担保されると共に、被覆部22(第2SEP)により副反応の発生が抑制される。これにより、柔軟性の担保に起因して導電性基体の物理的特性が安定化すると共に、副反応の発生の抑制に起因して導電性基体を用いた電子デバイスの電気的特性が向上する。よって、電気的特性と物理的特性とを両立させることができる。
 特に、第1SEPがポリエーテルイミドなどを含んでいると共に、第2SEPがポリフェニレンサルファイドなどを含んでいれば、保持体10により十分な柔軟性が得られると共に、被覆部22により副反応の発生が十分に抑制されるため、より高い効果を得ることができる。
 また、導電性材料が繊維状の炭素材料を含んでいれば、導電性パスが形成されやすくなることに起因して導電性基体の導電性が向上するため、より高い効果を得ることができる。
 また、割合R1が割合R2よりも大きければ、導電性基体において物理的強度の担保と電気化学的安定性の担保とが両立されやすくなるため、より高い効果を得ることができる。
<2.二次電池>
 次に、上記した導電性基体の用途の一例として、本技術の一実施形態の二次電池に関して説明する。この二次電池では、導電性基体が電極集電用の集電体として用いられる。
 ここで説明する二次電池は、集電体と共に正極活物質層および負極活物質層を備えた双極型の二次電池であり、その二次電池では、電極反応物質の吸蔵放出を利用して電池容量が得られる。この場合には、充電途中において負極活物質層の表面に電極反応物質が析出することを防止するために、その負極活物質層の充電容量が正極活物質層の放電容量よりも大きくなっている。すなわち、負極活物質層の単位面積当たりの電気化学容量は、正極活物質層の単位面積当たりの電気化学容量よりも大きくなるように設定されている。
 電極反応物質の種類は、特に限定されないが、アルカリ金属およびアルカリ土類金属などの軽金属である。アルカリ金属は、リチウム、ナトリウムおよびカリウムなどであると共に、アルカリ土類金属は、ベリリウム、マグネシウムおよびカルシウムなどである。
 以下では、電極反応物質がリチウムである場合を例に挙げる。リチウムの吸蔵放出を利用して電池容量が得られる二次電池は、いわゆるリチウムイオン二次電池である。このリチウムイオン二次電池では、リチウムがイオン状態で吸蔵および放出される。
<2-1.構成>
 図2は、本技術の一実施形態における二次電池の断面構成を表している。この二次電池は、図2に示したように、電池素子30と、正極リード40と、負極リード50とを備えている。
[電池素子]
 電池素子30は、電極反応、すなわち二次電池の充放電反応を進行させる主要部である。この電池素子30は、主に、高さ方向(Z軸方向)において電極31がセパレータ32および電解質層33を介して交互に積層された多層構造を有している。より具体的には、電極31は、セパレータ32を介して交互に積層されていると共に、電解質層33は、電極31とセパレータ32との間に介在している。ここでは、電池素子30は、複数の電極31と、複数のセパレータ32と、複数の電解質層33とを含んでいる。
(電極)
 電極31は、互いに反対の方向を向いた一対の面(一面および他面)を有する集電体31Aと、その集電体31Aの一面に配置された正極活物質層31Bと、その集電体31Aの他面に配置された負極活物質層31Cとを含んでいる。すなわち、電極31は、集電体31Aの両面に活物質層(正極活物質層31Bおよび負極活物質層31C)が配置されている両面電極である。集電体31Aの構成は、上記した導電性基体の構成と同様である。
 正極活物質層31B、集電体31Aおよび負極活物質層31Cは、この順に積層されているため、その集電体31Aは、互いに反対の極性を有する正極活物質層31Bと負極活物質層31Cとの間に介在している。この電極31は、上記したように、互いに反対の極性を有する正極活物質層31Bおよび負極活物質層31Cを含む双曲型の電極である。
 ただし、複数の電極31のうちの正極リード40に最も近い電極31(高さ方向における最下層の電極31)は、集電体31Aの上に負極活物質層31Cが配置されておらずに正極活物質層31Bだけが配置されている片面電極である。集電体31Aを介して正極活物質層31Bを正極リード40に電気的に接続させるためである。
 また、複数の電極31のうちの負極リード50に最も近い電極31(高さ方向における最上層の電極31)は、集電体31Aの上に正極活物質層31Bが配置されておらずに負極活物質層31Cだけが配置されている片面電極である。集電体31Aを介して負極活物質層31Cを負極リード50に電気的に接続させるためである。
 ここで、言い換えると、電池素子30は、最上層および最下層のそれぞれが集電体31Aとなるように、高さ方向において電極素子34が集電体31Aを介して交互に積層された多層構造を有している。ここでは、電池素子30は、複数の電極素子34と、複数の集電体31Aとを含んでいる。
 電極素子34は、集電体31Aと、その集電体31Aの一面に電解質層33を介して配置された正極活物質層31Bと、その集電体31Aの他面に電解質層33を介して配置された負極活物質層31Cとを含んでいる。
 すなわち、正極活物質層31B、電解質層33、セパレータ32、電解質層33および負極活物質層31Cは、この順に積層されている。これにより、正極活物質層31Bと負極活物質層31Cとの間にセパレータ32が配置されている。また、正極活物質層31Bとセパレータ32との間に電解質層33(第1電解質層)が介在していると共に、負極活物質層31Cとセパレータ32との間に電解質層33(第2電解質層)が介在している。
 電極素子34の積層数は、特に限定されないため、任意に設定可能である。図2では、図示内容を簡略化するために、電極素子34の積層数が5層である場合を示している。
 正極活物質層31Bは、リチウムを吸蔵放出可能である正極活物質のうちのいずれか1種類または2種類以上を含んでおり、さらに正極結着剤および正極導電剤などを含んでいてもよい。
 正極活物質の種類は、特に限定されないが、リチウム遷移金属化合物などのリチウム含有化合物である。このリチウム遷移金属化合物は、リチウムと共に1種類または2種類以上の遷移金属元素を含んでおり、さらに1種類または2種類以上の他元素を含んでいてもよい。他元素の種類は、任意の元素(ただし、遷移金属元素を除く。)であれば、特に限定されない。中でも、他元素は、長周期型周期表中の2族~15族に属する元素であることが好ましい。なお、リチウム遷移金属化合物は、酸化物でもよいし、リン酸化合物、ケイ酸化合物およびホウ酸化合物などのうちのいずれかでもよい。
 酸化物の具体例は、LiNiO、LiCoO、LiCo0.98Al0.01Mg0.01、LiNi0.5 Co0.2 Mn0.3 、LiNi0.8 Co0.15Al0.05、LiNi0.33Co0.33Mn0.33、Li1.2 Mn0.52Co0.175 Ni0.1 、Li1.15(Mn0.65Ni0.22Co0.13)O、LiMnおよびLiTi12などである。リン酸化合物の具体例は、LiFePO、LiMnPO、LiFe0.5 Mn0.5 POおよびLiFe0.3 Mn0.7 POなどである。
 正極結着剤は、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムは、スチレンブタジエン系ゴムなどであると共に、高分子化合物は、ポリフッ化ビニリデン、ポリイミドおよびカルボキシメチルセルロースなどである。
 正極導電剤は、炭素材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。この炭素材料は、黒鉛、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。ただし、導電性材料は、金属材料および導電性高分子などでもよい。
 負極活物質層31Cは、リチウムを吸蔵放出可能である負極活物質のうちのいずれか1種類または2種類以上を含んでおり、さらに負極結着剤および負極導電剤などを含んでいてもよい。負極結着剤および負極導電剤のそれぞれに関する詳細は、正極結着剤および正極導電剤のそれぞれに関する詳細と同様である。
 負極活物質の種類は、特に限定されないが、炭素材料および金属系材料などである。炭素材料は、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛などであり、その黒鉛は、天然黒鉛および人造黒鉛などである。金属系材料は、リチウムと合金を形成可能である金属元素および半金属元素のうちのいずれか1種類または2種類以上を含む材料であり、その金属元素および半金属元素の具体例は、ケイ素およびスズなどである。この金属系材料は、単体でもよいし、合金でもよいし、化合物でもよいし、それらの2種類以上の混合物でもよいし、それらの2種類以上の相を含む材料でもよい。
 金属系材料の具体例は、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2または0.2<v<1.4)、LiSiO、SnO(0<w≦2)、SnSiO、LiSnOおよびMgSnなどである。
(セパレータ)
 セパレータ32は、正極活物質層31Bと負極活物質層31Cとを互いに分離させる多孔質膜であり、ポリエチレンおよびポリプロピレンなどの高分子化合物のうちのいずれか1種類または2種類以上を含有している。このセパレータ32は、電子の移動を許容すると共にイオン(リチウムイオン)の移動を禁止するイオンバリアとして機能する。なお、セパレータ32は、アラミド繊維、ガラス繊維およびナイロン繊維などのうちのいずれか1種類または2種類以上を含有する不織布でもよい。
(電解質層)
 電解質層33は、電解液と共に高分子化合物を含んでいるゲル状の電解質であり、その電解質層33中では、電解液が高分子化合物により保持されている。高いイオン伝導性が得られると共に、電解液の漏液が防止されるからである。
 電解液は、溶媒および電解質塩を含んでいる。溶媒は、炭酸エステル系化合物、カルボン酸エステル系化合物およびラクトン系化合物などの非水溶媒(有機溶剤)のうちのいずれか1種類または2種類以上を含んでいる。電解質塩は、リチウム塩などの軽金属塩のうちのいずれか1種類または2種類以上を含んでいる。高分子化合物は、ポリフッ化ビニリデンなどのうちのいずれか1種類または2種類以上を含んでいる。
[正極リードおよび負極リード]
 正極リード40は、上記したように、片面電極である最下層の電極31(正極活物質層31B)に集電体31Aを介して接続されているため、その正極活物質層31Bと電気的に接続されている。負極リード50は、上記したように、片面電極である最上層の電極31(負極活物質層31C)に集電体31Aを介して接続されているため、その負極活物質層31Cと電気的に接続されている。
 ここでは、正極リード40は、電池素子30よりも外側まで延在していると共に、負極リード50は、正極リード40の導出方向とは反対の方向に向かって電池素子30よりも外側まで延在している。ただし、正極リード40および負極リード50のそれぞれは、互いに共通する方向に延在していてもよい。正極リード40および負極リード50のそれぞれは、導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その導電性材料は、アルミニウム、銅、ニッケルおよびステンレス鋼などである。正極リード40および負極リード50のそれぞれの形状は、薄板状および網目状などである。
[その他]
 なお、二次電池は、さらに、図示しない他の構成要素のうちのいずれか1種類または2種類以上を備えていてもよい。
 他の構成要素は、電池素子30を収容する外装部材などである。この外装部材は、剛性を有する金属缶でもよいし、柔軟性を有する外装フィルムでもよいし、それ以外でもよい。外装部材の内部に電池素子30が収容される場合には、正極リード40および負極リード50のそれぞれが外装部材の内部から外部に向かって導出される。
<2-2.動作>
 二次電池の充電時には、正極活物質層31Bからリチウムが放出されると共に、そのリチウムが電解質層33を介して負極活物質層31Cに吸蔵される。また、二次電池の放電時には、負極活物質層31Cからリチウムが放出されると共に、そのリチウムが電解質層33を介して正極活物質層31Bに吸蔵される。これらの充放電時には、リチウムがイオン状態で吸蔵放出される。
<2-3.製造方法>
 二次電池を製造する場合には、以下で説明する手順により、電極素子34を作製したのち、その電極素子34を用いて二次電池を作製する。
[正極活物質層の作製]
 最初に、正極活物質と正極結着剤および正極導電剤などとの混合物(正極合剤)を有機溶剤などの溶媒に投入することにより、ペースト状の正極合剤スラリーを調製する。続いて、離型基材の表面に正極合剤スラリーを塗布することにより、正極活物質層31Bを形成する。この離型基材は、一面に離型処理が施された基材であり、その基材は、金属箔および高分子フィルムなどである。ここで説明した離型基材に関する詳細は、以降においても同様である。こののち、必要に応じて、ロールプレス機などを用いて正極活物質層31Bを圧縮成型してもよい。この場合には、正極活物質層31Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。最後に、離型基材から正極活物質層31Bを剥離させる。ただし、ここでは離型基材から正極活物質層31Bを剥離させずに、後述する電極素子34の作製工程において離型基材から正極活物質層31Bを剥離させてもよい。
[負極活物質層の作製]
 上記した正極活物質層31Bの作製手順と同様の手順により、負極活物質層31Cを作製する。具体的には、負極活物質と負極結着剤および負極導電剤などとの混合物(負極合剤)を有機溶剤などの溶媒に投入することにより、ペースト状の負極合剤スラリーを調製したのち、離型基材の表面に負極合剤スラリーを塗布することにより、負極活物質層31Cを形成する。こののち、必要に応じて、負極活物質層31Cを圧縮成型してもよい。最後に、離型基材から負極活物質層31Cを剥離させる。ただし、ここでは離型基材から負極活物質層31Cを剥離させずに、後述する電極素子34の作製工程において離型基材から負極活物質層31Cを剥離させてもよい。
[電解質層の作製]
 最初に、溶媒に電解質塩を添加することにより、電解液を調製する。続いて、高分子化合物と、電解液と、必要に応じて追加の有機溶剤とを混合することにより、ゾル状の塗布溶液を調整する。最後に、正極活物質層31Bの表面に塗布溶液を塗布することにより、ゲル状の電解質層33を作製すると共に、負極活物質層31Cの表面に塗布溶液を塗布することにより、ゲル状の電解質層33を作製する。
[電極素子の作製]
 最初に、離型基材の上に、電解質層33が形成された正極活物質層31Bと、セパレータ32と、電解質層33が形成された負極活物質層31Cとをこの順に積層させることにより、積層体を作製する。この場合には、電解質層33同士がセパレータ32を介して互いに対向するようにする。続いて、プレス機などを用いて、積層方向において積層体を加熱しながら押圧(熱プレス)する。熱プレス時における加熱温度およびプレス圧などの条件は、任意に設定可能である。ここで説明した熱プレスに関する詳細は、以降においても同様である。これにより、正極活物質層31Bが電解質層33を介してセパレータ32に密着すると共に、負極活物質層31Cが電解質層33を介してセパレータ32に密着するため、電極素子34が作製される。最後に、電極素子34(正極活物質層31Bおよび負極活物質層31C)から離型基材を剥離させる。
[二次電池の組み立て]
 最初に、離型基材の上に、集電体31Aを介して電極素子34を交互に積層させることにより、積層体を作製する。この場合には、最下層および最上層のそれぞれが集電体31Aとなるようにする。続いて、プレス機などを用いて、積層方向において積層体を熱プレスする。これにより、電極素子34同士が集電体31Aを介して互いに密着するため、電池素子30が作製される。続いて、電池素子30から離型基材を剥離させる。最後に、溶接法などを用いて最下層の集電体31Aに正極リード40を接続させると共に、溶接法などを用いて最上層の集電体31Aに負極リード50を接続させる。この溶接法は、レーザ溶接法および抵抗溶接法などのうちのいずれか1種類または2種類以上である。
[二次電池の安定化]
 組み立て後の二次電池を充放電させる。環境温度、充放電回数(サイクル数)および充放電条件などの各種条件は、任意に設定可能である。これにより、負極活物質層31Cなどの表面に被膜が形成されるため、二次電池の状態が電気化学的に安定化する。よって、電極素子34を用いた二次電池、すなわち双極型の二次電池が完成する。
<2-4.作用および効果>
 この二次電池によれば、集電体31Aが上記した導電性基体の構成と同様の構成を有している。この場合には、上記したように、柔軟性の担保に起因して集電体31Aの物理的特性が安定化すると共に、副反応(電解液の分解反応)の抑制に起因して集電体31Aを用いた二次電池の電気的特性が向上する。よって、集電体31Aにおいて電気的特性と物理的特性とが両立されるため、優れたサイクル特性を得ることができる。
 この場合には、特に、電解液の分解反応が抑制されることにより、その電解液の還元分解に起因した不要な被膜の形成量が減少するため、二次電池が還元雰囲気に曝されても電気抵抗が上昇しにくくなる。このため、十分かつ安定なサイクル特性が得られる。
 なお、二次電池に関する他の作用および効果は、上記した導電性基体に関する他の作用および効果と同様である。
<3.変形例>
 次に、上記した導電性基体および二次電池のそれぞれの変形例に関して説明する。導電性基体および二次電池のそれぞれの構成は、以下で説明するように、適宜変更可能である。ただし、以下で説明する一連の変形例のうちの任意の2種類以上は、互いに組み合わされてもよい。
[変形例1]
 充放電反応の媒介として機能する電解質として、ゲル状の電解質である電解質層33を用いた。しかしながら、電解質層33の代わりに、液状の電解質である電解液をそのまま用いてもよい。
 電解液を用いた二次電池の構成は、電解質層33が省略されると共に、正極活物質層31B、負極活物質層31Cおよびセパレータ32のそれぞれに電解液が含浸されることを除いて、電解質層33を用いた二次電池の構成と同様である。
 電解液を用いた二次電池の製造方法は、電解質層33を用いずに積層体を作製したのち、その積層体に電解液を含浸させることを除いて、電解質層33を用いた二次電池の製造方法と同様である。なお、電池素子30を収容するための外装部材を用いる場合には、袋状の外装部材の内部に積層体を収容したのち、その袋状の外装部材の内部に電解液を注入することにより、その積層体に電解液を含浸させる。
 この場合においても、正極活物質層31Bおよび負極活物質層31Cのそれぞれでは電解液を介してリチウムが吸蔵放出されるため、同様の効果を得ることができる。
[変形例2]
 セパレータ32として、多孔質膜を用いた。しかしながら、セパレータ32は、多孔質膜と共に高分子化合物層を含む多層構造を有していてもよい。
 多層構造を有するセパレータ32は、互いに反対の方向を向いた一対の面(一面および他面)を有する多孔質膜と、その多孔質膜の一面および他面のうちの一方または双方に配置された高分子化合物層とを含んでいる。多孔質膜が高分子化合物層を介して正極活物質層31Bおよび負極活物質層31Cのうちの一方または双方に密着されやすくなるからである。これにより、電池素子30の積層ずれが発生しにくくなるため、電解液の分解反応などが発生しても電池素子30が膨張しにくくなる。
 高分子化合物層は、高分子化合物と共に複数の無機粒子を含んでおり、その複数の無機粒子は、高分子化合物中において分散されている。二次電池の発熱時において複数の無機粒子が放熱するため、その二次電池の耐熱性および安全性が向上するからである。高分子化合物は、ポリフッ化ビニリデンなどのうちのいずれか1種類または2種類以上を含んでいる。複数の無機粒子は、酸化アルミニウム(アルミナ)、窒化アルミニウム、ベーマイト、酸化ケイ素(シリカ)、酸化チタン(チタニア)、酸化マグネシウム(マグネシア)および酸化ジルコニウム(ジルコニア)などの無機材料のうちのいずれか1種類または2種類以上を含んでいる。
 この場合においても、電子の移動が許可されると共にイオンの移動が禁止されるようにセパレータ32を介して正極活物質層31Bと負極活物質層31Cとが互いに分離されるため、同様の効果を得ることができる。この場合には、特に、上記したように、電池素子30の膨張に起因した二次電池の膨張が抑制されると共に、その二次電池の耐熱性および安全性が向上する。
 なお、複数の無機粒子は、高分子化合物中に含まれているだけでなく、多孔質膜中に含まれていてもよい。二次電池の膨張がより抑制されると共に、その二次電池の耐熱性および安全性がより向上するからである。
 本技術の実施例に関して説明する。
(実験例1~7)
 以下で説明するように、導電性基体(図1)を作製すると共に、その導電性基体(集電体31A)を用いて双極型の二次電池(図2)を作製したのち、その導電性基体の物性および二次電池の電池特性を評価した。
[導電性基体の作製]
 最初に、複数の中心部21(導電性材料である複数のVGCF,平均径=0.15μm,平均長さ=10μm)と、複数のペレット(第2SEP)とを混合することにより、混合物を得た。第2SEPとしては、ポリフェニレンサルファイド(PPS)およびポリエーテルエーテルケトン(PEEK)を用いた。
 この場合には、表1に示したように、複数の中心部21と複数のペレット(第2SEP)との混合比(重量比)を調整した。複数の中心部21の混合比に関しては、最終的に導電性基体中における複数の中心部21の含有量(重量%)が表1に示した値となるように、その複数の中心部21の混合比を調整した。複数のペレット(第2SEP)の混合比に関しては、割合R2が表1に示した値となるように、その複数のペレットの混合比を調整した。
 続いて、溶融押出成型機(2軸エクストルーダ)に混合物を投入したのち、その押出成型機を用いて混合物を加熱(加熱温度=320℃以上)しながら混錬することにより、その混合物を成型した。この場合には、第2SEPの種類に応じて加熱温度を調整した。これにより、第2SEPを含有する被覆部22が中心部21の表面を被覆するように形成されたため、その中心部21および被覆部22を含む複数の被覆粒子20が得られた。
 続いて、複数の被覆粒子20と、複数のペレット(第1SEP)とを混合することにより、混合物を得た。第1SEPとしては、ポリエーテルイミド(PEI)およびポリスルホン(PSU)を用いた。
 この場合には、表1に示したように、複数の被覆粒子20と複数のペレット(第1SEP)との混合比(重量比)を調整した。複数のペレット(第1SEP)の混合比に関しては、割合R1が表1に示した値となるように、その複数のペレットの混合比を調整した。
 最後に、押出成型機(Tダイ押出成型機)に混合物を投入したのち、その押出成型機を用いて混合物を加熱(加熱温度=320℃以上)しながら混錬することにより、その混合物をフィルム状に押出成型した。この場合には、第1SEPの種類に応じて加熱温度を調整した。これにより、第1SEPを含有する保持体10中において複数の被覆粒子20が分散されたため、その保持体10および複数の被覆粒子20を備えた導電性基体が完成した。
 なお、比較のために、表1に示したように、被覆部22の形成材料である複数のペレット(第2SEP)を用いなかったと共に、保持体10の形成材料として第1SEPの代わりに第2SEP(PPS)を用いたことを除いて同様の手順により、導電性基体を作製した。また、比較のために、被覆部22の形成材料である複数のペレット(第2SEP)を用いなかったことを除いて同様の手順により、導電性基体を作製した。これらの場合には、被覆部22が形成されなかったため、保持体10および複数の中心部21を備えた導電性基体が作製された。
[二次電池の作製]
 以下の手順により、上記した導電性基体を集電体31Aとして用いて二次電池を作製した。
[正極活物質層の作製]
 最初に、正極活物質(コバルト酸リチウム(LiCoO))96質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(カーボンブラック)1質量部とを混合することにより、正極合剤とした。続いて、溶媒(有機溶剤であるN-メチル-2-ピロリドン)中に正極合剤を投入したのち、その溶媒を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、離型基材(離型フィルム)の表面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層31Bを形成した。最後に、ロールプレス機を用いて正極活物質層31Bを圧縮成型したのち、その正極活物質層31Bを真空乾燥した。
[負極活物質層の作製]
 最初に、負極活物質(人造黒鉛)90質量部と、負極結着剤(ポリフッ化ビニリデン)10質量部とを混合することにより、負極合剤とした。続いて、溶媒(有機溶剤であるN-メチル-2-ピロリドン)中に負極合剤を投入したのち、その溶媒を撹拌することにより、ペースト状の負極合剤スラリーを調製した。続いて、離型基材(離型フィルム)の表面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層31Cを形成した。最後に、ロールプレス機を用いて負極活物質層31Cを圧縮成型したのち、その負極活物質層31Cを真空乾燥した。
[電解質層の作製]
 最初に、溶媒(炭酸エチレンおよび炭酸プロピレン)に電解質塩(六フッ化リン酸リチウム(LiPF))を添加したのち、その溶媒を撹拌した。溶媒の混合比(重量比)は、炭酸エチレン:炭酸プロピレン=50:50としたと共に、電解質塩の含有量は、溶媒に対して1mol/kgとした。
 続いて、高分子化合物(ポリフッ化ビニリデン)2質量部と、電解液31質量部と、追加の溶媒(有機溶剤である炭酸ジメチル)67質量物とを混合したのち、その追加の溶媒を撹拌することにより、ゾル状の塗布溶液を調整した。
 最後に、離型フィルムの上に形成されている正極活物質層31Bの表面に塗布溶液を塗布したのち、その塗布溶液を乾燥(追加の溶媒を揮発除去)することにより、電解質層33を作製した。また、離型フィルムの上に形成されている負極活物質層31Cの表面に塗布溶液を塗布したのち、その塗布溶液を乾燥(追加の溶媒を揮発除去)することにより、電解質層33を作製した。
[電極素子の作製]
 最初に、セパレータ32(微多孔性ポリエチレンフィルム,厚さ=15μm)を介して、離型フィルムの上に形成された正極活物質層31Bおよび電解質層33と、離型フィルムの上に形成された負極活物質層31Cおよび電解質層33とを互いに積層させることにより、積層体を作製した。続いて、プレス機を用いて積層体を熱プレス(加熱温度=105℃,プレス時間=3秒間)することにより、電極素子34を作製した。最後に、電極素子34(正極活物質層31Bおよび負極活物質層31C)から離型フィルムを剥離した。
[二次電池の組み立て]
 最初に、最下層および最上層のそれぞれが集電体31Aとなるように、その集電体31A(導電性基体)を介して電極素子34を交互に積層させることにより、積層体を作製した。この場合には、電極素子34の積層数を5層とした。続いて、プレス機を用いて積層体を熱プレス(加熱温度=105℃,プレス時間=3秒間)した。最後に、レーザ溶接法を用いて最下層の集電体31Aに正極リード40(ステンレス鋼)を接続させると共に、レーザ溶接法を用いて最上層の集電体31Aに負極リード50(ステンレス鋼)を接続させた。
[二次電池の安定化]
 常温環境中(温度=23℃)において、二次電池を充放電させた。充電時には、0.1Cの電流で電池電圧が4.45Vに到達するまで定電流充電したのち、その4.45Vの電圧で電流が0.02Cに到達するまで定電圧充電した。放電時には、0.1Cの電流で電池電圧が3.0Vに到達するまで定電流放電した。0.1Cとは、電池容量(理論容量)を10時間で放電しきる電流値であると共に、0.02Cとは、上記した電池容量を50時間で放電しきる電流値である。
 これにより、負極活物質層31Cなどの表面に被膜が形成されたため、二次電池の状態が安定化した。よって、双極型の二次電池(リチウムイオン二次電池)が完成した。
[導電性基体の物性および二次電池の電池特性の評価]
 導電性基体の物性(電気的特性および物理的特性)を評価すると共に、二次電池の電池特性(サイクル特性)を評価したところ、表1に示した結果が得られた。
(導電性基体の電気的特性)
 最初に、常温環境中において、JIS K 7194に準拠して導電性基体の電気抵抗率(初期抵抗率(Ω・cm))を測定した。
 続いて、導電性基体を電極として用いることにより、作用極として導電性基体を備えると共に対極としてリチウム金属板を備えた試験用の二次電池(ハーフセル)を作製した。続いて、試験用の二次電池を用いて還元フロート試験を行った。具体的には、高温環境中(温度=60℃)において試験用の二次電池を連続充電させた。充電時には、酸化反応の進行時には電池電圧が4.3V(リチウム金属の電位基準)に到達するまで、還元反応の進行時には電池電圧が0.0V(リチウム金属の電位基準)に到達するまで定電流定電圧充電することにより、総充電時間が100時間に到達するまで充電した。
 続いて、還元フロート試験の終了後、試験用の二次電池を解体することにより、その試験用の二次電池から導電性基体(作用極)を回収したのち、有機溶剤(炭酸ジメチルおよびエタノール)を用いて導電性基体を洗浄した。この場合には、炭酸ジメチルおよびエタノールをこの順に用いて導電性基体を順次洗浄した。
 最後に、常温環境中において導電性基体の電気抵抗率(保存後抵抗率(Ω・cm))を再び測定したのち、抵抗率比=保存後抵抗率/初期抵抗率を算出した。
(導電性基体の物理的特性)
 JIS K 7127「プラスチック 引張特性の試験方法 第3部:フィルムおよびシートの試験条件」に準拠して、導電性基体の破断伸び(%)を測定した。
(二次電池のサイクル特性)
 最初に、常温環境中において二次電池を充放電させることにより、放電容量(1サイクル目の放電容量)を測定した。続いて、同環境中においてサイクル数が300サイクルに到達するまで二次電池を繰り返して充放電させることにより、放電容量(300回目の放電容量)を測定した。最後に、容量維持率(%)=(300サイクル目の放電容量/1サイクル目の放電容量)×100を算出した。充放電条件は、上記した二次電池の安定化時の充放電条件と同様にした。
Figure JPOXMLDOC01-appb-T000001
[考察]
 表1に示したように、導電性基体の物性(電気的特性および物理的特性)および二次電池の電池特性(サイクル特性)のそれぞれは、その導電性基体の構成に応じて大きく変動した。
 具体的には、保持体10が第1SEPを含有していると共に、第2SEPを含有する被覆部22が中心部21の表面を被覆している導電性基体を用いた場合(実験例1~5)には、抵抗率比が抑えられたため、電気抵抗が増加しにくくなったと共に、大きな破断伸びが得られたため、柔軟性が担保された。これにより、導電性基体(実験例1~5)を集電体31Aとして用いた二次電池では、高い容量維持率が得られた。
 この場合には、特に、割合R1が割合R2よりも大きいと(実験例1,2)、割合R1,R2が互いに等しい場合(実験例5)と比較して、高い容量維持率が維持されながら破断伸びがより増加した。
 これに対して、上記した導電性基体とは異なる導電性基体を用いた場合(実験例6,7)には、抵抗率比が増加したか、または破断伸びが不足した。
 具体的には、被覆部22が中心部21の表面を被覆していない場合(実験例7)には、大きな破断伸びは得られたが、抵抗率比は著しく増加した。これにより、導電性基体(実験例7)を集電体31Aとして用いた二次電池では、高い容量維持率が得られなかった。
 また、被覆部22が中心部21の表面を被覆していないと共に、保持体10が第1SEPではなく第2SEPを含有している場合(実験例6)には、抵抗率比は抑えられたが、破断伸びは0%であった。これにより、導電性基体(実験例6)を集電体31Aとして用いた二次電池では、充放電時において柔軟性の不足に起因して二次電池が破損したため、容量維持率を算出することができなかった。
[まとめ]
 表1に示した結果から、導電性基体が保持体10(非結晶性の第1SEP)の内部に分散された複数の被覆粒子20を備えており、その被覆粒子20が中心部21(導電性材料)および被覆部22(結晶性の第2SEP)を含んでいると、その導電性基体では、抵抗比率が抑えられながら、大きな破断伸びが得られた。よって、導電性基体において電気的特性と物理的特性とが両立された。
 また、上記した導電性基体を集電体31Aとして用いた二次電池では、高い容量維持率が得られた。よって、二次電池において優れたサイクル特性が得られた。
 以上、一実施形態および実施例を挙げながら本技術に関して説明したが、その本技術の構成は、一実施形態および実施例において説明された構成に限定されないため、種々に変形可能である。
 具体的には、ゲル状の電解質(電解質層)および液状の電解質(電解液)を用いる場合に関して説明したが、その電解質の種類は、特に限定されないため、固体状の電解質(固体電解質)を用いてもよい。
 また、電極反応物質がリチウムである場合に関して説明したが、その電極反応物質は、特に限定されない。具体的には、電極反応物質は、上記したように、ナトリウムおよびカリウムなどの他のアルカリ金属でもよいし、ベリリウム、マグネシウムおよびカルシウムなどのアルカリ土類金属でもよい。この他、電極反応物質は、アルミニウムなどの他の軽金属でもよい。
 本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して、他の効果が得られてもよい。

Claims (6)

  1.  非結晶性の第1スーパーエンジニアリングプラスチックを含有する保持体と、
     前記保持体の内部に分散され、導電性材料を含有する中心部と前記中心部の表面を被覆すると共に結晶性の第2スーパーエンジニアリングプラスチックを含有する被覆部とを含む、複数の被覆粒子と
     を備えた、導電性基体。
  2.  前記第1スーパーエンジニアリングプラスチックは、ポリエーテルイミド、ポリスルホン、ポリフェニルスルホンおよびポリアリレートのうちの少なくとも1種を含み、
     前記第2スーパーエンジニアリングプラスチックは、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエーテルスルホンおよびポリアミドイミドのうちの少なくとも1種を含む、
     請求項1記載の導電性基体。
  3.  前記導電性材料は、繊維状の炭素材料を含む、
     請求項1または請求項2に記載の導電性基体。
  4.  前記保持体の重量と前記被覆部の重量との総和に対する前記保持体の重量の割合は、前記保持体の重量と前記被覆部の重量との総和に対する前記被覆部の重量の割合よりも大きい、
     請求項1ないし請求項3のいずれか1項に記載の導電性基体。
  5.  請求項1ないし請求項4のいずれか1項に記載の導電性基体を集電体として備えた、
     二次電池。
  6.  前記集電体と電極素子とが交互に積層された電池素子を備え、
     前記電極素子は、
     正極活物質層と、
     負極活物質層と、
     前記正極活物質層と前記負極活物質層との間に配置されたセパレータと、
     前記正極活物質層と前記セパレータとの間に介在する第1電解質層と、
     前記負極活物質層と前記セパレータとの間に介在する第2電解質層と
     を含む、請求項5記載の二次電池。
PCT/JP2021/004735 2020-02-26 2021-02-09 導電性基体および二次電池 WO2021171999A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180016026.3A CN115176363A (zh) 2020-02-26 2021-02-09 导电性基体以及二次电池
JP2022503237A JP7347647B2 (ja) 2020-02-26 2021-02-09 導電性基体および二次電池
EP21760119.4A EP4095951A4 (en) 2020-02-26 2021-02-09 CONDUCTIVE SUBSTRATE AND SECONDARY BATTERY
US17/895,316 US20220407155A1 (en) 2020-02-26 2022-08-25 Electrically conductive base and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020030309 2020-02-26
JP2020-030309 2020-02-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/895,316 Continuation US20220407155A1 (en) 2020-02-26 2022-08-25 Electrically conductive base and secondary battery

Publications (1)

Publication Number Publication Date
WO2021171999A1 true WO2021171999A1 (ja) 2021-09-02

Family

ID=77490445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004735 WO2021171999A1 (ja) 2020-02-26 2021-02-09 導電性基体および二次電池

Country Status (5)

Country Link
US (1) US20220407155A1 (ja)
EP (1) EP4095951A4 (ja)
JP (1) JP7347647B2 (ja)
CN (1) CN115176363A (ja)
WO (1) WO2021171999A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073500A (ja) 2008-09-18 2010-04-02 Nissan Motor Co Ltd 有機構造体を含む双極型リチウムイオン二次電池用集電体
JP2010170833A (ja) * 2009-01-22 2010-08-05 Nissan Motor Co Ltd 双極型二次電池用の集電体
JP2010277862A (ja) 2009-05-28 2010-12-09 Nissan Motor Co Ltd 双極型電池用集電体
WO2014050653A1 (ja) * 2012-09-28 2014-04-03 古河電気工業株式会社 集電体、電極構造体、非水電解質電池、導電性フィラーおよび蓄電部品
JP2015519711A (ja) * 2013-05-07 2015-07-09 エルジー・ケム・リミテッド 二次電池用電極、その製造方法、それを含む二次電池、及びケーブル型二次電池
JP2020009764A (ja) * 2018-07-05 2020-01-16 アルモール グリッド集電体並びに関連する装置及び方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3981748B2 (ja) * 2002-09-30 2007-09-26 三菱樹脂株式会社 導電性熱可塑性樹脂フィルム及びその製造方法
JP4349793B2 (ja) * 2002-11-25 2009-10-21 三菱樹脂株式会社 導電性樹脂積層フィルム及びその製造方法
JP2004031468A (ja) * 2002-06-24 2004-01-29 Mitsubishi Plastics Ind Ltd 電気二重層キャパシター用集電体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073500A (ja) 2008-09-18 2010-04-02 Nissan Motor Co Ltd 有機構造体を含む双極型リチウムイオン二次電池用集電体
JP2010170833A (ja) * 2009-01-22 2010-08-05 Nissan Motor Co Ltd 双極型二次電池用の集電体
JP2010277862A (ja) 2009-05-28 2010-12-09 Nissan Motor Co Ltd 双極型電池用集電体
WO2014050653A1 (ja) * 2012-09-28 2014-04-03 古河電気工業株式会社 集電体、電極構造体、非水電解質電池、導電性フィラーおよび蓄電部品
JP2015519711A (ja) * 2013-05-07 2015-07-09 エルジー・ケム・リミテッド 二次電池用電極、その製造方法、それを含む二次電池、及びケーブル型二次電池
JP2020009764A (ja) * 2018-07-05 2020-01-16 アルモール グリッド集電体並びに関連する装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4095951A4

Also Published As

Publication number Publication date
CN115176363A (zh) 2022-10-11
EP4095951A1 (en) 2022-11-30
JP7347647B2 (ja) 2023-09-20
JPWO2021171999A1 (ja) 2021-09-02
EP4095951A4 (en) 2024-05-01
US20220407155A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
JP2008010316A (ja) リチウムイオン二次電池
JP7156528B2 (ja) 負極活物質、負極および二次電池
JP6769334B2 (ja) 非水電解質蓄電素子用の負極、非水電解質蓄電素子及び非水電解質蓄電素子用の負極の製造方法
JP7040364B2 (ja) 非水電解質二次電池
JP6815902B2 (ja) リチウムイオン二次電池用正極およびそれを用いた電池
JP6958272B2 (ja) 非水電解質二次電池
CN111937211A (zh) 电池的制造方法
JP2010067580A (ja) 双極型二次電池
JP2022546292A (ja) フリースタンディングフィルム型リチウム二次電池用正極材、この製造方法及びこれを含むリチウム二次電池
JP7107382B2 (ja) 二次電池
JP6848363B2 (ja) 負極及び非水電解質蓄電素子
WO2021171999A1 (ja) 導電性基体および二次電池
JP6709991B2 (ja) リチウムイオン二次電池
JP2018098206A (ja) 双極型二次電池
CN117355957A (zh) 二次电池用负极以及二次电池
WO2020153405A1 (ja) 樹脂基材およびバイポーラ型電池
CN112823440B (zh) 锂离子二次电池用负极及锂离子二次电池
JP2023017367A (ja) 非水電解質二次電池
JP7040290B2 (ja) 非水電解質二次電池
WO2020059802A1 (ja) 二次電池
JP2021015769A (ja) 非水電解質二次電池用電極
WO2018110554A1 (ja) 双極型二次電池
JP2020061300A (ja) 非水電解質二次電池用集電体
JP2019220357A (ja) リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP2019220356A (ja) リチウムイオン二次電池用正極材料及びその製造方法、並びにリチウムイオン二次電池用正極材料からなる正極活物質層及びそれを用いたリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760119

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503237

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021760119

Country of ref document: EP

Effective date: 20220823

NENP Non-entry into the national phase

Ref country code: DE