WO2021170105A1 - 光固化3d打印料盒及其制备方法、光固化3d打印装置和光固化3d打印方法 - Google Patents

光固化3d打印料盒及其制备方法、光固化3d打印装置和光固化3d打印方法 Download PDF

Info

Publication number
WO2021170105A1
WO2021170105A1 PCT/CN2021/078229 CN2021078229W WO2021170105A1 WO 2021170105 A1 WO2021170105 A1 WO 2021170105A1 CN 2021078229 W CN2021078229 W CN 2021078229W WO 2021170105 A1 WO2021170105 A1 WO 2021170105A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
printing
light
containing oil
film
Prior art date
Application number
PCT/CN2021/078229
Other languages
English (en)
French (fr)
Inventor
陈达
庞博
徐晨辉
张成龙
Original Assignee
先临三维科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先临三维科技股份有限公司 filed Critical 先临三维科技股份有限公司
Publication of WO2021170105A1 publication Critical patent/WO2021170105A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • This application relates to the field of 3D printing technology, and in particular to a light-curing 3D printing cartridge and a preparation method thereof, a light-curing 3D printing device and a light-curing 3D printing method.
  • Digital light processing (DLP) 3D printing technology is a kind of additive manufacturing technology that prints and forms a plate that moves from bottom to top, and at the same time uses ultraviolet projection to cure the photosensitive resin layer by layer to produce three-dimensional objects.
  • the separation method of the cured layer and the printing interface mostly uses the release film separation method. If the release film is to be separated from the cured layer, a straight pull or diagonal pull method is required.
  • the defect of the Czochralski method is that the release force is too large, which will cause the release film to be damaged, the printing quality is reduced, the object has obvious horizontal lines, and the object even falls on the printing interface and causes the printing to fail.
  • the oblique drawing method can reduce the drawing force, but the layering time is increased due to more complicated mechanical movements, thereby slowing down the entire printing process. Therefore, there is an urgent need for a printing method that can solve the above-mentioned shortcomings.
  • the purpose of the embodiments of the present application includes providing a light-curing 3D printing cartridge and a preparation method thereof, a light-curing 3D printing device and a light-curing 3D printing method, so as to improve the high release force and slow printing speed. technical problem.
  • the embodiments of the present application provide a light-curing 3D printing cartridge, which includes a box body, a non-porous fluoropolymer film, and a fluorine-containing oil film.
  • the bottom of the box body is a light-transmitting bottom plate, and the inside of the box body is used for accommodating photosensitive resin.
  • the non-porous fluoropolymer film is arranged on the inner surface of at least part of the light-transmitting bottom plate.
  • the fluorine-containing oil film is adsorbed on the surface of the non-porous fluorine-containing polymer film away from the transparent bottom plate.
  • the embodiment of the present application provides a method for preparing the above-mentioned light-curing 3D printing cartridge, which includes: fixing a non-porous fluoropolymer on a light-transmitting bottom plate in the box body to form a fluoropolymer film, and The surface of the material film is plated with fluorine-containing oil to form a fluorine-containing oil film, and photosensitive resin is added to the box body.
  • the embodiments of the present application provide a light-curing 3D printing device, including a projector, a molding plate, and the above-mentioned light-curing 3D printing cartridge.
  • the projector is configured to cure the photosensitive resin in the cartridge from the bottom of the cartridge.
  • the molding plate is configured to drive the cured resin to move.
  • the embodiments of the present application provide a light-curing 3D printing method, using the above-mentioned light-curing 3D printing device, including: arranging the molding plate in the photosensitive resin so that there is a layer of liquid between the molding plate and the fluorine-containing oil film Photosensitive resin.
  • a projector is used to irradiate the photosensitive resin between the molding plate and the fluorine-containing oil film, so that the photosensitive resin is cured and bonded to the molding plate to form a molded part.
  • This application adopts a fluorine-containing oil film to be adsorbed on a non-porous fluoropolymer film, and there is good surface wettability and chemical affinity between the specially selected non-porous fluoropolymer film and the specially selected fluorine-containing oil.
  • the fluorine-containing oil is bound, and the two are connected tightly, thereby realizing the non-porous combination between the non-porous fluoropolymer membrane and the specially selected fluorine-containing oil.
  • the fluorine-containing oil makes the light-curing printing process change from solid-solid separation to solid-liquid separation, which can effectively reduce the pulling force during the release process and increase the printing speed and printing area.
  • the printing interface is liquid, which can dissipate heat in time to ensure material stability while printing at high speed.
  • the present application adopts a non-porous fluoropolymer film, and the non-porous structure transmits uniform light during the photocuring process and does not affect the light.
  • the non-porous structure has no pores, which reduces the probability of pores being destroyed, and can ensure the light transmittance of the film to a greater extent. At the same time, the pores will not adsorb the photosensitive resin and prevent the photosensitive resin from being cured to damage the performance of the film.
  • Figure 1 is a photo-curing 3D printing process diagram provided by this application.
  • FIG. 2 is a schematic diagram of the structure of the light-curing 3D printing cartridge provided in Example 1 of the application;
  • FIG. 3 is an appearance diagram of a 3D printed part provided in Embodiment 4 of the application.
  • FIG. 4 is an external view of a 3D printed part provided by Embodiment 5 of the application.
  • FIG. 5 is an appearance diagram of a 3D printed part provided in Example 6 of the application.
  • Fig. 6 is an external view of a 3D printed part provided in Example 7 of the application.
  • Fig. 7 is an external view of the dental model provided in Example 8 of the application.
  • Fig. 8 is an external view of the dental model provided in Example 9 of the application.
  • the light-curing 3D printing cartridge and the preparation method thereof, the light-curing 3D printing device and the light-curing 3D printing method provided in the embodiments of the present application will be described in detail below.
  • an embodiment of the present application provides a light-curable 3D printing cartridge, which includes a box body, a non-porous fluoropolymer film, and a fluorine-containing oil film.
  • the bottom of the box in the present application is a light-transmitting bottom plate, so that light can be irradiated from the outside of the box to the inside of the box, and then the photosensitive resin is photocured.
  • the box body is entirely made of light-transmitting material.
  • the box body is made of opaque material, and the bottom of the box body is an open opening, and a light-transmitting bottom plate is used to seal the opening.
  • the light-transmitting bottom plate is made of hard material.
  • the non-porous fluoropolymer film is arranged on the inner surface of at least part of the light-transmitting bottom plate.
  • a non-porous fluoropolymer is used to form a non-porous fluoropolymer film. Affect the light.
  • porous/microporous structured membranes there are no pores in the non-porous structure, which reduces the probability of pores being destroyed and can ensure the transparency of the membrane to a greater extent.
  • the porous/microporous structured film will inevitably contact the molding plate and the cured molded part during the operation process.
  • the porous/microporous structured film easily absorbs the photosensitive resin through capillary action, resulting in a porous/microporous structure.
  • the film once the adsorbed photosensitive resin is cured, the performance of the porous/microporous structured film is destroyed and may be scrapped.
  • the non-porous fluoropolymer film does not have pores and does not absorb the photosensitive resin, and can maintain transparency.
  • the cartridge using non-porous fluoropolymer membrane is easier to clean and replace the photosensitive resin. If you need to change the material, clean the entire material box directly, add an appropriate amount of fluorine-containing oil and photosensitive resin after drying. Because the fluorine-containing oil is chemically compatible with the fluorine-containing polymer, the fluorine-containing oil can evenly cover the fluorine-containing polymer by shaking the cartridge slightly to form an anti-sticking system. During the cleaning process of the porous/microporous structured membrane cartridge, organic solvents will destroy the pore structure, causing damage to the porous/microporous structured membrane.
  • the fluorine-containing oil film is adsorbed on the surface of the non-porous fluoropolymer film away from the light-transmitting bottom plate, and the fluorine-containing oil film is firmly fixed on the non-porous fluorine-containing oil through the chemical affinity of the non-porous fluoropolymer and the fluorine-containing oil.
  • Fluoropolymer membrane surface The membrane used in the cartridge disclosed in the prior art is chemically modified to achieve the combination with perfluoropolyether oil, such as polyethylene and polydimethylsiloxane (PDMS).
  • the non-porous fluoropolymer used in this application has good binding properties to fluorine-containing oils, and at the same time has poor binding properties to photosensitive resins.
  • the good binding property is reflected in the better interfacial wettability and chemical affinity between the non-porous fluoropolymer and the fluorine-containing oil.
  • Poor binding property mainly refers to poor wettability between the non-porous fluoropolymer and the photosensitive resin. Therefore, non-porous fluoropolymers are low surface energy materials. Among them, wettability refers to the ability or tendency of a liquid to spread on a solid surface.
  • S refers to the spreading parameter
  • ⁇ s refers to the solid surface energy
  • ⁇ l refers to the liquid surface tension
  • ⁇ sl refers to the solid-liquid interfacial tension.
  • the solid-liquid interfacial tension ⁇ sl can be calculated by the Owens-Wendt-Kaelble method, Fowkes method, van Oss method or Wu method. Here we use the widely used Owens-Wendt-Kaelble method. The calculation formula given by this method is:
  • ⁇ s d and ⁇ s p represent the dispersion component and the polar component of the solid surface energy, respectively
  • ⁇ l d and ⁇ l p represent the dispersion component and the polar component of the liquid surface tension, respectively.
  • the solid surface energy ⁇ s and the liquid surface tension ⁇ l as well as their respective dispersion and polarity components, can be retrieved to obtain data.
  • the inventor of the present application selected the most commonly used base materials for the cartridge, including: glass, polymethylmethacrylate (PMMA), polytetrafluoroethylene (PTFE), polyethylene (PE), polypropylene (PP) and perfluoroethylene (PP), respectively Calculation of wettability of polyether oil and resin.
  • PMMA polymethylmethacrylate
  • PTFE polytetrafluoroethylene
  • PE polyethylene
  • PP polypropylene
  • PP perfluoroethylene
  • the binding material of fluorine-containing oil should contain a certain amount of fluorine atoms, so further, the binding material of fluorine-containing oil should be a low surface energy material with the surface properties of fluorine material.
  • the search for such materials can follow the following principles: 1.
  • the fluorine element introduced in the material should appear in the form of -CF 3 , not in the form of -CF 2. Because the surface free energy of the former is much smaller than the surface free energy of the latter.
  • the introduced perfluoroalkyl group should exist on the surface of the material, and the surface should be completely covered by the perfluoroalkyl group. 3.
  • the introduced perfluoroalkyl group should be incorporated into the material in the form of a chemical bond.
  • This material is a fluorine-containing material, and the fluorine element introduced in the fluorine-containing material should be -CF It appears in the form of 3 (the fluorine atom content needs to be as close as possible to 83%), rather than in the form of -CF 2. Because the surface free energy of the former is much smaller than the surface free energy of the latter. 2.
  • the introduced perfluoroalkyl group should exist on the surface of the material, and the surface should be completely covered by the perfluoroalkyl group. 3.
  • the introduced perfluoroalkyl group should be incorporated into the material in the form of a chemical bond. 4. High transparency, does not absorb ultraviolet light. 5. Stable physical and chemical properties, not easy to volatilize, not easy to decompose, and do not react with neighboring substances.
  • the fluorine-containing oil binding material can be selected from the following materials, including: polyvinyl fluoride (PVF), fluorinated ethylene propylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer ( ETFE), perfluoroalkoxy (MFA, tetrafluoroethylene-perfluoro(methyl vinyl ether) copolymer), polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), ethylene-chlorotrifluoroethylene copolymer (ECTFE), tetrafluoroethylene-propylene (FEPM, alternating copolymer of tetrafluoroethylene and propylene).
  • PVF polyvinyl fluoride
  • FEP fluorinated ethylene propylene copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • MFA perfluoroalkoxy
  • the non-porous fluoropolymer film (which can also be understood as the material of the non-porous fluoropolymer film) includes polyvinyl fluoride (PVF), fluorinated ethylene propylene copolymer (FEP), ethylene -Tetrafluoroethylene copolymer (ETFE), perfluoroalkoxy (MFA), polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), ethylene-chlorotrifluoroethylene At least one of ethylene copolymer (ECTFE) and tetrafluoroethylene-propylene (FEPM).
  • the material of the non-porous fluoropolymer membrane is fluorinated ethylene propylene copolymer (FEP) and/or polyvinyl fluoride.
  • fluorinated ethylene propylene is a copolymerization of tetrafluoroethylene and hexafluoropropylene, which is the same as polytetrafluoroethylene and has a completely fluorinated structure, and the carbon chain is completely surrounded by fluorine atoms.
  • the fluorinated ethylene propylene copolymer has a fairly definite melting point (around 260°C), and can be molded and processed by general thermoplastic processing methods.
  • the fluorinated ethylene propylene copolymer has excellent chemical stability, and it will not be corroded when it comes in contact with other chemicals, except for reacting with fluorine, molten alkali metals and chlorine trifluoride at high temperatures.
  • the fluorinated ethylene propylene copolymer has a small coefficient of friction and good heat resistance.
  • the fluorine-containing oil used in this application needs to have low surface energy to ensure that the cured resin can be easily separated from the fluorine-containing oil, and the fluorine-containing oil will not stick to the cured photosensitive resin.
  • the density of the fluorine-containing oil is greater than that of the photosensitive resin, so that the photosensitive resin can stably float above the fluorine-containing oil. Since light passes through the non-porous fluoropolymer film and the fluorine-containing oil film to irradiate the photosensitive resin, the fluorine-containing oil needs to have high transparency and not absorb ultraviolet light.
  • the top of the cartridge has an opening so that the inside of the cartridge can communicate with the outside.
  • the fluorine-containing oil has stable physical and chemical properties, is not easy to volatilize, is not easy to decompose, and does not react with adjacent substances.
  • the specific gravity of the fluorine-containing oil is greater than that of the photosensitive resin, and the fluorine-containing oil and the photosensitive resin are immiscible.
  • the kinematic viscosity of the fluorine-containing oil is 1-1500mm 2 /s, and the refractive index is low and highly transparent. Further, the specific gravity of the fluorine-containing oil is 1.5-2.0.
  • the fluorine-containing oil film includes perfluoropolyether oil, perfluoroalkyl polyether, perfluorocarbon oil, fluorochlorocarbon oil, fluorosilicone oil, tetrafluoroethylene and/or hexafluoropropylene. At least one of oxidized polymer, hexafluoropropylene oxide anionic polymer, and tetrafluorooxetane anionic polymer.
  • perfluoropolyether is a polymer whose main chain is composed of -CF 2 -O-CF 2 -units.
  • This application uses a higher molecular weight saturated perfluoropolyether, which contains only three elements of C, F, and O in the molecule. Due to the strong electronegativity of fluorine atoms, the attraction between molecules is small and the surface tension is small. Therefore, perfluoropolyether exhibits good lubricity in the macroscopic view. Perfluoropolyether lacks hygroscopicity and is insoluble in most organic solvents. Perfluoropolyether and resin raw materials can be effectively separated and are completely immiscible.
  • the "shielding" effect of the CF bond in the perfluoropolyether molecule on the main chain makes it very chemically inert, non-flammable, anti-oxidant, and anti-corrosive.
  • Fluorinated ethylene propylene copolymer plastic as a substance with similar molecular structure, is compatible with perfluoropolyether.
  • the specific gravity of perfluoropolyether is 1.87 at 0°C and 1.67 at 100°C, which is greater than the specific gravity of most photosensitive resins, because when perfluoropolyether and photosensitive resin are placed in the same container, all The fluoropolyether will sink under the photosensitive resin), the viscosity can be adjusted in a large range (5.5-1535cSt), the refractive index is low and it is highly transparent.
  • the inside of the box contains photosensitive resin as a raw material for light curing molding.
  • the fluorine-containing oil as the intermediate layer changes the photo-curing printing process from solid-solid separation to solid-liquid separation, which can effectively reduce the pulling force during the release process and increase the printing speed and printing area.
  • the printing interface is liquid, which can dissipate heat in time to ensure material stability while printing at high speed.
  • the material box has stable performance, simple maintenance and reasonable cost.
  • the non-porous fluoropolymer film of the present application can be set on part or all of the inner surface of the light-transmitting substrate. According to the shape and size of the desired 3D print, the non-porous fluoropolymer film can be set in the corresponding area. A fluoropolymer film is sufficient, which should be understood by those skilled in the art.
  • the above-mentioned non-porous fluoropolymer film can be purchased commercially, or can be self-made by a process such as roll forming.
  • the present application also provides a method for preparing the above-mentioned light-curing 3D printing cartridge, including:
  • a fluoropolymer film is prepared, and a solvent is used to clean the surface of the fluoropolymer.
  • the non-porous fluoropolymer film can use a fluoropolymer with a backing glue or a stretch film method to fix the fluoropolymer without a backing on a hard bottom plate.
  • a fluorine-containing oil film is plated on the surface of the non-porous fluorine-containing polymer film by spray painting or paint coating process.
  • it can be slightly heated and oscillated after the fluorine-containing oil film is coated.
  • the chemical affinity between the fluorine-containing oil and the fluorine-containing polymer is used to make the fluorine-containing oil stably adsorb on the fluorine-containing polymer.
  • the cleaning solvent used in DLP additive technology is anhydrous alcohol, and the fluorine-containing oil is completely insoluble in anhydrous alcohol, so in the subsequent cleaning process, the fluorine-containing oil coating of the fluoropolymer is always stable, even if it is wiped Cannot be removed.
  • the added thickness of the fluorine-containing oil can be in the order of micrometers to millimeters, depending on the specific application.
  • the resin and fluorine-containing oil can be cleaned off together.
  • the fluorine-containing oil due to the stable chemical affinity between the fluorine-containing oil and the fluoropolymer, and the fluorine-containing oil is insoluble in anhydrous alcohol, after cleaning and wiping, the fluorine-containing oil is still stably plated on the surface of the fluoropolymer and still lubricating.
  • the photosensitive resin is added to the box body to obtain the light curing system in which the fluorine-containing polymer absorbs the fluorine-containing oil again.
  • the printing interface of the cartridge of the present application can undergo multiple cleaning and drying operations, and the structure is always stable.
  • the embodiments of the present application provide a light-curing 3D printing device (not shown), including a projector, a molding plate, and the light-curing 3D printing material box.
  • the projector is configured to cure the material from the bottom of the material box.
  • the photosensitive resin in the box, the molding plate is configured to drive the cured resin to move.
  • the projector is arranged at the bottom of the cartridge, and the light direction of the projector passes through the non-porous fluoropolymer film and the fluorine-containing oil film from the bottom of the cartridge to illuminate the photosensitive resin inside the cartridge.
  • the forming plate is arranged in the material box, and the forming plate is arranged opposite to the fluorine-containing oil film and has a certain distance.
  • the top of the forming board is connected with the movable arm, and the movement of the forming board is controlled by the movable arm.
  • the light-curing 3D printing device uses non-porous fluoropolymers and fluorine-containing oils to obtain a new liquid printing interface, which reduces the release force between the cured layer and the printing interface, thereby increasing the printing speed and being able to support larger Print area. Compared with the existing solid-state printing interface, the liquid printing interface has better heat dissipation and can ensure the stability of the material.
  • the present application provides a light-curing 3D printing method, which adopts the above-mentioned light-curing 3D printing device. Please refer to Fig. 1 for the printing process, including:
  • a projector is used to irradiate the photosensitive resin between the molding plate and the fluorine-containing oil film from the bottom of the material box, so that the photosensitive resin is cured into a certain shape and bonded to the molding plate to form a molded part;
  • the liquid photosensitive resin flows between the fluorine-containing oil film and the molded part, and the projector is turned on to irradiate the photosensitive resin between the fluorine-containing oil film and the molded part.
  • the photosensitive resin is cured into a certain shape and bonded to the molded part.
  • the light-curing 3D printing method adopts the above-mentioned light-curing 3D printing device, has a faster printing speed and a larger printing area, and can realize efficient and stable printing.
  • the molding plate 1 is set in the photosensitive resin of the above-mentioned 3D printing cartridge, so that the molding plate 1 and the fluorine-containing oil film 2 (the fluorine-containing oil film 2 is located on the non-porous fluoropolymer film 3)
  • a layer of liquid photosensitive resin 4 a projector is used to irradiate the photosensitive resin between the molding plate 1 and the fluorine-containing oil film 2 from the bottom of the cartridge, so that the photosensitive resin is cured into a certain shape and bonded to the molding plate 1 to form Solid photosensitive resin 5 (ie molded part); move the molding plate 1 upwards to separate the molded part from the fluorine-containing oil film 2 and have a certain distance.
  • the liquid photosensitive resin flows between the fluorine-containing oil film 2 and the molded part, and the projector is turned on.
  • the photosensitive resin between the fluorine oil film 2 and the molded part is irradiated, so that the photosensitive resin is cured into a certain shape and adhered to the molded part. Repeatedly, the final 3D printed part can be obtained.
  • this embodiment provides a light-curing 3D printing cartridge 100, which includes a box body 110, a non-porous fluoropolymer film 120, and a fluorine-containing oil film 130.
  • the bottom of the box body 110 is a light-transmitting bottom plate 111.
  • the box body 110 adopts a hard light-transmitting bottom plate 111.
  • the non-porous fluoropolymer film 120 is disposed on the inner surface of the partially transparent bottom plate 111. In other embodiments of the present application, the non-porous fluoropolymer film 120 may cover the entire inner surface of the transparent bottom plate 111.
  • the fluorine-containing oil film 130 is adsorbed on the surface of the non-porous fluorine-containing polymer film 120 away from the transparent bottom plate 111.
  • a photosensitive resin 140 is contained in the cartridge as a raw material for light curing molding.
  • the material of the non-porous fluoropolymer film 120 is fluorinated ethylene propylene copolymer
  • the material of the fluorine-containing oil film 130 is perfluoropolyether oil.
  • This embodiment provides a light-curing 3D printing cartridge.
  • the structure is the same as that of Embodiment 1, except that the material of the non-porous fluoropolymer film is polyvinyl fluoride, and the material of the fluorine-containing oil film is perfluoropolyether oil.
  • This embodiment provides a light-curing 3D printing cartridge.
  • the structure is the same as that of embodiment 1, except that the material of the non-porous fluoropolymer film is ethylene-tetrafluoroethylene copolymer, and the material of the fluorine-containing oil film is perfluorinated. Polyether oil.
  • This embodiment provides a 3D print, which is printed by an AccuFabD1 printer, where the printer uses the light-curing 3D printing cartridge provided in Example 1.
  • the main process parameters are as follows:
  • the layer thickness of the print is 0.1mm, the total printing time for each layer is 3s, and the printing speed is 120mm/h.
  • the resulting 3D print has a fine appearance and structure.
  • This embodiment provides a 3D print, which is different from Embodiment 4 only in the process parameters, as follows:
  • the layer thickness of the print is 0.1mm, the total printing time for each layer is 1.5s, and the printing speed is 240mm/h.
  • the resulting 3D print has a fine appearance and structure.
  • This embodiment provides a 3D print, which is different from Embodiment 4 only in the process parameters, as follows:
  • the layer thickness of the print is 0.1mm, the total printing time for each layer is 1s, and the printing speed is 360mm/h.
  • the resulting 3D print has a fine appearance and structure.
  • This embodiment provides a 3D print, which is different from Embodiment 4 only in the process parameters, as follows:
  • the layer thickness of the print is 0.1mm, the total printing time for each layer is 0.5s, and the printing speed is 720mm/h.
  • the resulting 3D print has a fine appearance and structure.
  • This embodiment provides a dental model model, which is printed by an AccuFabD1 printer, where the printer uses the light-curing 3D printing cartridge provided in Example 1, and the photosensitive resin in the cartridge is replaced with Shining3D DM11 dental material.
  • the main process parameters are as follows:
  • the printing layer thickness is set to 0.1mm, the printing speed is 90mm/h, and the model completion time is 10 minutes.
  • the printed dental model has a smooth surface and clear details, and there is no visible deviation between the overall shape and the digital model.
  • This embodiment provides a dental model model, which is printed by an AccuFabD1 printer.
  • the printer uses the light-curing 3D printing cartridge provided in Example 1.
  • the photosensitive resin in the cartridge is replaced with a formulated BASF resin.
  • the main process parameters are as follows :
  • the printing layer thickness is set to 0.1mm, the printing speed is 120mm/h, and the model completion time is 7.5 minutes.
  • the printed dental model has a smooth surface and clear details, and the overall shape has no visible deviation from the digital model.
  • Example 7 and Example 8 illustrate that the printer using the light-curable 3D printing cartridge provided by the present application uses different resin materials, and the performance of the new interface is still high-speed, stable and effective.
  • This comparative example provides a 3D print with the same structure as the print made in Example 8. It is printed with a common AccuFabD1 printer.
  • the printer uses a common V1 metal cartridge for AccuFabD1, and the printing layer thickness is set to 0.1mm. , The printing speed is 90mm/h, and the printer's estimated time is 10 minutes.
  • the molding success rate under this setting parameter is significantly lower than the printing success rates of Example 8 and Example 9.
  • the model broke shortly after the printing started, the printing failed, and the complete model could not be obtained.
  • the final model surface has obvious defects.
  • the product of the same structure is printed from Comparative Example 1, the drawing force of the existing ordinary printing process is much higher than that of Examples 8-9, the stability of the existing printing process is much lower than that of Examples 8-9, and the printing speed is much lower In Examples 4-7, if the printing speed of the existing printer is simply increased, the product with the quality standard cannot be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

本申请涉及一种光固化3D打印料盒及其制备方法、光固化3D打印装置和光固化3D打印方法,属于3D打印技术领域。一种光固化3D打印料盒,包括盒体、无孔含氟聚合物膜和含氟油膜。无孔含氟聚合物膜设置于至少部分透光底板的内表面。含氟油膜吸附于无孔含氟聚合物膜远离透光底板的表面。利用无孔含氟聚合物膜与含氟油之间存在良好的表面润湿性与化学亲和性,能够束缚含氟油,使两者连接紧密。光固化打印过程从固-固分离变为固-液分离,能够有效降低离型过程中的拉拔力,提高打印速度和打印面积。并且该打印界面为液态,在高速打印的同时,能够及时散热以保证材料稳定性。

Description

光固化3D打印料盒及其制备方法、光固化3D打印装置和光固化3D打印方法 技术领域
本申请涉及3D打印技术领域,且特别涉及一种光固化3D打印料盒及其制备方法、光固化3D打印装置和光固化3D打印方法。
背景技术
数字光处理(DLP)3D打印技术是一种打印成型板自下而上运动,同时利用紫外投影层层固化光敏树脂从而制造三维物体的增材制造技术。在目前DLP3D打印技术方案中,已固化层与打印界面的分离方法,多采用离型膜分离法,若想要离型膜与已固化层分离,则需要用到直拉或斜拉的办法。直拉法的缺陷是离型力过大,会导致离型膜被破坏、打印质量下降、物体上出现明显横纹、甚至物件掉落在打印界面上导致打印失败。斜拉法可以减小拉拔力,但因为更为复杂的机械运动而增加了分层时间,从而放慢了整个打印过程。因此,亟需能够解决上述缺陷的打印方法。
发明内容
针对现有技术的不足,本申请实施例的目的包括提供一种光固化3D打印料盒及其制备方法、光固化3D打印装置和光固化3D打印方法,以改善离型力大、打印速度慢的技术问题。
第一方面,本申请实施例提供了一种光固化3D打印料盒,包括盒体、无孔含氟聚合物膜和含氟油膜。盒体的底部为透光底板,盒体的内部用于容纳光敏树脂。无孔含氟聚合物膜设置于至少部分透光底板的内表面。含氟油膜吸附于无孔含氟聚合物膜远离透光底板的表面。
第二方面,本申请实施例提供了上述光固化3D打印料盒的制备方法,包括:将无孔含氟聚合物固定于盒体内的透光底板上形成含氟聚合物膜,在含氟聚合物膜的表面镀含氟油形成含氟油膜,向盒体内加入光敏树脂。
第三方面,本申请实施例提供了一种光固化3D打印装置,包括投影仪、成型板以及上述光固化3D打印料盒,投影仪被配置为从料盒的底部固化料盒内的光敏树脂,成型板被配置为能够带动已固化的树脂移动。
第四方面,本申请实施例提供了一种光固化3D打印方法,采用上述光固化3D打印装置,包括:将成型板设置于光敏树脂内,使得成型板与含氟油膜之间存在一层液态的光敏树脂。采用投影仪照射成型板与含氟油膜之间的光敏树脂,使得光敏树脂固化并粘接于成型板上形成成型件。移动成型板使得成型件与含氟油膜之间存在一层液态的光敏树脂,重复上述步骤至打印完成。
本申请的有益效果包括:
本申请采用含氟油膜吸附于无孔含氟聚合物膜,利用特选的无孔含氟聚合物膜与特选的含氟油之间存在良好的表面润湿性与化学亲和性,能够束缚含氟油,使两者连接紧密,进而实现无孔含氟聚合物膜与特选含氟油之间的无孔结合。含氟油使光固化打印过程从固-固分离变为固-液分离,能够有效降低离型过程中的拉拔力,提高打印速度和打印面积。并且该打印界面为液态,在高速打印的同时,能够及时散热以保证材料稳定性。
并且,本申请采用无孔含氟聚合物膜,无孔结构在光固化过程中透光均一,不会影响光线。无孔结构不存在孔隙,降低了孔隙被破坏的概率,能够较大程度保证膜的透光性,同时不会出现孔隙吸附光敏树脂的情况,避免光敏树脂被固化破坏膜的性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请提供的光固化3D打印过程图;
图2为本申请实施例1提供的光固化3D打印料盒的结构示意图;
图3为本申请实施例4提供的3D打印件的外观图;
图4为本申请实施例5提供的3D打印件的外观图;
图5为本申请实施例6提供的3D打印件的外观图;
图6为本申请实施例7提供的3D打印件的外观图;
图7为本申请实施例8提供的牙模模型的外观图;
图8为本申请实施例9提供的牙模模型的外观图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将对本申请实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本申请实施例提供的一种光固化3D打印料盒及其制备方法、光固化3D打印装置和光固化3D打印方法进行具体说明。
请参照图2,本申请实施例提供了一种光固化3D打印料盒,包括盒体、无孔含氟聚合物膜和含氟油膜。
本申请中的盒体的底部为透光底板,使得光能够从盒体外部照射至盒体内部,进而对光敏树脂进行光固化。作为一种实现方式,盒体全部为透光材质,作为另一种实现方式,盒体为不透光材质,盒体的底部为敞口,采用透光底板密封该敞口。在本申请的部分实施例中,透光底板为硬质材质。
无孔含氟聚合物膜设置于至少部分透光底板的内表面,本申请采用无孔含氟聚合物形成无孔含氟聚合物膜,无孔结构在光固化过程中透光均一,不会影响光线。相比多孔/微孔结构膜,无孔结构不存在孔隙,降低了孔隙被破坏的概率,能够较大程度保证膜的透光性。并且多孔/微孔结构膜在操作过程中,不可避免的会接触成型板以及固化的成型件,在接触过程中,多孔/微孔结构膜容易通过毛细作用吸收光敏树脂,造成多孔/微孔结构膜,一旦被吸附的光敏树脂被固化,该多孔/微孔结构膜性能被破坏,可能因此报废。而无孔含氟聚合物膜不存在孔隙,也不会出现吸附光敏树脂的情况,能够保持透明。
并且,采用无孔含氟聚合物膜的料盒更易清洗、更换光敏树脂。如需要更换材料,直接清洗整个料盒,吹干之后加入适量含氟油及光敏树脂。由于含氟油与含氟聚合物化学亲和,只需轻微晃动料盒,含氟油就能均匀覆盖含氟聚合物,形成防粘体系。而多孔/微孔结构膜料盒在清洗过程中,有机溶剂会破坏孔隙结构,造成多孔/微孔结构膜的损坏。
本申请采用含氟油膜吸附于无孔含氟聚合物膜远离透光底板的表面,通过无孔含氟聚合物与含氟油的化学亲和吸附力实现含氟油膜牢固的固定在无孔含氟聚合物膜表面。现有技术公开的料盒采用的膜是通过化学改性实现与全氟聚醚油的结合,如聚乙烯和聚二甲基硅氧烷(PDMS),经过实验证明,聚乙烯、聚二甲基硅氧烷与全氟聚醚油均不存在化学亲和吸附力,因此为了实现聚乙烯、聚二甲基硅氧烷与全氟聚醚油的结合需要通过化学改性。
本申请采用的无孔含氟聚合物对含氟油的束缚性好,同时对光敏树脂的束缚性差。束缚性好体现在无孔含氟聚合物与含氟油之间的较好的界面润湿性和化学亲和性。束缚性差主要指无孔含氟聚合物与光敏树脂之间的润湿性差。故无孔含氟聚合物为低表面能材料。其中,润湿性即一种液体在一种固体表面铺展的能力或倾向性。理论上,润湿性可以通过如下公式计算得到:S=γ sls-l。其中,S是指铺展参数,γ s是指固体表面能,γ l是指液体表面张力,γ s-l是固液界面张力。计算结果可以解释为:如果S<0,那么液体只能有限的润湿固体界面;如果S>0或S=0,那么液体对固体的润湿效果好,可以完全铺展。固体表面能γ s与液体表面张力γ l,我们可以检索得到数据。固液界面张力γ s-l可以通过Owens-Wendt-Kaelble法、Fowkes法、van Oss法或Wu法计算得到。这里我们采用被广泛使用的Owens-Wendt-Kaelble法,该方法给出的计算公式为:
Figure PCTCN2021078229-appb-000001
其中γ s d与γ s p分别代表固体表面能的色散分量与极性分量,γ l d与γ l p分别代表 液体表面张力的色散分量与极性分量。液体表面张力和固体表面能γ由分子间的色散力分量γ d和极性分量γ p组成,即γ=γ dp。固体表面能γ s与液体表面张力γ l,以及它们各自的色散分量和极性分量,可以通过检索得到数据。
本申请发明人选取最常用的料盒基底材料,包括:玻璃、聚甲基丙烯酸甲酯(PMMA)、聚四氟乙烯(PTFE)、聚乙烯(PE)、聚丙烯(PP)分别与全氟聚醚油、树脂进行润湿性计算。结果如下表:
Figure PCTCN2021078229-appb-000002
结果表明,玻璃和PMMA不能满足选择要求。以玻璃为例,玻璃-树脂的铺展达到11.37,而玻璃-全氟聚醚的铺展只有7.70,这代表玻璃更容易吸附树脂,因而它不能作为全氟聚醚的束缚材料。PTFE、PE、PP计算上通过了“氟油束缚材料对含氟油的束缚性好,并且对光敏树脂束缚性差”的条件。通过上述计算,可以归纳出,含氟油的束缚材料应当是一种低表面能材料。同时考虑到与含氟油的亲和性,含氟油的束缚材料应当含有一定的氟原子,因而进一步的,含氟油的束缚材料应当是一种具有氟材料表面性质的低表面能材料,寻找此类材料可遵循以下几条原则:1.材料中引入的氟元素应以-CF 3的形式出现,而不是以-CF 2的形式出现。因为前者的表面自由能远小于后者的表面自由能。2.所引入的全氟烷基基团,应该存在于材料的表面,且使表面完全被全氟烷基基团覆盖。3.所引入的全氟烷基基团,应以化学键的形式结合于材料中。
结合先前的含氟油束缚材料选择条件,进一步的,我们得到更加清晰完善的含氟 油束缚材料的选择方法:1.该材料为含氟材料,含氟材料中引入的氟元素应以-CF 3的形式出现(氟原子含量需要尽可能接近83%),而不是以-CF 2的形式出现。因为前者的表面自由能远小于后者的表面自由能。2.所引入的全氟烷基基团,应该存在于材料的表面,且使表面完全被全氟烷基基团覆盖。3.所引入的全氟烷基基团,应以化学键的形式结合于材料中。4.透明度高,不吸收紫外光。5.物理化学性质稳定,不易挥发,不易分解,不与相邻物质反应。
先由以上条件筛选,再通过实验证明,含氟油束缚材料可从以下材料中选择,包括:聚氟乙烯(PVF)、氟化乙烯丙烯共聚物(FEP)、乙烯-四氟乙烯共聚物(ETFE)、全氟烷氧基(MFA,四氟乙烯-全氟(甲基乙烯基醚)共聚物)、聚四氟乙烯(PTFE)、聚三氟氯乙烯(PCTFE)、聚偏二氟乙烯(PVDF)、乙烯-三氟氯乙烯共聚物(ECTFE)、四氟乙烯-丙烯(FEPM,四氟乙烯和丙烯的交替共聚物)。
在本申请的部分实施例中,无孔含氟聚合物膜(也可以理解为无孔含氟聚合物膜的材质)包括聚氟乙烯(PVF)、氟化乙烯丙烯共聚物(FEP)、乙烯-四氟乙烯共聚物(ETFE)、全氟烷氧基(MFA)、聚四氟乙烯(PTFE)、聚三氟氯乙烯(PCTFE)、聚偏二氟乙烯(PVDF)、乙烯-三氟氯乙烯共聚物(ECTFE)、四氟乙烯-丙烯(FEPM)中的至少一种。可选地,无孔含氟聚合物膜的材质为氟化乙烯丙烯共聚物(FEP)和/或聚氟乙烯。
其中,氟化乙烯丙烯是四氟乙烯和六氟丙烯共聚而成的,与聚四氟乙烯相同,也是完全氟化的结构,碳链周围完全被氟原子包围着。氟化乙烯丙烯共聚物具有相当确定的熔点(260℃左右),并可用一般的热塑性加工方法成型加工。氟化乙烯丙烯共聚物具有优异的化学稳定性,除与高温下的氟元素、熔融的碱金属和三氟化氯等发生反应外,与其他化学药品接触时均不被腐蚀。氟化乙烯丙烯共聚物具有很小的摩擦系数,耐热性好。
本申请采用的含氟油需要具有低表面能,以保证固化后的树脂与含氟油可以轻易分离,并且含氟油不会粘连在已固光敏树脂上。同时,含氟油的密度大于光敏树脂,从而光敏树脂可以稳定漂浮在含氟油的上方。由于光线穿过无孔含氟聚合物膜和含氟油膜对光敏树脂进行照射,因此含氟油需要具有较高的透明度,且不吸收紫外光。在本申请的部分实施例中,料盒的顶部具有开口,使得料盒内部会与外界连通,含氟油的物理化学性质稳定,不易挥发,不易分解,不与相邻物质反应。含氟油的比重大于光敏树脂的比重,且含氟油与光敏树脂不互溶,含氟油的运动粘度为1-1500mm 2/s,折光率低且高度透明。进一步地,含氟油的比重为1.5-2.0。
在本申请的部分实施例中,含氟油膜包括全氟聚醚油、全氟烷基聚醚、全氟碳油、氟氯碳油、氟硅油、四氟乙烯和/或六氟丙烯的光氧化聚合物、六氟环氧丙烷阴离子聚合物以及四氟氧杂环丁烷阴离子聚合物中的至少一种。
其中,全氟聚醚是一种主链由-CF 2-O-CF 2-单位构成的聚合物。本申请采用的是较高分子量的饱和全氟聚醚,分子中仅含有C、F、O三种元素。由于氟原子的电负性强,使得分子间的吸引力小,具有很小的表面张力,因此全氟聚醚在宏观上表现出很好的润滑性。全氟聚醚缺乏吸湿性,且在大部分有机溶剂中也不溶解,全氟聚醚与树脂原料可以有效分隔并且完全不互溶。全氟聚醚分子中的C-F键对主链的“屏蔽”作用使其具有非常好的化学惰性、不易燃性、抗氧化性、抗腐蚀性。氟化乙烯丙烯共聚物塑料作为相似分子结构的物质,可与全氟聚醚相容。物理性质上,全氟聚醚比重大(在0℃时比重1.87,在100℃时比重1.67,大于大部分光敏树脂的比重,因为当全氟聚醚与光敏树脂置于同一容器中时,全氟聚醚会沉在光敏树脂下方),粘度可调范围大(5.5-1535cSt),折光率低且高度透明。
盒体的内部容纳有光敏树脂,作为光固化成型的原材料。
本申请提供的光固化3D打印料盒底部采用的无孔含氟聚合物膜与含氟油之间存在良好的表面润湿性与化学亲和性,能够束缚含氟油,使两者连接紧密。作为中间层的含氟油使光固化打印过程从固-固分离变为固-液分离,能够有效降低离型过程中的拉拔力,提高打印速度和打印面积。并且该打印界面为液态,在高速打印的同时,能够及时散热以保证材料稳定性。该料盒性能稳定,维护简单,成本合理。
需说明的是,本申请无孔含氟聚合物膜可以设置于部分或全部的透光底板的内表面上,根据所欲得到的3D打印件的形状和尺寸,在相应的区域设置无孔含氟聚合物膜即可,这是本领域技术人员都应理解的。上述无孔含氟聚合物膜可以商购,也可以采用滚压成型等工艺自制。
第二方面,本申请还提供了上述光固化3D打印料盒的制备方法,包括:
1.将无孔含氟聚合物固定于盒体内的透光底板上形成含氟聚合物膜。
在本申请的部分实施例中,准备含氟聚合物薄膜,使用溶剂清洗含氟聚合物表面。此处无孔含氟聚合物薄膜可使用带背胶的含氟聚合物或者用绷膜法将不带背胶的含氟聚合物固定在硬质底板上。
2.在含氟聚合物膜的表面镀含氟油形成含氟油膜。
在本申请的部分实施例中,以喷漆或漆涂工艺在无孔含氟聚合物膜表面镀上含氟油膜。当需要完善表面平行度时,可以在镀含氟油膜后轻微加热振荡。此处利用含氟油与含氟聚合物的化学亲和性,使含氟油稳定吸附在含氟聚合物之上。由于DLP增材技术中使用的清洗溶剂是无水酒精,而含氟油完全不溶于无水酒精,因此在后续的清洗过程中,含氟聚合物的含氟油镀膜始终稳定存在,即使擦拭也不可去除。
需要说明的是,含氟油的添加厚度可以是微米至毫米量级,视具体应用而定。
3.向盒体内加入光敏树脂,形成含氟聚合物吸附含氟油的光固化体系。
需要清理料盒时,比如光敏树脂需要更换,可以将树脂与含氟油一起清洗掉。注意,由于含氟油与含氟聚合物稳定的化学亲和关系,且含氟油不溶于无水酒精,清洗擦拭之后,含氟油仍然稳定镀在含氟聚合物表面,且仍然润滑。待料盒干燥后,向盒体中加入光敏树脂,即可再次得到含氟聚合物吸附含氟油的光固化体系。本申请的料盒的打印界面可以经历多次清洗干燥等操作,且结构始终稳定。
第三方面,本申请实施例提供了一种光固化3D打印装置(图未示),包括投影仪、成型板以及上述光固化3D打印料盒,投影仪被配置为从料盒的底部固化料盒内的光敏树脂,成型板被配置为能够带动已固化的树脂移动。作为一种实现方式,投影仪设置于料盒的底部,投影仪的光照方向从料盒的底部依次穿过无孔含氟聚合物膜、含氟油膜,照射料盒内部的光敏树脂。成型板设置于料盒内,成型板与含氟油膜相对设置,并具有一定距离。成型板的顶部与活动臂连接,通过活动臂控制成型板移动。该光固化3D打印装置采用了无孔含氟聚合物和含氟油得到了新的液态打印界面,减小了已固化层与打印界面的离型力,进而提升打印速度,能够支持更大的打印面积。相比现有的固态打印界面,液态打印界面的散热性更好,能够保证材料的稳定性。
第四方面,本申请提供了一种光固化3D打印方法,采用上述光固化3D打印装置,打印过程请参照图1,包括:
将成型板设置于光敏树脂内,使得成型板与含氟油膜之间存在一层液态的光敏树脂;
采用投影仪从料盒的底部照射成型板与含氟油膜之间的光敏树脂,使得光敏树脂固化成一定形态,并粘接于成型板上形成成型件;
向上移动成型板使得成型件与含氟油膜分离并具有一定距离,液态光敏树脂流动至含氟油膜与成型件之间,开启投影仪对含氟油膜与成型件之间的光敏树脂进行照射,使得光敏树脂固化成一定形态,并粘接于成型件上。
继续移动成型板,重复上述步骤以得到3D打印件。
该光固化3D打印方法采用了上述光固化3D打印装置,具有较快的打印速度和较大的打印面积,能够实现高效稳定打印。
具体地,如图1所示,将成型板1设置于上述3D打印料盒的光敏树脂内,使得成型板1与含氟油膜2(含氟油膜2位于无孔含氟聚合物膜3上)之间存在一层液态光敏树脂4;采用投影仪从料盒的底部照射成型板1与含氟油膜2之间的光敏树脂, 使得光敏树脂固化成一定形态,并粘接于成型板1上形成已固光敏树脂5(即成型件);向上移动成型板1使得成型件与含氟油膜2分离并具有一定距离,液态光敏树脂流动至含氟油膜2与成型件之间,开启投影仪对含氟油膜2与成型件之间的光敏树脂进行照射,使得光敏树脂固化成一定形态,并粘接于成型件上,如此反复即可得到最终的3D打印件。
以下结合实施例对本申请的特征和性能作进一步的详细描述。
实施例1
请参照图3,本实施例提供了一种光固化3D打印料盒100,包括盒体110、无孔含氟聚合物膜120和含氟油膜130。盒体110的底部为透光底板111,在本实施例中,盒体110均采用硬质透光底板111。无孔含氟聚合物膜120设置于部分透光底板111的内表面,在本申请的其他实施例中,无孔含氟聚合物膜120可以覆盖整个透光底板111的内表面。含氟油膜130吸附于无孔含氟聚合物膜120远离透光底板111的表面。料盒内容纳有光敏树脂140,作为光固化成型的原材料。在本实施例中,无孔含氟聚合物膜120的材质为氟化乙烯丙烯共聚物,含氟油膜130的材质为全氟聚醚油。
实施例2
本实施例提供一种光固化3D打印料盒,结构与实施例1相同,区别仅在于:无孔含氟聚合物膜的材质为聚氟乙烯,含氟油膜的材质为全氟聚醚油。
实施例3
本实施例提供一种光固化3D打印料盒,结构与实施例1相同,区别仅在于:无孔含氟聚合物膜的材质为乙烯-四氟乙烯共聚物,含氟油膜的材质为全氟聚醚油。
实施例4
本实施例提供一种3D打印件,采用AccuFabD1打印机进行打印,其中该打印机采用实施例1提供的光固化3D打印料盒,主要工艺参数如下:
打印件的层厚为0.1mm,每层打印总时间为3s,打印速度为120mm/h。
如图3,得到的3D打印件外观结构精细。
实施例5
本实施例提供一种3D打印件,与实施例4的区别仅在于工艺参数,如下:
打印件的层厚为0.1mm,每层打印总时间为1.5s,打印速度为240mm/h。
如图4,得到的3D打印件外观结构精细。
实施例6
本实施例提供一种3D打印件,与实施例4的区别仅在于工艺参数,如下:
打印件的层厚为0.1mm,每层打印总时间为1s,打印速度为360mm/h。
如图5,得到的3D打印件外观结构精细。
实施例7
本实施例提供一种3D打印件,与实施例4的区别仅在于工艺参数,如下:
打印件的层厚为0.1mm,每层打印总时间为0.5s,打印速度为720mm/h。
如图6,得到的3D打印件外观结构精细。
实施例8
本实施例提供一种牙模模型,采用AccuFabD1打印机进行打印,其中该打印机采用实施例1提供的光固化3D打印料盒,料盒中的光敏树脂替换为shining3D DM11牙科材料,主要工艺参数如下:
打印层厚均设置为0.1mm,打印速度为90mm/h,模型完成时间为10分钟。
如图7,打印成型的牙模模型,表面平整光滑且细节清晰,整体形状与数字模型没有可见偏差。
实施例9
本实施例提供一种牙模模型,采用AccuFabD1打印机进行打印,其中该打印机采用实施例1提供的光固化3D打印料盒,料盒中的光敏树脂替换为经过调配的BASF树脂,主要工艺参数如下:
打印层厚均设置为0.1mm,打印速度为120mm/h,模型完成时间为7.5分钟。
如图8,打印成型的牙模模型,表面平整光滑且细节清晰,整体形状与数字模型没有可见偏差。
实施例7和实施例8说明采用了本申请提供的光固化3D打印料盒的打印机在使用不同树脂材料的情况下,新型界面的表现依然高速且稳定有效。
对比例1
本对比例提供一种3D打印件,与实施例8制得的打印件结构相同,采用常用普通的AccuFabD1打印机进行打印,该打印机采用AccuFabD1常用普通V1金属料盒, 打印层厚均设置为0.1mm,打印速度为90mm/h,打印机预计时间为10分钟。
该设置参数下的成型成功率明显低于实施例8与实施例9的打印成功率。部分试验例中,模型在打印开始不久后断裂,打印失败,无法得到完整模型。在另一部分试验例中,最终模型表面有明显缺陷。由对比例1打印相同结构的产品,现有普通的打印工艺拉拔力远高于实施例8-9,现有的打印工艺稳定性远低于实施例8-9,并且打印速度远远低于实施例4-7,若单纯提高现有打印机的打印速度,则无法得到质量达标的产品。
以上所描述的实施例是本申请一部分实施例,而不是全部的实施例。本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。

Claims (10)

  1. 一种光固化3D打印料盒,其特征在于,包括:
    盒体,所述盒体的底部为透光底板,所述盒体的内部用于容纳光敏树脂;
    无孔含氟聚合物膜,所述无孔含氟聚合物膜设置于至少部分所述透光底板的内表面;以及
    含氟油膜,所述含氟油膜通过化学亲和性和表面润湿性吸附于所述无孔含氟聚合物膜的远离所述透光底板的表面。
  2. 根据权利要求1所述的光固化3D打印料盒,其特征在于,所述无孔含氟聚合物膜包括聚氟乙烯、氟化乙烯丙烯共聚物、乙烯-四氟乙烯共聚物、四氟乙烯-全氟(甲基乙烯基醚)共聚物、聚四氟乙烯、聚三氟氯乙烯、聚偏二氟乙烯、乙烯-三氟氯乙烯共聚物、四氟乙烯和丙烯的交替共聚物中的至少一种。
  3. 根据权利要求1或2所述的光固化3D打印料盒,其特征在于,所述含氟油膜包括全氟聚醚油、全氟烷基聚醚、全氟碳油、氟氯碳油、氟硅油、四氟乙烯和/或六氟丙烯的光氧化聚合物、六氟环氧丙烷阴离子聚合物以及四氟氧杂环丁烷阴离子聚合物中的至少一种。
  4. 根据权利要求1所述的光固化3D打印料盒,其特征在于,所述无孔含氟聚合物膜的材质为氟化乙烯丙烯共聚物和/或聚氟乙烯,所述含氟油膜的材质为全氟聚醚油。
  5. 根据权利要求1所述的光固化3D打印料盒,其特征在于,所述含氟油膜采用的含氟油的比重大于所述光敏树脂的比重,且所述含氟油与所述光敏树脂不互溶。
  6. 根据权利要求5所述的光固化3D打印料盒,其特征在于,所述含氟油的比重为1.5-2.0g/ml
  7. 根据权利要求5或6所述的光固化3D打印料盒,其特征在于,所述含氟油的运动粘度为1-1500mm 2/s。
  8. 一种如权利要求1至7任一项所述的光固化3D打印料盒的制备方法,其特征在于,包括:将无孔含氟聚合物固定于所述盒体内的所述透光底板上形成所述含氟聚合物膜,在所述含氟聚合物膜的表面镀含氟油形成所述含氟油膜,向所述盒体内加入光敏树脂。
  9. 一种光固化3D打印装置,其特征在于,包括投影仪、成型板以及如权利要求1至7任一项所述的光固化3D打印料盒,所述投影仪被配置为从所述料盒的底部固化所述料盒内的光敏树脂,所述成型板被配置为能够带动已固化的树脂移动。
  10. 一种光固化3D打印方法,其特征在于,采用如权利要求9所述的光固化3D打印装置,包括:
    将所述成型板设置于所述光敏树脂内,使得所述成型板与所述含氟油膜之间存在一层液态的光敏树脂;
    采用所述投影仪照射所述成型板与所述含氟油膜之间的光敏树脂,使得所述光敏树 脂固化并粘接于所述成型板上形成成型件;
    移动所述成型板使得所述成型件与所述含氟油膜之间存在一层液态的光敏树脂,重复上述步骤至打印完成。
PCT/CN2021/078229 2020-02-28 2021-02-26 光固化3d打印料盒及其制备方法、光固化3d打印装置和光固化3d打印方法 WO2021170105A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010133699.4A CN111204041A (zh) 2020-02-28 2020-02-28 光固化3d打印料盒及其制备方法、光固化3d打印装置和光固化3d打印方法
CN202010133699.4 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021170105A1 true WO2021170105A1 (zh) 2021-09-02

Family

ID=70783084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078229 WO2021170105A1 (zh) 2020-02-28 2021-02-26 光固化3d打印料盒及其制备方法、光固化3d打印装置和光固化3d打印方法

Country Status (2)

Country Link
CN (1) CN111204041A (zh)
WO (1) WO2021170105A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111204041A (zh) * 2020-02-28 2020-05-29 先临三维科技股份有限公司 光固化3d打印料盒及其制备方法、光固化3d打印装置和光固化3d打印方法
TWI775589B (zh) * 2021-09-03 2022-08-21 國立臺灣科技大學 用於三維列印的樹脂槽底板

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228331A (ja) * 1993-01-29 1994-08-16 Ntn Corp 複合摺動材
CN103203875A (zh) * 2013-02-05 2013-07-17 陕西恒通智能机器有限公司 一种平面光固化快速成型装置及方法
CN105365216A (zh) * 2014-09-01 2016-03-02 上海联泰科技有限公司 用于底部投影式快速成型的树脂槽及底部投影式快速成型装置
WO2016112084A1 (en) * 2015-01-06 2016-07-14 Carbon3D, Inc. Build plate for three dimensional printing having a rough or patterned surface
WO2017112483A2 (en) * 2015-12-22 2017-06-29 Carbon, Inc. Accelerants for additive manufacturing with dual cure resins
CN108456385A (zh) * 2018-05-05 2018-08-28 宁波市石生科技有限公司 一种用于光固化3d打印的离型膜及其制造工艺
CN110256724A (zh) * 2019-06-17 2019-09-20 西安交通大学 一种用于光固化连续面成型3d打印的防粘附薄膜制备方法
CN110802838A (zh) * 2019-11-12 2020-02-18 江西迈亚科技有限公司 一种3d打印装置与方法
CN111204041A (zh) * 2020-02-28 2020-05-29 先临三维科技股份有限公司 光固化3d打印料盒及其制备方法、光固化3d打印装置和光固化3d打印方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228331A (ja) * 1993-01-29 1994-08-16 Ntn Corp 複合摺動材
CN103203875A (zh) * 2013-02-05 2013-07-17 陕西恒通智能机器有限公司 一种平面光固化快速成型装置及方法
CN105365216A (zh) * 2014-09-01 2016-03-02 上海联泰科技有限公司 用于底部投影式快速成型的树脂槽及底部投影式快速成型装置
WO2016112084A1 (en) * 2015-01-06 2016-07-14 Carbon3D, Inc. Build plate for three dimensional printing having a rough or patterned surface
WO2017112483A2 (en) * 2015-12-22 2017-06-29 Carbon, Inc. Accelerants for additive manufacturing with dual cure resins
CN108456385A (zh) * 2018-05-05 2018-08-28 宁波市石生科技有限公司 一种用于光固化3d打印的离型膜及其制造工艺
CN110256724A (zh) * 2019-06-17 2019-09-20 西安交通大学 一种用于光固化连续面成型3d打印的防粘附薄膜制备方法
CN110802838A (zh) * 2019-11-12 2020-02-18 江西迈亚科技有限公司 一种3d打印装置与方法
CN111204041A (zh) * 2020-02-28 2020-05-29 先临三维科技股份有限公司 光固化3d打印料盒及其制备方法、光固化3d打印装置和光固化3d打印方法

Also Published As

Publication number Publication date
CN111204041A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
WO2021170105A1 (zh) 光固化3d打印料盒及其制备方法、光固化3d打印装置和光固化3d打印方法
Wang et al. Developments and challenges in self‐healing antifouling materials
KR102243695B1 (ko) 플루오로탄성중합체의 적층 가공
EP2289955B1 (en) Photocurable composition and manufacturing method for a molded body having a fine pattern on the surface
JP6598750B2 (ja) 光学部材及び光学部材の製造方法
TWI379769B (zh)
CN205148922U (zh) 一种适用于3d光固化立体打印设备的剥离装置
JPH05503257A (ja) 固体像半透過性フィルムコーティング
TW201041955A (en) Non-dewetting porous membranes
JP4426157B2 (ja) 多孔質形成性光硬化型樹脂組成物および多孔質樹脂硬化物
JPWO2011027782A1 (ja) 液浸露光装置用コーティング材組成物、積層体、積層体の形成方法、および液浸露光装置
JP2013531808A (ja) 基板のハイスループット、ミクロンスケールエッチングのためのステンシルならびにその製造方法および使用方法
JP2021518289A (ja) 独立した弾性膜システムおよび傾斜基準を備えた、ボトムアップ光硬化型の3d印刷用の装置および関連する使用方法
TWI519889B (zh) Microsurgical surface film, mask attached to the mask and exposure treatment methods
TW202132431A (zh) 膜及以此膜被覆表面的基材
CN212072974U (zh) 光固化3d打印料盒和光固化3d打印装置
JP6954292B2 (ja) 含フッ素重合体、その製造方法、および含フッ素重合体の硬化物を備える物品
WO2017122561A1 (ja) 滑水性コート材料
KR102118950B1 (ko) 이형성 및 탄성을 향상시킨 3d 프린터용 이형 수조
KR20210125473A (ko) 적층 제조 공정을 향상시키기 위한 폐색 유체의 사용
JPS585770A (ja) 非粘着性弾性体ロ−ル
JP2013154637A (ja) 樹脂製ナノ構造体の製造方法
JP2014083783A (ja) 凹凸パターン形成用フィルム、そのフィルムを形成するための樹脂組成物、そのフィルムを有する成形体及びそのフィルムを有する成形体の製造方法
US20210299951A1 (en) Using occluding fluids to augment additive manufacturing processes
JP2022028402A (ja) 樹脂ペレット及びその成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761408

Country of ref document: EP

Kind code of ref document: A1