WO2021171583A1 - 密閉型圧縮機の製造方法 - Google Patents

密閉型圧縮機の製造方法 Download PDF

Info

Publication number
WO2021171583A1
WO2021171583A1 PCT/JP2020/008413 JP2020008413W WO2021171583A1 WO 2021171583 A1 WO2021171583 A1 WO 2021171583A1 JP 2020008413 W JP2020008413 W JP 2020008413W WO 2021171583 A1 WO2021171583 A1 WO 2021171583A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
protruding
electrode
jig
container body
Prior art date
Application number
PCT/JP2020/008413
Other languages
English (en)
French (fr)
Inventor
夏紀 井垣
康之 赤堀
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022503023A priority Critical patent/JP7209894B2/ja
Priority to PCT/JP2020/008413 priority patent/WO2021171583A1/ja
Priority to CN202080093836.4A priority patent/CN115243821B/zh
Publication of WO2021171583A1 publication Critical patent/WO2021171583A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/36Auxiliary equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present disclosure relates to a method for manufacturing a closed compressor in which a spring for pushing a vane is housed in a closed container.
  • the compression mechanism of a closed rotary compressor is a vane that is slidably provided in a cylinder in which a space serving as a compression chamber is formed and a groove formed in the cylinder to partition the space formed in the cylinder. And a spring that pushes the vane toward the space. Further, in the closed type rotary compressor, the compression mechanism portion is housed in a closed container.
  • a closed container includes a container body having a substantially cylindrical shape. In the conventional closed rotary compressor, the cylinder, vane and spring are housed in the container body.
  • the closed container is provided with a protruding container and a part of the spring is housed in the protruding container (see, for example, Patent Document 1).
  • the protruding container is welded to the container body and projects outward from the container body.
  • a cylinder and a vane are housed in the container body.
  • a part of the spring is housed in the container body, and a part of the spring is housed in the protruding container.
  • the present disclosure has been made in order to solve the above-mentioned problems, and proposes a method for manufacturing a closed compressor capable of suppressing a decrease in airtightness of a connection portion between a container body and a protruding container more than before. With the goal.
  • the method for manufacturing a closed-type compressor includes a cylinder in which a space serving as a compression chamber is formed, a vane slidably provided in a groove formed in the cylinder, and a vane for partitioning the space.
  • a closed container is provided in which a spring for pushing the vane toward the space is housed, and the closed container is welded to the cylinder, the container body in which the vane is housed, and the container body to the outside of the container body.
  • a method for manufacturing a closed-type compressor comprising a protruding container that protrudes into a container and accommodates a part of the spring, the first electrode that contacts the protruding container and the second electrode that contacts the container body.
  • the first electrode is held in a state where the container body and the projecting container are sandwiched and an energization assisting jig formed of a material having a higher conductivity than the projecting container is brought into contact with the outer peripheral portion of the projecting container. Electricity is passed between the container and the second electrode, and the container body and the protruding container are connected by resistance welding.
  • an energization assist jig formed of a material having a higher conductivity than that of a protruding container is provided for electricity flowing between the first electrode and the container body.
  • it mainly flows through the energizing auxiliary jig.
  • the electricity flowing between the first electrode and the container body flows through the protruding container as long as the energization assist jig is not provided. Therefore, the method for manufacturing a closed compressor according to the present disclosure can reduce the length of the path flowing only through the protruding container in the path of electricity flowing between the first electrode and the container body.
  • the method for manufacturing a closed compressor according to the present disclosure it is possible to suppress a decrease in the current at the contact point between the container body and the protruding container as compared with the conventional case. Therefore, in the method for manufacturing a closed compressor according to the present disclosure, it is possible to suppress the occurrence of welding defects at the contact points between the container body and the projecting container as compared with the conventional case, and it is possible to suppress the occurrence of welding defects at the contact points between the container body and the projecting container. It is possible to suppress the decrease in airtightness more than before.
  • FIG. 5 is a cross-sectional view taken along the line AA of FIG. It is a figure for demonstrating the connection method of the container main body and the projecting container in the resistance welding which concerns on this embodiment.
  • FIG. 1 is a vertical cross-sectional view showing a sealed compressor according to the present embodiment.
  • FIG. 2 is a cross-sectional view showing a closed container according to the present embodiment.
  • FIG. 2 is a diagram in which the sealed compressor 100 is cut at the position of the compression mechanism unit 20.
  • the sealed compressor 100 according to the present embodiment is a rotary compressor, and includes an electric motor 1, a compression mechanism unit 20, and a drive shaft 10.
  • the drive shaft 10 connects the electric motor 1 and the compression mechanism unit 20.
  • the closed compressor 100 according to the present embodiment includes a closed container 30.
  • the electric motor 1, the compression mechanism 20 and the drive shaft 10 are housed in a closed container 30.
  • the motor 1 includes a stator 2 fixed to the closed container 30 and a rotor 3 that is rotated by the magnetic force generated by the stator 2.
  • the drive shaft 10 is connected to the rotor 3 of the motor 1 and the compression mechanism unit 20, and transmits the driving force of the motor 1 to the compression mechanism unit 20.
  • the drive shaft 10 includes a spindle portion 11 and an eccentric portion 12 provided in the middle of the spindle portion 11.
  • the spindle portion 11 and the eccentric portion 12 each have a cylindrical shape. Further, the central axis of the eccentric portion 12 is eccentric with respect to the central axis of the main shaft portion 11. That is, when the spindle portion 11 rotates, the eccentric portion 12 rotates eccentrically.
  • the spindle portion 11 is fixed to the rotor 3 of the motor 1.
  • a cylindrical rolling piston 22 is slidably attached to the outer peripheral portion of the eccentric portion 12. The rolling piston 22 is a component of the compression mechanism unit 20.
  • the compression mechanism unit 20 compresses the low-pressure refrigerant sucked into the compression mechanism unit 20 by the driving force of the motor 1 transmitted from the drive shaft 10, and discharges the high-pressure refrigerant into the closed container 30.
  • the compression mechanism portion 20 includes a cylinder 21, a rolling piston 22, a vane 23, a first bearing portion 24, a second bearing portion 25, and a spring 26.
  • a space serving as a compression chamber 21a is formed inside the cylinder 21.
  • the space formed inside the cylinder 21 is partitioned by a vane 23, and a part thereof becomes a compression chamber 21a and a part becomes a suction chamber 21b.
  • the space formed inside the cylinder 21 has a cylindrical shape.
  • the central axis of this space is arranged coaxially with the central axis of the main shaft portion 11 of the drive shaft 10.
  • a rolling piston 22 is arranged in this space. Therefore, as the drive shaft 10 rotates, the eccentric portion 12 and the rolling piston 22 rotate eccentrically with respect to the central axis of this space in the space formed inside the cylinder 21.
  • the upper opening of the space formed inside the cylinder 21 is closed by the first bearing portion 24.
  • the lower opening of the space formed inside the cylinder 21 is closed by the second bearing portion 25.
  • the first bearing portion 24 and the second bearing portion 25 rotatably support the spindle portion 11 of the drive shaft 10.
  • the cylinder 21 is formed with a groove 21c formed along the radial direction of the cylinder 21.
  • One end of the groove 21c communicates with the space formed inside the cylinder 21.
  • the other end of the groove 21c is open to the outer periphery of the cylinder 21.
  • a vane 23 is slidably provided in the groove 21c.
  • a spring 26 is provided on the end portion 23a side of the vane 23.
  • the end portion 26a of the spring 26 is fixed.
  • the end portion 26a of the spring 26 is housed in, for example, a circular tubular spring guide 27.
  • the end portion 26a of the spring 26 is fixed to the spring guide 27.
  • the spring guide 27 is fixed to the outer peripheral portion of the cylinder 21.
  • the end portion 26b of the spring 26 is in contact with the end portion 23a of the vane 23 in a state of being compressed more than the natural length. That is, the spring 26 pushes the vane 23 toward the rolling piston 22. In other words, the spring 26 pushes the vane 23 toward the space formed inside the cylinder 21.
  • the end portion 23b of the vane 23 can always be brought into contact with the outer peripheral surface of the rolling piston 22. .. That is, even if the eccentric portion 12 and the rolling piston 22 rotate eccentrically in the space formed inside the cylinder 21, the space formed inside the cylinder 21 is always used by the vane 23 to form the suction chamber 21b and the compression chamber 21a. Can be partitioned into.
  • the cylinder 21 is formed with a suction port 21d that communicates with the suction chamber 21b.
  • One end of the suction pipe 40 is connected to the suction port 21d.
  • the other end of the suction pipe 40 is connected to an accumulator 41 that functions to suppress refrigerant noise.
  • the cylinder 21 is formed with a discharge port 21e that communicates with the compression chamber 21a.
  • the discharge port 21e also communicates with the inside of the closed container 30 via a discharge port (not shown) formed in the first bearing portion 24.
  • the rolling piston 22 rotates eccentrically in the cylinder 21, the volume of the suction chamber 21b expands. As a result, the low-pressure refrigerant flows from the outside of the closed compressor 100 into the suction chamber 21b through the accumulator 41, the suction pipe 40, and the suction port 21d. When the rolling piston 22 further eccentrically rotates in the cylinder 21, the suction chamber 21b and the suction port 21d do not communicate with each other. At this time, the space that was the suction chamber 21b becomes the compression chamber 21a.
  • the volume of the compression chamber 21a decreases.
  • the refrigerant in the compression chamber 21a is compressed into a high-pressure refrigerant, which is discharged into the closed container 30 through the discharge port 21e and the discharge port (not shown) of the first bearing portion 24.
  • the high-pressure refrigerant discharged into the closed container 30 flows out to the outside of the closed compressor 100 through a discharge pipe 39 communicating with the inside of the closed container 30.
  • the compression chamber 21a and the discharge port 21e do not communicate with each other. At this time, the space that was the compression chamber 21a becomes the suction chamber 21b.
  • the closed container 30 includes a container main body 31 and a protruding container 35.
  • the container body 31 has a substantially cylindrical shape.
  • the container main body 31 is composed of the upper container 32, the middle container 33, and the lower container 34.
  • the central container 33 is a member having a substantially circular tube shape.
  • the upper container 32 is a member that closes the upper opening of the middle container 33.
  • the lower container 34 is a member that closes the lower opening of the middle container 33.
  • the protruding container 35 includes a main body portion 36 having a substantially circular tube shape.
  • the end portion 36a of the main body portion 36 is welded to the container main body 31 and projects outward from the container main body 31.
  • the end portion 36a of the main body portion 36 of the protruding container 35 is welded to the middle portion container 33.
  • the middle container 33 has a through hole 33a formed at a position facing the end 36a of the main body 36 of the protruding container 35. Therefore, the inside of the container main body 31 and the inside of the protruding container 35 communicate with each other through the through hole 33a. Further, the end portion 36b of the main body portion 36 of the protruding container 35 is closed by the lid 38.
  • the inside of the closed container 30 composed of the container main body 31 and the protruding container 35 becomes a closed space.
  • the projecting container 35 is provided with a flange 37 projecting to the outside of the main body 36 at the end 36b of the main body 36.
  • the cylinder 21 and vane 23 of the compression mechanism unit 20 are housed in the container body 31.
  • a part of the spring 26 and the spring guide 27 protrudes from the container body 31 through the through hole 33a.
  • the portions of the spring 26 and the spring guide 27 that protrude from the container body 31 are arranged inside the protruding container 35. That is, a part of the spring 26 is housed in the projecting container 35.
  • the manufacturing method of the sealed compressor 100 will be described. Specifically, a method for manufacturing the closed container 30 will be described.
  • the container body 31 and the protruding container 35 are made of steel. Then, the container body 31 and the projecting container 35 are connected by resistance welding.
  • welding defects may occur at the contact points between the container body 31 and the projecting container 35.
  • the container body 31 and the projecting container 35 are connected by conventional resistance welding, the airtightness of the connection portion between the container body 31 and the projecting container 35 is lowered, and the container body 31 and the projecting container 35 are connected to each other. Refrigerant may leak from the connection.
  • FIG. 3 is a diagram for explaining a method of connecting the container body and the protruding container in the conventional resistance welding.
  • the broken line arrow shown in FIG. 3 indicates the flow of electricity.
  • the container body 31 and the projecting container 35 are connected by resistance welding as follows.
  • FIG. 4 is a flowchart for explaining a method of connecting the container body and the protruding container in the resistance welding according to the present embodiment.
  • FIG. 5 is a diagram showing a state in which an energization assist jig is attached to the projecting container of the closed compressor according to the present embodiment.
  • FIG. 6 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 7 is a diagram for explaining a method of connecting the container body and the protruding container in the resistance welding according to the present embodiment. The broken line arrow shown in FIG. 7 indicates the flow of electricity.
  • the energization auxiliary jig attaching step shown as step S1 in FIG. 4 is performed.
  • the energization assist jig attaching step as shown in FIGS. 5 and 6, the energization assist jig 50 is attached to the projecting container 35, and the energization assist jig 50 is brought into contact with the outer peripheral portion of the projecting container 35. More specifically, the energization assist jig 50 contacts the outer peripheral portion of the main body portion 36 of the projecting container 35.
  • the energization assist jig 50 is made of a material having higher conductivity than the projecting container 35.
  • the energization assist jig 50 is made of a material that allows electricity to pass through more easily than the projecting container 35.
  • the energization assist jig 50 is made of a copper alloy such as a chromium copper alloy.
  • the flange 37 is provided at the end 36b of the protruding container 35.
  • the projecting container 35 is provided with a flange 37 at an end portion 36b, which is an end portion on the side where the first electrode 61 comes into contact.
  • the energization assist jig 50 is in contact with the flange 37 in addition to the outer peripheral portion of the projecting container 35.
  • the energizing auxiliary jig 50 includes a first jig 51 and a second jig 52.
  • the first jig 51 is formed with a first recess 51a that contacts the outer peripheral portion of the main body 36 of the protruding container 35.
  • the main body 36 has a substantially circular tube shape. Therefore, the cross-sectional shape of the first recess 51a is a substantially arc shape corresponding to the shape of the outer peripheral portion of the main body portion 36.
  • the second jig 52 is formed with a second recess 52a that contacts the outer peripheral portion of the main body 36 of the projecting container 35.
  • the cross-sectional shape of the second recess 52a is also a substantially arc shape corresponding to the shape of the outer peripheral portion of the main body portion 36, similarly to the cross-sectional shape of the first recess 51a.
  • the main body 36 of the projecting container 35 is sandwiched between the first jig 51 and the second jig 52, and the energization assist jig 50 is the main body of the projecting container 35. It is configured to come into contact with the outer peripheral portion of the portion 36.
  • the method of fixing the first jig 51 and the second jig 52 that sandwich the main body 36 of the projecting container 35 is arbitrary.
  • the first jig 51 and the second jig 52 may be fixed by using a belt or may be fixed by using a clamp.
  • step S2 after step S1 is a welding member installation step.
  • the welding member installation step as shown in FIG. 7, the projecting container 35 and the container body 31 are located between the first electrode 61 in contact with the end portion 36b of the projecting container 35 and the second electrode 62 in contact with the container body 31.
  • the energization assist jig attachment step in step S1 may be performed.
  • step S3 after step S1 and step S2 is a pressurizing step. In the pressurizing step, as shown in FIG. 7, the container body 31 and the protruding container 35 are sandwiched between the first electrode 61 and the second electrode 62, and the container body 31 is sandwiched between the first electrode 61 and the second electrode 62. Pressurize the protruding container 35.
  • step S4 after step S3 is an energization step.
  • the energization step as shown in FIG. 7, between the first electrode 61 and the second electrode 62 while the container body 31 and the protruding container 35 are pressurized by the first electrode 61 and the second electrode 62. Apply electricity to the container.
  • resistance welding is performed at the contact points between the container body 31 and the projecting container 35. That is, in the present embodiment, the container body 31 and the projecting container 35 are sandwiched between the first electrode 61 and the second electrode 62, and the energization assist jig 50 is in contact with the outer peripheral portion of the projecting container 35. Electricity is passed between the first electrode 61 and the second electrode 62, and the container body 31 and the protruding container 35 are connected by resistance welding.
  • the electricity flowing between the first electrode 61 and the container body 31 is formed of a material having higher conductivity than the projecting container 35.
  • the energizing assisting jig 50 mainly flows.
  • the electricity flowing between the first electrode 61 and the container body 31 flows through the projecting container 35 in the range where the energization assist jig 50 is not provided. Therefore, by resistance welding the container body 31 and the projecting container 35 as in the present embodiment, in the electrical path flowing between the first electrode 61 and the container body 31, only the projecting container 35 flows. The length of the can be reduced.
  • the container body 31 and the projecting container 35 are sandwiched between the first electrode 61 and the second electrode 62, and the energization assist jig 50 is brought into contact with the outer peripheral portion of the projecting container 35 and the flange 37.
  • electricity is passed between the first electrode 61 and the second electrode 62, and the container body 31 and the protruding container 35 are connected by resistance welding. Therefore, the electricity flowing between the first electrode 61 and the container body 31 easily flows into the energization assisting jig 50 through the flange 37.
  • the closed compressor 100 includes the cylinder 21, the vane 23, and the closed container 30 in which the spring 26 is housed.
  • a space serving as a compression chamber 21a is formed inside the cylinder 21.
  • the vane 23 is slidably provided in the groove 21c formed in the cylinder 21 and partitions the space formed inside the cylinder 21.
  • the spring 26 pushes the vane 23 toward the space formed inside the cylinder 21.
  • the closed container 30 includes a container main body 31 and a protruding container 35.
  • the cylinder 21 and the vane 23 are housed in the container body 31.
  • the projecting container 35 is welded to the container body 31 and projects outward from the container body 31. Then, a part of the spring 26 is housed in the protruding container 35.
  • the container body 31 and the projecting container 35 are sandwiched between the first electrode 61 that contacts the projecting container 35 and the second electrode 62 that contacts the container body 31. Then, electricity is applied between the first electrode 61 and the second electrode 62 in a state where the energization auxiliary jig 50 formed of a material having a higher conductivity than the projecting container 35 is in contact with the outer peripheral portion of the projecting container 35.
  • the sink and the container body 31 and the projecting container 35 are connected by resistance welding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

容器本体(31)と、該容器本体から外部に突出する突出容器(35)とを有する密閉容器を備えた密閉型圧縮機の製造方法である。前記容器本体と前記突出容器とを接続する際、前記突出容器に接触する第1電極(61)と前記容器本体に接触する第2電極(62)とで前記容器本体と前記突出容器とを挟持し、前記突出容器よりも導電性の高い材質で形成された通電補助治具(50)を前記突出容器の外周部に接触させた状態で、前記第1電極と前記第2電極との間に電気を流し、前記容器本体と前記突出容器とを抵抗溶接で接続する。

Description

密閉型圧縮機の製造方法
 本開示は、ベーンを押すスプリングが密閉容器の中に収容された密閉型圧縮機の製造方法に関する。
 密閉型の回転式圧縮機の圧縮機構部は、内部に圧縮室となる空間が形成されたシリンダと、シリンダに形成された溝に摺動自在に設けられ、シリンダに形成された空間を仕切るベーンと、ベーンを前記空間に向かって押すスプリングとを備えている。また、密閉型の回転式圧縮機は、密閉容器に圧縮機構部が収容されている。従来、密閉容器は、略円筒形状の容器本体を備えている。そして、従来の密閉型の回転式圧縮機においては、シリンダ、ベーン及びスプリングが容器本体に収容されていた。
 近年、密閉型の回転式圧縮機のストロークボリュームの拡大に伴い、スプリングの設置スペースが小さくなり、スプリングの伸縮代の確保が難しい場合がある。そこで、従来の密閉型の回転式圧縮機のなかには、密閉容器が突出容器を備え、該突出容器にスプリングの一部が収容されたものも提案されている(例えば、特許文献1参照)。具体的には、突出容器は、容器本体に溶接されて、容器本体の外方に突出している。容器本体には、シリンダ及びベーンが収容されている。また、スプリングは、一部が容器本体に収容され、残りの一部が突出容器に収容されている。これにより、容器本体にのみスプリングを収容する場合と比べ、スプリングの設置スペースを大きく確保することができ、スプリングの伸縮代を確保することができる。
特開昭63-16189号公報
 密閉容器の容器本体と突出容器とを抵抗溶接で接続する場合、容器本体と突出容器とを一対の電極で挟持して加圧し、この状態で一対の電極間に電気を流すことにより、容器本体と突出容器との接触箇所を溶接することとなる。しかしながら、容器本体と突出容器とを挟持している一対の電極間の距離が長くなるため、容器本体と突出容器との接触箇所の電流が低下してしまう。このため、突出容器を有する密閉容器を備えた従来の密閉型圧縮機においては、容器本体と突出容器とを抵抗溶接で接続する場合、容器本体と突出容器との接触箇所に溶接不良が発生する場合がある。この結果、突出容器を有する密閉容器を備えた従来の密閉型圧縮機においては、容器本体と突出容器との接続部の気密性が低下してしまい、容器本体と突出容器との接続部から冷媒が漏れてしまう場合があるという課題があった。
 本開示は、上述のような課題を解決するためになされたもので、容器本体と突出容器との接続部の気密性の低下を従来よりも抑制できる密閉型圧縮機の製造方法を提案することを目的とする。
 本開示に係る密閉型圧縮機の製造方法は、内部に圧縮室となる空間が形成されたシリンダと、前記シリンダに形成された溝に摺動自在に設けられ、前記空間を仕切るベーンと、前記ベーンを前記空間に向かって押すスプリングとが収容される密閉容器を備え、前記密閉容器が、前記シリンダ及び前記ベーンが収容される容器本体と、前記容器本体に溶接されて前記容器本体の外方に突出し、前記スプリングの一部が収容される突出容器と、を備えた密閉型圧縮機の製造方法であって、前記突出容器に接触する第1電極と前記容器本体に接触する第2電極とで、前記容器本体と前記突出容器とを挟持し、前記突出容器よりも導電性の高い材質で形成された通電補助治具を前記突出容器の外周部に接触させた状態で、前記第1電極と前記第2電極との間に電気を流し、前記容器本体と前記突出容器とを抵抗溶接で接続する。
 本開示に係る密閉型圧縮機の製造方法においては、第1電極と容器本体との間を流れる電気は、突出容器よりも導電性の高い材質で形成された通電補助治具が設けられている範囲では、主に通電補助治具を流れる。そして、第1電極と容器本体との間を流れる電気は、通電補助治具が設けられていない範囲では、突出容器を流れる。このため、本開示に係る密閉型圧縮機の製造方法は、第1電極と容器本体との間を流れる電気の経路において、突出容器のみを流れる経路の長さを低減できる。したがって、本開示に係る密閉型圧縮機の製造方法においては、容器本体と突出容器との接触箇所の電流が低下してしまうことを、従来よりも抑制できる。このため、本開示に係る密閉型圧縮機の製造方法においては、容器本体と突出容器との接触箇所に溶接不良が発生することを従来よりも抑制でき、容器本体と突出容器との接続部の気密性が低下することを従来よりも抑制できる。
本実施の形態に係る密閉型圧縮機を示す縦断面図である。 本実施の形態に係る密閉型容器を示す横断面図である。 従来の抵抗溶接での容器本体と突出容器との接続方法を説明するための図である。 本実施の形態に係る抵抗溶接での容器本体と突出容器との接続方法を説明するためのフローチャートである。 本実施の形態に係る密閉型圧縮機の突出容器に通電補助治具を取り付けた状態を示す図である。 図5のA-A断面図である。 本実施の形態に係る抵抗溶接での容器本体と突出容器との接続方法を説明するための図である。
実施の形態.
 図1は、本実施の形態に係る密閉型圧縮機を示す縦断面図である。また、図2は、本実施の形態に係る密閉型容器を示す横断面図である。なお、図2は、圧縮機構部20の位置で密閉型圧縮機100を切断した図となっている。
 本実施の形態に係る密閉型圧縮機100は、回転式圧縮機であり、電動機1、圧縮機構部20、及び駆動軸10を備えている。駆動軸10は、電動機1と圧縮機構部20とを接続するものである。また、本実施の形態に係る密閉型圧縮機100は、密閉容器30を備えている。電動機1、圧縮機構部20及び駆動軸10は、密閉容器30に収容されている。
 電動機1は、密閉容器30に固定された固定子2と、固定子2が発生する磁力によって回転する回転子3とを備えている。
 駆動軸10は、電動機1の回転子3と圧縮機構部20とに接続され、電動機1の駆動力を圧縮機構部20に伝達するものである。駆動軸10は、主軸部11と、主軸部11の途中部に設けられた偏心部12とを備えている。主軸部11及び偏心部12は、それぞれ、円柱形状をしている。また、偏心部12の中心軸は、主軸部11の中心軸に対して偏心している。すなわち、主軸部11が回転すると、偏心部12は偏心回転をする。主軸部11は、電動機1の回転子3に固定されている。偏心部12の外周部には、円筒状の形状のローリングピストン22が摺動自在に取り付けられている。ローリングピストン22は、圧縮機構部20の構成部品である。
 圧縮機構部20は、駆動軸10から伝達された電動機1の駆動力によって、圧縮機構部20に吸入した低圧の冷媒を圧縮し、高圧の冷媒を密閉容器30内に吐出するものである。この圧縮機構部20は、シリンダ21、ローリングピストン22、ベーン23、第1軸受部24、第2軸受部25、及びスプリング26を備えている。
 シリンダ21は、内部に、圧縮室21aとなる空間が形成されている。具体的には、シリンダ21の内部に形成された空間は、ベーン23で仕切られて、一部が圧縮室21aとなり、一部が吸入室21bとなる。シリンダ21の内部に形成された空間は、円筒形状をしている。そして、この空間の中心軸は、駆動軸10の主軸部11の中心軸と同軸上に配置されている。また、この空間には、ローリングピストン22が配置されている。このため、駆動軸10が回転することにより、シリンダ21の内部に形成された空間内では、偏心部12及びローリングピストン22が、この空間の中心軸に対して偏心回転する。また、シリンダ21の内部に形成された空間の上部開口部は、第1軸受部24によって閉塞されている。シリンダ21の内部に形成された空間の下部開口部は、第2軸受部25によって閉塞されている。第1軸受部24及び第2軸受部25は、駆動軸10の主軸部11を回転自在に支持している。
 また、シリンダ21には、該シリンダ21の径方向に沿って形成された溝21cが形成されている。溝21cの一方の端部は、シリンダ21の内部に形成された空間に連通している。溝21cの他方の端部は、シリンダ21の外周部に開口している。溝21cには、ベーン23が摺動自在に設けられている。
 ベーン23の端部23a側には、スプリング26が設けられている。このスプリング26は、端部26aが固定されている。具体的には、本実施の形態では、スプリング26の端部26a部分は、例えば円管状のスプリングガイド27に収容されている。そして、スプリング26の端部26aは、スプリングガイド27に固定されている。また、スプリングガイド27は、シリンダ21の外周部に固定されている。また、スプリング26は、自然長よりも圧縮された状態で、端部26bがベーン23の端部23aに当接している。すなわち、スプリング26は、ベーン23をローリングピストン22に向かって押すものである。換言すると、スプリング26は、ベーン23を、シリンダ21の内部に形成された空間に向かって押すものである。
 これにより、シリンダ21の内部に形成された空間内で偏心部12及びローリングピストン22が偏心回転しても、ベーン23の端部23bを常時、ローリングピストン22の外周面に当接させることができる。すなわち、シリンダ21の内部に形成された空間内で偏心部12及びローリングピストン22が偏心回転しても、常時、シリンダ21の内部に形成された空間をベーン23によって吸入室21bと圧縮室21aとに仕切ることができる。
 また、シリンダ21には、吸入室21bと連通する吸入口21dが形成されている。この吸入口21dには、吸入管40の一端が接続されている。吸入管40の他端は、冷媒音を抑制する機能を果たすアキュムレータ41と接続されている。また、シリンダ21には、圧縮室21aと連通する吐出口21eが形成されている。この吐出口21eは、第1軸受部24に形成された図示せぬ吐出口を介して、密閉容器30の内部とも連通している。
 ローリングピストン22がシリンダ21内で偏心回転すると、吸入室21bの体積が拡大していく。これにより、アキュムレータ41、吸入管40及び吸入口21dを通って、密閉型圧縮機100外から吸入室21bへ、低圧の冷媒が流入する。ローリングピストン22がシリンダ21内でさらに偏心回転すると、吸入室21bと吸入口21dとが連通しなくなる。このとき、吸入室21bだった空間は、圧縮室21aとなる。
 一方、ローリングピストン22がシリンダ21内で偏心回転すると、圧縮室21aの体積が縮小していく。これにより、圧縮室21a内の冷媒は、圧縮されて高圧の冷媒となり、吐出口21e及び第1軸受部24の図示せぬ吐出口を通って、密閉容器30内に吐出される。密閉容器30内に吐出された高圧の冷媒は、密閉容器30内と連通する吐出管39を通って、密閉型圧縮機100の外部へ流出する。ローリングピストン22がシリンダ21内でさらに偏心回転すると、圧縮室21aと吐出口21eとが連通しなくなる。このとき、圧縮室21aだった空間は、吸入室21bとなる。
 本実施の形態に係る密閉容器30は、容器本体31及び突出容器35を備えている。容器本体31は、略円筒形状をしている。本実施の形態では、上部容器32、中部容器33及び下部容器34で、容器本体31が構成されている。中部容器33は、略円管形状をしている部材である。上部容器32は、中部容器33の上部開口部を閉塞している部材である。下部容器34は、中部容器33の下部開口部を閉塞している部材である。
 突出容器35は、略円管形状の本体部36を備えている。突出容器35は、本体部36の端部36aが容器本体31に溶接されて、容器本体31の外方に突出している。本実施の形態では、突出容器35の本体部36の端部36aは、中部容器33に溶接されている。中部容器33は、突出容器35の本体部36の端部36aと対向する位置に、貫通孔33aが形成されている。このため、容器本体31内と突出容器35内は、貫通孔33aを介して連通している。また、突出容器35の本体部36の端部36bは、蓋38で閉塞されている。これにより、容器本体31及び突出容器35で構成された密閉容器30の内部が密閉空間となる。また、本実施の形態では、突出容器35は、本体部36の端部36bに、本体部36の外部へ突出するフランジ37を備えている。
 ここで、図2に示すように、圧縮機構部20のシリンダ21及びベーン23等は、容器本体31に収容されている。一方、スプリング26及びスプリングガイド27の一部は、貫通孔33aを通って、容器本体31から突出している。そして、スプリング26及びスプリングガイド27における容器本体31から突出している部分は、突出容器35の内部に配置されている。すなわち、スプリング26の一部は、突出容器35に収容されている。
 密閉型圧縮機100のストロークボリュームを拡大する場合、シリンダ21に形成されている圧縮室21a及び吸入室21bの体積を大きくする必要がある。このため、密閉型圧縮機100のストロークボリュームを拡大した場合、スプリング26の全てを容器本体31内に配置しようとすると、スプリング26の伸縮代の確保が難しい場合がある。しかしながら、スプリング26の一部を突出容器35に収容することにより、密閉型圧縮機100のストロークボリュームを拡大した場合でも、スプリング26の設置スペースを大きく確保することができ、スプリング26の伸縮代を確保することができる。
 続いて、密閉型圧縮機100の製造方法について、説明する。具体的には、密閉容器30の製造方法について説明する。本実施の形態では、容器本体31及び突出容器35は、鋼材で形成されている。そして、容器本体31と突出容器35とは、抵抗溶接で接続される。ここで、従来の抵抗溶接で容器本体31と突出容器35とを接続した場合、容器本体31と突出容器35との接触箇所に溶接不良が発生する場合がある。この結果、従来の抵抗溶接で容器本体31と突出容器35とを接続した場合、容器本体31と突出容器35との接続部の気密性が低下してしまい、容器本体31と突出容器35との接続部から冷媒が漏れてしまう場合があった。一方、本実施の形態で示す抵抗溶接で容器本体31と突出容器35とを接続することにより、容器本体31と突出容器35との接触箇所に溶接不良が発生することを従来よりも抑制でき、容器本体31と突出容器35との接続部の気密性が低下することを従来よりも抑制できる。当該効果の理解を容易とするため、以下では、まず、従来の抵抗溶接での容器本体31と突出容器35との接続方法について説明する。そして、その後に、本実施の形態に係る抵抗溶接での容器本体31と突出容器35との接続方法について説明する。
 図3は、従来の抵抗溶接での容器本体と突出容器との接続方法を説明するための図である。なお、図3に示す破線の矢印は、電気の流れを示している。
 従来の抵抗溶接で容器本体31と突出容器35とを接続する場合、突出容器35の端部36bに接触する第1電極61と容器本体31に接触する第2電極62とで、容器本体31と突出容器35とを挟持する。すなわち、第1電極61と第2電極62とで、容器本体31と突出容器35とを加圧する。そして、この状態で、第1電極61と第2電極62との間に電気を流す。
 この際、従来の抵抗溶接で容器本体31と突出容器35とを接続する場合、第1電極61と第2電極62との間の距離が長くなるため、容器本体31と突出容器35との接触箇所の電流が低下してしまう。このため、従来の抵抗溶接で容器本体31と突出容器35とを接続する場合、容器本体31と突出容器35との接触箇所に溶接不良が発生する場合がある。この結果、従来の抵抗溶接で容器本体31と突出容器35とを接続する場合、容器本体31と突出容器35との接続部の気密性が低下してしまい、容器本体31と突出容器35との接続部から冷媒が漏れてしまう場合がある。また、容器本体31と突出容器35との接触箇所の電流を増加させるため、第1電極61と第2電極62との間の電圧を大きくすると、突出容器35の温度が過度に上昇し、突出容器35が変形してしまう場合がある。そこで、本実施の形態では、次のように、抵抗溶接で容器本体31と突出容器35とを接続している。
 図4は、本実施の形態に係る抵抗溶接での容器本体と突出容器との接続方法を説明するためのフローチャートである。図5は、本実施の形態に係る密閉型圧縮機の突出容器に通電補助治具を取り付けた状態を示す図である。図6は、図5のA-A断面図である。また、図7は、本実施の形態に係る抵抗溶接での容器本体と突出容器との接続方法を説明するための図である。なお、図7に示す破線の矢印は、電気の流れを示している。
 本実施の形態では、抵抗溶接で容器本体31と突出容器35とを接続する際、図4においてステップS1として示す、通電補助治具取り付け工程を行う。通電補助治具取り付け工程では、図5及び図6に示すように、突出容器35に通電補助治具50を取り付け、突出容器35の外周部に通電補助治具50を接触させる。より詳しくは、通電補助治具50は、突出容器35の本体部36の外周部に接触する。この通電補助治具50は、突出容器35よりも導電性の高い材質で形成されている。すなわち、通電補助治具50は、突出容器35よりも電気が通りやすい材質で形成されている。本実施の形態では、通電補助治具50は、クロム銅合金等の銅合金で形成されている。
 なお、本実施の形態では、上述のように、突出容器35の端部36bに、フランジ37を備えている。換言すると、突出容器35は、第1電極61が接触する側の端部である端部36bに、フランジ37を備えている。そして、通電補助治具50は、突出容器35の外周部に加え、フランジ37にも接触している。
 ここで、本実施の形態に係る通電補助治具50は、第1治具51及び第2治具52を備えている。第1治具51には、突出容器35の本体部36の外周部に接触する第1凹部51aが形成されている。上述のように、本体部36は、略円管形状をしている。このため、第1凹部51aの断面形状は、本体部36の外周部の形状に対応して、略円弧形状となっている。また、第2治具52には、突出容器35の本体部36の外周部に接触する第2凹部52aが形成されている。第2凹部52aの断面形状も、第1凹部51aの断面形状と同様に、本体部36の外周部の形状に対応して、略円弧形状となっている。そして、本実施の形態に係る通電補助治具50は、第1治具51と第2治具52とで突出容器35の本体部36を挟持し、通電補助治具50が突出容器35の本体部36の外周部に接触する構成となっている。このように通電補助治具50を構成することにより、通電補助治具50を突出容器35の本体部36の外周部に接触させることが容易となる。なお、突出容器35の本体部36を挟持している第1治具51と第2治具52との固定方法は、任意である。例えば、第1治具51と第2治具52とは、ベルトを用いて固定されていてもよいし、クランプを用いて固定されていてもよい。
 図4に示すように、ステップS1の後のステップS2は、溶接部材設置工程である。溶接部材設置工程では、図7に示すように、突出容器35の端部36bに接触する第1電極61と容器本体31に接触する第2電極62との間に、突出容器35及び容器本体31を設置する。なお、ステップS2の溶接部材設置工程の後に、ステップS1の通電補助治具取り付け工程を行ってもよい。図4に示すように、ステップS1及びステップS2の後のステップS3は、加圧工程である。加圧工程では、図7に示すように、第1電極61と第2電極62とで容器本体31と突出容器35とを挟持し、第1電極61と第2電極62とで容器本体31と突出容器35とを加圧する。
 図4に示すように、ステップS3の後のステップS4は、通電工程である。通電工程では、図7に示すように、第1電極61と第2電極62とで容器本体31と突出容器35とを加圧している状態で、第1電極61と第2電極62との間に電気を流す。これにより、容器本体31と突出容器35との接触箇所の抵抗溶接が行われる。すなわち、本実施の形態では、第1電極61と第2電極62とで容器本体31と突出容器35とを挟持し、通電補助治具50を突出容器35の外周部に接触させた状態で第1電極61と第2電極62との間に電気を流し、容器本体31と突出容器35とを抵抗溶接で接続する。
 容器本体31と突出容器35とを本実施の形態のように抵抗溶接することにより、第1電極61と容器本体31との間を流れる電気は、突出容器35よりも導電性の高い材質で形成された通電補助治具50が設けられている範囲では、主に通電補助治具50を流れる。そして、第1電極61と容器本体31との間を流れる電気は、通電補助治具50が設けられていない範囲では、突出容器35を流れる。このため、容器本体31と突出容器35とを本実施の形態のように抵抗溶接することにより、第1電極61と容器本体31との間を流れる電気の経路において、突出容器35のみを流れる経路の長さを低減できる。したがって、容器本体31と突出容器35とを本実施の形態のように抵抗溶接することにより、容器本体31と突出容器35との接触箇所の電流が低下してしまうことを、従来よりも抑制できる。このため、容器本体31と突出容器35とを本実施の形態のように抵抗溶接することにより、容器本体31と突出容器35との接触箇所に溶接不良が発生することを従来よりも抑制でき、容器本体31と突出容器35との接続部の気密性が低下することを従来よりも抑制できる。
 また、本実施の形態では、第1電極61と第2電極62とで容器本体31と突出容器35とを挟持し、通電補助治具50を突出容器35の外周部及びフランジ37に接触させた状態で第1電極61と第2電極62との間に電気を流し、容器本体31と突出容器35とを抵抗溶接で接続する。このため、第1電極61と容器本体31との間を流れる電気は、フランジ37を通って通電補助治具50に流入しやすくなる。この結果、容器本体31と突出容器35との接触箇所に溶接不良が発生することをさらに抑制でき、容器本体31と突出容器35との接続部の気密性が低下することをさらに抑制できる。
 以上、本実施の形態に係る密閉型圧縮機100においては、シリンダ21、ベーン23及びスプリング26が収納される密閉容器30とを備えている。シリンダ21の内部には、圧縮室21aとなる空間が形成されている。ベーン23は、シリンダ21に形成された溝21cに摺動自在に設けられ、シリンダ21の内部に形成された空間を仕切るものである。スプリング26は、シリンダ21の内部に形成された空間に向かってベーン23を押すものである。また、密閉容器30は、容器本体31と、突出容器35とを備えている。容器本体31には、シリンダ21及びベーン23が収容される。突出容器35は、容器本体31に溶接されて、容器本体31の外方に突出している。そして、突出容器35には、スプリング26の一部が収容される。
 本実施の形態では、突出容器35に接触する第1電極61と容器本体31に接触する第2電極62とで容器本体31と突出容器35とを挟持する。そして、突出容器35よりも導電性の高い材質で形成された通電補助治具50を突出容器35の外周部に接触させた状態で、第1電極61と第2電極62との間に電気を流し、容器本体31と突出容器35とを抵抗溶接で接続する。容器本体31と突出容器35とを本実施の形態のように抵抗溶接することにより、上述のように、容器本体31と突出容器35との接触箇所に溶接不良が発生することを従来よりも抑制でき、容器本体31と突出容器35との接続部の気密性が低下することを従来よりも抑制できる。
 1 電動機、2 固定子、3 回転子、10 駆動軸、11 主軸部、12 偏心部、20 圧縮機構部、21 シリンダ、21a 圧縮室、21b 吸入室、21c 溝、21d 吸入口、21e 吐出口、22 ローリングピストン、23 ベーン、23a 端部、23b 端部、24 第1軸受部、25 第2軸受部、26 スプリング、26a 端部、26b 端部、27 スプリングガイド、30 密閉容器、31 容器本体、32 上部容器、33 中部容器、33a 貫通孔、34 下部容器、35 突出容器、36 本体部、36a 端部、36b 端部、37 フランジ、38 蓋、39 吐出管、40 吸入管、41 アキュムレータ、50 通電補助治具、51 第1治具、51a 第1凹部、52 第2治具、52a 第2凹部、61 第1電極、62 第2電極、100 密閉型圧縮機。

Claims (4)

  1.  内部に圧縮室となる空間が形成されたシリンダと、前記シリンダに形成された溝に摺動自在に設けられ、前記空間を仕切るベーンと、前記ベーンを前記空間に向かって押すスプリングとが収容される密閉容器を備え、
     前記密閉容器が、
     前記シリンダ及び前記ベーンが収容される容器本体と、
     前記容器本体に溶接されて前記容器本体の外方に突出し、前記スプリングの一部が収容される突出容器と、
     を備えた密閉型圧縮機の製造方法であって、
     前記突出容器に接触する第1電極と前記容器本体に接触する第2電極とで、前記容器本体と前記突出容器とを挟持し、
     前記突出容器よりも導電性の高い材質で形成された通電補助治具を前記突出容器の外周部に接触させた状態で、前記第1電極と前記第2電極との間に電気を流し、
     前記容器本体と前記突出容器とを抵抗溶接で接続する
     密閉型圧縮機の製造方法。
  2.  前記通電補助治具は、
     前記突出容器の前記外周部に接触する第1凹部が形成された第1治具と、
     前記突出容器の前記外周部に接触する第2凹部が形成された第2治具と、
     を備え、
     前記第1治具と前記第2治具とで前記突出容器を挟持し、前記通電補助治具を前記突出容器の前記外周部に接触させる
     請求項1に記載の密閉型圧縮機の製造方法。
  3.  前記突出容器は、前記第1電極が接触する側の端部にフランジを備え、
     前記通電補助治具を前記突出容器の前記外周部及び前記フランジに接触させた状態で、前記第1電極と前記第2電極との間に電流を流し、
     前記密閉容器と前記突出容器とを抵抗溶接で接続する
     請求項1又は請求項2に記載の密閉型圧縮機の製造方法。
  4.  前記通電補助治具は、銅合金で形成されている
     請求項1~請求項3のいずれか一項に記載の密閉型圧縮機の製造方法。
PCT/JP2020/008413 2020-02-28 2020-02-28 密閉型圧縮機の製造方法 WO2021171583A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022503023A JP7209894B2 (ja) 2020-02-28 2020-02-28 密閉型圧縮機の製造方法
PCT/JP2020/008413 WO2021171583A1 (ja) 2020-02-28 2020-02-28 密閉型圧縮機の製造方法
CN202080093836.4A CN115243821B (zh) 2020-02-28 2020-02-28 密闭型压缩机的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/008413 WO2021171583A1 (ja) 2020-02-28 2020-02-28 密閉型圧縮機の製造方法

Publications (1)

Publication Number Publication Date
WO2021171583A1 true WO2021171583A1 (ja) 2021-09-02

Family

ID=77492067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008413 WO2021171583A1 (ja) 2020-02-28 2020-02-28 密閉型圧縮機の製造方法

Country Status (3)

Country Link
JP (1) JP7209894B2 (ja)
CN (1) CN115243821B (ja)
WO (1) WO2021171583A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108183A (ja) * 1983-11-16 1985-06-13 Hitachi Ltd 抵抗加熱による銅管と鋼板の圧接法
JPH02301681A (ja) * 1989-05-15 1990-12-13 Daikin Ind Ltd 圧縮機の製造方法
WO2016039042A1 (ja) * 2014-09-08 2016-03-17 三菱電機株式会社 圧縮機及び圧縮機の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3172242B2 (ja) * 1992-03-26 2001-06-04 三洋電機株式会社 回転圧縮機の製造方法
JP2005207282A (ja) * 2004-01-21 2005-08-04 Sanyo Electric Co Ltd 圧縮機およびその製造方法
JP5617805B2 (ja) * 2011-09-29 2014-11-05 三菱電機株式会社 圧縮機、この圧縮機の製造方法、及びこの圧縮機の製造に用いられる治具
CN103521904B (zh) * 2013-10-10 2015-11-18 松下压缩机(大连)有限公司 一种电阻焊接方法
CN205013244U (zh) * 2014-09-08 2016-02-03 三菱电机株式会社 压缩机
WO2017154086A1 (ja) * 2016-03-08 2017-09-14 三菱電機株式会社 気液分離器固定具、密閉型圧縮機、密閉型圧縮機の製造装置、及び密閉型圧縮機の製造方法
JPWO2018154689A1 (ja) * 2017-02-23 2019-11-07 三菱電機株式会社 圧縮機
JP6861541B2 (ja) * 2017-03-08 2021-04-21 三菱電機株式会社 回転式圧縮機及び回転式圧縮機の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108183A (ja) * 1983-11-16 1985-06-13 Hitachi Ltd 抵抗加熱による銅管と鋼板の圧接法
JPH02301681A (ja) * 1989-05-15 1990-12-13 Daikin Ind Ltd 圧縮機の製造方法
WO2016039042A1 (ja) * 2014-09-08 2016-03-17 三菱電機株式会社 圧縮機及び圧縮機の製造方法

Also Published As

Publication number Publication date
CN115243821A (zh) 2022-10-25
JPWO2021171583A1 (ja) 2021-09-02
CN115243821B (zh) 2023-09-22
JP7209894B2 (ja) 2023-01-20

Similar Documents

Publication Publication Date Title
JP6650524B2 (ja) 圧縮機
EP2407668B1 (en) Scroll compressor
JP6507270B2 (ja) 圧縮機
EP2133571B1 (en) Motor-driven compressor
EP1555437B1 (en) Compressor
JP6187266B2 (ja) 電動圧縮機
US8186970B2 (en) Scroll compressor including a fixed scroll and a orbiting scroll
US9441630B2 (en) Horizontal type scroll compressor having discharge guide between a main scroll and a motor housing
JP5007169B2 (ja) 電動コンプレッサ
JP5446967B2 (ja) 圧縮機およびその製造方法
JP2006177223A (ja) ロータリ式2段圧縮機
CN108700052B (zh) 气液分离器固定用具、密闭型压缩机、密闭型压缩机的制造装置及密闭型压缩机的制造方法
WO2021171583A1 (ja) 密閉型圧縮機の製造方法
CN107237751B (zh) 旋转式压缩机
JP2008128069A (ja) 密閉形2段ロータリ式圧縮機
CN114439746B (zh) 涡旋式压缩机
JP6477137B2 (ja) ロータリ圧縮機
JP7042455B2 (ja) 圧縮機
JP7433697B2 (ja) スクロール圧縮機及び当該スクロール圧縮機を使用した冷凍サイクル装置
CN113614378A (zh) 涡旋压缩机
JP2006200374A (ja) ロータリコンプレッサ
CN219176560U (zh) 涡旋式压缩机
US20240060494A1 (en) Scroll compressor
CN117514776A (zh) 涡旋式压缩机
JPH11230044A (ja) 密閉形電動圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922430

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022503023

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922430

Country of ref document: EP

Kind code of ref document: A1