WO2021167023A1 - 鋼板および鋼板の製造方法 - Google Patents

鋼板および鋼板の製造方法 Download PDF

Info

Publication number
WO2021167023A1
WO2021167023A1 PCT/JP2021/006212 JP2021006212W WO2021167023A1 WO 2021167023 A1 WO2021167023 A1 WO 2021167023A1 JP 2021006212 W JP2021006212 W JP 2021006212W WO 2021167023 A1 WO2021167023 A1 WO 2021167023A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
strength
steel
temperature
steel sheet
Prior art date
Application number
PCT/JP2021/006212
Other languages
English (en)
French (fr)
Inventor
奈未 土橋
芳恵 椎森
勇人 齋藤
房亮 假屋
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020227028332A priority Critical patent/KR20220127912A/ko
Priority to MYPI2022004087A priority patent/MY197776A/en
Priority to CN202180015366.4A priority patent/CN115176042B/zh
Priority to JP2021539855A priority patent/JP7014341B2/ja
Publication of WO2021167023A1 publication Critical patent/WO2021167023A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a steel sheet having excellent ductility, strength, low yield elongation and top yield stress, which is particularly suitable for a container material, and a method for producing the same.
  • steel sheets for cans have been required to be thinner by increasing their strength in order to reduce the environmental load and the cost of can manufacturing.
  • the strength of the can body is lowered, so that a steel plate that maintains the strength even if it is extremely thin is required.
  • a strength of at least 500 MPa or more is required.
  • high formability is required for steel sheets in such bead processing and geometric shape processing.
  • ductility (total elongation) of at least 15% or more is required.
  • Patent Document 1 has a composite structure of ferrite and martensite having a martensite fraction of 5% or more and less than 30%, and has martensite particle size, product plate thickness, and martensite hardness.
  • Patent Document 2 discloses a steel sheet containing a ferrite phase as a main phase and a martensite phase and / or a retained austenite phase as a second phase in a total area fraction of 1.0% or more.
  • Patent Document 1 describes strength and ductility, it does not describe upper yield stress and low yield elongation.
  • the structure is a two-phase structure of ferrite and martensite. Therefore, sufficient strength of the can body cannot be ensured with a member having a low degree of processing, and wrinkles may occur when the can body is beaded or geometrically shaped.
  • Patent Document 2 does not describe the upper yield stress and the low yield elongation, and as in Patent Document 1, there is a risk that the strength of the can body after processing may decrease and wrinkles may occur on the can body. In addition, there is a problem that secondary rolling must be performed and the cost is high.
  • an ultra-thin steel sheet having excellent formability, bead processing and geometric shape can be imparted to the can body, wrinkles do not occur at any degree of processing, and the can body strength is excellent, and an ultra-thin steel sheet thereof. Realization of a manufacturing method is required.
  • the present invention is in view of the above-mentioned problems related to the prior art. That is, it has excellent ductility (total elongation ⁇ 15%), high strength (TS ⁇ 500MPa), low yield elongation ( ⁇ 10%), and sufficient top yield stress ( ⁇ 400MPa), and is particularly thick for containers. It is an object of the present invention to provide a high-strength thin steel plate having a thickness of 0.1 mm or more and 1.0 mm or less and a method for producing the same.
  • a high-strength steel sheet having a yield elongation of 10% or less and a top yield stress of 400 MPa or more can be obtained. That is, by forming bainite in addition to the two-phase structure of soft ferrite that contributes to the improvement of ductility and hard martensite that contributes to the improvement of strength and reduction of yield elongation, the decrease in ductility and the increase in yield elongation are reduced. At the same time, we succeeded in increasing the yield strength of steel. As a result, a high-strength steel plate that is optimal for deformed cans having excellent can body strength without causing wrinkles at any degree of processing can be obtained.
  • the manufacturing conditions it is suitable for controlling the composite structure to appropriately control the heating rate in the annealing step, the annealing temperature, the cooling rate after annealing, the holding time at the cooling stop temperature, and the cooling rate after holding. I also found that.
  • the present invention has been made based on the above findings, and the gist thereof is as follows. 1.
  • C By mass% C: 0.03% or more and 0.13% or less, Si: 0.05% or less, Mn: 0.01% or more and 0.6% or less, P: 0.025% or less, S: 0.020% or less, Al: 0.01% or more and 0.20% or less, N: 0.0001% or more and 0.02% or less, Ti: 0.005% or more and 0.02% or less and B: 0.0005% or more and 0.02% or less
  • the balance has a composition of iron and unavoidable impurities, A steel sheet having a metallographic structure containing 84.0% or more of ferrite, 0.5% or more and 10.0% or less of martensite, and 0.1% or more and 10.0% or less of bainite in terms of area ratio.
  • a hot rolling step in which a steel material having the component composition described in 1 or 2 is heated to 1150 ° C. or higher and hot-rolled at a finishing temperature of 800 ° C. or higher and 950 ° C. or lower and a winding temperature of 700 ° C. or lower.
  • a cold rolling process in which a hot rolled plate that has undergone an annealing step is cold-rolled with a reduction ratio of 80% or more, and a cold-rolled plate that has undergone the cold rolling process are heated at an average heating rate of 10 ° C./s or more.
  • a method for manufacturing steel sheets which comprises an annealing step of holding for 5 seconds or more and 90 seconds or less in a temperature range of 700 ° C or more and 900 ° C or less, and then cooling to a temperature range of 150 ° C or more and 600 ° C or less at an average cooling rate of 50 ° C / s or more.
  • the annealed sheet that has undergone the annealing step is held in the temperature range of 150 ° C. or higher and 600 ° C. or lower for 300 seconds or less, and then further cooled to a temperature range of less than 150 ° C. at an average cooling rate of 10 ° C./s or higher. 5.
  • a high-strength ultrathin steel sheet having a total elongation of 15% or more, a tensile strength of 500 MPa or more, a low yield elongation of 10% or less, and a top yield stress of 400 MPa or more can be obtained.
  • the high-strength steel plate obtained by the present invention when applied to a deformed can, it has high ductility (total elongation), so that it is possible to perform strong can body processing such as can expansion processing and bead processing, and flange processing. It becomes.
  • it is possible to compensate for the decrease in strength due to the progress of thinning of the can by increasing the strength of the steel plate, and to secure high strength of the can body.
  • wrinkles do not occur on the can body.
  • % representing the following component composition shall mean “mass%” unless otherwise specified.
  • a case where both ductility and low yield elongation are excellent is also referred to as excellent workability.
  • the case where both the tensile strength and the upper yield stress are excellent is also referred to as high strength.
  • C 0.03% or more and 0.13% or less
  • C is an element that contributes to the strength of steel, and increases the strength of steel by solid solution strengthening and precipitation strengthening or the formation of martensite and bainite.
  • the C content needs to be 0.03% or more.
  • the upper limit is 0.13% because excessive content may cause a decrease in ductility due to an increase in strength and may cause an increase in yield elongation due to an increase in solid solution C and formation of excessive martensite. Therefore, in the present invention, C is 0.03% or more and 0.13% or less.
  • the lower limit is preferably 0.05% or more.
  • the upper limit is preferably 0.09% or less.
  • Si 0.05% or less If Si is contained in excess of 0.05%, the corrosion resistance is significantly impaired. Therefore, the Si content should be 0.05% or less. In order to obtain better corrosion resistance, it is preferably 0.03% or less. On the other hand, Si is an element that contributes to increasing the strength of steel by solid solution strengthening. In order to obtain this effect, it is preferable to contain 0.01% or more.
  • Mn 0.01% or more and 0.6% or less Mn is one of the important additive elements in the present invention.
  • Mn is an element that contributes to increasing the strength of steel by solid solution strengthening or by producing a desired amount of martensite and bainite. Therefore, in order to obtain the strength and formability of the steel sheet desired in the present invention, the Mn content needs to be 0.01% or more. If the Mn content is less than 0.01%, the desired amounts of martensite and bainite cannot be produced, and the desired strength and moldability cannot be obtained. On the other hand, if it is contained in excess of 0.6%, martensite is excessively produced due to the improvement in hardenability, and a desired amount of bainite cannot be produced.
  • Mn is in the range of 0.01% or more and 0.6% or less. It is preferably in the range of 0.3% or more and 0.6% or less.
  • P 0.025% or less If P exceeds 0.025%, the steel sheet will be excessively hardened and ductility will decrease, and weldability will also decrease. Therefore, the P content should be 0.025% or less. It is preferably 0.020% or less. On the other hand, P is an element that is inevitably mixed in steel, but it is effective for strengthening steel. Therefore, it is preferable to contain 0.001% or more.
  • S 0.020% or less
  • S is an element that is inevitably mixed in steel and forms inclusions such as MnS to reduce ductility. Therefore, the S content should be 0.020% or less. It is preferably 0.015% or less.
  • the lower limit of the S content is not particularly limited, but industrially, it is preferably about 0.001%. If it is less than 0.005%, an excessive cost is required for refining the steel. Therefore, even if it is contained in an amount of 0.005% or more, it does not affect the present invention.
  • Al 0.01% or more and 0.20% or less
  • Al is an element contained as an antacid, and by forming N and AlN in steel, it reduces the solid solution N in steel and contributes to the reduction of yield elongation. do.
  • a content of 0.01% or more is required, preferably 0.03% or more.
  • the Al content needs to be 0.20% or less. It is preferably 0.08% or less.
  • N 0.0001% or more and 0.02% or less N forms a precipitate by combining with a carbonitride-forming element such as Al, which contributes to the improvement of strength and the miniaturization of the structure. In order to obtain this effect, the content must be 0.0001% or more.
  • solid solution N has the effect of increasing the yield elongation, addition of more than 0.02% of N causes wrinkles due to the increase in yield elongation. Therefore, N is 0.0001% or more and 0.02% or less.
  • the lower limit is preferably 0.0015% or more.
  • the upper limit is preferably 0.01% or less.
  • Ti 0.005% or more and 0.02% or less
  • Ti is one of the important additive elements in the present invention. Ti is effective for increasing strength as a precipitation strengthening element, and by forming N and TiN in steel and suppressing the formation of BN, the effect of improving the hardenability of B can be sufficiently obtained. In order to obtain this effect, a content of 0.005% or more is required. On the other hand, excessive addition of Ti causes a decrease in workability due to an increase in strength, so the upper limit is 0.02%. Therefore, the Ti content should be 0.005% or more and 0.02% or less. Preferably, it is 0.005% or more and 0.015% or less.
  • B 0.0005% or more and 0.02% or less B is one of the important additive elements in the present invention.
  • B has the effect of improving hardenability, suppresses the formation of ferrite that occurs in the annealing cooling process, and contributes to the formation of desired amounts of martensite and bainite. In order to obtain this effect, a content of 0.0005% or more is required. On the other hand, the effect saturates at 0.02%. Therefore, B is 0.0005% or more and 0.02% or less.
  • the lower limit is preferably 0.0015% or more.
  • the upper limit is preferably 0.01% or less.
  • the steel sheet of the present invention requires the above component elements as essential, and the balance is iron and unavoidable impurities.
  • the steel sheet of the present invention can obtain the desired properties, but in addition to the above essential elements, the following elements can be further contained, if necessary.
  • Nb and Cu are precipitation-strengthening elements and are particularly effective in increasing the strength. Therefore, optionally, one or more selected from such elements can be added. It should be noted that the above range is appropriate in each case because further improvement in the addition effect cannot be expected even if the addition exceeds each upper limit. The lower limit is 0%.
  • the high-strength steel sheet of the present invention preferably has a plate thickness t of 0.10 mm or more and 1.0 mm or less.
  • the plate thickness is 1.0 mm or less, it becomes easy to secure the cold rolling ratio required for the refinement of crystal grains.
  • the product plate thickness is 0.10 mm or more, rolling can be performed with a relatively small load, so that the load on the rolling mill can be reduced.
  • the plate thickness is 0.40 mm or less, the effect of the present invention appears more remarkably, so it is more preferably 0.10 mm or more and 0.40 mm or less.
  • the steel structure of the high-strength steel sheet of the present invention is mainly a composite structure of ferrite, martensite, and bainite.
  • Area ratio of ferrite 84.0% or more Ferrite contributes to improving the ductility of steel. If the area ratio of ferrite is less than 84.0%, it becomes difficult to secure the desired ductility. Therefore, the area ratio of ferrite is set to 84.0% or more. It is preferably 90.0% or more. On the other hand, if the area ratio of ferrite exceeds 99.4%, the desired area ratio of martensite and / or bainite cannot be secured, and the desired strength and moldability cannot be obtained. Therefore, the area ratio of ferrite shall be 84.0% or more and 99.4% or less. The lower limit is preferably 90.0% or more. The upper limit is preferably 98.0% or less.
  • Martensite area ratio 0.5% or more and 10.0% or less
  • the martensite area ratio should be 10.0% or less.
  • the area ratio of martensite shall be 0.5% or more and 10.0% or less.
  • the lower limit is preferably 3.0% or more.
  • the upper limit is preferably 8.0% or less.
  • Bainite is an important tissue in the present invention. Bainite can increase the top yield strength and tensile strength without reducing the elongation of the steel or increasing the yield elongation. Therefore, by generating an appropriate amount of bainite in the steel, it is possible to obtain a steel having excellent strength and formability. In order to obtain such an effect, the area ratio of bainite needs to be 0.1% or more. On the other hand, when the area ratio of bainite exceeds 10.0%, the strength increases excessively and the ductility decreases. Therefore, the area ratio of bainite shall be 0.1% or more and 10.0% or less. The lower limit is preferably 0.5% or more. The upper limit is preferably 5.0% or less.
  • the rest other than ferrite, martensite and bainite need not be particularly limited.
  • retained austenite, cementite, pearlite and the like may be contained. If the area ratio of the remaining structure is 10.0% or less, the present invention is not affected. Of course, there may be no remaining tissue (0%).
  • Ferrite average crystal grain size 10.0 ⁇ m or less
  • the strength can be improved by strengthening the crystal grain refinement.
  • the grain boundaries increase due to the refinement of ferrite grains, and the triple points of grain boundaries that serve as austenite precipitation sites increase, making it easier for austenite to precipitate during quenching.
  • the distance between the solid-dissolved C in the grain and the triple point of the grain boundary is shortened, and the solid-dissolved C is easily discharged to the grain boundary, which increases the area ratio of austenite during quenching and increases the area ratio of austenite and bainite during cooling.
  • the average ferrite grain size is preferably 10.0 ⁇ m or less. More preferably, it is 7.0 ⁇ m or less. There is no limit to the lower limit of the ferrite average crystal grain size, but 3.0 ⁇ m or more is preferable from the viewpoint of preventing a decrease in ductility.
  • a steel material having the above steel composition is heated to 1150 ° C. or higher, and hot rolling is performed at a finishing temperature of 800 ° C. or higher and 950 ° C. or lower and a winding temperature of 700 ° C. or lower.
  • An inter-rolling process then a cold rolling process in which cold rolling is performed at a rolling reduction of 80% or more, and heating with an average heating rate up to the annealing temperature of 10 ° C / s or more, and an annealing temperature of 700 ° C or more and 900 ° C or less.
  • the annealed plate that has undergone the annealing step is held in a temperature range of 150 ° C. or higher and 600 ° C. or lower for 300 seconds or less, and then at a cooling rate of 10 ° C./s or higher and a temperature of less than 150 ° C. It can be cooled to the range.
  • Heating temperature of steel material 1150 ° C or higher If the heating temperature of the steel material before hot rolling is too low, part of TiN may become unmelted, which may cause the formation of coarse TiN that reduces formability.
  • the temperature should be 1150 ° C or higher.
  • the upper limit of the heating temperature of the steel material is not limited, but is preferably 1250 ° C. or lower in order to reduce the heating cost of the steel and maintain the durability of the heating furnace.
  • Finishing temperature 800 ° C or higher and 950 ° C or lower
  • the finishing temperature of hot rolling exceeds 950 ° C
  • the structure after hot rolling becomes coarse and the grain size of the cold-rolled steel sheet increases thereafter, which causes a decrease in strength.
  • the number of grain boundary triple points that serve as austenite precipitation sites may decrease, and the desired structure and properties may not be obtained.
  • the finishing temperature is less than 800 ° C, rolling is performed in the two-phase region of ferrite and austenite, coarse grains of ferrite are generated on the surface layer of the steel sheet, and the particle size of the subsequently cold-rolled steel sheet increases.
  • the finish rolling temperature is limited to the range of 800 ° C. or higher and 950 ° C. or lower. It is preferably 850 ° C. or higher and 950 ° C. or lower.
  • Winding temperature 700 ° C or less If the winding temperature exceeds 700 ° C, the crystal grains become coarse during winding and the particle size of the cold-rolled steel sheet increases thereafter, which causes a decrease in strength. In addition, coarse carbides are formed on the hot-rolled steel sheet, and the coarse carbides become unsolidified during annealing, which hinders the formation of the second phase, which may lead to a decrease in strength and an increase in YP-El. Therefore, the winding temperature is set to 700 ° C. or lower. The lower limit is not particularly limited, but if it is too low, the hot-rolled steel sheet may be excessively hardened and the workability of cold rolling may be hindered. Therefore, the winding temperature is preferably 450 ° C. or higher. More preferably, it is 450 ° C. or higher and 650 ° C. or lower.
  • Reduction rate in cold rolling 80% or more
  • the reduction rate in cold rolling 80% or more
  • the crystal grains after cold rolling become finer, which contributes to the increase in strength.
  • the grain boundary triple points that are the precipitation sites of austenite and the distance between the solid solution C and the grain boundary triple points in the ferrite grains it contributes to the formation of martensite and bainite in the annealed plate, and improves the hardenability. It has the effect of improving.
  • the rolling reduction ratio exceeds 95%, the rolling load increases significantly and the load on the rolling mill increases. Therefore, the reduction rate needs to be 80% or more, and preferably 95% or less.
  • the cold rolling process may be performed only once, or may be performed twice or more with an intermediate annealing process in between.
  • the annealing step may be performed immediately after the cold rolling process is performed once or twice or more.
  • a step according to another conventional method as appropriate before the annealing step for example, a cleaning step such as pickling or a shape correction step such as leveler processing may be performed. good.
  • the rolling reduction ratio of any of them may be 80% or more.
  • the average heating rate to the annealing temperature is 10 ° C / s or more and the average heating rate to the annealing temperature is less than 10 ° C / s, the distribution of hardenable elements to austenite in the steel will be completed before the annealing temperature is reached. , It becomes difficult to obtain bainite in the subsequent cooling step. Therefore, the average heating rate up to the annealing temperature should be 10 ° C / s or higher.
  • the upper limit is not particularly limited, but industrially, it is preferably 50 ° C./s or less.
  • Annealing temperature 700 ° C or higher and 900 ° C or lower
  • the annealing temperature soaking temperature
  • the annealing temperature is higher than 900 ° C.
  • plate troubles such as heat buckles are likely to occur in continuous annealing. Therefore, the annealing temperature is limited to the range of 700 ° C or higher and 900 ° C or lower. More preferably, it is 750 ° C. or higher and 820 ° C. or lower.
  • the holding time at the annealing temperature is 5 to 90 seconds.
  • the temperature during the holding time may be in the range of 700 ° C. or higher and 900 ° C. or lower, and does not necessarily have to be a constant temperature.
  • the average cooling rate is 50 ° C / s or more until the cooling stop temperature. If the average cooling rate is less than 50 ° C / s, ferrite growth and excessive bainite formation occur during cooling, and martensite formation is suppressed. Therefore, the desired amount of martensite cannot be obtained, and the strength of the steel plate decreases. Therefore, the average cooling rate should be 50 ° C / s or higher.
  • the upper limit is not particularly limited, but is preferably 80 ° C./s or more and 250 ° C./s or less. In addition to gas cooling, this cooling can be performed by one or a combination of two or more types such as furnace cooling, air-water cooling, roll cooling, and water cooling.
  • Cooling stop temperature 150 ° C or more and 600 ° C or less
  • the cooling stop temperature after annealing should be 150 ° C or higher and 600 ° C or lower.
  • the preferred lower limit is 200 ° C. or higher.
  • the preferred upper limit is 400 ° C. or lower.
  • the cooling shutdown temperature can be determined within the above range depending on the required area ratio of martensite and bainite.
  • the holding time in the temperature range from 600 ° C. to 150 ° C. is set to 300 seconds or less after the cooling is stopped.
  • the lower limit of the holding time is not particularly limited, but industrially, about 20 seconds is preferable.
  • Temperable rolling step After the annealing step, temper rolling with a rolling reduction ratio of 10% or less may be performed.
  • the reduction rate is increased, the strain introduced during processing becomes large, and the total elongation decreases.
  • the rolling reduction ratio when performing the temper rolling step is preferably 10% or less.
  • the lower limit of the reduction rate is not particularly specified, the temper rolling process has the effect of increasing the top yield stress and the role of reducing the yield elongation. Therefore, it is more preferable to set the reduction rate according to the application.
  • a steel plate can be obtained.
  • the lower limit is preferably 0.5% or more.
  • the upper limit is more preferably 5% or less.
  • a step according to another conventional method as appropriate before the temper rolling step for example, a cleaning step such as pickling and a shape straightening step such as leveler processing may be included.
  • the temper rolling step may be performed immediately after the annealing step.
  • the cold-rolled steel sheet thus obtained is then used as a plated steel sheet by subjecting the surface of the steel sheet to a plating treatment such as tin plating, chrome plating, or nickel plating, if necessary, by electroplating, for example. May be offered to.
  • a process such as a coating baking process and a film laminating process may be performed. Since the film thickness of the surface treatment such as plating is sufficiently small with respect to the plate thickness, the influence on the mechanical properties of the steel sheet is negligible.
  • a steel slab containing the composition shown in Table 1 and the balance of which was composed of Fe and unavoidable impurities was melted in a converter and continuously cast to obtain a steel slab, which is a steel material.
  • the steel slab obtained here was hot-rolled at the slab heating temperature, finish rolling temperature, and winding temperature shown in Table 2. Next, cold rolling is performed at the reduction ratio shown in Table 2, continuous annealing is performed under the continuous annealing conditions also shown in Table 2, and temper rolling (SKP) is appropriately performed to obtain each steel sheet for testing. rice field.
  • STP temper rolling
  • the annealing retention in the continuous annealing step was carried out by slow cooling in which the second soaking temperature: 755 ° C was lowered over 21 seconds immediately after reaching the first soaking temperature: 775 ° C. .. Since the first and second soaking temperatures were not held, the annealing holding time was 21 seconds.
  • the No. 47 steel sheet was kept at 600 ° C. for cooling after annealing in the continuous annealing step, and then held for 59 seconds in a temperature range up to 150 ° C. while slowly cooling.
  • the area ratio of each organization to the entire organization was calculated as follows. A test piece was sampled from each steel sheet and etched with a 3% nital solution on a surface at a plate thickness of 1/2 of the rolling direction cross section to reveal grain boundaries. This was photographed at a magnification of 3000 times using a scanning electron microscope. Image processing was performed on the photographed photograph using image processing software (Fiji, WEKA), and the area ratio of each tissue to the entire visual field was obtained and used as the area ratio of each tissue. Similar measurements were performed on a total of 5 randomly selected visual fields, and the average value was calculated.
  • the white region observed as a mass having a relatively smooth surface was regarded as martensite, and the area ratio thereof was taken as the area ratio of martensite. Further, a region that was white but linear rather than lumpy was regarded as bainite, and the area ratio thereof was defined as the area ratio of bainite.
  • the black region observed as a lump and not containing martensite inside was regarded as ferrite, and the area ratio thereof was defined as the area ratio of ferrite.
  • the ferrite average crystal grain size was determined as follows. A test piece was taken from each steel sheet, and the ferrite structure was etched with a 3% nital solution on the surface at the plate thickness 1/2 position in the cross section in the rolling direction to reveal grain boundaries. This was photographed at a magnification of 400 times using an optical microscope. Using the photographed photograph, the average crystal grain size was measured by the cutting method according to the microscopic test method of steel-crystal grain size of JIS G0551, and the ferrite average crystal grain size was obtained. Similar measurements were made on a total of three randomly selected locations to determine the average value.
  • Table 3 shows the evaluation results. All of the examples of the invention have a total elongation of 15% or more, a tensile strength of 500 MPa or more, a low yield elongation of 10% or less, and an upper yield stress of 400 MPa or more. Therefore, when applied to a deformed can, it has high ductility (total elongation), so that it is possible to perform strong can body processing such as can expansion processing and bead processing, and flange processing. In addition, it is possible to compensate for the decrease in strength due to the progress of thinning of the can by increasing the strength of the steel sheet, which is the upper yield stress of 400 MPa or more, and to secure the high strength of the can body by the tensile strength of 500 MPa or more. Furthermore, since it has a low yield elongation, wrinkles do not occur on the can body.
  • any one or more of total elongation, tensile strength, yield elongation, and upper yield stress was inferior. That is, in the steel grades (No. 1, 19, 21) in which the amount of elements added that contributes to the improvement of hardenability and strength is small, martensite and alloy precipitates could not be sufficiently formed, so that the tensile strength and the top yield stress Either or both did not meet the required characteristics.
  • No. 31 with a finish rolling output side temperature of 800 ° C or less, No. 32 with a take-up temperature of 700 ° C or more, or No. 33 with a rolling reduction rate of 80% or less causes coarsening of ferrite grains and are desired. Since martensite could not be formed, the strength decreased. In particular, in No. 31 and No. 32, YP-El increased because the pearlite and carbides produced during hot rolling remained undissolved even after annealing.
  • No. 34 with a soaking temperature of 700 ° C or less, No. 35 with a cooling rate of 50 ° C / s or less, and No. 39 with a cooling stop temperature of 600 ° C or more have ferrite growth during cooling and martensite. Sufficient strength and low yield elongation could not be obtained due to the formation of a large amount of bainite instead of sites. In particular, in No. 39, the bainite area ratio exceeded 10%, so the total elongation decreased and the required characteristics were not achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本発明は、優れた延性(全伸び≧15%)、高強度(TS≧500MPa)、低降伏伸び(≦10%)および十分な上降伏応力(≧400MPa)を兼備し、とりわけ容器用に供する板厚が0.1mm以上1.0mm以下の高強度薄鋼板を提供する。前記鋼板は、所定の成分組成を有し、面積率で、84.0%以上のフェライト、0.5%以上10.0%以下のマルテンサイトおよび0.1%以上10.0%以下のベイナイトを含む金属組織を有する鋼板である。

Description

鋼板および鋼板の製造方法
 本発明は、特に容器用材料に好適な、延性、強度、低降伏伸びおよび上降伏応力に優れる鋼板ならびにその製造方法に関するものである。
 近年、缶用鋼板においては、環境負荷の低減ならびに製缶コスト低減のために、高強度化による薄肉化が要求されている。その際、単に鋼板を薄肉化すると缶体強度が低下するため、極薄にしても強度を保つ鋼板が必要である。そのためには、少なくとも500MPa以上の強度が必要である。
 さらに薄肉化で低下した剛性や強度を補完するため、3ピース缶の胴部にビード加工や幾何学的形状を付与して剛性や強度を高めた異形缶の適用ニーズが高まっている。そういったビード加工や幾何学的形状の加工では鋼板に高い成形性が必要とされる。そのためには、少なくとも15%以上の延性(全伸び)が必要である。
 缶体にビード加工や幾何学的形状を付与した場合、ストレッチャーストレインと呼ばれるシワが発生する場合がある。これは降伏伸び(YP-El)との関連が大きいとされており、降伏伸びを低減することでシワ発生を抑制することが可能である。したがって、低降伏伸びを有する鋼板の開発が望まれている。求められる値は加工度により変動するが、少なくとも10%以下とすることが求められている。
 また、加工度の低い缶底部では鋼板の加工硬化による強度上昇が小さいため、薄肉化した鋼板を用いて製缶した場合、缶運搬時に落下等の衝撃を受けることでくぼみ等が発生し、商品価値が低下するといった問題が生じる。かかる問題を回避するためには、低加工度の部材においても優れた缶体強度を有する必要があり、そのためには、少なくとも400MPa以上の上降伏応力が必要である。
 以上の理由から、優れた延性と引張強さ、低降伏伸びおよび高上降伏応力を兼備した極薄鋼板の開発が望まれている。
 これらの要求に対して、特許文献1には、マルテンサイト分率が5%以上30%未満であるフェライトとマルテンサイトとの複合組織を有し、マルテンサイト粒径、製品板厚、マルテンサイト硬さおよび30T硬度をそれぞれ規定した製缶用高強度薄鋼板が開示されている。
 また、特許文献2には、フェライト相を主相とし、第2相としてマルテンサイト相及び/または残留オーステナイト相を面積分率の合計で1.0%以上含む鋼板が開示されている。
特開2009-84687号公報 国際公開第2016/075866号
 しかしながら、特許文献1は、強度と延性についての記述はあるものの、上降伏応力および低降伏伸びに関する記述はない。また、組織はフェライトとマルテンサイトの2相組織である。したがって、低加工度の部材においては十分な缶体強度が確保できず、缶体にビード加工や幾何学的形状を付与した場合、シワが発生するおそれがある。
 また、特許文献2にも、上降伏応力および低降伏伸びに関する記述がなく、特許文献1と同様に、加工後の缶体強度の低下や缶体へのシワが発生してしまうおそれがある。加えて、2次圧延を施さなければならず高コストであるという問題がある。
 従って、優れた成形性を有して缶体にビード加工や幾何学的形状を付与することができ、いかなる加工度においてもシワが発生せず、優れた缶体強度を有する極薄鋼板およびその製造方法の実現が求められている。
 本発明は、前述の従来技術に係る問題に鑑みてなる。すなわち、優れた延性(全伸び≧15%)、高強度(TS≧500MPa)、低降伏伸び(≦10%)および十分な上降伏応力(≧400MPa)を兼備し、とりわけ容器用に供する板厚が0.1mm以上1.0mm以下の高強度薄鋼板およびその製造方法を提供することを目的とする。
 発明者らは、上記の課題を解決すべく鋭意研究した。その結果、金属組織をフェライト、マルテンサイトおよびベイナイトを含む複合組織とすることで、特に、降伏伸びが10%以下かつ上降伏応力が400MPa以上の高強度鋼板が得られることを見出した。すなわち、延性向上に寄与する軟質なフェライト、強度向上および降伏伸び低減に寄与する硬質なマルテンサイトの2相組織に加えて、ベイナイトを形成することで、延性の低下や降伏伸びの増加を低減しつつ、鋼の降伏強度を増加させることに成功した。
 これにより、いかなる加工度においてもシワを発生させることなく優れた缶体強度を有する異形缶に最適な高強度鋼板が得られる。
 また、製造条件としては、焼鈍工程の加熱速度、焼鈍温度、焼鈍後の冷却速度および冷却停止温度での保持時間、保持後の冷却速度を適正に制御することが、上記複合組織の制御に適していることを併せて見出した。
 本発明は以上の知見に基づきなされたもので、その要旨は以下の通りである。
1.質量%で、
C:0.03%以上0.13%以下、
Si:0.05%以下、
Mn:0.01%以上0.6%以下、
P:0.025%以下、
S:0.020%以下、
Al:0.01%以上0.20%以下、
N:0.0001%以上0.02%以下、
Ti:0.005%以上0.02%以下および
B:0.0005%以上0.02%以下、
を含有し、残部が鉄および不可避的不純物の成分組成を有し、
 面積率で、84.0%以上のフェライト、0.5%以上10.0%以下のマルテンサイトおよび0.1%以上10.0%以下のベイナイトを含む金属組織を有する、鋼板。
2.前記成分組成に加えて質量%で、
Mo:0.05%以下、
Ni:0.15%以下、
Cr:0.10%以下、
V:0.02%以下、
Nb:0.02%以下および
Cu:0.02%以下
 より選ばれる1種または2種以上を含有する、前記1に記載の鋼板。
3.前記フェライトの平均結晶粒径が10μm以下である、前記1又は2に記載の鋼板。
4.缶用鋼板である、前記1~3のいずれかに記載の鋼板。
5.前記1~4のいずれかに記載の鋼板を製造する方法であって、
前記1又は2に記載の成分組成を有する鋼素材を1150℃以上に加熱し、仕上げ温度800℃以上950℃以下、巻き取り温度700℃以下にて熱間圧延を施す熱間圧延工程、該熱間圧延工程を経た熱延板に圧下率80%以上の冷間圧延を施す冷間圧延工程および、該冷間圧延工程を経た冷延板に平均加熱速度10℃/s以上で加熱を施し、700℃以上900℃以下の温度域で5秒以上90秒以下保持後、平均冷却速度50℃/s以上で150℃以上600℃以下の温度域まで冷却する焼鈍工程を備える、鋼板の製造方法。
6.前記焼鈍工程を経た焼鈍板を前記150℃以上600℃以下の温度域にて300秒以下で保持し、その後、さらに平均冷却速度10℃/s以上で150℃未満の温度域まで冷却する、前記5に記載の鋼板の製造方法。
 本発明によれば、15%以上の全伸び、500MPa以上の引張強さ、10%以下の低降伏伸び、400MPa以上の上降伏応力を有する高強度極薄鋼板が得られる。
 また、本発明により得られる高強度鋼板を異形缶に適用した場合、高い延性(全伸び)を有するため、拡缶加工・ビード加工などの強い缶胴加工や、フランジ加工などを行うことが可能となる。加えて、鋼板の高強度化により缶の薄肉化の進行に伴う強度低下を補償し、高い缶体強度を確保することが可能である。さらに、低い降伏伸びを有することから、缶体にシワが発生することもない。
 以下、本発明の高強度鋼板の成分組成と組織の適正範囲およびその限定理由について説明する。なお、以下の成分組成を表す「%」は、特に断らない限り「質量%」を意味するものとする。また、延性と低降伏伸びの両方に優れた場合を、加工性に優れたとも称する。さらに、引張強さと上降伏応力の両方に優れた場合を、高強度とも称する。
C:0.03%以上0.13%以下
 Cは、鋼の強度に寄与する元素であり、固溶強化および析出強化あるいはマルテンサイトおよびベイナイトの形成により鋼の強度を増加させる。C含有量が0.03%未満となると、マルテンサイトおよびベイナイトの面積率が低下し強度が低下する。そのため、C含有量は0.03%以上とする必要がある。一方、過度の含有は強度上昇による延性の低下を招くとともに、過剰なマルテンサイトの形成、固溶Cの増加による降伏伸びの増加の原因となる場合があるため、上限は0.13%とする。したがって、本発明において、Cは0.03%以上0.13%以下とする。強度と成形性を高い水準で両立させるために、下限は好ましくは0.05%以上である。上限は好ましくは0.09%以下である。
Si:0.05%以下
 Siは、0.05%を超えて含有すると耐食性が著しく損なわれる。したがって、Si含有量は0.05%以下とする。より優れた耐食性を得るために、好ましくは0.03%以下である。一方、Siは固溶強化による鋼の高強度化に寄与する元素である。この作用を得るためには0.01%以上含有させることが好ましい。
Mn:0.01%以上0.6%以下
 Mnは本発明において重要な添加元素の1つである。Mnは、固溶強化あるいはマルテンサイト、ベイナイトを所望量生成させることにより、鋼の高強度化に寄与する元素である。よって、本発明で目的とする鋼板の強度および成形性を得るためには、Mn含有量は0.01%以上にする必要がある。Mn含有量が0.01%に満たないと、マルテンサイトおよびベイナイトを所望量生成させることができず、目的の強度および成形性を得ることができない。一方、0.6%を超えて含有すると、焼入れ性の向上によって、マルテンサイトが過剰に生成され、所望量のベイナイトを生成することができない。このように所望量のベイナイトが生成できないと、低加工度における缶体強度を担保する上降伏応力が低下し、低加工度における缶体強度が低下することで製品不良の原因となる。したがって、Mnは0.01%以上0.6%以下の範囲とする。好ましくは0.3%以上0.6%以下の範囲である。
P:0.025%以下
 Pは、0.025%を超えると鋼板が過剰に硬化して延性が低下するほか、溶接性を低下させる。したがって、P含有量は0.025%以下とする。好ましくは0.020%以下である。一方、Pは、鋼中に不可避的に混入する元素であるが、鋼の強化には有効である。そのため、0.001%以上含有させることが好ましい。
S:0.020%以下
 Sは、鋼中に不可避的に混入する元素であり、MnSなどの介在物を生成して延性を低下させる。そのため、S含有量は0.020%以下とする。好ましくは0.015%以下である。一方、S含有量の下限は特に限定されないが、工業的には0.001%程度とするのが好ましい。なお、0.005%未満とすると鋼の精製に過剰なコストがかかるため、0.005%以上含まれるものとしても本発明に影響を与えない。
Al:0.01%以上0.20%以下
 Alは、脱酸剤として含有させる元素であり、さらに鋼中のNとAlNを形成することで、鋼中の固溶Nを減少させ、降伏伸びの低下に寄与する。この作用を得るためには0.01%以上の含有を要し、好ましくは0.03%以上である。一方、過剰に添加するとアルミナが多量に生成し延性を低下させるため、Al含有量を0.20%以下とする必要がある。好ましくは0.08%以下である。
N:0.0001%以上0.02%以下
 Nは、Alなどの炭窒化物形成元素と結びつくことで析出物を形成し、強度向上や組織の微細化に寄与する。この効果を得るためには、0.0001%以上の含有が必要である。一方、固溶Nは降伏伸びを増加させる作用があるため、Nの0.02%超の添加は、降伏伸びの増加によるシワ発生の原因となる。したがって、Nは0.0001%以上0.02%以下とする。下限は好ましくは0.0015%以上である。上限は好ましくは0.01%以下である。
Ti:0.005%以上0.02%以下
 Tiは、本発明において重要な添加元素の1つである。Tiは、析出強化元素として強度増加に有効であるほか、鋼中のNとTiNを形成しBNの生成を抑制することで、Bの焼入れ性向上効果を十分に得ることができる。この作用を得るためには、0.005%以上の含有が必要である。一方で、Tiの過剰添加は強度上昇による加工性の低下を招くので、上限は0.02%である。したがって、Ti含有量は0.005%以上0.02%以下とする。好ましくは、0.005%以上0.015%以下である。
B:0.0005%以上0.02%以下
 Bは本発明において重要な添加元素の1つである。Bは、焼き入れ性を向上させる効果があり、焼鈍冷却過程で起こるフェライトの生成を抑制し、所望量のマルテンサイトおよびベイナイトの生成に寄与する。この作用を得るためには、0.0005%以上の含有が必要である。一方で、その効果は0.02%で飽和する。したがって、Bは0.0005%以上0.02%以下とする。下限は好ましくは0.0015%以上である。上限は好ましくは0.01%以下である。
 本発明の鋼板は、以上の成分元素を必須として、残部は鉄および不可避的不純物とする。上記の必須元素を含有することで、本発明の鋼板は目的とする特性が得られるが、上記の必須元素に加え、さらに必要に応じて以下の元素を含有することができる。
Mo:0.05%以下、Ni:0.15%以下、Cr:0.10%以下、V:0.02%以下、Nb:0.02%以下、およびCu:0.02%以下より選ばれる1種または2種以上
 Mo、Ni、Cr、V、Nbは、何れも焼入れ性を向上させる作用を有し、鋼の強化元素として有用である。また、NbおよびCuは析出強化元素であり、強度増加を図るうえで特に有効である。よって、任意で、かかる元素より選ばれる1種または2種以上を添加することができる。なお、それぞれの上限を超えて添加してもそれ以上の添加効果の向上は望めないことから、いずれも上記の範囲が適切である。下限は0%である。
 本発明の高強度鋼板は、板厚tが0.10mm以上1.0mm以下であることが好ましい。板厚が1.0mm以下であれば、結晶粒の微細化に必要な冷間圧延率を確保することが容易となる。一方、製品板厚が0.10mm以上であれば、比較的小さな荷重で圧延が可能となるため、圧延機への負荷を小さくできる。また、板厚が0.40mm以下であると、本発明の効果がより一層顕著に現れるので、より好ましくは0.10mm以上0.40mm以下である。
 次に、本発明の高強度鋼板の重要な要件である金属組織について説明する。本発明の高強度鋼板の鋼組織は、主としてフェライトとマルテンサイトとベイナイトとの複合組織である。
フェライトの面積率:84.0%以上
 フェライトは鋼の延性向上に寄与する。フェライトの面積率が84.0%未満になると、所望する延性の確保が困難になるため、フェライトの面積率は、84.0%以上とする。好ましくは90.0%以上である。一方で、フェライトの面積率が99.4%超になるとマルテンサイトおよび/またはベイナイトの所望の面積率が確保できず、所望の強度および成形性を得ることができない。したがって、フェライトの面積率は、84.0%以上99.4%以下とする。下限は好ましくは90.0%以上である。上限は好ましくは98.0%以下である。
マルテンサイトの面積率:0.5%以上10.0%以下
 マルテンサイトの面積率が10.0%超になると強度が過剰に上昇し、延性が低下するため、マルテンサイトの面積率は10.0%以下とする。一方で、マルテンサイトの面積率が0.5%未満であると所望の強度を得ることができない。したがって、マルテンサイトの面積率は、0.5%以上10.0%以下とする。下限は好ましくは3.0%以上である。上限は好ましくは8.0%以下である。
ベイナイトの面積率:0.1%以上10.0%以下
 ベイナイトは本発明において重要な組織である。ベイナイトは、鋼の伸びを低下させたり降伏伸びを増加させることなく、上降伏強度と引張強さを増加させることができる。そのため、鋼中にベイナイトを適正量生成させることで、強度と成形性の両方に優れた鋼を得ることができる。かかる作用を得るためには、ベイナイトの面積率が0.1%以上必要である。一方で、ベイナイトの面積率が10.0%を超えると強度が過剰に増加し、延性が低下する。したがって、ベイナイトの面積率は0.1%以上10.0%以下とする。下限は好ましくは0.5%以上である。上限は好ましくは5.0%以下である。
 なお、前記金属組織において、フェライト、マルテンサイトおよびベイナイト以外の残部は特に限定する必要はない。例えば、残留オーステナイト、セメンタイト、パーライト等が含まれていてもよいものとする。かかる残部の組織は面積率で10.0%以下であれば、本発明に影響を与えない。もちろん、残部の組織がなくても(0%でも)よい。
 フェライト平均結晶粒径:10.0μm以下
 本発明の高強度鋼板の組織におけるフェライト平均結晶粒径を10.0μm以下とすることで、結晶粒微細化強化により強度の向上を図ることができる。ほかにも、フェライト粒の細粒化により粒界が増加し、オーステナイトの析出サイトとなる粒界三重点が増加することで、焼鈍中にオーステナイトが析出しやすくなることや、微細粒化によりフェライト粒中の固溶Cと粒界三重点の距離が短くなり、固溶Cが粒界に吐き出されやすくなることで、焼鈍中にオーステナイトの面積率が増加し、冷却中のマルテンサイトおよびベイナイトの形成に寄与し、焼き入れ性を向上させる効果がある。よって、フェライト平均結晶粒径は10.0μm以下が好ましい。より好ましくは、7.0μm以下である。フェライト平均結晶粒径の下限に制限はないが、延性の低下防止の観点からは3.0μm以上が好ましい。
 次に、本発明の高強度鋼板の製造方法について説明する。
 本発明の高強度鋼板の製造方法は、上記の鋼組成を有する鋼素材を1150℃以上に加熱し、仕上げ温度800℃以上950℃以下、巻き取り温度700℃以下にて熱間圧延を施す熱間圧延工程と、次いで、圧下率80%以上で冷間圧延を行う冷間圧延工程と、焼鈍温度までの平均加熱速度を10℃/s以上として加熱し、焼鈍温度を700℃以上900℃以下の範囲の温度として5秒以上90秒以下で保持後、150℃以上600℃以下の冷却停止温度まで平均冷却速度50℃/s以上で冷却する焼鈍工程とを備えることを特徴とする。
 さらに、必要に応じて、前記焼鈍工程を経た焼鈍板を、150℃以上600℃以下の温度域にて300秒以下の間保持した後、10℃/s以上の冷却速度で150℃未満の温度域まで冷却することができる。
鋼素材の加熱温度:1150℃以上
 熱間圧延前における鋼素材の加熱温度が低すぎるとTiNの一部が未溶解となり、成形性を低下させる粗大TiNの生成要因となるおそれがあるため、加熱温度を1150℃以上とする。一方、鋼素材の加熱温度の上限に制限はないが、鋼の加熱コストの低減と加熱炉の耐久性維持のため、好ましくは1250℃以下である。 
仕上げ温度:800℃以上950℃以下
 熱間圧延の仕上げ温度が950℃を超えると、熱間圧延後の組織が粗大化し、その後の冷延鋼板の粒径が増加することで強度低下の原因となるほか、オーステナイトの析出サイトとなる粒界三重点が減少し、所望の組織および特性が得られなくなる恐れがある。また、仕上げ温度が800℃に満たない場合には、フェライトとオーステナイトとの2相域での圧延となり、鋼板表層にフェライトの粗大粒が発生しその後の冷延鋼板の粒径が増加するほか、圧延後の冷却および巻き取り処理時にパーライトが生じ、そのパーライト中のセメンタイトが後の焼鈍工程でも溶解せずに残り、マルテンサイトなどの第2相の生成を阻害し、強度低下やYP-Elの増加を招くおそれがある。したがって、仕上げ圧延温度は800℃以上950℃以下の範囲に限定する。好ましくは850℃以上950℃以下である。
巻き取り温度:700℃以下
 巻き取り温度が700℃を超えると、巻き取り時に結晶粒が粗大化しその後の冷延鋼板の粒径が増加することで強度低下の原因となる。ほかにも熱延鋼板に粗大な炭化物が形成し、焼鈍時に該粗大な炭化物が未固溶となり第2相の生成を阻害し、強度低下やYP-Elの増加を招くおそれがある。したがって、巻き取り温度は700℃以下とする。下限は特に限定されないが、低すぎると熱延鋼板が過剰に硬化して冷間圧延の作業性を阻害するおそれがあるため、巻取温度は450℃以上とすることが好ましい。より好ましくは、450℃以上650℃以下である。  
冷間圧延における圧下率:80%以上
 冷間圧延における圧下率を80%以上とすることによって、冷間圧延後の結晶粒が微細となり、強度の増加に寄与する。また、オーステナイトの析出サイトとなる粒界三重点の減少やフェライト粒中の固溶Cと粒界三重点の距離の減少により、焼鈍板のマルテンサイトおよびベイナイトの形成に寄与し,焼き入れ性を向上させる効果がある。一方、圧下率が95%を超えると圧延荷重が大幅に増加し、圧延機への負荷が高まる。したがって、圧下率は80%以上であることが必要であり、95%以下であることが好ましい。
 冷間圧延工程は、1回のみ行っても、中間焼鈍工程を挟んで2回以上行ってもよい。1回又は2回以上の冷間圧延工程を行った直後に焼鈍工程を行ってもよい。あるいは、1回又は2回以上の冷間圧延工程を行った後、焼鈍工程前に適宜ほかの常法に従う工程、例えば、酸洗などのクリーニング工程やレベラー加工などの形状矯正工程を行ってもよい。冷間圧延工程が2回以上の場合は、いずれかの圧下率が80%以上であればよい。
焼鈍温度までの平均加熱速度が10℃/s以上
 焼鈍温度までの平均加熱速度が10℃/s未満となると、焼鈍温度に達する前に鋼中のオーステナイトに焼入れ性元素の分配が完了してしまい、その後の冷却工程でベイナイトを得ることが困難となる。したがって、焼鈍温度までの平均加熱速度は10℃/s以上とする。一方、上限は特に制限はないが、工業的には、50℃/s以下が好ましい。
焼鈍温度:700℃以上900℃以下
 焼鈍温度(均熱温度)が700℃よりも低い場合、所望量のマルテンサイトおよびベイナイトを得ることが出来ず、鋼板の強度と成形性が低下する。一方、焼鈍温度を900℃超とすると、連続焼鈍においてヒートバックルなどの通板トラブルが発生しやすくなる。したがって、焼鈍温度は700℃以上900℃以下の範囲に制限する。より好ましくは、750℃以上820℃以下である。また、かかる焼鈍温度での保持時間は、5~90秒である。5秒より短い場合は、マルテンサイトおよびベイナイトと前組織となるオーステナイトの生成および焼き入れ性元素の分配が完了しないため、その後の冷却工程でマルテンサイトおよびベイナイトを得ることが困難となる。一方、90秒より長い場合は、鋼中のオーステナイトに焼入れ性元素の分配が完了してしまい、その後の冷却工程でベイナイトを得ることが困難となる。
 なお、上記保持時間中の温度は、700℃以上900℃以下の範囲であればよく、必ずしも一定温度である必要はない。
焼鈍保持後、冷却停止温度まで平均冷却速度50℃/s以上
 平均冷却速度が50℃/sに満たない場合、冷却中にフェライトの成長およびベイナイトの過剰な生成が生じ、マルテンサイトの生成が抑制され、所望量のマルテンサイトが得られずに、鋼板の強度が低下する。従って、平均冷却速度は50℃/s以上とする。一方、上限は特に制限されないが、好ましくは、80℃/s以上250℃/s以下である。なお、この冷却は、ガス冷却の他、炉冷、気水冷却、ロール冷却および水冷などの1種または2種以上を組み合わせて行うことが可能である。
冷却停止温度:150℃以上600℃以下
 焼鈍後の冷却停止温度を600℃以下とすることにより、マルテンサイト変態とベイナイト変態が生じ、所望量のマルテンサイトを得ることができる。一方、冷却停止温度を150℃未満としてもマルテンサイトの生成量増加に寄与せず、冷却コストが過剰となる。したがって、焼鈍後の冷却停止温度は150℃以上600℃以下とする。好ましい下限は200℃以上である。好ましい上限は400℃以下である。必要とするマルテンサイトおよびベイナイトの面積率に応じて上述の範囲内で冷却停止温度を決定することができる。
150℃以上600℃以下の温度域で300秒以下の間保持
 上記冷却停止後に、600℃から150℃までの上記冷却停止温度域で保持することにより、未変態であるオーステナイトをベイナイトに変態させることができ、成形性を損なうことなく上降伏応力を上昇させることができる。この保持時間が300秒を超える場合、かかる保持中にマルテンサイトの焼戻しが生じるため、強度が低下する。また、本発明においては、150℃以上600℃の温度域で300秒以下の時間、鋼板を維持できれば所望のベイナイトを生成することができる。そのため、冷却停止後に、冷却停止温度と同一の温度で保持せずに、続けて緩冷却することも可能である。また前記温度域内の所定温度での保持と緩冷却とを任意の順序および回数で組み合わせてもよい。なお、保持温度が150℃を下回るとベイナイト変態が生じないため、所望の上降伏強さが得にくくなる。したがって、本発明では、上記冷却停止後に、600℃から150℃までの温度域での保持時間を300秒以下とする。なお、かかる保持時間の下限は特に限定されないが、工業的には、20秒程度が好ましい。
前記温度域での保持後、150℃未満の温度域まで平均冷却速度10℃/s以上で冷却
 前記150℃以上600℃以下の温度域で300秒以下の間保持した後、さらに150℃未満の温度域の最終冷却停止温度まで10℃/s以上で冷却することが好ましい。本工程により、必要以上のベイナイトを生成せず、所望の特性に応じた鋼組織を得ることができる。またマルテンサイトの焼き戻しが生じることなく、強度の低下を抑えられる。平均冷却速度が10℃/s以下になると、過剰なベイナイトの生成やマルテンサイトの焼き戻しが生じるため、前記保持温度より150℃未満の温度域まで平均冷却速度10℃/s以上で冷却することが好ましい。平均冷却速度の上限は特に規定しないが、過剰な冷却速度は冷却コストの上昇につながるため、40℃/s以下が好ましい。最終冷却停止温度(150℃未満の温度域)の下限は室温である。
調質圧延工程
 焼鈍工程後、圧下率10%以下の調質圧延を行ってもよい。圧下率を大きくすると、加工時に導入される歪みが大きくなり、全伸びが低下する。本発明では15%以上の全伸びを確保する必要があるため、調質圧延工程を行う場合の圧下率は10%以下とすることが好ましい。また、圧下率の下限は特に規定しないが、調質圧延工程には上降伏応力を増加させる効果や降伏伸びを低減する役割があるため、用途に応じた圧下率とすることでより好ましい高強度鋼板を得ることができる。下限は好ましくは0.5%以上である。上限は、より好ましくは5%以下である。 
 なお、調質圧延工程前に適宜ほかの常法に従う工程、例えば、酸洗などのクリーニング工程やレベラー加工などの形状矯正工程が含まれてもよい。焼鈍工程の直後に調質圧延工程を行ってもよい。かくして得られた冷延鋼板は、その後、必要に応じて、鋼板表面に、例えば電気めっきにより、錫めっき、クロムめっき、ニッケルめっき等のめっき処理を施してめっき層を形成し、めっき鋼板として使用に供してもよい。また、塗装焼付け処理工程、フィルムラミネート等の工程を行ってもよい。なお、めっき等の表面処理の膜厚は、板厚に対して十分に小さいため、鋼板の機械特性への影響は無視できる程度である。
 以上の工程を経て、本発明の高強度鋼板が得られる。なお、上記に記載のない工程や条件は、鋼板の製造にかかる常法によればよい。
 表1に示す成分組成を含有し、残部はFeおよび不可避的不純物からなる鋼を転炉で溶製し、連続鋳造することにより鋼素材である鋼スラブを得た。ここで得られた鋼スラブに対し、表2に示すスラブ加熱温度、仕上圧延温度、巻取り温度での熱間圧延を施した。次いで、表2に示した圧下率で冷間圧延を行い、同じく表2に示した連続焼鈍条件にて連続焼鈍を行い、適宜、調質圧延(SKP)を施して試験用の各鋼板を得た。No.44の鋼板は、連続焼鈍工程における焼鈍保持を、第一の均熱温度:775℃に達した直後から21秒かけて第二の均熱温度:755℃まで低下させる緩冷却によって実施した。当該第一および第二の均熱温度での保持は行わなかったため、焼鈍保持時間は21秒であった。No.47の鋼板は、連続焼鈍工程における焼鈍後の冷却を600℃で停止し、続いて緩冷却しながら150℃までの温度域にて59秒間保持した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-I000003
 組織全体に占める各組織の面積率は、次のように求めた。各鋼板から試験片を採取して、圧延方向断面で、圧延方向断面の板厚1/2位置の面にて3%ナイタール溶液でエッチングして粒界を現出させた。これを、走査型電子顕微鏡を用いて3000倍の倍率で写真撮影した。撮影した写真に、画像処理ソフト(Fiji、WEKA)を用いて画像処理を行って、視野全体に対する各組織の占有面積率を求めて、各組織の面積率とした。無作為に選んだ計5箇所の視野について同様の測定を行い、平均値を求めた。
 なお、比較的平滑な表面を有する塊状として観察される白色領域をマルテンサイトと見なし、その面積率をマルテンサイトの面積率とした。また、白色であるが塊状ではなく線状である領域をベイナイトとみなし、その面積率をベイナイトの面積率とした。塊状として観察される黒色領域で内部にマルテンサイトを含まないものをフェライトと見なし、その面積率をフェライトの面積率とした。
 フェライト平均結晶粒径は、次のように求めた。各鋼板から試験片を採取し、圧延方向断面の板厚1/2位置の面にてフェライト組織を3%ナイタール溶液でエッチングして粒界を現出させた。これを、光学顕微鏡を用いて400倍の倍率で写真撮影した。撮影した写真を用い、JIS G 0551の鋼-結晶粒度の顕微鏡試験方法に準拠し、切断法により平均結晶粒径を測定して、フェライト平均結晶粒径とした。無作為に選んだ計3箇所について同様の測定を行い、平均値を求めた。
機械特性
 機械特性(引張強さTS、上降伏応力U-YP、降伏伸びYP-El、全伸びEl)は、圧延方向を長手方向(引張方向)とし、JIS Z 2241に記載の5号試験片を用い、JIS Z 2241に準拠した引張試験を行って評価した。
 表3に評価結果を示す。発明例は、いずれも15%以上の全伸び、500MPa以上の引張強さ、10%以下の低降伏伸び、400MPa以上の上降伏応力を有する。よって、異形缶に適用した場合、高い延性(全伸び)を有するため、拡缶加工・ビード加工などの強い缶胴加工や、フランジ加工などを行うことが可能となる。また、400MPa以上の上降伏応力という鋼板の高強度化により缶の薄肉化の進行に伴う強度低下を補償し、500MPa以上の引張強さによって高い缶体強度を確保することが可能である。さらに、低い降伏伸びを有することから、缶体にシワが発生することもない。
 一方、比較例では、全伸び、引張強さ、降伏伸び、上降伏応力のいずれか1つ以上が劣っていた。
 すなわち、焼き入れ性や強度向上に寄与する元素の添加量が少ない鋼種(No.1,19,21)では、マルテンサイトや合金析出物が十分に形成できなかったため、引張強さや上降伏応力のいずれかまたは両方が要求特性未達となった。
 反対に焼き入れ性や強度向上に寄与する元素が過剰に添加された鋼種(No.6,9,18,20)においては、マルテンサイトや合金析出物が過剰に形成されることで強度が向上したものの、全伸びは低下した。
 仕上げ圧延出側温度が800℃以下のNo.31、巻取り温度が700℃以上のNo.32、あるいは圧下率80%以下のNo.33は、フェライト粒の粗大化が生じたとともに,所望のマルテンサイトが形成できなかったため、強度が低下した。特に、No.31およびNo.32は熱延時に生成したパーライトおよび炭化物が焼鈍後も溶け残っているため、YP-Elが増加した.
 均熱温度が700℃以下のNo.34、冷却速度が50℃/s以下のNo.35、冷却停止温度が600℃以上のNo.39は、冷却中にフェライトの成長が生じたとともに、マルテンサイトではなくベイナイトが多く形成されたことで十分な強度と低降伏伸びが得られなかった。特に、No.39は、ベイナイト面積率が10%を超えているため、全伸びが低下し要求特性未達となった。
 冷却停止後保持時間が300秒以上のNo.40では、マルテンサイトの焼戻しが生じ、所望量のマルテンサイトを得ることが出来ずに強度がやや低下したものの実用上は問題のない程度である。
 調質圧延を10%以上施したNo.43においては、強度が増加し降伏伸びが低減された一方で延性が低下したものの実用上は問題のない程度である。
 焼鈍時の保持時間が5秒以下であるNo.45では、焼鈍時オーステナイトの生成ができずに所望量のマルテンサイトを得ることができず、強度が低下し降伏強度が増加した。
 焼鈍温度までの平均加熱速度が10℃/s未満であるNo.49では、所望量のベイナイトを得ることができず、降伏強度が低下した。焼鈍保持後、冷却停止温度まで平均冷却速度50℃/s以下であるNo.50では、マルテンサイトの生成が抑制され、所望量のマルテンサイトが得られずに、鋼板の強度が低下し降伏伸びが増加した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-I000005

Claims (6)

  1.  質量%で、
    C:0.03%以上0.13%以下、
    Si:0.05%以下、
    Mn:0.01%以上0.6%以下、
    P:0.025%以下、
    S:0.020%以下、
    Al:0.01%以上0.20%以下、
    N:0.0001%以上0.02%以下、
    Ti:0.005%以上0.02%以下および
    B:0.0005%以上0.02%以下、
    を含有し、
    残部が鉄および不可避的不純物の成分組成を有し、
     面積率で、84.0%以上のフェライト、0.5%以上10.0%以下のマルテンサイトおよび0.1%以上10.0%以下のベイナイトを含む金属組織を有する、
    鋼板。
  2.  前記成分組成に加えて質量%で、
    Mo:0.05%以下、
    Ni:0.15%以下、
    Cr:0.10%以下、
    V:0.02%以下、
    Nb:0.02%以下および
    Cu:0.02%以下
     より選ばれる1種または2種以上を含有する、請求項1に記載の鋼板。
  3.  前記フェライトの平均結晶粒径が10μm以下である、請求項1または2に記載の鋼板。
  4.  缶用鋼板である、請求項1~3のいずれか1項に記載の鋼板。
  5.  請求項1~4のいずれか1項に記載の鋼板を製造する方法であって、
     請求項1又は2に記載の成分組成を有する鋼素材を1150℃以上に加熱し、
     仕上げ温度800℃以上950℃以下、巻き取り温度700℃以下にて熱間圧延を施す熱間圧延工程、
     該熱間圧延工程を経た熱延板に圧下率80%以上の冷間圧延を施す冷間圧延工程および、
     該冷間圧延工程を経た冷延板に平均加熱速度10℃/s以上で加熱を施し、700℃以上900℃以下の温度域で5秒以上90秒以下保持後、平均冷却速度50℃/s以上で150℃以上600℃以下の温度域まで冷却する焼鈍工程を備える、鋼板の製造方法。
  6.  前記焼鈍工程を経た焼鈍板を前記150℃以上600℃以下の温度域にて300秒以下で保持し、その後、平均冷却速度10℃/s以上で150℃未満の温度域まで冷却する、請求項5に記載の鋼板の製造方法。
     
PCT/JP2021/006212 2020-02-21 2021-02-18 鋼板および鋼板の製造方法 WO2021167023A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227028332A KR20220127912A (ko) 2020-02-21 2021-02-18 강판 및 강판의 제조 방법
MYPI2022004087A MY197776A (en) 2020-02-21 2021-02-18 Steel sheet and method of manufacturing the same
CN202180015366.4A CN115176042B (zh) 2020-02-21 2021-02-18 钢板和钢板的制造方法
JP2021539855A JP7014341B2 (ja) 2020-02-21 2021-02-18 鋼板および鋼板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020028466 2020-02-21
JP2020-028466 2020-02-21

Publications (1)

Publication Number Publication Date
WO2021167023A1 true WO2021167023A1 (ja) 2021-08-26

Family

ID=77392187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006212 WO2021167023A1 (ja) 2020-02-21 2021-02-18 鋼板および鋼板の製造方法

Country Status (6)

Country Link
JP (1) JP7014341B2 (ja)
KR (1) KR20220127912A (ja)
CN (1) CN115176042B (ja)
MY (1) MY197776A (ja)
TW (1) TWI750033B (ja)
WO (1) WO2021167023A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04337049A (ja) * 1991-05-13 1992-11-25 Kawasaki Steel Corp 製缶用高強度良加工性冷延鋼板及びその製造方法
JP2003293083A (ja) * 2002-04-01 2003-10-15 Sumitomo Metal Ind Ltd 熱延鋼板並びに熱延鋼板及び冷延鋼板の製造方法
JP2016003393A (ja) * 2014-06-13 2016-01-12 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー アルミ被覆された包装用鋼材の製造方法
WO2016157878A1 (ja) * 2015-03-31 2016-10-06 Jfeスチール株式会社 缶用鋼板及び缶用鋼板の製造方法
WO2020105406A1 (ja) * 2018-11-21 2020-05-28 Jfeスチール株式会社 缶用鋼板およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4235247B1 (ja) 2007-09-10 2009-03-11 新日本製鐵株式会社 製缶用高強度薄鋼板及びその製造方法
JP5182386B2 (ja) * 2011-01-31 2013-04-17 Jfeスチール株式会社 加工性に優れた高降伏比を有する高強度冷延鋼板およびその製造方法
KR101989712B1 (ko) * 2014-10-28 2019-06-14 제이에프이 스틸 가부시키가이샤 2 피스 캔용 강판 및 그 제조 방법
EP3187612B1 (en) 2014-11-12 2019-06-19 JFE Steel Corporation Steel sheet for cans and method for manufacturing steel sheet for cans
WO2017029815A1 (ja) * 2015-08-19 2017-02-23 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN111051554B (zh) * 2017-10-31 2022-03-22 杰富意钢铁株式会社 高强度钢板及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04337049A (ja) * 1991-05-13 1992-11-25 Kawasaki Steel Corp 製缶用高強度良加工性冷延鋼板及びその製造方法
JP2003293083A (ja) * 2002-04-01 2003-10-15 Sumitomo Metal Ind Ltd 熱延鋼板並びに熱延鋼板及び冷延鋼板の製造方法
JP2016003393A (ja) * 2014-06-13 2016-01-12 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー アルミ被覆された包装用鋼材の製造方法
WO2016157878A1 (ja) * 2015-03-31 2016-10-06 Jfeスチール株式会社 缶用鋼板及び缶用鋼板の製造方法
WO2020105406A1 (ja) * 2018-11-21 2020-05-28 Jfeスチール株式会社 缶用鋼板およびその製造方法

Also Published As

Publication number Publication date
JP7014341B2 (ja) 2022-02-01
TW202136537A (zh) 2021-10-01
KR20220127912A (ko) 2022-09-20
TWI750033B (zh) 2021-12-11
CN115176042B (zh) 2023-10-20
CN115176042A (zh) 2022-10-11
JPWO2021167023A1 (ja) 2021-08-26
MY197776A (en) 2023-07-13

Similar Documents

Publication Publication Date Title
EP3372703B1 (en) Ultra-high strength steel plate having excellent formability and hole-expandability, and method for manufacturing same
US8795443B2 (en) Lacquered baked steel sheet for can
JP6766190B2 (ja) 降伏強度に優れた超高強度高延性鋼板及びその製造方法
EP2811047A1 (en) Hot-dip galvanized steel sheet and production method therefor
KR101994914B1 (ko) 캔용 강판 및 캔용 강판의 제조 방법
WO2012060294A1 (ja) 深絞り性および焼付硬化性に優れる高強度冷延鋼板とその製造方法
JP2007284783A (ja) 高強度冷延鋼板及びその製造方法
JPWO2019151017A1 (ja) 高強度冷延鋼板、高強度めっき鋼板及びそれらの製造方法
EP4234750A1 (en) Ultra high strength steel sheet having excellent ductility and method for manufacturing thereof
JP2007197742A (ja) 溶接缶用冷延鋼板およびその製造方法
JP6007571B2 (ja) 高強度冷延鋼板及び高強度亜鉛めっき鋼板
JPH03277741A (ja) 加工性、常温非時効性及び焼付け硬化性に優れる複合組織冷延鋼板とその製造方法
JP6843245B2 (ja) 曲げ性及び伸びフランジ性に優れた高張力亜鉛系めっき鋼板及びその製造方法
JP3525812B2 (ja) 衝撃エネルギー吸収性に優れた高強度鋼板およびその製造方法
JP4519373B2 (ja) 成形性、歪時効硬化特性および耐常温時効性に優れた高張力冷延鋼板およびその製造方法
JP2005350737A (ja) 強い缶体強度と良好なプレス加工性を備えた缶用薄鋼板およびその製造方法
JP2001303175A (ja) 形状凍結性に優れたフェライト系薄鋼板及びその製造方法
JP7014341B2 (ja) 鋼板および鋼板の製造方法
CN116897215A (zh) 钢板、构件和它们的制造方法
JP7022825B2 (ja) 冷間成形性に優れた超高強度高延性鋼板及びその製造方法
CN111051554B (zh) 高强度钢板及其制造方法
JP6210045B2 (ja) 高強度冷延鋼板、高強度めっき鋼板、及びそれらの製造方法
JP2007224408A (ja) 歪時効硬化特性に優れた熱延鋼板およびその製造方法
JP2004131771A (ja) 形状凍結性に優れた冷延鋼板の製造方法
JP6881696B1 (ja) 缶用鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021539855

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757936

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202217049565

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21757936

Country of ref document: EP

Kind code of ref document: A1