WO2021171541A1 - 移相器及びアンテナ装置 - Google Patents

移相器及びアンテナ装置 Download PDF

Info

Publication number
WO2021171541A1
WO2021171541A1 PCT/JP2020/008251 JP2020008251W WO2021171541A1 WO 2021171541 A1 WO2021171541 A1 WO 2021171541A1 JP 2020008251 W JP2020008251 W JP 2020008251W WO 2021171541 A1 WO2021171541 A1 WO 2021171541A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
phase
phase shift
variable gain
gain amplifier
Prior art date
Application number
PCT/JP2020/008251
Other languages
English (en)
French (fr)
Inventor
航 山本
恒次 堤
津留 正臣
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112020006337.2T priority Critical patent/DE112020006337B4/de
Priority to PCT/JP2020/008251 priority patent/WO2021171541A1/ja
Priority to JP2021571320A priority patent/JP7118296B2/ja
Priority to CN202080097102.3A priority patent/CN115176417A/zh
Publication of WO2021171541A1 publication Critical patent/WO2021171541A1/ja
Priority to US17/846,969 priority patent/US11949394B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/16Networks for phase shifting
    • H03H11/20Two-port phase shifters providing an adjustable phase shift
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the present disclosure relates to a phase shifter and an antenna device including the phase shifter.
  • the antenna device used in the radar device generally includes a phased array antenna and a phase shifter.
  • the phase shifter switches the phase of the high frequency signal given to the phased array antenna.
  • a vector synthesis type phase shifter can be used as the phase shifter.
  • the vector synthesis type phase shifter generally includes a 90-degree distributor that distributes an input signal into four signals, and a plurality of amplifiers that amplify each of the amplitudes of the four signals by an amplification factor according to the amount of phase shift. It is equipped with a variable gain amplifier.
  • Examples of the four signals include a signal having a phase of 0 degrees, a signal having a phase of 90 degrees, a signal having a phase of 180 degrees, and a signal having a phase of 270 degrees.
  • the 90-degree distributor may be provided outside the vector synthesis type phase shifter.
  • the vector synthesis type phase shifter synthesizes four signals after amplification and outputs a composite signal of four signals as a signal after phase shift.
  • the 90 degree distributor is realized by, for example, a polyphase filter (see, for example, Non-Patent Document 1).
  • a polyphase filter see, for example, Non-Patent Document 1
  • polyphase filters are connected in multiple stages in order to reduce the phase error of the four signals.
  • phase accuracy of the signal after phase shift output from the phase shifter including the 90 degree distributor to which the polyphase filter is connected in multiple stages improves as the number of stages of the polyphase filter increases.
  • power loss of the signal passing through the phase shifter increases as the number of stages of the polyphase filter increases.
  • the present disclosure has been made to solve the above-mentioned problems, and can compensate for the phase error of the signal after the phase shift without increasing the number of stages of the polyphase filter in the 90 degree distributor.
  • the purpose is to get a vessel.
  • the phase shifter is a 90-degree distributor that distributes an input signal, a first signal, a second signal having a phase difference of 90 degrees from the first signal, and a first signal and 180.
  • the third signal having a phase difference of degrees and the fourth signal having a phase difference of 270 degrees are output, the frequency of the input signal is included in the first frequency band.
  • a first phase shift circuit that amplifies each of the three signals from the first signal to the fourth signal according to the phase shift amount of the input signal, and outputs a combined signal of the amplified three signals.
  • any of the three signals Each of the two signals and one of the first to fourth signals, which is not amplified by the first phase shift circuit, is amplified according to the amount of phase shift, and the three signals after amplification are combined.
  • a compensation circuit including a second phase shift circuit that outputs a signal, and one or more of the first phase shift circuit and the second phase shift circuit compensates for the phase error of the combined signal. It is equipped.
  • the phase shifter is provided so that one or more of the first phase shift circuit and the second phase shift circuit includes a compensation circuit for compensating for the phase error of the combined signal. Configured. Therefore, the phase shifter according to the present disclosure can compensate for the phase error of the signal after the phase shift without increasing the number of stages of the polyphase filter in the 90 degree distributor.
  • FIG. It is a block diagram which shows the antenna device which includes the phase shifter 1 which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the phase shifter 1 which concerns on Embodiment 1.
  • FIG. Output from the phase shift circuit 2 when the first phase shift circuit 11 does not include the first phase compensation circuit 31 and the second phase shift circuit 12 does not include the second phase compensation circuit 32. It is explanatory drawing which shows the phase error of the composite signal.
  • Frequency f of the input signal when it is a lower frequency than the center frequency f c, the first signal output from the 90-degree distributor 10 having a precise 90-degree phase difference characteristic, the second signal, the third It is explanatory drawing which shows the polar coordinate display of each of the signal of the above and the fourth signal.
  • Frequency f of the input signal when it is higher frequency than the center frequency f c, the first signal output from the 90-degree distributor 10 having a precise 90-degree phase difference characteristic, the second signal, the third It is explanatory drawing which shows the polar coordinate display of each of the signal of the above and the fourth signal.
  • FIG. 1 is a configuration diagram showing an antenna device including the phase shifter 1 according to the first embodiment.
  • FIG. 2 is a configuration diagram showing the phase shifter 1 according to the first embodiment.
  • the antenna device includes a phase shifter 1, a control circuit 3, and a phased array antenna 5.
  • the phase shifter 1 is a vector synthesis type phase shifter, and includes a phase shift circuit 2 and a multiplier 4.
  • the control circuit 3 is provided outside the phase shifter 1. However, this is only an example, and as shown in FIG. 12, the control circuit 3 may be provided inside the phase shifter 1.
  • FIG. 12 is a configuration diagram showing another antenna device including the phase shifter 1 according to the first embodiment. When an input signal is given from the outside, the phase shifter 1 shifts the input signal and outputs the signal after the phase shift to the phased array antenna 5.
  • the input signal is, for example, a high frequency signal.
  • the phased array antenna 5 includes a plurality of antenna elements.
  • the antenna element radiates radio waves related to the phase-shifted signal output from the phase-shifter 1 into space.
  • the antenna device shown in FIG. 1 includes only one phase shifter 1 for simplification of the drawing. In reality, the antenna device includes the same number of phase shifters 1 as the plurality of antenna elements included in the phased array antenna 5.
  • the phase shift circuit 2 includes a 90 degree distributor 10, a first phase shift circuit 11, and a second phase shift circuit 12.
  • the phase shift circuit 2 shown in FIG. 2 includes a 90-degree distributor 10. However, this is only an example, and the 90-degree distributor 10 may be provided outside the phase shift circuit 2.
  • the input terminal 2a of the phase shift circuit 2 is a terminal for inputting an input signal which is a signal to be phase shift from the outside of the phase shift circuit 2.
  • the phase shift circuit 2 shifts the input signal input from the input terminal 2a, and outputs the signal after the phase shift to the multiplier 4.
  • the 90 degree distributor 10 is realized by one polyphase filter.
  • the 90 degree distributor 10 distributes the input signal input from the input terminal 2a into four signals. That is, the 90-degree distributor 10 includes a first signal, a second signal having a phase difference of 90 degrees from the first signal, and a third signal having a phase difference of 180 degrees from the first signal. , The first signal and the fourth signal having a phase difference of 270 degrees are distributed.
  • the 90-degree distributor 10 outputs the first signal, the second signal, and the third signal to the first phase shift circuit 11.
  • the 90-degree distributor 10 outputs the first signal, the third signal, and the fourth signal to the second phase shift circuit 12.
  • the first signal is a signal with a phase of 0 degrees and the second signal is a signal with a phase of 90 degrees.
  • the third signal is a signal having a phase of 180 degrees
  • the fourth signal is a signal having a phase of 270 degrees.
  • each of the first signal, the second signal, the third signal, and the fourth signal has a phase error, and the magnitude of the phase error differs depending on the frequency of the input signal. Therefore, the phase of the first signal may be deviated from 0 degrees, and the phase of the second signal may be deviated from 90 degrees. Further, the phase of the third signal may be deviated from 180 degrees, and the phase of the fourth signal may be deviated from 270 degrees.
  • the 90 degree distributor 10 is realized by one polyphase filter.
  • the 90 degree distributor 10 may be realized by a multi-stage polyphase filter.
  • the phase error generated in each of the first signal, the second signal, the third signal, and the fourth signal is one polyphase. It is reduced compared to what is achieved by the filter.
  • the 90-degree distributor 10 is realized by a multi-stage polyphase filter, the power loss of the signal passing through the phase shifter 1 is realized by the 90-degree distributor 10 by one polyphase filter. It will increase more than if it were. Therefore, even if the power loss of the signal passing through the phase shifter 1 increases, the number of stages of the polyphase filter needs to be determined within a range where there is no practical problem.
  • the first phase shift circuit 11 includes a first variable gain amplifier 21, a second variable gain amplifier 22, and a third variable gain amplifier 23. Further, the first phase shift circuit 11 includes a first phase compensation circuit 31 as a compensation circuit. In the first phase shift circuit 11, if the frequency of the input signal is included in the first frequency band and the phase shift amount of the input signal is greater than 0 degrees and 180 degrees or less, the phase shift of the input signal is performed. Each of the first signal, the second signal and the third signal is amplified according to the quantity. The first phase shift circuit 11 outputs a combined signal of the first signal after amplification, the second signal after amplification, and the third signal after amplification to the multiplier 4.
  • a phase shifter 1 is phase-shifted frequency band signals from the (f L ⁇ f H) the center frequency f c of the phase shifter 1 is phase shiftable frequency band (f L ⁇ f H) It is in the range up to the upper limit frequency f H of.
  • the first phase shift circuit 11 amplifies each of the first signal, the second signal, and the third signal.
  • the first phase shift circuit 11 is any 3 of the first signal to the fourth signal.
  • Each of the two signals may be amplified according to the amount of phase shift of the input signal.
  • the first phase shift circuit 11 inputs the second signal, the third signal, and the fourth signal, respectively. It is amplified according to the amount of phase shift, and the combined signal of the three amplified signals is output to the multiplier 4. If the phase shift amount of the input signal is, for example, greater than 180 degrees and 360 degrees or less, the first phase shift circuit 11 inputs each of the third signal, the fourth signal, and the first signal. It is amplified according to the amount of phase shift, and the combined signal of the amplified three signals is output to the multiplier 4.
  • the first phase shift circuit 11 uses the fourth signal, the first signal, and the second signal. Each of the above is amplified according to the phase shift amount of the input signal, and the combined signal of the amplified three signals is output to the multiplier 4.
  • the second phase shift circuit 12 includes a first variable gain amplifier 21, a third variable gain amplifier 23, and a fourth variable gain amplifier 24. Further, the second phase shift circuit 12 includes a second phase compensation circuit 32 as a compensation circuit.
  • the frequency of the input signal is included in the second frequency band that does not overlap with the first frequency band and is continuous with the first frequency band, and the input signal When the phase shift amount of is greater than 180 degrees and 360 degrees or less, each of the first signal, the third signal, and the fourth signal is amplified according to the phase shift amount of the input signal.
  • the second phase shift circuit 12 outputs a combined signal of the first signal after amplification, the third signal after amplification, and the fourth signal after amplification to the multiplier 4.
  • the second frequency band is a range from the lower limit frequency f L of the frequency band (f L to f H ) in which the phase shifter 1 can shift the phase to the center frequency f c.
  • the second phase shift circuit 12 amplifies each of the first signal, the third signal, and the fourth signal.
  • the second phase shift circuit 12 will be the three signals amplified by the first phase shift circuit 11.
  • Each of the two signals and one of the first to fourth signals, which is not amplified by the first phase shift circuit 11, is amplified according to the phase shift amount of the input signal. May be good.
  • the second phase shift circuit 12 uses the fourth signal, the first signal, and the second signal. Each of the above is amplified according to the phase shift amount of the input signal, and the combined signal of the amplified three signals is output to the multiplier 4. If the amount of phase shift of the input signal is, for example, greater than 0 degrees and 180 degrees or less, the second phase shift circuit 12 inputs each of the first signal, the second signal, and the third signal. It is amplified according to the amount of phase shift, and the combined signal of the amplified three signals is output to the multiplier 4.
  • the second phase shift circuit 12 inputs each of the second signal, the third signal, and the fourth signal. It is amplified according to the amount of phase shift, and the combined signal of the amplified three signals is output to the multiplier 4.
  • the first variable gain amplifier 21 amplifies the first signal output from the 90-degree distributor 10, and outputs the amplified first signal to the multiplier 4.
  • the second variable gain amplifier 22 amplifies the second signal output from the 90-degree distributor 10, and outputs the amplified second signal to the first phase compensation circuit 31.
  • the third variable gain amplifier 23 amplifies the third signal output from the 90-degree distributor 10, and outputs the amplified third signal to the multiplier 4.
  • the fourth variable gain amplifier 24 amplifies the fourth signal output from the 90-degree distributor 10, and outputs the amplified fourth signal to the second phase compensation circuit 32.
  • the first phase compensation circuit 31 is realized by a circuit that delays the phase or a circuit that advances the phase.
  • a circuit that delays the phase is realized by, for example, a resistor and a capacitor.
  • a circuit that advances the phase is realized by, for example, a resistor and an inductor.
  • the first phase compensation circuit 31 delays the phase of the amplified second signal output from the second variable gain amplifier 22 or advances the phase of the amplified second signal to cause the first phase. Compensates for the phase error of the combined signal output from the phase shift circuit 11.
  • the second phase compensation circuit 32 is realized by a circuit that delays the phase or a circuit that advances the phase.
  • the second phase compensation circuit 32 delays the phase of the amplified fourth signal output from the fourth variable gain amplifier 24, or advances the phase of the amplified fourth signal to advance the second phase. Compensates for the phase error of the combined signal output from the phase shift circuit 12 of.
  • the frequency information input terminal 3a of the control circuit 3 is a terminal for inputting frequency information indicating the frequency of the input signal from the outside of the control circuit 3.
  • the phase shift amount input terminal 3b of the control circuit 3 is a terminal for inputting the phase shift amount of the input signal from the outside of the control circuit 3.
  • the fourth variable gain amplifier 24 Set the amplification factor to 0. Further, the control circuit 3 adjusts the amplification factors of the first variable gain amplifier 21, the second variable gain amplifier 22, and the third variable gain amplifier 23 according to the phase shift amount of the input signal.
  • the control circuit 3 if the frequency of the input signal is included in the second frequency band and the phase shift amount of the input signal is larger than 180 degrees and 360 degrees or less, the second variable gain amplifier 22 Set the amplification factor to 0. Further, the control circuit 3 adjusts the amplification factors of the first variable gain amplifier 21, the third variable gain amplifier 23, and the fourth variable gain amplifier 24 according to the phase shift amount of the input signal.
  • the multiplier 4 is realized by, for example, a mixer.
  • the multiplier 4 doubles the frequency of the composite signal output from the first phase shift circuit 11 or the frequency of the composite signal output from the second phase shift circuit 12.
  • the frequency of the composite signal is doubled by the multiplier 4, so that the phase of the composite signal is also doubled.
  • the multiplier 4 outputs the combined signal after frequency multiplication to the phased array antenna 5.
  • the output terminal 4a of the multiplier 4 is a terminal for outputting the combined signal after frequency multiplication to the phased array antenna 5.
  • phase shifter 1 shown in FIG. 2
  • Each of the first signal, the second signal, the third signal, and the fourth signal output from the 90-degree distributor 10 has different phase errors depending on the frequency f of the input signal input from the input terminal 2a. have. Since each of the first signal, the second signal, the third signal, and the fourth signal has a phase error, the phase shift circuit 2 has the first phase compensation circuit 31 and the second phase. If the compensation circuit 32 is not provided, a phase error occurs in the combined signal output from the phase shift circuit 2.
  • FIG. 3 shows a phase shift circuit when the first phase shift circuit 11 does not include the first phase compensation circuit 31 and the second phase shift circuit 12 does not include the second phase compensation circuit 32. It is explanatory drawing which shows the phase error of the composite signal which is output from 2.
  • the RMS of the phase error er ⁇ is determined by the transistor sizes of the first variable gain amplifier 21, the second variable gain amplifier 22, the third variable gain amplifier 23, the fourth variable gain amplifier 24, and the like. However, as shown in FIG. 3, the RMS of the phase error er ⁇ changes when the frequency f of the input signal is different.
  • the frequency f of the input signal is higher than the center frequency f c, when a low frequency f 0 than the upper limit frequency f H, 90-degree distributor 10, the highly accurate 90 degree phase difference characteristic An example of having is shown. Therefore, in the example of FIG. 3, when the frequency f of the input signal is the frequency f 0 , the RMS of the phase error er ⁇ of the combined signal output from the phase shift circuit 2 is minimized. Further, when the frequency f of the input signal is the lower limit frequency f L , the RMS of the phase error er ⁇ of the combined signal output from the phase shift circuit 2 is maximized.
  • FIG. 4 shows an output from the phase shift circuit 2 when the first phase shift circuit 11 includes the first phase compensation circuit 31 and the second phase shift circuit 12 includes the second phase compensation circuit 32. It is explanatory drawing which shows the phase error of the composite signal to be made.
  • the horizontal axis of FIG. 4 is the frequency
  • the vertical axis of FIG. 4 is the RMS of the phase error er ⁇ when the phase shift amount is ⁇ , as shown in the equation (1).
  • the RMS 1 is an RMS having a phase error er ⁇ of the combined signal output from the first phase shift circuit 11.
  • the curve showing RMS 1 is on the high frequency side (in the figure, the curve showing RMS shown in FIG. 3). It is almost parallel to the right side).
  • the frequency f 1 is the frequency f of the input signal at which the RMS of the phase error er ⁇ of the combined signal output from the first phase shift circuit 11 is minimized.
  • the RMS 2 is an RMS having a phase error er ⁇ of the combined signal output from the second phase shift circuit 12. In the example of FIG.
  • the curve showing RMS 2 is on the low frequency side (in the figure, the curve showing RMS shown in FIG. 3). It has moved almost in parallel to the left side).
  • the frequency f 2 is the frequency f of the input signal at which the RMS of the phase error er ⁇ of the combined signal output from the second phase shift circuit 12 is minimized. f L ⁇ f 2 ⁇ f 0 .
  • FIG. 5 is an explanatory diagram showing the phase shift amount ⁇ of the input signal.
  • 0 ⁇ ⁇ 180 indicates that the phase shift amount ⁇ of the input signal is larger than 0 degrees and 180 degrees or less.
  • 180 ⁇ 360 indicates that the phase shift amount ⁇ of the input signal is larger than 180 degrees and 360 degrees or less.
  • Conditions combined signal is outputted from the first phase shift circuit 11, the frequency f of the input signal is included in the first frequency band (f c ⁇ f H), the phase shift of the input signal ⁇ is, It is when it is larger than 0 degrees and 180 degrees or less.
  • Conditions combined signal is output from the second phase shift circuit 12, the frequency f of the input signal is included in a second frequency band (f L ⁇ f c), the phase shift of the input signal ⁇ is, It is when it is larger than 180 degrees and 360 degrees or less. Therefore, as shown in FIGS. 3 and 4, the RMS 1 of the phase error er ⁇ of the combined signal output from the first phase shift circuit 11 has the first phase compensation when the frequency f is the upper limit frequency f H.
  • the phase error er ⁇ of the combined signal output from the phase shift circuit not provided with the circuit 31 is smaller than the RMS. Further, as shown in FIGS. 3 and 4, the RMS 2 having the phase error er ⁇ of the combined signal output from the second phase shift circuit 12 has a second phase compensation when the frequency f is the lower limit frequency f L. The phase error er ⁇ of the combined signal output from the phase shift circuit not provided with the circuit 32 is smaller than the RMS.
  • the 90-degree distributor 10 sets the input signal sin ( ⁇ t) as the first signal sin ( ⁇ t) and the second signal sin ( ⁇ t + 90).
  • the third signal sin ( ⁇ t + 180) and the fourth signal sin ( ⁇ t + 270) are distributed.
  • is an angular frequency and t is a time.
  • 2 ⁇ f.
  • each of the first signal sin ( ⁇ t), the second signal sin ( ⁇ t + 90), the third signal sin ( ⁇ t + 180), and the fourth signal sin ( ⁇ t + 270) has a phase error as described above. I have something to do.
  • the 90-degree distributor 10 outputs the first signal sin ( ⁇ t), the second signal sin ( ⁇ t + 90), and the third signal sin ( ⁇ t + 180) to the first phase shift circuit 11.
  • the 90-degree distributor 10 outputs the first signal sin ( ⁇ t), the third signal sin ( ⁇ t + 180), and the fourth signal sin ( ⁇ t + 270) to the second phase shift circuit 12.
  • the control circuit 3 acquires the frequency information input from the frequency information input terminal 3a, and acquires the phase shift amount ⁇ of the input signal input from the phase shift amount input terminal 3b.
  • the control circuit 3 the frequency f of the input signal indicated by the frequency information is included in the first frequency band (f c ⁇ f H), the phase shift of the input signal ⁇ is 180 degrees or less greater than 0 degrees If so, the amplification factor of the fourth variable gain amplifier 24 is set to 0. Further, the control circuit 3 adjusts the amplification factors of the first variable gain amplifier 21, the second variable gain amplifier 22, and the third variable gain amplifier 23 according to the phase shift amount ⁇ of the input signal.
  • the control circuit 3 the frequency f of the input signal indicated by the frequency information is included in a second frequency band (f L ⁇ f c), the phase shift of the input signal ⁇ is less 360 degrees greater than 180 degrees If so, the amplification factor of the second variable gain amplifier 22 is set to 0. Further, the control circuit 3 adjusts the amplification factors of the first variable gain amplifier 21, the third variable gain amplifier 23, and the fourth variable gain amplifier 24 according to the phase shift amount ⁇ of the input signal.
  • the control circuit 3 adjusts the respective amplification factors, assuming that the phase shift circuit 2 does not include the first phase compensation circuit 31 and the second phase compensation circuit 32.
  • the control circuit 3 sets the amplification factor ⁇ 3 of the third variable gain amplifier 23 to 0, and sets the fourth variable gain amplifier 23 to 0.
  • the amplification factor ⁇ 4 of the variable gain amplifier 24 is set to 0.
  • the control circuit 3 has an amplification factor ⁇ 1 of the first variable gain amplifier 21 so that the combined signal of the first signal after amplification and the second signal after amplification becomes sin ( ⁇ t + ⁇ ).
  • the amplification factor ⁇ 2 of the second variable gain amplifier 22 are adjusted. Since the process itself of adjusting the amplification factor ⁇ 1 and the amplification factor ⁇ 2 so that the synthesized signal becomes sin ( ⁇ t + ⁇ ) is a known technique, detailed description thereof will be omitted.
  • the control circuit 3 sets the amplification factor ⁇ 1 of the first variable gain amplifier 21 to 0, and sets the fourth variable gain amplifier 21 to 0.
  • the amplification factor ⁇ 4 of the variable gain amplifier 24 is set to 0.
  • the control circuit 3 has an amplification factor ⁇ 2 of the second variable gain amplifier 22 so that the combined signal of the second signal after amplification and the third signal after amplification becomes sin ( ⁇ t + ⁇ ).
  • the amplification factor ⁇ 3 of the third variable gain amplifier 23 are adjusted.
  • the control circuit 3 sets the amplification factor ⁇ 1 of the first variable gain amplifier 21 to 0, and the second variable gain amplifier 21 is set to 0.
  • the amplification factor ⁇ 2 of the variable gain amplifier 22 is set to 0.
  • the control circuit 3 has an amplification factor ⁇ 3 of the third variable gain amplifier 23 so that the combined signal of the third signal after amplification and the fourth signal after amplification becomes sin ( ⁇ t + ⁇ ).
  • the amplification factor ⁇ 4 of the fourth variable gain amplifier 24 are adjusted.
  • the control circuit 3 sets the amplification factor ⁇ 2 of the second variable gain amplifier 22 to 0, and the third variable gain amplifier 22 is set to 0.
  • the amplification factor ⁇ 3 of the variable gain amplifier 23 is set to 0.
  • the control circuit 3 has an amplification factor ⁇ 4 of the fourth variable gain amplifier 24 so that the combined signal of the fourth signal after amplification and the first signal after amplification becomes sin ( ⁇ t + ⁇ ).
  • the amplification factor ⁇ 1 of the first variable gain amplifier 21 are adjusted.
  • the control circuit 3 sets the amplification factor ⁇ 2 of the second variable gain amplifier 22 to 0, and the amplification factor ⁇ of the third variable gain amplifier 23. 3 is set to 0, and the amplification factor ⁇ 4 of the fourth variable gain amplifier 24 is set to 0. Then, the control circuit 3 sets the amplification factor ⁇ 1 of the first variable gain amplifier 21 to 1. For example, if the phase shift amount ⁇ of the input signal is 90 degrees, the control circuit 3 sets the amplification factor ⁇ 1 of the first variable gain amplifier 21 to 0, and the amplification factor ⁇ of the third variable gain amplifier 23. 3 is set to 0, and the amplification factor ⁇ 4 of the fourth variable gain amplifier 24 is set to 0. Then, the control circuit 3 sets the amplification factor ⁇ 2 of the second variable gain amplifier 22 to 1.
  • the control circuit 3 sets the amplification factor ⁇ 1 of the first variable gain amplifier 21 to 0, and the amplification factor ⁇ of the second variable gain amplifier 22. 2 is set to 0, and the amplification factor ⁇ 4 of the fourth variable gain amplifier 24 is set to 0. Then, the control circuit 3 sets the amplification factor ⁇ 3 of the third variable gain amplifier 23 to 1. For example, if the phase shift amount ⁇ of the input signal is 270 degrees, the control circuit 3 sets the amplification factor ⁇ 1 of the first variable gain amplifier 21 to 0, and the amplification factor ⁇ of the second variable gain amplifier 22. 2 is set to 0, and the amplification factor ⁇ 3 of the third variable gain amplifier 23 is set to 0. Then, the control circuit 3 sets the amplification factor ⁇ 4 of the fourth variable gain amplifier 24 to 1.
  • the 90 degree phase difference characteristic of the 90-degree distributor 10 for convenience of explanation, the frequency f of the input signal, when the center frequency f c, so that a high-precision, 90-degree distributor 10 is designed It is assumed that it has been done. 6, the frequency f of the input signal, when the center frequency f c, the first signal output from the 90-degree distributor 10 having a precise 90-degree phase difference characteristic, the second signal, the third It is explanatory drawing which shows the polar coordinate display of each of the signal of the above and the fourth signal.
  • the frequency f of the input signal is the center frequency f c, as shown in FIG. 6, the first signal is 0 degree direction of the signal 41, and the signal 41 is input to the first variable gain amplifier 21 NS.
  • the second signal becomes a signal 42 in the direction of 90 degrees, and the signal 42 is input to the second variable gain amplifier 22.
  • the third signal becomes the signal 43 in the 180-degree direction, and the signal 43 is input to the third variable gain amplifier 23.
  • the fourth signal becomes a signal 44 in the direction of 270 degrees, and the signal 44 is input to the fourth variable gain amplifier 24.
  • the frequency f of the input signal is higher than the center frequency f c is caused a phase error 45
  • the signal 46 having a phase error 45 as a second signal is inputted to the second variable gain amplifier 22 .
  • the signal 47 having the phase error 45 is input to the fourth variable gain amplifier 24 as the fourth signal.
  • the frequency f of the input signal is lower than the center frequency f c is caused a phase error 48
  • the signal 49 having a phase error 48, as a second signal is input to the second variable gain amplifier 22.
  • the signal 50 having the phase error 48 is input to the fourth variable gain amplifier 24 as the fourth signal.
  • the 90 degree distributor 10 is designed so that the phase of the signal 46 having a phase error 45 is ahead of the phase of the signal 42 in the direction of 90 degrees. Therefore, the first phase compensation circuit 31 is designed to have a delay amount capable of delaying the phase of the signal 46 and bringing the phase of the signal 46 closer to the phase of the signal 42.
  • the phase shifter 1 may be designed so that the phase of the signal 46 having a phase error 45 lags the phase of the signal 42 in the direction of 90 degrees.
  • the first phase compensation circuit 31 is designed to have a lead amount capable of advancing the phase of the signal 46 and bringing the phase of the signal 46 closer to the phase of the signal 42.
  • the 90 degree distributor 10 is designed so that the phase of the signal 50 having the phase error 48 lags the phase of the signal 44 in the direction of 270 degrees. Therefore, the second phase compensation circuit 32 is designed to have a lead amount capable of advancing the phase of the signal 50 and bringing the phase of the signal 50 closer to the phase of the signal 44.
  • the 90-degree distributor 10 may be designed so that the phase of the signal 50 having the phase error 48 is ahead of the phase of the signal 44 in the direction of 270 degrees. In this case, the second phase compensation circuit 32 is designed to have a delay amount capable of delaying the phase of the signal 50 and bringing the phase of the signal 50 closer to the phase of the signal 44.
  • the frequency f of the input signal is included in the first frequency band (f c ⁇ f H), the phase shift of the input signal ⁇ is, if 180 degrees or less greater than 0 degrees, the second The phase error of the amplified second signal output from the variable gain amplifier 22 of the above is compensated by the first phase compensation circuit 31.
  • Frequency f of the input signal is included in a second frequency band (f L ⁇ f c), the phase shift of the input signal ⁇ is, if 360 degrees or less larger than 180 degrees, the fourth variable gain The phase error of the amplified fourth signal output from the amplifier 24 is compensated by the second phase compensation circuit 32.
  • FIG. 7 shows a first signal after amplification by the first variable gain amplifier 21, a second signal after phase compensation by the first phase compensation circuit 31, and a third signal after amplification by the third variable gain amplifier 23. It is explanatory drawing which shows each polar coordinate display in the signal of 1 and the 4th signal after phase compensation by a 2nd phase compensation circuit 32. In FIG. 7, the same reference numerals as those in FIG. 6 indicate the same or corresponding parts, and thus the description thereof will be omitted.
  • the second signal after phase compensation by the first phase compensation circuit 31 becomes a signal 51 in a direction of about 90 degrees, and the signal 51 is input to the second variable gain amplifier 22.
  • the fourth signal after phase compensation by the second phase compensation circuit 32 becomes a signal 52 in a direction of about 270 degrees, and the signal 52 is input to the fourth variable gain amplifier 24.
  • the phase error of the amplified second signal output from the second variable gain amplifier 22 is compensated by the first phase compensation circuit 31, so that the combined signal output from the first phase shift circuit 11
  • the RMS of the phase error er ⁇ of is RMS 1 shown in FIG.
  • the phase error of the amplified fourth signal output from the fourth variable gain amplifier 24 is compensated by the second phase compensation circuit 32, so that the combined signal output from the second phase shift circuit 12
  • the RMS of the phase error er ⁇ of is the RMS 2 shown in FIG.
  • Multiplier 4 obtains if the frequency f of the input signal has been included in the first frequency band (f c ⁇ f H), output from the first phase-shifting circuit 11 the composite signal sin ( ⁇ t + ⁇ ) ..
  • Multiplier 4 acquires a frequency f a second frequency band of the input signal if it contains the (f L ⁇ f c), the synthesized signal output from the second phase shift circuit 12 sin ( ⁇ t + ⁇ ) ..
  • the multiplier 4 doubles the frequency of the combined signal sin ( ⁇ t + ⁇ ) by calculating the square of the acquired combined signal sin ( ⁇ t + ⁇ ). By multiplying the frequency of the composite signal by 2 by the multiplier 4, the phase ⁇ of the composite signal is also doubled.
  • the multiplier 4 outputs the combined signal sin (2 ⁇ t + 2 ⁇ ) after frequency multiplication to the phased array antenna 5.
  • the amount of phase shift theta have been limited to a range of 0 ⁇ ⁇ 180.
  • the phase of the composite signal after the frequency multiplication is 2 [Theta]
  • the frequency f of the input signal is included in the first frequency band (f c ⁇ f H)
  • the amount of phase shift of phase shifter 1, 360 It will be in the range of degrees.
  • the frequency f of the input signal is included in the second frequency band (f L ⁇ f c)
  • the amount of phase shift theta have been limited to the range of 180 ⁇ ⁇ 360.
  • the phase of the composite signal after the frequency multiplication is 2 [Theta]
  • the amount of phase shift of phase shifter 1, 360 It will be in the range of degrees.
  • the phase shifter 1 receives the first signal and the second signal having a phase difference of 90 degrees from the first signal from the 90-degree distributor 10 that distributes the input signal.
  • a third signal having a phase difference of 180 degrees from the first signal and a fourth signal having a phase difference of 270 degrees from the first signal are output, the frequency of the input signal becomes the first frequency. If it is included in the band, each of the three signals from the first signal to the fourth signal is amplified according to the phase shift amount of the input signal, and the combined signal of the amplified three signals is output.
  • the first phase shift circuit 11 is provided.
  • phase shifter 1 does not overlap the first frequency band and the second frequency band continuous with the first frequency band includes the frequency of the input signal, any of them. Amplify and amplify each of any two of the three signals and one of the first to fourth signals that is not amplified by the first phase shift circuit 11 according to the amount of phase shift.
  • a second phase shift circuit 12 for outputting a combined signal of the latter three signals is provided. Then, the phase shifter 1 is provided so that one or more of the first phase shift circuit 11 and the second phase shift circuit 12 includes a compensation circuit for compensating for the phase error of the combined signal. Was configured. Therefore, the phase shifter 1 can compensate for the phase error of the signal after the phase shift without increasing the number of stages of the polyphase filter in the 90 degree distributor 10.
  • the first phase compensation circuit 31 is connected to the output side of the second variable gain amplifier 22, and the second phase compensation circuit 32 is connected to the output side of the fourth variable gain amplifier 24. It is connected to the.
  • the first phase compensation circuit 31 is connected to the input side of the second variable gain amplifier 22, and the second phase compensation circuit 32 is connected to the input side of the fourth variable gain amplifier 24. It may be connected.
  • FIG. 8 is a configuration diagram showing the phase shifter 1 according to the second embodiment.
  • the same reference numerals as those in FIG. 2 indicate the same or corresponding parts, and thus the description thereof will be omitted.
  • the frequency f of the input signal a frequency lower than the center frequency f c, for example, when it is f L + (f c -f L ) / 2
  • the frequency f of the input signal is 90 ° distributor 10 It has a highly accurate 90-degree phase difference characteristic.
  • the frequency f of the input signal when the frequency is lower than the center frequency f c, the first signal output from the 90-degree distributor 10 having a precise 90-degree phase difference characteristic
  • the second It is explanatory drawing which shows each polar coordinate display in a signal, a 3rd signal and a 4th signal.
  • Frequency f of the input signal when it is f L + (f c -f L ) / 2 , as shown in FIG.
  • the first signal is 0 degree direction of the signal 41, and the signal 41 is first It is input to the variable gain amplifier 21 of 1.
  • the second signal becomes a signal 42 in the direction of 90 degrees, and the signal 42 is input to the second variable gain amplifier 22.
  • the third signal becomes the signal 43 in the 180-degree direction, and the signal 43 is input to the third variable gain amplifier 23.
  • the fourth signal becomes a signal 44 in the direction of 270 degrees, and the signal 44 is input to the fourth variable gain amplifier 24.
  • the frequency f of the input signal for example, when included in the first frequency band (f c ⁇ f H), resulting phase error 61, the signal 62 having a phase error 61, a second signal Is input to the second variable gain amplifier 22. Further, the signal 63 having the phase error 61 is input to the fourth variable gain amplifier 24 as the fourth signal.
  • the 90 degree distributor 10 is designed so that the phase of the signal 62 having the phase error 61 is ahead of the phase of the signal 42 in the direction of 90 degrees. Therefore, the first phase compensation circuit 31 is designed to have a delay amount capable of delaying the phase of the signal 62 and bringing the phase of the signal 62 closer to the phase of the signal 42.
  • the phase shifter 1 may be designed so that the phase of the signal 62 having a phase error 61 lags the phase of the signal 42 in the direction of 90 degrees.
  • the first phase compensation circuit 31 is designed to have a lead amount capable of advancing the phase of the signal 62 and bringing the phase of the signal 62 closer to the phase of the signal 42.
  • the frequency f of the input signal is included in the first frequency band (f c ⁇ f H), the phase shift of the input signal ⁇ is, if 180 degrees or less greater than 0 degrees, the second The phase error of the amplified second signal output from the variable gain amplifier 22 of the above is compensated by the first phase compensation circuit 31.
  • Frequency f of the input signal is included in a second frequency band (f L ⁇ f c), the phase shift of the input signal ⁇ is, if 360 degrees or less larger than 180 degrees, the fourth variable gain Since the phase error of the amplified fourth signal output from the amplifier 24 is small, the phase error is not compensated.
  • the first phase shift circuit 11 uses the first phase compensation circuit 31 as a compensation circuit to compensate for the phase error of the second signal after amplification by the second variable gain amplifier 22.
  • the phase shifter 1 shown in FIG. 8 was configured so as to include it. Therefore, the phase shifter 1 shown in FIG. 8 compensates for the phase error of the signal after the phase shift without increasing the number of stages of the polyphase filter in the 90 degree distributor 10, similarly to the phase shifter 1 shown in FIG. can do. Further, the phase shifter 1 shown in FIG. 8 can have a simpler configuration than the phase shifter 1 shown in FIG.
  • FIG. 10 is a configuration diagram showing the phase shifter 1 according to the third embodiment.
  • the same reference numerals as those in FIG. 2 indicate the same or corresponding parts, and thus the description thereof will be omitted.
  • the frequency f of the input signal a frequency higher than the center frequency f c, for example, when it is f c + (f H -f c ) / 2
  • the frequency f of the input signal is 90 ° distributor 10 It has a highly accurate 90-degree phase difference characteristic.
  • the frequency f of the input signal when the frequency higher than the center frequency f c, the first signal output from the 90-degree distributor 10 having a precise 90-degree phase difference characteristic
  • the second It is explanatory drawing which shows each polar coordinate display in a signal, a 3rd signal and a 4th signal.
  • the first signal becomes the signal 41 in the direction of 0 degrees, and the signal 41 becomes the first signal 41. It is input to the variable gain amplifier 21 of 1.
  • the second signal becomes a signal 42 in the direction of 90 degrees, and the signal 42 is input to the second variable gain amplifier 22.
  • the third signal becomes the signal 43 in the 180-degree direction, and the signal 43 is input to the third variable gain amplifier 23.
  • the fourth signal becomes a signal 44 in the direction of 270 degrees, and the signal 44 is input to the fourth variable gain amplifier 24.
  • the frequency f of the input signal for example, when contained in a second frequency band (f L ⁇ f c), resulting phase error 71, the signal 72 having a phase error 71, the second signal Is input to the second variable gain amplifier 22.
  • the signal 73 having the phase error 71 is input to the fourth variable gain amplifier 24 as the fourth signal.
  • the 90 degree distributor 10 is designed so that the phase of the signal 73 having the phase error 71 lags the phase of the signal 44 in the direction of 270 degrees. Therefore, the second phase compensation circuit 32 is designed to have a lead amount capable of advancing the phase of the signal 73 and bringing the phase of the signal 73 closer to the phase of the signal 44.
  • the 90-degree distributor 10 may be designed so that the phase of the signal 73 having the phase error 71 is ahead of the phase of the signal 44 in the direction of 270 degrees.
  • the second phase compensation circuit 32 is designed to have a delay amount capable of delaying the phase of the signal 73 and bringing the phase of the signal 73 closer to the phase of the signal 44.
  • the frequency f of the input signal is included in a second frequency band (f L ⁇ f c)
  • the phase shift of the input signal ⁇ is, if 360 degrees or less larger than 180 degrees
  • the fourth The phase error of the fourth signal after amplification output from the variable gain amplifier 24 of the above is compensated by the second phase compensation circuit 32.
  • Frequency f of the input signal is included in the first frequency band (f c ⁇ f H)
  • the phase shift of the input signal ⁇ is, if 180 degrees or less greater than 0 degrees
  • a second variable gain Since the phase error of the amplified second signal output from the amplifier 22 is small, the phase error is not compensated.
  • the second phase shift circuit 12 uses the second phase compensation circuit 32 as a compensation circuit to compensate for the phase error of the fourth signal after amplification by the fourth variable gain amplifier 24.
  • the phase shifter 1 shown in FIG. 10 was configured so as to include it. Therefore, the phase shifter 1 shown in FIG. 10 compensates for the phase error of the signal after the phase shift without increasing the number of stages of the polyphase filter in the 90 degree distributor 10, similarly to the phase shifter 1 shown in FIG. can do. Further, the phase shifter 1 shown in FIG. 10 can have a simpler configuration than the phase shifter 1 shown in FIG.
  • the phase shifter 1 has been described assuming that the second frequency band is lower than the first frequency band. However, this is only an example, and the second frequency band may be higher than the first frequency band.
  • the present disclosure is suitable for a phase shifter and an antenna device including the phase shifter.
  • phase shifter 2 phase shift circuit, 2a input terminal, 3 control circuit, 3a frequency information input terminal, 3b phase shift amount input terminal, 4 multiplier, 4a output terminal, 5 phased array antenna, 10 90 degree distributor, 11 1st phase shift circuit, 12 2nd phase shift circuit, 21 1st variable gain amplifier, 22 2nd variable gain amplifier, 23 3rd variable gain amplifier, 24 4th variable gain amplifier, 31st 1 phase compensation circuit, 32 second phase compensation circuit, 410 degree direction signal, 42 90 degree direction signal, 43 180 degree direction signal, 44 270 degree direction signal, 45 phase error, 46,47 Signal with phase error, 48 Phase error, 49,50 Signal with phase error, 51 90 degree direction signal, 52 270 degree direction signal, 61 Phase error, 62,63 Signal with phase error , 71 Phase error, 72,73 Signal with phase error.

Landscapes

  • Amplifiers (AREA)
  • Networks Using Active Elements (AREA)

Abstract

移相器(1)が、入力信号を分配する90度分配器(10)から、第1の信号と、第1の信号と90度の位相差を有する第2の信号と、第1の信号と180度の位相差を有する第3の信号と、第1の信号と270度の位相差を有する第4の信号とが出力されると、入力信号の周波数が第1の周波数帯域に含まれていれば、第1の信号から第4の信号のうちのいずれか3つの信号のそれぞれを入力信号の移相量に従って増幅し、増幅後の3つの信号の合成信号を出力する第1の移相回路(11)を備えている。また、移相器(1)が、第1の周波数帯域と重ならず、かつ、第1の周波数帯域と連続している第2の周波数帯域に、入力信号の周波数が含まれていれば、いずれか3つの信号のうちのいずれか2つの信号と、第1の信号から第4の信号のうち、第1の移相回路(11)によって増幅されない1つの信号とのそれぞれを移相量に従って増幅し、増幅後の3つの信号の合成信号を出力する第2の移相回路(12)を備えている。そして、第1の移相回路(11)及び第2の移相回路(12)のうち、1つ以上の移相回路が、合成信号の位相誤差を補償する補償回路を備えているように、移相器(1)を構成した。

Description

移相器及びアンテナ装置
 本開示は、移相器と、移相器を備えるアンテナ装置とに関するものである。
 レーダ装置に用いられるアンテナ装置は、一般的に、フェーズドアレイアンテナと移相器とを備えている。当該フェーズドアレイアンテナから放射されるビームの方向を変更する際には、当該移相器が、当該フェーズドアレイアンテナに与える高周波信号の位相の切り替えを行う。
 当該移相器として、ベクトル合成型移相器を用いることが可能である。当該ベクトル合成型移相器は、一般的に、入力信号を、4つの信号に分配する90度分配器と、4つの信号の振幅のそれぞれを移相量に応じた増幅率によって増幅する複数の可変利得増幅器とを備えている。4つの信号としては、例えば、位相が0度の信号と、位相が90度の信号と、位相が180度の信号と、位相が270度の信号とが該当する。なお、90度分配器は、ベクトル合成型移相器の外部に設けられていることもある。
 当該ベクトル合成型移相器は、増幅後の4つの信号を合成し、移相後の信号として、4つの信号の合成信号を出力する。
 当該90度分配器は、例えば、ポリフェーズフィルタによって実現される(例えば、非特許文献1を参照)。
 非特許文献1に記載されている90度分配器は、4つの信号の位相誤差を低減するために、ポリフェーズフィルタが多段に接続されている。
Yan-Yu Huang,"An Ultra-Compact, Linearly-Controlled Variable Phase Shifter Designed With a Novel RC Poly-Phase Filter," IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 60, NO. 2, FEBRUARY 2012
 ポリフェーズフィルタが多段に接続されている90度分配器を備える移相器から出力される移相後の信号の位相精度は、ポリフェーズフィルタの段数が増えるほど向上する。しかし、ポリフェーズフィルタの段数が増えるほど、移相器を通過する信号の電力損失が増大してしまうという課題があった。
 本開示は、上記のような課題を解決するためになされたもので、90度分配器におけるポリフェーズフィルタの段数を増やすことなく、移相後の信号の位相誤差を補償することができる移相器を得ることを目的とする。
 本開示に係る移相器は、入力信号を分配する90度分配器から、第1の信号と、第1の信号と90度の位相差を有する第2の信号と、第1の信号と180度の位相差を有する第3の信号と、第1の信号と270度の位相差を有する第4の信号とが出力されると、入力信号の周波数が第1の周波数帯域に含まれていれば、第1の信号から第4の信号のうちのいずれか3つの信号のそれぞれを入力信号の移相量に従って増幅し、増幅後の3つの信号の合成信号を出力する第1の移相回路と、第1の周波数帯域と重ならず、かつ、第1の周波数帯域と連続している第2の周波数帯域に、入力信号の周波数が含まれていれば、いずれか3つの信号のうちのいずれか2つの信号と、第1の信号から第4の信号のうち、第1の移相回路によって増幅されない1つの信号とのそれぞれを移相量に従って増幅し、増幅後の3つの信号の合成信号を出力する第2の移相回路とを備え、第1の移相回路及び第2の移相回路のうち、1つ以上の移相回路が、合成信号の位相誤差を補償する補償回路を備えているものである。
 本開示によれば、第1の移相回路及び第2の移相回路のうち、1つ以上の移相回路が、合成信号の位相誤差を補償する補償回路を備えるように、移相器を構成した。したがって、本開示に係る移相器は、90度分配器におけるポリフェーズフィルタの段数を増やすことなく、移相後の信号の位相誤差を補償することができることができる。
実施の形態1に係る移相器1を備えるアンテナ装置を示す構成図である。 実施の形態1に係る移相器1を示す構成図である。 第1の移相回路11が第1の位相補償回路31を備えておらず、第2の移相回路12が第2の位相補償回路32を備えていない場合の、移相回路2から出力される合成信号の位相誤差を示す説明図である。 第1の移相回路11が第1の位相補償回路31を備え、第2の移相回路12が第2の位相補償回路32を備えている場合の、移相回路2から出力される合成信号の位相誤差を示す説明図である。 入力信号の移相量θを示す説明図である。 入力信号の周波数fが、中心周波数fであるとき、高精度な90度位相差特性を有する90度分配器10から出力される第1の信号、第2の信号、第3の信号及び第4の信号におけるそれぞれの極座標表示を示す説明図である。 第1の可変利得増幅器21による増幅後の第1の信号、第1の位相補償回路31による位相補償後の第2の信号、第3の可変利得増幅器23による増幅後の第3の信号及び第2の位相補償回路32による位相補償後の第4の信号におけるそれぞれの極座標表示を示す説明図である。 実施の形態2に係る移相器1を示す構成図である。 入力信号の周波数fが、中心周波数fよりも低い周波数であるとき、高精度な90度位相差特性を有する90度分配器10から出力される第1の信号、第2の信号、第3の信号及び第4の信号におけるそれぞれの極座標表示を示す説明図である。 実施の形態3に係る移相器1を示す構成図である。 入力信号の周波数fが、中心周波数fよりも高い周波数であるとき、高精度な90度位相差特性を有する90度分配器10から出力される第1の信号、第2の信号、第3の信号及び第4の信号におけるそれぞれの極座標表示を示す説明図である。 実施の形態1に係る移相器1を備える他のアンテナ装置を示す構成図である。
 以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係る移相器1を備えるアンテナ装置を示す構成図である。図2は、実施の形態1に係る移相器1を示す構成図である。
 アンテナ装置は、移相器1と、制御回路3と、フェーズドアレイアンテナ5とを備えている。
 移相器1は、ベクトル合成型移相器であり、移相回路2及び逓倍器4を備えている。図1に示すアンテナ装置では、制御回路3が移相器1の外部に設けられている。しかし、これは一例に過ぎず、図12に示すように、制御回路3が移相器1の内部に設けられていてもよい。図12は、実施の形態1に係る移相器1を備える他のアンテナ装置を示す構成図である。
 移相器1は、外部から入力信号が与えられると、入力信号を移相し、移相後の信号をフェーズドアレイアンテナ5に出力する。入力信号は、例えば、高周波信号である。
 フェーズドアレイアンテナ5は、複数のアンテナ素子を備えている。アンテナ素子は、移相器1から出力された移相後の信号に係る電波を空間に放射する。
 図1に示すアンテナ装置は、図面の簡単化のため、1つの移相器1のみを備えている。実際には、アンテナ装置は、フェーズドアレイアンテナ5が備える複数のアンテナ素子と同数の移相器1を備えている。
 移相回路2は、90度分配器10、第1の移相回路11及び第2の移相回路12を備えている。
 図2に示す移相回路2は、90度分配器10を備えている。しかし、これは一例に過ぎず、90度分配器10は、移相回路2の外部に設けられていてもよい。
 移相回路2の入力端子2aは、移相回路2の外部から、移相対象の信号である入力信号を入力するための端子である。
 移相回路2は、入力端子2aから入力された入力信号を移相し、移相後の信号を逓倍器4に出力する。
 90度分配器10は、1つのポリフェーズフィルタによって実現されている。
 90度分配器10は、入力端子2aから入力された入力信号を4つの信号に分配する。
 即ち、90度分配器10は、第1の信号と、第1の信号と90度の位相差を有する第2の信号と、第1の信号と180度の位相差を有する第3の信号と、第1の信号と270度の位相差を有する第4の信号とに分配する。
 90度分配器10は、第1の信号と、第2の信号と、第3の信号とを第1の移相回路11に出力する。
 90度分配器10は、第1の信号と、第3の信号と、第4の信号とを第2の移相回路12に出力する。
 入力信号の位相が0度であれば、第1の信号は、位相が0度の信号であり、第2の信号は、位相が90度の信号である。また、第3の信号は、位相が180度の信号であり、第4の信号は、位相が270度の信号である。
 ただし、第1の信号、第2の信号、第3の信号及び第4の信号のそれぞれは、位相誤差を有しており、位相誤差の大きさは、入力信号の周波数によって異なる。このため、第1の信号の位相は、0度からずれており、第2の信号の位相は、90度からずれていることがある。また、第3の信号の位相は、180度からずれており、第4の信号の位相は、270度からずれていることがある。
 図2に示す移相回路2では、90度分配器10が、1つのポリフェーズフィルタによって実現されている。しかし、これは一例に過ぎず、90度分配器10が、多段のポリフェーズフィルタによって実現されていてもよい。
 90度分配器10が、多段のポリフェーズフィルタによって実現されている場合、第1の信号、第2の信号、第3の信号及び第4の信号のそれぞれに生じる位相誤差は、1つのポリフェーズフィルタによって実現されている場合よりも低減される。
 ただし、90度分配器10が、多段のポリフェーズフィルタによって実現されている場合、移相器1を通過する信号の電力損失は、90度分配器10が、1つのポリフェーズフィルタによって実現されている場合よりも増大する。したがって、移相器1を通過する信号の電力損失が増大しても、実用上問題のない範囲で、ポリフェーズフィルタの段数が決定されている必要がある。
 第1の移相回路11は、第1の可変利得増幅器21、第2の可変利得増幅器22及び第3の可変利得増幅器23を備えている。また、第1の移相回路11は、補償回路として、第1の位相補償回路31を備えている。
 第1の移相回路11は、入力信号の周波数が第1の周波数帯域に含まれており、入力信号の移相量が、0度よりも大きく180度以下であれば、入力信号の移相量に従って、第1の信号、第2の信号及び第3の信号のそれぞれを増幅する。
 第1の移相回路11は、増幅後の第1の信号と増幅後の第2の信号と増幅後の第3の信号との合成信号を逓倍器4に出力する。
 第1の周波数帯域は、移相器1が移相可能な周波数帯域(f~f)の中心周波数fから、移相器1が移相可能な周波数帯域(f~f)の上限周波数fまでの範囲である。
 図2に示す移相回路2では、第1の移相回路11が、第1の信号、第2の信号及び第3の信号のそれぞれを増幅している。しかし、これは一例に過ぎず、入力信号の周波数が第1の周波数帯域に含まれていれば、第1の移相回路11が、第1の信号から第4の信号のうちのいずれか3つの信号のそれぞれを入力信号の移相量に従って増幅するようにしてもよい。
 入力信号の移相量が、例えば、90度よりも大きく270度以下であれば、第1の移相回路11が、第2の信号、第3の信号及び第4の信号のそれぞれを入力信号の移相量に従って増幅し、増幅後の3つの信号の合成信号を逓倍器4に出力する。
 入力信号の移相量が、例えば、180度よりも大きく360度以下であれば、第1の移相回路11が、第3の信号、第4の信号及び第1の信号のそれぞれを入力信号の移相量に従って増幅し、増幅後の3つの信号の合成信号を逓倍器4に出力する。
 入力信号の移相量が、例えば、270度よりも大きく450度(=90度)以下であれば、第1の移相回路11が、第4の信号、第1の信号及び第2の信号のそれぞれを入力信号の移相量に従って増幅し、増幅後の3つの信号の合成信号を逓倍器4に出力する。
 第2の移相回路12は、第1の可変利得増幅器21、第3の可変利得増幅器23及び第4の可変利得増幅器24を備えている。また、第2の移相回路12は、補償回路として、第2の位相補償回路32を備えている。
 第2の移相回路12は、入力信号の周波数が、第1の周波数帯域と重ならず、かつ、第1の周波数帯域と連続している第2の周波数帯域に含まれており、入力信号の移相量が、180度よりも大きく360度以下であれば、入力信号の移相量に従って、第1の信号、第3の信号及び第4の信号のそれぞれを増幅する。
 第2の移相回路12は、増幅後の第1の信号と増幅後の第3の信号と増幅後の第4の信号との合成信号を逓倍器4に出力する。
 第2の周波数帯域は、移相器1が移相可能な周波数帯域(f~f)の下限周波数fから、中心周波数fまでの範囲である。
 図2に示す移相回路2では、第2の移相回路12が、第1の信号、第3の信号及び第4の信号のそれぞれを増幅している。しかし、これは一例に過ぎず、入力信号の周波数が第2の周波数帯域に含まれていれば、第2の移相回路12が、第1の移相回路11によって増幅される3つの信号のうちのいずれか2つの信号と、第1の信号から第4の信号のうち、第1の移相回路11によって増幅されない1つの信号とのそれぞれを入力信号の移相量に従って増幅するようにしてもよい。
 入力信号の移相量が、例えば、270度よりも大きく450度(=90度)以下であれば、第2の移相回路12が、第4の信号、第1の信号及び第2の信号のそれぞれを入力信号の移相量に従って増幅し、増幅後の3つの信号の合成信号を逓倍器4に出力する。
 入力信号の移相量が、例えば、0度よりも大きく180度以下であれば、第2の移相回路12が、第1の信号、第2の信号及び第3の信号のそれぞれを入力信号の移相量に従って増幅し、増幅後の3つの信号の合成信号を逓倍器4に出力する。
 入力信号の移相量が、例えば、90度よりも大きく270度以下であれば、第2の移相回路12が、第2の信号、第3の信号及び第4の信号のそれぞれを入力信号の移相量に従って増幅し、増幅後の3つの信号の合成信号を逓倍器4に出力する。
 第1の可変利得増幅器21は、90度分配器10から出力された第1の信号を増幅し、増幅後の第1の信号を逓倍器4に出力する。
 第2の可変利得増幅器22は、90度分配器10から出力された第2の信号を増幅し、増幅後の第2の信号を第1の位相補償回路31に出力する。
 第3の可変利得増幅器23は、90度分配器10から出力された第3の信号を増幅し、増幅後の第3の信号を逓倍器4に出力する。
 第4の可変利得増幅器24は、90度分配器10から出力された第4の信号を増幅し、増幅後の第4の信号を第2の位相補償回路32に出力する。
 第1の位相補償回路31は、位相を遅延させる回路、又は、位相を進める回路によって実現される。位相を遅延させる回路は、例えば、抵抗とコンデンサとよって実現される。位相を進める回路は、例えば、抵抗とインダクタとよって実現される。
 第1の位相補償回路31は、第2の可変利得増幅器22から出力された増幅後の第2の信号の位相を遅延、又は、増幅後の第2の信号の位相を進めることによって、第1の移相回路11から出力される合成信号の位相誤差を補償する。
 第2の位相補償回路32は、位相を遅延させる回路、又は、位相を進める回路によって実現される。
 第2の位相補償回路32は、第4の可変利得増幅器24から出力された増幅後の第4の信号の位相を遅延、又は、増幅後の第4の信号の位相を進めることによって、第2の移相回路12から出力される合成信号の位相誤差を補償する。
 制御回路3の周波数情報入力端子3aは、制御回路3の外部から、入力信号の周波数を示す周波数情報を入力するための端子である。
 制御回路3の移相量入力端子3bは、制御回路3の外部から、入力信号の移相量を入力するための端子である。
 制御回路3は、入力信号の周波数が第1の周波数帯域に含まれており、入力信号の移相量が、0度よりも大きく、180度以下であれば、第4の可変利得増幅器24の増幅率を0に設定する。また、制御回路3は、入力信号の移相量に従って、第1の可変利得増幅器21、第2の可変利得増幅器22及び第3の可変利得増幅器23におけるそれぞれの増幅率を調整する。
 制御回路3は、入力信号の周波数が第2の周波数帯域に含まれており、入力信号の移相量が、180度よりも大きく、360度以下であれば、第2の可変利得増幅器22の増幅率を0に設定する。また、制御回路3は、入力信号の移相量に従って、第1の可変利得増幅器21、第3の可変利得増幅器23及び第4の可変利得増幅器24におけるそれぞれの増幅率を調整する。
 逓倍器4は、例えば、ミキサによって実現される。
 逓倍器4は、第1の移相回路11から出力された合成信号の周波数、又は、第2の移相回路12から出力された合成信号の周波数を2逓倍する。逓倍器4によって、合成信号の周波数が2逓倍されることによって、合成信号の位相も2倍になる。
 逓倍器4は、周波数逓倍後の合成信号をフェーズドアレイアンテナ5に出力する。
 逓倍器4の出力端子4aは、周波数逓倍後の合成信号をフェーズドアレイアンテナ5に出力するための端子である。
 次に、図2に示す移相器1の動作について説明する。
 90度分配器10から出力される第1の信号、第2の信号、第3の信号及び第4の信号のそれぞれは、入力端子2aから入力される入力信号の周波数fに応じて異なる位相誤差を有している。
 第1の信号、第2の信号、第3の信号及び第4の信号のそれぞれが、位相誤差を有しているため、移相回路2が、第1の位相補償回路31及び第2の位相補償回路32を備えていなければ、移相回路2から出力される合成信号に位相誤差が生じる。
 図3は、第1の移相回路11が第1の位相補償回路31を備えておらず、第2の移相回路12が第2の位相補償回路32を備えていない場合の、移相回路2から出力される合成信号の位相誤差を示す説明図である。
 図3の横軸は、周波数であり、図3の縦軸は、以下の式(1)に示すように、移相量がθであるときの位相誤差erθのRMS(Root Mean Square)である。θ=1,2,3,・・・,360である。

Figure JPOXMLDOC01-appb-I000001
 位相誤差erθのRMSは、第1の可変利得増幅器21、第2の可変利得増幅器22、第3の可変利得増幅器23及び第4の可変利得増幅器24におけるそれぞれのトランジスタサイズ等によって決定される。
 ただし、位相誤差erθのRMSは、図3に示すように、入力信号の周波数fが異なると、変化する。
 図3では、入力信号の周波数fが、中心周波数fよりも高く、上限周波数fよりも低い周波数fであるときに、90度分配器10が、高精度な90度位相差特性を有している例を示している。
 このため、図3の例では、入力信号の周波数fが、周波数fであるときに、移相回路2から出力される合成信号の位相誤差erθのRMSが最小になっている。また、入力信号の周波数fが、下限周波数fであるときに、移相回路2から出力される合成信号の位相誤差erθのRMSが最大になっている。
 図4は、第1の移相回路11が第1の位相補償回路31を備え、第2の移相回路12が第2の位相補償回路32を備えている場合の、移相回路2から出力される合成信号の位相誤差を示す説明図である。
 図4の横軸は、周波数であり、図4の縦軸は、式(1)に示すように、移相量がθであるときの位相誤差erθのRMSである。
 RMSは、第1の移相回路11から出力される合成信号の位相誤差erθのRMSである。図4の例では、第1の移相回路11が第1の位相補償回路31を備えることによって、RMSを示す曲線は、図3に記載のRMSを示す曲線が高周波数側(図中、右側)に概ね平行移動したものとなっている。周波数fは、第1の移相回路11から出力される合成信号の位相誤差erθのRMSが最小になる、入力信号の周波数fである。f<f<fである。
 RMSは、第2の移相回路12から出力される合成信号の位相誤差erθのRMSである。図4の例では、第2の移相回路12が第2の位相補償回路32を備えることによって、RMSを示す曲線は、図3に記載のRMSを示す曲線が低周波数側(図中、左側)に概ね平行移動したものとなっている。周波数fは、第2の移相回路12から出力される合成信号の位相誤差erθのRMSが最小になる、入力信号の周波数fである。f<f<fである。
 図5は、入力信号の移相量θを示す説明図である。
 図5において、0<θ≦180は、入力信号の移相量θが、0度よりも大きく180度以下であることを示している。
 180<θ≦360は、入力信号の移相量θが、180度よりも大きく360度以下であることを示している。
 第1の移相回路11から合成信号が出力される条件は、入力信号の周波数fが第1の周波数帯域(f~f)に含まれており、入力信号の移相量θが、0度よりも大きく180度以下であるときである。
 第2の移相回路12から合成信号が出力される条件は、入力信号の周波数fが第2の周波数帯域(f~f)に含まれており、入力信号の移相量θが、180度よりも大きく360度以下であるときである。
 したがって、第1の移相回路11から出力される合成信号の位相誤差erθのRMSは、図3及び図4に示すように、周波数fが上限周波数fのとき、第1の位相補償回路31を備えていない移相回路から出力される合成信号の位相誤差erθのRMSよりも小さくなっている。
 また、第2の移相回路12から出力される合成信号の位相誤差erθのRMSは、図3及び図4に示すように、周波数fが下限周波数fのとき、第2の位相補償回路32を備えていない移相回路から出力される合成信号の位相誤差erθのRMSよりも小さくなっている。
 入力端子2aから入力信号sin(ωt)が入力されると、90度分配器10は、入力信号sin(ωt)を、第1の信号sin(ωt)と、第2の信号sin(ωt+90)と、第3の信号sin(ωt+180)と、第4の信号sin(ωt+270)とに分配する。ωは、角周波数であり、tは、時刻である。ω=2πfである。
 ただし、第1の信号sin(ωt)、第2の信号sin(ωt+90)、第3の信号sin(ωt+180)及び第4の信号sin(ωt+270)のそれぞれは、上述したように、位相誤差を有していることがある。
 90度分配器10は、第1の信号sin(ωt)と、第2の信号sin(ωt+90)と、第3の信号sin(ωt+180)とを第1の移相回路11に出力する。
 90度分配器10は、第1の信号sin(ωt)と、第3の信号sin(ωt+180)と、第4の信号sin(ωt+270)とを第2の移相回路12に出力する。
 制御回路3は、周波数情報入力端子3aから入力された周波数情報を取得し、移相量入力端子3bから入力された入力信号の移相量θを取得する。
 制御回路3は、周波数情報が示す入力信号の周波数fが第1の周波数帯域(f~f)に含まれており、入力信号の移相量θが、0度よりも大きく180度以下であれば、第4の可変利得増幅器24の増幅率を0に設定する。また、制御回路3は、入力信号の移相量θに従って、第1の可変利得増幅器21、第2の可変利得増幅器22及び第3の可変利得増幅器23におけるそれぞれの増幅率を調整する。
 制御回路3は、周波数情報が示す入力信号の周波数fが第2の周波数帯域(f~f)に含まれており、入力信号の移相量θが、180度よりも大きく360度以下であれば、第2の可変利得増幅器22の増幅率を0に設定する。また、制御回路3は、入力信号の移相量θに従って、第1の可変利得増幅器21、第3の可変利得増幅器23及び第4の可変利得増幅器24におけるそれぞれの増幅率を調整する。
 以下、制御回路3による増幅率の調整例を説明する。なお、制御回路3は、移相回路2が、第1の位相補償回路31及び第2の位相補償回路32を備えていないものとして、それぞれの増幅率を調整する。
 例えば、入力信号の移相量θが、0度よりも大きく、90度よりも小さければ、制御回路3は、第3の可変利得増幅器23の増幅率βを0に設定し、第4の可変利得増幅器24の増幅率βを0に設定する。
 そして、制御回路3は、増幅後の第1の信号と、増幅後の第2の信号との合成信号が、sin(ωt+θ)となるように、第1の可変利得増幅器21の増幅率βと、第2の可変利得増幅器22の増幅率βとを調整する。合成信号が、sin(ωt+θ)となるように、増幅率βと増幅率βとを調整する処理自体は、公知の技術であるため詳細な説明を省略する。
 例えば、入力信号の移相量θが、90度よりも大きく、180度よりも小さければ、制御回路3は、第1の可変利得増幅器21の増幅率βを0に設定し、第4の可変利得増幅器24の増幅率βを0に設定する。
 そして、制御回路3は、増幅後の第2の信号と、増幅後の第3の信号との合成信号が、sin(ωt+θ)となるように、第2の可変利得増幅器22の増幅率βと、第3の可変利得増幅器23の増幅率βとを調整する。
 例えば、入力信号の移相量θが、180度よりも大きく、270度よりも小さければ、制御回路3は、第1の可変利得増幅器21の増幅率βを0に設定し、第2の可変利得増幅器22の増幅率βを0に設定する。
 そして、制御回路3は、増幅後の第3の信号と、増幅後の第4の信号との合成信号が、sin(ωt+θ)となるように、第3の可変利得増幅器23の増幅率βと、第4の可変利得増幅器24の増幅率βとを調整する。
 例えば、入力信号の移相量θが、270度よりも大きく、360度よりも小さければ、制御回路3は、第2の可変利得増幅器22の増幅率βを0に設定し、第3の可変利得増幅器23の増幅率βを0に設定する。
 そして、制御回路3は、増幅後の第4の信号と、増幅後の第1の信号との合成信号が、sin(ωt+θ)となるように、第4の可変利得増幅器24の増幅率βと、第1の可変利得増幅器21の増幅率βとを調整する。
 例えば、入力信号の移相量θが0度であれば、制御回路3は、第2の可変利得増幅器22の増幅率βを0に設定し、第3の可変利得増幅器23の増幅率βを0に設定し、第4の可変利得増幅器24の増幅率βを0に設定する。そして、制御回路3は、第1の可変利得増幅器21の増幅率βを1に設定する。
 例えば、入力信号の移相量θが90度であれば、制御回路3は、第1の可変利得増幅器21の増幅率βを0に設定し、第3の可変利得増幅器23の増幅率βを0に設定し、第4の可変利得増幅器24の増幅率βを0に設定する。そして、制御回路3は、第2の可変利得増幅器22の増幅率βを1に設定する。
 例えば、入力信号の移相量θが180度であれば、制御回路3は、第1の可変利得増幅器21の増幅率βを0に設定し、第2の可変利得増幅器22の増幅率βを0に設定し、第4の可変利得増幅器24の増幅率βを0に設定する。そして、制御回路3は、第3の可変利得増幅器23の増幅率βを1に設定する。
 例えば、入力信号の移相量θが270度であれば、制御回路3は、第1の可変利得増幅器21の増幅率βを0に設定し、第2の可変利得増幅器22の増幅率βを0に設定し、第3の可変利得増幅器23の増幅率βを0に設定する。そして、制御回路3は、第4の可変利得増幅器24の増幅率βを1に設定する。
 ここで、90度分配器10が有する90度位相差特性が、説明の便宜上、入力信号の周波数fが、中心周波数fであるとき、高精度であるように、90度分配器10が設計されているものとする。
 図6は、入力信号の周波数fが、中心周波数fであるとき、高精度な90度位相差特性を有する90度分配器10から出力される第1の信号、第2の信号、第3の信号及び第4の信号におけるそれぞれの極座標表示を示す説明図である。
 入力信号の周波数fが中心周波数fであるときは、図6に示すように、第1の信号は、0度の方向の信号41となり、信号41が第1の可変利得増幅器21に入力される。第2の信号は、90度の方向の信号42となり、信号42が第2の可変利得増幅器22に入力される。第3の信号は、180度の方向の信号43となり、信号43が第3の可変利得増幅器23に入力される。第4の信号は、270度の方向の信号44となり、信号44が第4の可変利得増幅器24に入力される。
 しかし、入力信号の周波数fが中心周波数fよりも高いときは、位相誤差45が生じ、位相誤差45を有する信号46が、第2の信号として、第2の可変利得増幅器22に入力される。また、位相誤差45を有する信号47が、第4の信号として、第4の可変利得増幅器24に入力される。
 入力信号の周波数fが中心周波数fよりも低いときは、位相誤差48が生じ、位相誤差48を有する信号49が、第2の信号として、第2の可変利得増幅器22に入力される。また、位相誤差48を有する信号50が、第4の信号として、第4の可変利得増幅器24に入力される。
 図6の例では、位相誤差45を有する信号46の位相が、90度の方向の信号42の位相よりも進むように、90度分配器10が設計されている。このため、第1の位相補償回路31は、信号46の位相を遅らせて、信号46の位相を信号42の位相に近づけることができる遅延量を有するように設計される。なお、位相誤差45を有する信号46の位相が、90度の方向の信号42の位相よりも遅れるように、移相器1が設計される場合がある。この場合には、第1の位相補償回路31は、信号46の位相を進めて、信号46の位相を信号42の位相に近づけることができる進み量を有するように設計される。
 図6の例では、位相誤差48を有する信号50の位相が、270度の方向の信号44の位相よりも遅れるように、90度分配器10が設計されている。このため、第2の位相補償回路32は、信号50の位相を進めて、信号50の位相を信号44の位相に近づけることができる進み量を有するように設計される。なお、位相誤差48を有する信号50の位相が、270度の方向の信号44の位相よりも進むように、90度分配器10が設計される場合がある。この場合には、第2の位相補償回路32は、信号50の位相を遅らせて、信号50の位相を信号44の位相に近づけることができる遅延量を有するように設計される。
 以上より、入力信号の周波数fが第1の周波数帯域(f~f)に含まれており、入力信号の移相量θが、0度よりも大きく180度以下であれば、第2の可変利得増幅器22から出力された増幅後の第2の信号の位相誤差が、第1の位相補償回路31によって補償される。
 入力信号の周波数fが第2の周波数帯域(f~f)に含まれており、入力信号の移相量θが、180度よりも大きく360度以下であれば、第4の可変利得増幅器24から出力された増幅後の第4の信号の位相誤差が、第2の位相補償回路32によって補償される。
 図7は、第1の可変利得増幅器21による増幅後の第1の信号、第1の位相補償回路31による位相補償後の第2の信号、第3の可変利得増幅器23による増幅後の第3の信号及び第2の位相補償回路32による位相補償後の第4の信号におけるそれぞれの極座標表示を示す説明図である。
 図7において、図6と同一符号は同一又は相当部分を示すので説明を省略する。
 第1の位相補償回路31による位相補償後の第2の信号は、約90度の方向の信号51となり、信号51が第2の可変利得増幅器22に入力される。
 第2の位相補償回路32による位相補償後の第4の信号は、約270度の方向の信号52となり、信号52が第4の可変利得増幅器24に入力される。
 第2の可変利得増幅器22から出力された増幅後の第2の信号の位相誤差が、第1の位相補償回路31によって補償されることによって、第1の移相回路11から出力される合成信号の位相誤差erθのRMSが、図4に示すRMSになる。
 第4の可変利得増幅器24から出力された増幅後の第4の信号の位相誤差が、第2の位相補償回路32によって補償されることによって、第2の移相回路12から出力される合成信号の位相誤差erθのRMSが、図4に示すRMSになる。
 逓倍器4は、入力信号の周波数fが第1の周波数帯域(f~f)に含まれていれば、第1の移相回路11から出力された合成信号sin(ωt+θ)を取得する。
 逓倍器4は、入力信号の周波数fが第2の周波数帯域(f~f)に含まれていれば、第2の移相回路12から出力された合成信号sin(ωt+θ)を取得する。
 逓倍器4は、取得した合成信号sin(ωt+θ)の2乗を算出することによって、合成信号sin(ωt+θ)の周波数を2逓倍する。逓倍器4によって、合成信号の周波数が2逓倍されることによって、合成信号の位相θも2倍になる。
 逓倍器4は、周波数逓倍後の合成信号sin(2ωt+2θ)をフェーズドアレイアンテナ5に出力する。
 入力信号の周波数fが第1の周波数帯域(f~f)に含まれているときの、移相量θが、0<θ≦180の範囲に限られている。しかし、周波数逓倍後の合成信号の位相が2θになるため、周波数fが第1の周波数帯域(f~f)に含まれているときの、移相器1の移相量が、360度の範囲になる。
 また、入力信号の周波数fが第2の周波数帯域(f~f)に含まれているときの、移相量θが、180<θ≦360の範囲に限られている。しかし、周波数逓倍後の合成信号の位相が2θになるため、周波数fが第2の周波数帯域(f~f)に含まれているときの、移相器1の移相量が、360度の範囲になる。
 以上の実施の形態1では、移相器1が、入力信号を分配する90度分配器10から、第1の信号と、第1の信号と90度の位相差を有する第2の信号と、第1の信号と180度の位相差を有する第3の信号と、第1の信号と270度の位相差を有する第4の信号とが出力されると、入力信号の周波数が第1の周波数帯域に含まれていれば、第1の信号から第4の信号のうちのいずれか3つの信号のそれぞれを入力信号の移相量に従って増幅し、増幅後の3つの信号の合成信号を出力する第1の移相回路11を備えている。また、移相器1が、第1の周波数帯域と重ならず、かつ、第1の周波数帯域と連続している第2の周波数帯域に、入力信号の周波数が含まれていれば、いずれか3つの信号のうちのいずれか2つの信号と、第1の信号から第4の信号のうち、第1の移相回路11によって増幅されない1つの信号とのそれぞれを移相量に従って増幅し、増幅後の3つの信号の合成信号を出力する第2の移相回路12を備えている。そして、第1の移相回路11及び第2の移相回路12のうち、1つ以上の移相回路が、合成信号の位相誤差を補償する補償回路を備えているように、移相器1を構成した。したがって、移相器1は、90度分配器10におけるポリフェーズフィルタの段数を増やすことなく、移相後の信号の位相誤差を補償することができる。
 図2に示す移相器1では、第1の位相補償回路31が第2の可変利得増幅器22の出力側に接続され、第2の位相補償回路32が第4の可変利得増幅器24の出力側に接続されている。しかし、これは一例に過ぎず、第1の位相補償回路31が第2の可変利得増幅器22の入力側に接続され、第2の位相補償回路32が第4の可変利得増幅器24の入力側に接続されていてもよい。
実施の形態2.
 実施の形態2では、第1の移相回路11が第1の位相補償回路31を備え、第2の移相回路12が第2の位相補償回路32を備えていない移相器1について説明する。
 図8は、実施の形態2に係る移相器1を示す構成図である。図8において、図2と同一符号は同一又は相当部分を示すので説明を省略する。
 図8に示す移相器1では、入力信号の周波数fが、中心周波数fよりも低い周波数、例えば、f+(f-f)/2であるとき、90度分配器10が、高精度な90度位相差特性を有している。
 図9は、入力信号の周波数fが、中心周波数fよりも低い周波数であるとき、高精度な90度位相差特性を有する90度分配器10から出力される第1の信号、第2の信号、第3の信号及び第4の信号におけるそれぞれの極座標表示を示す説明図である。
 入力信号の周波数fが、f+(f-f)/2であるときは、図9に示すように、第1の信号は、0度の方向の信号41となり、信号41が第1の可変利得増幅器21に入力される。第2の信号は、90度の方向の信号42となり、信号42が第2の可変利得増幅器22に入力される。第3の信号は、180度の方向の信号43となり、信号43が第3の可変利得増幅器23に入力される。第4の信号は、270度の方向の信号44となり、信号44が第4の可変利得増幅器24に入力される。
 しかし、入力信号の周波数fが、例えば、第1の周波数帯域(f~f)に含まれているときは、位相誤差61が生じ、位相誤差61を有する信号62が、第2の信号として、第2の可変利得増幅器22に入力される。また、位相誤差61を有する信号63が、第4の信号として、第4の可変利得増幅器24に入力される。
 図9の例では、位相誤差61を有する信号62の位相が、90度の方向の信号42の位相よりも進むように、90度分配器10が設計されている。このため、第1の位相補償回路31は、信号62の位相を遅らせて、信号62の位相を信号42の位相に近づけることができる遅延量を有するように設計される。なお、位相誤差61を有する信号62の位相が、90度の方向の信号42の位相よりも遅れるように、移相器1が設計される場合がある。この場合には、第1の位相補償回路31は、信号62の位相を進めて、信号62の位相を信号42の位相に近づけることができる進み量を有するように設計される。
 以上より、入力信号の周波数fが第1の周波数帯域(f~f)に含まれており、入力信号の移相量θが、0度よりも大きく180度以下であれば、第2の可変利得増幅器22から出力された増幅後の第2の信号の位相誤差が、第1の位相補償回路31によって補償される。
 入力信号の周波数fが第2の周波数帯域(f~f)に含まれており、入力信号の移相量θが、180度よりも大きく360度以下であれば、第4の可変利得増幅器24から出力された増幅後の第4の信号の位相誤差は小さいため、当該位相誤差は補償されない。
 以上の実施の形態2では、第1の移相回路11が、補償回路として、第2の可変利得増幅器22による増幅後の第2の信号の位相誤差を補償する第1の位相補償回路31を含んでいるように、図8に示す移相器1を構成した。したがって、図8に示す移相器1は、図2に示す移相器1と同様に、90度分配器10におけるポリフェーズフィルタの段数を増やすことなく、移相後の信号の位相誤差を補償することができる。また、図8に示す移相器1は、図2に示す移相器1よりも、構成の簡略化を図ることができる。
実施の形態3.
 実施の形態3では、第2の移相回路12が第2の位相補償回路32を備え、第1の移相回路11が第1の位相補償回路31を備えていない移相器1について説明する。
 図10は、実施の形態3に係る移相器1を示す構成図である。図10において、図2と同一符号は同一又は相当部分を示すので説明を省略する。
 図10に示す移相器1では、入力信号の周波数fが、中心周波数fよりも高い周波数、例えば、f+(f-f)/2であるとき、90度分配器10が、高精度な90度位相差特性を有している。
 図11は、入力信号の周波数fが、中心周波数fよりも高い周波数であるとき、高精度な90度位相差特性を有する90度分配器10から出力される第1の信号、第2の信号、第3の信号及び第4の信号におけるそれぞれの極座標表示を示す説明図である。
 入力信号の周波数fが、f+(f-f)/2であるときは、図11に示すように、第1の信号は、0度の方向の信号41となり、信号41が第1の可変利得増幅器21に入力される。第2の信号は、90度の方向の信号42となり、信号42が第2の可変利得増幅器22に入力される。第3の信号は、180度の方向の信号43となり、信号43が第3の可変利得増幅器23に入力される。第4の信号は、270度の方向の信号44となり、信号44が第4の可変利得増幅器24に入力される。
 しかし、入力信号の周波数fが、例えば、第2の周波数帯域(f~f)に含まれているときは、位相誤差71が生じ、位相誤差71を有する信号72が、第2の信号として、第2の可変利得増幅器22に入力される。また、位相誤差71を有する信号73が、第4の信号として、第4の可変利得増幅器24に入力される。
 図11の例では、位相誤差71を有する信号73の位相が、270度の方向の信号44の位相よりも遅れるように、90度分配器10が設計されている。このため、第2の位相補償回路32は、信号73の位相を進めて、信号73の位相を信号44の位相に近づけることができる進み量を有するように設計される。なお、位相誤差71を有する信号73の位相が、270度の方向の信号44の位相よりも進むように、90度分配器10が設計される場合がある。この場合には、第2の位相補償回路32は、信号73の位相を遅らせて、信号73の位相を信号44の位相に近づけることができる遅延量を有するように設計される。
 以上より、入力信号の周波数fが第2の周波数帯域(f~f)に含まれており、入力信号の移相量θが、180度よりも大きく360度以下であれば、第4の可変利得増幅器24から出力された増幅後の第4の信号の位相誤差が、第2の位相補償回路32によって補償される。
 入力信号の周波数fが第1の周波数帯域(f~f)に含まれており、入力信号の移相量θが、0度よりも大きく180度以下であれば、第2の可変利得増幅器22から出力された増幅後の第2の信号の位相誤差は小さいため、当該位相誤差は補償されない。
 以上の実施の形態3は、第2の移相回路12が、補償回路として、第4の可変利得増幅器24による増幅後の第4の信号の位相誤差を補償する第2の位相補償回路32を含んでいるように、図10に示す移相器1を構成した。したがって、図10に示す移相器1は、図2に示す移相器1と同様に、90度分配器10におけるポリフェーズフィルタの段数を増やすことなく、移相後の信号の位相誤差を補償することができる。また、図10に示す移相器1は、図2に示す移相器1よりも、構成の簡略化を図ることができる。
 実施の形態1~3では、第2の周波数帯域が、第1の周波数帯域よりも低いものとして、移相器1を説明した。しかし、これは一例に過ぎず、第2の周波数帯域が、第1の周波数帯域よりも高くてもよい。
 なお、本開示は、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 本開示は、移相器と、移相器を備えるアンテナ装置とに適している。
 1 移相器、2 移相回路、2a 入力端子、3 制御回路、3a 周波数情報入力端子、3b 移相量入力端子、4 逓倍器、4a 出力端子、5 フェーズドアレイアンテナ、10 90度分配器、11 第1の移相回路、12 第2の移相回路、21 第1の可変利得増幅器、22 第2の可変利得増幅器、23 第3の可変利得増幅器、24 第4の可変利得増幅器、31 第1の位相補償回路、32 第2の位相補償回路、41 0度の方向の信号、42 90度の方向の信号、43 180度の方向の信号、44 270度の方向の信号、45 位相誤差、46,47 位相誤差を有する信号、48 位相誤差、49,50 位相誤差を有する信号、51 90度の方向の信号、52 270度の方向の信号、61 位相誤差、62,63 位相誤差を有する信号、71 位相誤差、72,73 位相誤差を有する信号。

Claims (10)

  1.  入力信号を分配する90度分配器から、第1の信号と、前記第1の信号と90度の位相差を有する第2の信号と、前記第1の信号と180度の位相差を有する第3の信号と、前記第1の信号と270度の位相差を有する第4の信号とが出力されると、
     前記入力信号の周波数が第1の周波数帯域に含まれていれば、前記第1の信号から前記第4の信号のうちのいずれか3つの信号のそれぞれを前記入力信号の移相量に従って増幅し、増幅後の3つの信号の合成信号を出力する第1の移相回路と、
     前記第1の周波数帯域と重ならず、かつ、前記第1の周波数帯域と連続している第2の周波数帯域に、前記入力信号の周波数が含まれていれば、前記いずれか3つの信号のうちのいずれか2つの信号と、前記第1の信号から前記第4の信号のうち、前記第1の移相回路によって増幅されない1つの信号とのそれぞれを前記移相量に従って増幅し、増幅後の3つの信号の合成信号を出力する第2の移相回路とを備え、
     前記第1の移相回路及び前記第2の移相回路のうち、1つ以上の移相回路は、合成信号の位相誤差を補償する補償回路を備えていることを特徴とする移相器。
  2.  前記第1の移相回路は、前記入力信号の周波数が前記第1の周波数帯域に含まれており、前記入力信号の移相量が、0度よりも大きく180度以下であれば、前記第1の信号、前記第2の信号及び前記第3の信号のそれぞれを前記移相量に従って増幅し、増幅後の第1の信号と増幅後の第2の信号と増幅後の第3の信号との合成信号を出力し、
     前記第2の移相回路は、前記入力信号の周波数が前記第2の周波数帯域に含まれており、前記入力信号の移相量が、180度よりも大きく360度以下であれば、前記第1の信号、前記第3の信号及び前記第4の信号のそれぞれを前記移相量に従って増幅し、増幅後の第1の信号と増幅後の第3の信号と増幅後の第4の信号との合成信号を出力することを特徴とする請求項1記載の移相器。
  3.  前記第1の移相回路から出力された合成信号の周波数、又は、前記第2の移相回路から出力された合成信号の周波数を2逓倍する逓倍器を備えたことを特徴とする請求項1記載の移相器。
  4.  前記第1の移相回路は、
     前記90度分配器から出力された第1の信号を増幅する第1の可変利得増幅器と、
     前記90度分配器から出力された第2の信号を増幅する第2の可変利得増幅器と、
     前記90度分配器から出力された第3の信号を増幅する第3の可変利得増幅器とを含んでおり、
     前記第2の移相回路は、
     前記第1の可変利得増幅器と、
     前記第3の可変利得増幅器と、
     前記90度分配器から出力された第4の信号を増幅する第4の可変利得増幅器とを含んでいることを特徴とする請求項2記載の移相器。
  5.  前記第1の移相回路は、
     前記補償回路として、前記第2の可変利得増幅器による増幅後の第2の信号の位相誤差を補償する第1の位相補償回路を含んでおり、
     前記第2の移相回路は、
     前記補償回路として、前記第4の可変利得増幅器による増幅後の第4の信号の位相誤差を補償する第2の位相補償回路を含んでいることを特徴とする請求項4記載の移相器。
  6.  前記第1の移相回路は、
     前記補償回路として、前記第2の可変利得増幅器による増幅後の第2の信号の位相誤差を補償する第1の位相補償回路を含んでいることを特徴とする請求項4記載の移相器。
  7.  前記第2の移相回路は、
     前記補償回路として、前記第4の可変利得増幅器による増幅後の第4の信号の位相誤差を補償する第2の位相補償回路を含んでいることを特徴とする請求項4記載の移相器。
  8.  前記入力信号の周波数が前記第1の周波数帯域に含まれており、前記入力信号の移相量が、0度よりも大きく180度以下であれば、前記第4の可変利得増幅器の増幅率を0に設定し、かつ、前記移相量に従って、前記第1の可変利得増幅器、前記第2の可変利得増幅器及び前記第3の可変利得増幅器におけるそれぞれの増幅率を調整し、
     前記周波数が前記第2の周波数帯域に含まれており、前記入力信号の移相量が、180度よりも大きく360度以下であれば、前記第2の可変利得増幅器の増幅率を0に設定し、かつ、前記移相量に従って、前記第1の可変利得増幅器、前記第3の可変利得増幅器及び前記第4の可変利得増幅器におけるそれぞれの増幅率を調整する制御回路を備えたことを特徴とする請求項4記載の移相器。
  9.  前記入力信号を、前記第1の信号と、前記第2の信号と、前記第3の信号と、前記第4の信号とに分配する90度分配器を備えたことを特徴とする請求項1記載の移相器。
  10.  請求項1から請求項9のうちのいずれか1項記載の移相器を備えていることを特徴とするアンテナ装置。
PCT/JP2020/008251 2020-02-28 2020-02-28 移相器及びアンテナ装置 WO2021171541A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112020006337.2T DE112020006337B4 (de) 2020-02-28 2020-02-28 Phasenschieber und Antenneneinrichtung
PCT/JP2020/008251 WO2021171541A1 (ja) 2020-02-28 2020-02-28 移相器及びアンテナ装置
JP2021571320A JP7118296B2 (ja) 2020-02-28 2020-02-28 移相器及びアンテナ装置
CN202080097102.3A CN115176417A (zh) 2020-02-28 2020-02-28 移相器和天线装置
US17/846,969 US11949394B2 (en) 2020-02-28 2022-06-22 Phase shifter and antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/008251 WO2021171541A1 (ja) 2020-02-28 2020-02-28 移相器及びアンテナ装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/846,969 Continuation US11949394B2 (en) 2020-02-28 2022-06-22 Phase shifter and antenna device

Publications (1)

Publication Number Publication Date
WO2021171541A1 true WO2021171541A1 (ja) 2021-09-02

Family

ID=77491234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008251 WO2021171541A1 (ja) 2020-02-28 2020-02-28 移相器及びアンテナ装置

Country Status (5)

Country Link
US (1) US11949394B2 (ja)
JP (1) JP7118296B2 (ja)
CN (1) CN115176417A (ja)
DE (1) DE112020006337B4 (ja)
WO (1) WO2021171541A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU225903U1 (ru) * 2023-08-02 2024-05-13 Бюджетное учреждение высшего образования Ханты-Мансийского автономного округа - Югры "Сургутский государственный университет" Дискретный фазовращатель

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133906A (ja) * 2001-10-26 2003-05-09 Mitsubishi Electric Corp 移相器
JP2016219916A (ja) * 2015-05-15 2016-12-22 日本電信電話株式会社 ベクトル合成型移相器およびベクトル合成型移相器の制御方法
JP2018078391A (ja) * 2016-11-07 2018-05-17 富士通株式会社 可変減衰装置、位相切り替え機能付き可変減衰装置及びフェーズシフタ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3492964B2 (ja) 1999-12-14 2004-02-03 シャープ株式会社 移相器及びそれを用いた復調器
JP2008141319A (ja) 2006-11-30 2008-06-19 Sanyo Electric Co Ltd 受信方法および装置
WO2017085807A1 (ja) * 2015-11-18 2017-05-26 三菱電機株式会社 歪補償回路
US10530053B2 (en) 2016-01-13 2020-01-07 Infineon Technologies Ag System and method for measuring a plurality of RF signal paths
JP6638455B2 (ja) * 2016-02-17 2020-01-29 富士通株式会社 移相回路、フェーズドアレイ装置及び位相制御方法
US10158508B1 (en) 2016-04-22 2018-12-18 Avago Technologies International Sales Pte. Limited Methods, systems, and apparatus for phase-shifted signal generation
JP7327169B2 (ja) * 2020-01-08 2023-08-16 株式会社デンソー 自己診断装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133906A (ja) * 2001-10-26 2003-05-09 Mitsubishi Electric Corp 移相器
JP2016219916A (ja) * 2015-05-15 2016-12-22 日本電信電話株式会社 ベクトル合成型移相器およびベクトル合成型移相器の制御方法
JP2018078391A (ja) * 2016-11-07 2018-05-17 富士通株式会社 可変減衰装置、位相切り替え機能付き可変減衰装置及びフェーズシフタ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU225903U1 (ru) * 2023-08-02 2024-05-13 Бюджетное учреждение высшего образования Ханты-Мансийского автономного округа - Югры "Сургутский государственный университет" Дискретный фазовращатель

Also Published As

Publication number Publication date
CN115176417A (zh) 2022-10-11
DE112020006337B4 (de) 2023-10-19
JP7118296B2 (ja) 2022-08-15
JPWO2021171541A1 (ja) 2021-09-02
US11949394B2 (en) 2024-04-02
US20220329231A1 (en) 2022-10-13
DE112020006337T5 (de) 2022-10-20

Similar Documents

Publication Publication Date Title
EP2584651B1 (en) Method for beamforming and device using the same
US9453906B2 (en) Phase calibration circuit and method for multi-channel radar receiver
CN101573634B (zh) 一种线性相控阵及其改进方法
JP5736545B2 (ja) フェイズドアレーアンテナのブランチ間補正装置及びフェイズドアレーアンテナのブランチ間補正方法
JP6809147B2 (ja) 可変減衰装置、位相切り替え機能付き可変減衰装置及びフェーズシフタ
Zarb-Adami et al. Beamforming techniques for large-N aperture arrays
US20200382088A1 (en) Apparatus and methods for vector modulator phase shifters
EP3396778A1 (en) Antenna device and method for reducing grating lobe
US20200388917A1 (en) Phase adjusting circuit and phase adjusting method
US20150055726A1 (en) Fractional frequency dividing circuit and transmitter
JP2008035031A (ja) 混合装置とこれを用いた高周波受信装置
WO2021171541A1 (ja) 移相器及びアンテナ装置
US20150130658A1 (en) Methods and Apparatus for Signal Sideband Receiver/Transceiver for Phased Array Radar Antenna
JP6474131B2 (ja) ベクトル合成型移相器およびベクトル合成型移相器の制御方法
JP7101201B2 (ja) 円偏波アンテナ用給電回路
JP5029446B2 (ja) 移相器およびフェーズドアレイアンテナ
JP6942283B2 (ja) 位相可変逓倍器及びアンテナ装置
JP4849422B2 (ja) イメージリジェクションミクサ及び無線装置
JPH0846459A (ja) マイクロ波増幅器回路
Dai et al. High resolution phase shifter, attenuator based on combination of coupler and digital step attenuator in 3.4-4.2 GHz frequency range
US20230106157A1 (en) Phase shifter and phased array antenna device
JP2012114624A (ja) 位相差回路
WO2007073150A1 (en) Phase shifter circuit and method for generating a phase shifted signal
US20230299478A1 (en) Phased Array Transceiver Element
JP5206267B2 (ja) 無限移相器アレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922383

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021571320

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20922383

Country of ref document: EP

Kind code of ref document: A1