WO2021166871A1 - 環状ポリシロキサンの製造方法 - Google Patents

環状ポリシロキサンの製造方法 Download PDF

Info

Publication number
WO2021166871A1
WO2021166871A1 PCT/JP2021/005600 JP2021005600W WO2021166871A1 WO 2021166871 A1 WO2021166871 A1 WO 2021166871A1 JP 2021005600 W JP2021005600 W JP 2021005600W WO 2021166871 A1 WO2021166871 A1 WO 2021166871A1
Authority
WO
WIPO (PCT)
Prior art keywords
monovalent hydrocarbon
cyclic
oxide
polysiloxane
carbon atoms
Prior art date
Application number
PCT/JP2021/005600
Other languages
English (en)
French (fr)
Inventor
中山 健
青木 俊司
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP21757153.8A priority Critical patent/EP4108706A4/en
Priority to US17/801,192 priority patent/US20230095953A1/en
Priority to JP2022501887A priority patent/JP7459923B2/ja
Priority to CN202180015329.3A priority patent/CN115135698B/zh
Publication of WO2021166871A1 publication Critical patent/WO2021166871A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/21Cyclic compounds having at least one ring containing silicon, but no carbon in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/385Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups

Definitions

  • the present invention relates to a method for producing a cyclic polysiloxane.
  • Cyclic polysiloxanes are used for various purposes in various fields.
  • cyclic polysiloxanes having various functional groups are reacted alone or with other types of cyclic or chain siloxane compounds in the presence of an equilibrium reaction catalyst such as an acid or alkali to obtain a high molecular weight.
  • an equilibrium reaction catalyst such as an acid or alkali
  • the produced high molecular weight body has various performance improvements depending on the type of functional group derived from the raw material.
  • cyclic polysiloxane is also used as a diluent for cosmetic materials, a solvent for dry cleaning, and a raw material for an insulating film.
  • Patent Document 1 proposes a technique for synthesizing 1,3,5,7-tetramethylcyclotetrasiloxane by using aluminum triisopropoxide with respect to a linear polysiloxane having a SiH group. Has been done.
  • Patent Document 2 proposes a technique for synthesizing the following cyclic polysiloxane by treating trihydroxyphenylsilane with methanesulfonic acid.
  • Patent Document 3 proposes a technique for synthesizing the following cyclic polysiloxane by condensing normal octyltrichlorosilane with water and then treating it with 1,1,3,3-tetramethyldisilazane and dimethylchlorosilane. There is.
  • Patent Document 4 the following cyclic polysiloxane is synthesized by using a Lewis acid-catalyzed demethane reaction on dimethoxyisopropylvinylsilane and 1,1,3,3-tetramethyldisiloxane.
  • 1,1,3,3,5-pentamethylcyclotri is produced by a condensation reaction between 1,3-dihydroxy-1,1,3,3-tetramethyldisiloxane and methyldichlorosilane under triethylamine. I am synthesizing siloxane.
  • Patent Document 6 reports the synthesis of a cyclic polysiloxane having a fluorine-containing organic group in Z of the following formula.
  • a synthetic method (1) a method of co-hydrolyzing dimethyldichlorosilane and a dichlorosilane having a fluorine-containing organic group
  • a synthetic method (2) a method of co-hydrolyzing dimethyldichlorosilane and methyldichlorosilane were obtained.
  • Patent Documents 7 to 9 the following cyclic polysiloxanes are synthesized by using hexamethylphosphoric acid triamide (HMPA) for cyclic siloxane and dichlorosilane and then hydrolyzing them.
  • HMPA hexamethylphosphoric acid triamide
  • Patent Document 7 1-Vinyl-1,3,3,5,5,7,7-Heptamethylcyclotetrasiloxane
  • Patent Document 8 Cyclic polysiloxane of the following formula
  • Patent Document 9 Cyclic polysiloxane of the following formula
  • Patent Documents 1 to 3 have limited functional groups of the obtained cyclic polysiloxane, and cyclic trimers, tetramers, pentamers and the like are simultaneously produced. However, it is difficult to obtain a single component in high yield.
  • Patent Document 4 is limited to cyclic polysiloxane containing a vinyl group, and since a highly active reagent of strong Lewis acid is used, a by-product is produced, and the yield of the target cyclic polysiloxane is low.
  • Patent Document 5 is a synthetic method in which two kinds of raw materials are dropped at the same rate at the same time, so that it is difficult to produce and the yield obtained is low.
  • Patent Document 6 since the co-hydrolysis reaction of silane is carried out in all the synthetic methods, the reaction yield is low and the degree of polymerization of the cyclic polysiloxane is not stable.
  • Patent Documents 7 to 9 the functional groups of the obtained cyclic polysiloxane are limited, and in the examples, hexamethylphosphoric acid triamide (HMPA) having carcinogenicity is only used as a catalyst.
  • HMPA hexamethylphosphoric acid triamide
  • a cyclic polysiloxane of interest that can be easily synthesized without using a toxic catalyst and has various functional groups can be obtained in high yield and high purity.
  • the present invention has been made in view of the above circumstances, and is a cyclic polysiloxane capable of obtaining a cyclic polysiloxane in high yield and high purity under simple steps and mild conditions without using a toxic catalyst. It is an object of the present invention to provide a manufacturing method.
  • a linear polysiloxane with both ends of the molecular chain of the synthetic intermediate is synthesized by reacting in the presence of at least one catalyst selected from a phosphorus compound having a bond, a quaternary ammonium salt and a quaternary phosphonium salt. Then, the cyclic polysiloxane compound was found to be obtained in high yield and high purity by hydrolyzing the compound, and the present invention was made.
  • the present invention provides the following method for producing cyclic polysiloxane.
  • 1. The following general formula (1) (In the formula, R 1 and R 2 are each independently a hydrogen atom or an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and a is an integer of 3 ⁇ a ⁇ 5.)
  • the raw material cyclic siloxane represented by The following general formula (2) In the formula, R 3 and R 4 are independently substituted or substituted monovalent hydrocarbon groups having 1 to 20 hydrogen atoms or 1 to 20 carbon atoms (excluding fluorine-containing monovalent hydrocarbon groups).
  • X is a halogen atom.
  • a reaction involving ring opening of a cyclic siloxane represented by the general formula (1) is carried out to obtain a linear polysiloxane in which both ends of the molecular chain are sealed with halogen atoms.
  • R 1 and R 2 are independently hydrogen atoms or unsubstituted or substituted monovalent hydrocarbon groups having 1 to 10 carbon atoms
  • R 3 and R 4 are independently hydrogen atoms or hydrogen atoms or R 4 respectively. It is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms (excluding the fluorine-containing monovalent hydrocarbon group), and b is an integer of 3 ⁇ b ⁇ 10).
  • a method for producing a cyclic polysiloxane which comprises a step of obtaining a cyclic polysiloxane represented by. 2.
  • R 1 and R 2 are each independently a hydrogen atom or an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • the raw material cyclic siloxane represented by The following general formula (2') (In the formula, R 3 and R 4 are independently substituted or substituted monovalent hydrocarbon groups having 1 to 20 hydrogen atoms or 1 to 20 carbon atoms (excluding fluorine-containing monovalent hydrocarbon groups).
  • a reaction involving ring opening of a cyclic siloxane represented by the general formula (1') is carried out to obtain a linear polysiloxane in which both ends of the molecular chain are blocked by chlorine atoms.
  • R 1 and R 2 are independently hydrogen atoms or unsubstituted or substituted monovalent hydrocarbon groups having 1 to 10 carbon atoms
  • R 3 and R 4 are independently hydrogen atoms or hydrogen atoms or R 4 respectively. It is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms (excluding fluorine-containing monovalent hydrocarbon groups).
  • a method for producing a cyclic polysiloxane which comprises a step of obtaining a cyclic polysiloxane represented by. 6.
  • the catalysts are N, N-dimethylformamide, tetramethylurea, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, 1,3-dimethyl-2-imidazolidinone, oxidation.
  • Trimethylphosphine oxide triethylphosphine oxide, tri-n-propylphosphine oxide, tributylphosphine oxide, tri-n-octylphosphine oxide, tris (2-ethylhexyl) phosphine oxide, tricyclohexylphosphine oxide, triphenylphosphine oxide, methyl (diphenyl) 9.
  • the method for producing a cyclic polysiloxane of the present invention can obtain a cyclic polysiloxane in high yield and high purity under a simple process and mild conditions without using a toxic catalyst. Further, by using the synthesized cyclic polysiloxane as a raw material for high molecular weight silicone oil or silicone rubber, it is possible to further improve the characteristics and impart new physical properties to them. Further, the cyclic polysiloxane can be used as a diluent for cosmetic materials, a solvent for dry cleaning, and a raw material for an insulating film.
  • a Lewis base compound having a cyclic siloxane represented by the general formula (1) and a dihalosilane represented by the general formula (2) having a carboxylic acid amide bond represented by ⁇ C ( O) N ⁇ .
  • a reaction involving ring opening of the cyclic siloxane represented by the general formula (1) in the presence of one or more catalysts selected from a phosphorus compound having a P O bond, a quaternary ammonium salt and a quaternary phosphonium salt.
  • the reaction [I] will be described in more detail.
  • the following general formula (3 ′′) in the formula, X, R 1 , R 2 , R 3 , R 4 , a and b are the same as described above.
  • R 1 and R 2 are each independently a hydrogen atom or an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and a is an integer of 3 ⁇ a ⁇ 5.
  • 3 and R 4 are independently hydrogen atoms or unsubstituted or substituted monovalent hydrocarbon groups having 1 to 20 carbon atoms (excluding fluorine-containing monovalent hydrocarbon groups), and X is a halogen atom.
  • R 3 and R 4 are independently substituted or substituted monovalent hydrocarbon groups having 1 to 20 hydrogen atoms or 1 to 20 carbon atoms (excluding fluorine-containing monovalent hydrocarbon groups).
  • b is an integer of 3 ⁇ b ⁇ 10.
  • the cyclic siloxane used as a raw material is represented by the following general formula (1).
  • R 1 and R 2 are each independently a hydrogen atom or an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and a is an integer of 3 ⁇ a ⁇ 5.
  • the monovalent hydrocarbon group of R 1 and R 2 preferably an alkyl group having 1 to 8 carbon atoms such as a methyl group, an ethyl group, a propyl group and a butyl group, and preferably a cyclohexyl group having 5 to 5 carbon atoms.
  • An acryloylalkyl group having 4 to 10 carbon atoms such as a propyl group, an acryloylmethyl group and a methacryloylpropyl group, and an aryl group and a benzyl group having 6 to 10 carbon atoms such as a methacryloylalkyl group, a phenyl group and a tolyl group are preferable.
  • aralkyl group having 7 to 10 carbon atoms, or a part or all of the hydrogen atom bonded to the carbon atom of these groups examples thereof include a monovalent hydrocarbon group having 1 to 10 carbon atoms substituted with an epoxy group, a carboxyl group or the like.
  • an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms and a 3,3,3-trifluoropropyl group are preferable, and a methyl group, a vinyl group and a 3,3,3-trifluoropropyl group are more preferable.
  • a methyl group is even more preferred.
  • the dihalosilane used in the other raw material is represented by the following general formula (2).
  • R 3 and R 4 are independently substituted or substituted monovalent hydrocarbon groups having 1 to 20 hydrogen atoms or 1 to 20 carbon atoms (excluding fluorine-containing monovalent hydrocarbon groups). .
  • Examples of the monovalent hydrocarbon group of R 3 and R 4 include an alkyl group having 1 to 12 carbon atoms such as a methyl group, an ethyl group, a propyl group and a butyl group, and a cyclohexyl group having preferably 5 to 12 carbon atoms.
  • Cycloalkyl group, vinyl group, allyl group, hexenyl group, octenyl group, etc. preferably an alkenyl group having 2 to 12 carbon atoms, cyclohexenylethyl group, etc., preferably a cycloalkenylalkyl group having 3 to 12 carbon atoms, an acryloylpropyl group.
  • Acryloylmethyl group, methacryloylpropyl group and the like preferably an acryloylalkyl group having 4 to 12 carbon atoms, and a methacryloylalkyl group, a phenyl group, a trill group and the like, preferably an aryl group having 6 to 12 carbon atoms, a benzyl group and the like.
  • a monovalent hydrocarbon group having 1 to 20 carbon atoms substituted with a carboxyl group or the like can be mentioned.
  • an unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms is preferable, and a methyl group, a vinyl group, and a phenyl group are more preferable.
  • X is a halogen atom, and examples thereof include a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom is preferable (the above general formula (2')).
  • the molar ratio of the compound of the general formula (1) to the compound of the formula (2) in the ring-opening reaction is not particularly limited and is arbitrary, and is appropriately selected within the range where b is an integer of 3 ⁇ b ⁇ 10. However, with respect to 1 mol of the compound of the formula (2), 0.8 to 5 mol of the compound of the formula (1) is preferable, and 0.8 to 3 mol is more preferable. If it is less than 0.8 mol or more than 5 mol, it may be economically disadvantageous or impurities that hinder the purification of the target substance may be generated.
  • any carboxylic acid amide compound, urethane compound or urea compound can be used. From the viewpoint of reaction efficiency, a Lewis base compound containing a tertiary amide bond, which does not have an H atom directly bonded to an N atom, is preferable.
  • carboxylic acid amide compounds include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylpropionamide, N, N-dimethylisobutylamide, N, N-dimethylacrylamide, N, N- Dimethylmethacrylate, N, N-dimethylacetamide, N, N-diethylformamide, N, N-diethylacetamide, N, N, N', N'-tetraacetylethylenediamine, 1-methyl-2-pyrrolidone and the like. Be done. Among these, N, N-dimethylformamide is preferable from the viewpoint of reaction efficiency and availability.
  • urethane compounds include N-methoxycarbonylmaleimide, 3-methyl-2-oxazolidone, 1-ethoxycarbonyl-4-piperidone, 1-tert-butoxycarbonylpyrrolidin, and the like, and examples of urea compounds include tetra.
  • Methylurea, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, 1,1,3,3-tetraethylurea, 1,1,3,3-tetrabutylurea, N examples thereof include N'-dimethyl-N, N'-diphenylurea, 1,3-dimethyl-2-imidazolidinone, 1,3-dimethyluracil, 1,3-dimethylbarbituric acid, and caffeine.
  • tetramethylurea, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, 1,3-dimethyl-2-imidazole from the viewpoint of reaction efficiency and availability. Lidinone is preferred.
  • Phosphine oxide is preferable from the viewpoint of reaction efficiency.
  • Tricyclohexylphosphine oxide triphenylphosphine oxide, methyl (diphenyl) phosphine oxide, ethyldiphenylphosphine oxide, diphenylvinylphosphine oxide, ethynyl (diphenyl) phosphine oxide, methoxymethyl (diphenyl) phosphine oxide, cyclohexyldiphenylphosphine oxide, (4) -Bromophenyl) diphenylphosphine oxide, (3-bromophenyl) diphenylphosphine oxide, bis (4-bromophenyl) phenylphosphine oxide, bis (3-bromophenyl) phenylphosphine oxide, tris (3-bromophenyl) phosphine oxide, Tris (4-methylphenyl) phosphine oxide, 2,5-dihydroxyphenyl (diphenyl) phosphine oxide
  • trimethylphosphine oxide triethylphosphine oxide, tri-n-propylphosphine oxide, tributylphosphine oxide, tri-n-octylphosphine oxide, tris (2-ethylhexyl) phosphine oxide from the viewpoint of reaction efficiency and availability.
  • Tricyclohexylphosphine oxide, triphenylphosphine oxide, methyl (diphenyl) phosphine oxide, ethyldiphenylphosphine oxide, diphenylvinylphosphine oxide, ethynyl (diphenyl) phosphine oxide, methoxymethyl (diphenyl) phosphine oxide, cyclohexyldiphenylphosphine oxide are preferable. ..
  • any quaternary ammonium salt and the quaternary phosphonium salt can be used.
  • the quaternary ammonium salt include tetrabutylammonium bromide, tetrabutylammonium chloride, tetrapropylammonium bromide, methyltri-n-octylammonium chloride and the like.
  • the quaternary phosphonium salt include tetrabutylphosphonium bromide, tetrabutylphosphonium chloride, methyltriphenylphosphonium bromide and the like. Among these, methyltri-n-octylammonium chloride and tetrabutylphosphonium bromide are preferable from the viewpoint of reaction efficiency and availability.
  • the amount of the above catalyst used is preferably 0.0001 to 5 mol, more preferably 0.0005 to 3 mol, and 0.001 to 1 mol, based on 1 mol of the dihalosilane represented by the general formula (2). More preferred. If it is 0.0001 mol or more, a more sufficient catalytic effect can be obtained, and if it exceeds 5 mol, it may be economically disadvantageous.
  • the conditions when the amount used is large are assumed to be used as a reaction solvent.
  • the reaction temperature of the ring-opening reaction is not particularly limited, but is preferably -10 to 150 ° C, more preferably 0 to 100 ° C. If the reaction temperature exceeds 150 ° C., it may be economically disadvantageous, and by-products that may cause a decrease in yield may be generated. On the other hand, if the reaction temperature is less than ⁇ 10 ° C., the reaction rate may become slower than necessary.
  • the mixing method and mixing order of the reaction raw materials there are no particular restrictions on the mixing method and mixing order of the reaction raw materials.
  • the compound of the formula (1), the compound of the formula (2) and the catalyst are mixed together, the catalyst is added to the mixture of the compound of the formula (1) and the compound of the formula (2), the compound of the formula (1) or the compound of the formula (2).
  • the compound of the formula (2) or the compound of the formula (1) are added dropwise to the mixture of the compound of the formula (1) or the compound of the formula (2).
  • the compound of the above compound and the catalyst is added dropwise, and the compound of the formula (1) and the compound of the formula (2) are reacted in the catalyst or the mixture of the catalyst and the solvent.
  • the compound of (1) and the compound of formula (2) may be dropped individually or mixed with each other.
  • the reaction solvent is not an essential substance, but it is used as needed, such as improving the uniformity of the reaction system or increasing the volume of the reaction system to improve the agitation. You may.
  • the solvent may be used alone or in combination of two or more.
  • the solvent include aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene and mesitylen, and fats such as hexane, heptane, octane, isooctane, decane, undecane, dodecane, tetradecane, hexadecane, cyclohexane, methylcyclohexane and paraffin.
  • aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene and mesitylen
  • fats such as hexane, heptane, octane, isooctane, decane, undecane, do
  • Fluorine-modified aromatic hydrocarbon solvent such as hydrogen solvent, m-xylene hexafluorolide, benzotrifloride, fluorine-modified ether system such as methyl perfluorobutyl ether, ethyl perfluorobutyl ether, perfluoro (2-butyl tetrahydrofuran)
  • fluorine-modified ether system such as methyl perfluorobutyl ether, ethyl perfluorobutyl ether, perfluoro (2-butyl tetrahydrofuran)
  • Examples include a solvent and dimethyl sulfoxide.
  • aromatic hydrocarbon solvents aromatic hydrocarbon solvents, aliphatic hydrocarbon solvents, ketone solvents, ester solvents, nitrile solvents, fluorine-modified aromatic hydrocarbon solvents, and dimethylsulfoxide are preferable, and toluene and hexane are more preferable.
  • Heptane, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, acetonitrile, m-xylene hexafluorolide, dimethyl sulfoxide are preferable.
  • types that may react with dihalosilane of the general formula (2), which is one of the raw materials, such as alcohols and amines are not preferable.
  • the cyclic siloxane as a raw material is a solid, it does not need to be uniformly dissolved in an organic solvent, and the ring-opening reaction may be carried out in a state where a part of the cyclic siloxane is dissolved.
  • the amount of the solvent used is preferably 1 to 1,000 parts by mass, more preferably 5 to 300 parts by mass, based on 100 parts by mass of the total of the raw material cyclic siloxane and dihalosilane.
  • reaction pressure of the ring-opening reaction can be carried out under either normal pressure or pressurized conditions, and there is no particular limitation, but in general, atmospheric pressure conditions are sufficient.
  • the atmosphere of the reaction system of the ring-opening reaction is not particularly limited, but in order to handle flammable compounds, it is generally desirable to have an atmosphere of an inert gas from the viewpoint of disaster prevention, and specific examples of the inert gas. Examples thereof include nitrogen and argon.
  • the reaction time of the ring-opening reaction is 0.1 to 100 hours, preferably 1 to 50 hours. If it is less than 0.1 hours, the reaction may be incomplete or the temperature in the system may rise sharply due to the heat of reaction due to the rapid reaction in a short time, and if it exceeds 100 hours, it is economically disadvantageous. May become.
  • Step [II] The step [II] will be described in more detail. Sealing of halogen atoms at both ends of the molecular chain of the general formula (3 ′′), which is a product of the “ring-opening reaction” represented by the above reaction formula (1). By further reacting the linear polysiloxane of the above with water, the halogen groups at both ends are hydrolyzed and condensed to form a cyclic structure in the molecule, which is the general formula (3) which is the target substance of the present invention. This is a step of obtaining the cyclic polysiloxane of the above, which is referred to as “hydrolysis reaction” and is represented by the following reaction formula (II). In the formula, X, R 1 , R 2 , R 3 , R 4 and b are the same as above.
  • the molar ratio of water to the linear polysiloxane at both ends of the molecular chain of the general formula (3 ′′) in the hydrolysis reaction is not particularly limited and is arbitrary, but of the compound of the formula (3 ′′).
  • 1 mol 1 to 1,000 mol of water is preferable, and 2 to 100 mol is more preferable. If it is less than 1 mol, the condition of water shortage is stoichiometrically, and the unreacted (3 ′′) compound remains. Moreover, if it exceeds 1,000 mol, it may be economically disadvantageous.
  • the reaction temperature of the hydrolysis reaction is not particularly limited, but is preferably -10 to 100 ° C, more preferably 0 to 80 ° C. If the reaction temperature exceeds 100 ° C, water may boil and cause phenomena such as bumping or impurities may be generated. On the other hand, if the reaction temperature is less than -10 ° C, the water solidifies and becomes agitated. It may cause problems or the reaction speed may become slower than necessary.
  • reaction raw materials there is no particular limitation on the mixing method of the reaction raw materials.
  • Water may be added dropwise to the reaction mixture of (I) "ring-opening reaction” containing a linear polysiloxane containing halogen atoms at both ends of the molecular chain of the general formula (3 ′′), or the reaction mixture may be added to water. It may be dropped.
  • an organic solvent may be used as needed.
  • the organic solvent may be added before the reaction or after the reaction.
  • the solvent include aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene and mesitylen, and fats such as hexane, heptane, octane, isooctane, decane, undecane, dodecane, tetradecane, hexadecane, cyclohexane, methylcyclohexane and paraffin.
  • aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene and mesitylen
  • fats such as hexane, heptane, octane, isooctane, decane, undecane, dodecane, tetradecane, hexadecane, cyclohexane, methylcyclohexane
  • Nitrile solvent such as acetonitrile
  • chlorinated hydrocarbon solvent such as methylene chloride, chloroform, carbon tetrachloride
  • fluorine-modified aromatic hydrocarbon solvent such as m-xylenehexafluorolide, benzotrifloride, methylperfluoro
  • fluorine-modified ether solvents such as butyl ether, ethyl perfluorobutyl ether and perfluoro (2-butyl tetrahydrofuran), and dimethyl sulfoxide.
  • aromatic hydrocarbon solvents aliphatic hydrocarbon solvents, ketone solvents, ester solvents, ether solvents, alcohol solvents, nitrile solvents, fluorine-modified aromatic hydrocarbon solvents, dimethyl Sulfoxide is preferable, and toluene, hexane, heptane, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, methanol, ethanol, 1-propanol, 2-propanol, acetonitrile, m-xylene hexafluorolide and dimethyl sulfoxide are preferable. These can be used alone or in combination of two or more.
  • the amount of the solvent used is preferably 1 to 1,000 parts by mass with respect to 100 parts by mass of the linear polysiloxane for blocking the halogen atoms at both ends of the molecular chain of the general formula (3 ′′), which is an intermediate. More preferably, 5 to 500 parts by mass.
  • the reaction pressure of the hydrolysis reaction can be carried out under either normal pressure or pressurized conditions, and is not particularly limited, but in general, atmospheric pressure conditions are sufficient.
  • the atmosphere of the reaction system of the hydrolysis reaction is not particularly limited, but in order to handle flammable compounds, it is generally desirable to have an atmosphere of an inert gas from the viewpoint of disaster prevention, and specific examples of the inert gas. Examples thereof include nitrogen and argon.
  • the reaction time of the hydrolysis reaction is preferably 0.1 to 100 hours, more preferably 1 to 50 hours. If it is less than 0.1 hours, the reaction may be incomplete, and if it exceeds 100 hours, it may be economically disadvantageous if it is long.
  • the organic layer may be washed with water by a known means. Further, for the removal of residual water after washing with water, a commercially available desiccant such as Na 2 SO 4 , Then 4 and CaCl 2 may be used.
  • a commercially available desiccant such as Na 2 SO 4 , Then 4 and CaCl 2 may be used.
  • the method of extracting the cyclic polysiloxane of the target substance formula (3) from the reaction solution is not particularly limited, but a method of evaporating and removing low molecular weight components such as a solvent and a raw material, and a cyclic polysiloxane of the target substance formula (3).
  • Examples thereof include a method of distilling siloxane, a method of adding a poor solvent such as water and methanol to the reaction solution, precipitating the target substance, and drying.
  • the cyclic polysiloxane of the target substance of the present invention is a compound represented by the following general formula (3).
  • R 1 and R 2 are independently hydrogen atoms or unsubstituted or substituted monovalent hydrocarbon groups having 1 to 10 carbon atoms
  • R 3 and R 4 are independently hydrogen atoms or hydrogen atoms or R 4 respectively. It is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms (excluding the fluorine-containing monovalent hydrocarbon group)
  • b is an integer of 3 ⁇ b ⁇ 10.
  • R 1 , R 2 , R 3 , and R 4 are as described in the above equations (1) and (2).
  • the cyclic polysiloxane obtained by the production method of the present invention is used as an additive to a silicone resin or silicone oil, or as a polymerizable monomer to further improve the properties of various high molecular weight substances and impart new physical properties. It is industrially useful as a modifier. Further, it can be used as a diluent for cosmetic materials, a solvent for dry cleaning, and a material for an insulating film.
  • Me represents a methyl group
  • Vi represents a vinyl group
  • Ph represents a phenyl group.
  • Example 1 Hexamethylcyclotrisiloxane (222.5 g, 1.00 mol), dichloromethylvinylsilane (141.1 g, 1.00 mol), hexane in a four-necked flask equipped with a stirrer and a thermometer and sufficiently subjected to nitrogen substitution. (136.3 g) and methyl ethyl ketone (45.4 g) were charged. Then, while stirring, tri-n-octylphosphine oxide (3.87 g, 0.01 mol) was added as a catalyst, and the mixture was stirred at room temperature (25 ° C.) in a nitrogen atmosphere.
  • the mixture was stirred at 10 ° C. or lower for 1 hour, and the disappearance of the ring-opening reaction intermediate was confirmed by analysis by gas chromatography. Then, the step of removing the aqueous layer with a separating funnel and further adding water (500 g) to wash the organic layer was repeated three times. The organic layer was recovered and dried over anhydrous sodium sulfate (10 g) for 1 hour. Then, 260.1 g of the target substance was fractionated by vacuum distillation. The target substance obtained after vacuum distillation was measured by 1 H-NMR and 29 Si-NMR, and the target substance was identified as having the following formula (3-1).
  • the yield of the target substance was 84%, and the purity as analyzed by gas chromatography was 96% GC.
  • the 1 H-NMR spectrum (solvent CDCl 3 ) of the obtained cyclic polysiloxane (3-1) is shown in FIG. 1, and the 29 Si-NMR spectrum (solvent CDCl 3 ) of the obtained cyclic polysiloxane (3-1) is shown in FIG. It is shown in FIG.
  • Example 2 In Example 1, instead of tri-n-octylphosphine oxide (3.87 g, 0.01 mol) as a catalyst, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone (1H) -pyrimidinone ( The reaction was carried out in the same manner except that 6.41 g (0.05 mol) was used. After 5 hours of the ring-opening reaction, the amount of linear polysiloxane (3'-1) produced by blocking the halogen atoms at both ends of the molecular chain of the intermediate was about 89 GC%. The yield of the cyclic polysiloxane (3-1) obtained by the same hydrolysis reaction and distillation purification was 238.1 g (yield 77%), and the purity was 94 GC%.
  • Example 3 The same applies to Example 1 except that methyltri-n-octylammonium chloride (20.21 g, 0.05 mol) is used instead of tri-n-octylphosphine oxide (3.87 g, 0.01 mol) as a catalyst.
  • the reaction was performed by the operation. After 5 hours of the ring-opening reaction, the amount of linear polysiloxane (3'-1) produced by blocking the halogen atoms at both ends of the molecular chain of the intermediate was about 83 GC%.
  • the yield of the cyclic polysiloxane (3-1) obtained by the same hydrolysis reaction and distillation purification was 221.8 g (yield 72%), and the purity was 93 GC%.
  • Example 4 In Example 1, the reaction was carried out in the same manner except that dichloromethylsilane (115.0 g, 1.00 mol) was used instead of dichloromethylvinylsilane (141.1 g, 1.00 mol) as the dihalosilane. After 5 hours of the ring-opening reaction, the amount of linear polysiloxane (3'-2) produced by blocking the halogen atoms at both ends of the molecular chain of the intermediate was about 86 GC%. The yield of the cyclic polysiloxane (3-2) purified by the same hydrolysis reaction and distillation was 211.2 g (yield 75%), and the purity was 79 GC%.
  • Example 5 In Example 4, instead of tri-n-octylphosphine oxide (3.87 g, 0.01 mol) as a catalyst, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone (1H) -pyrimidinone ( The reaction was carried out in the same manner except that 6.41 g (0.05 mol) was used. After 5 hours of the ring-opening reaction, the amount of linear polysiloxane (3'-1) produced by blocking the halogen atoms at both ends of the molecular chain of the intermediate was about 84 GC%. The yield of the cyclic polysiloxane (3-1) obtained by the same hydrolysis reaction and distillation purification was 200.2 g (yield 73%), and the purity was 78 GC%.
  • Example 6 In Example 1, the reaction was carried out in the same manner except that dichlorodiphenylsilane (253.2 g, 1.00 mol) was used instead of dichloromethylvinylsilane (141.1 g, 1.00 mol) as the dihalosilane. After 5 hours of the ring-opening reaction, the amount of linear polysiloxane (3'-3) produced by blocking the halogen atoms at both ends of the molecular chain of the intermediate was about 94 GC%. The yield of the cyclic polysiloxane (3-3) purified by the same hydrolysis reaction and distillation was 322.1 g (yield 77%), and the purity was 92 GC%.
  • Example 7 In Example 6, instead of tri-n-octylphosphine oxide (3.87 g, 0.01 mol) as a catalyst, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone (1H) -pyrimidinone ( The reaction was carried out in the same manner except that 6.41 g (0.05 mol) was used. After 5 hours of the ring-opening reaction, the amount of linear polysiloxane (3'-3) produced by blocking the halogen atoms at both ends of the molecular chain of the intermediate was about 86 GC%. The yield of the cyclic polysiloxane (3-3) purified by the same hydrolysis reaction and distillation was 300.1 g (yield 71%), and the purity was 90 GC%.
  • Example 8 In a four-necked flask equipped with a stirrer and a thermometer and sufficiently subjected to nitrogen substitution, 2,4,6-trimethyl-2,4,6-trivinylcyclotrisiloxane (258.5 g, 1.00 mol), Dichlorodiphenylsilane (253.2 g, 1.00 mol), hexane (136.3 g) and methyl ethyl ketone (45.4 g) were charged. Then, while stirring, tri-n-octylphosphine oxide (3.87 g, 0.01 mol) was added as a catalyst, and the mixture was stirred at room temperature (25 ° C.) in a nitrogen atmosphere.
  • the organic layer was recovered and dried over anhydrous sodium sulfate (10 g) for 1 hour. Then, the solvent and the small molecule component were distilled off by drying under reduced pressure to obtain 411.1 g of a crude product. The obtained crude product was measured by 1 H-NMR and 29 Si-NMR, and it was confirmed that the following formula (3-4) was produced.
  • Example 9 In Example 8, as the raw material cyclic siloxane, 1,3,5-tris (3) was used instead of 2,4,6-trimethyl-2,4,6-trivinylcyclotrisiloxane (258.5 g, 1.00 mol). , 3,3-Trifluoropropyl) -1,3,5-trimethylcyclotrisiloxane (468.5 g, 1.00 mol) was used, but the reaction was carried out in the same manner. The disappearance of the raw material was confirmed 5 hours after the ring-opening reaction. The same hydrolysis reaction was carried out, and the solvent and small molecule components were distilled off by drying under reduced pressure to obtain 605.2 g of a crude product. The obtained crude product was measured by 1 H-NMR and 29 Si-NMR, and it was confirmed that the following formula (3-5) was produced.
  • the cyclic polysiloxane obtained by the method for producing a cyclic polysiloxane of the present invention can be used as an additive to a silicone resin or silicone oil, or as a polymerizable monomer to further improve the characteristics of various high molecular weight substances and to make a novel one. It is industrially useful as a modifier that imparts physical properties. Further, it can be used as a diluent for cosmetic materials, a solvent for dry cleaning, and a material for an insulating film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicon Polymers (AREA)

Abstract

原料環状シロキサンと、ジハロシランとを、-C(=O)N<で表されるカルボン酸アミド結合を有するルイス塩基化合物、P=O結合を有するリン化合物、4級アンモニウム塩、及び4級ホスホニウム塩から選ばれる1種以上の触媒の存在下において、環状シロキサンの開環を伴う反応をさせて、分子鎖両末端ハロゲン原子封鎖の直鎖状ポリシロキサンを得る工程、 得られた分子鎖両末端ハロゲン原子封鎖の直鎖状ポリシロキサンを水と反応させることで環状ポリシロキサンを得る工程を含む、環状ポリシロキサンの製造方法であり、有毒な触媒を使用せず、簡便な工程かつ穏やかな条件下にて、高収率・高純度で環状ポリシロキサンが得られる、環状ポリシロキサンの製造方法を提供できる。

Description

環状ポリシロキサンの製造方法
 本発明は、環状ポリシロキサンの製造方法に関する。
 環状ポリシロキサン類は、様々な分野で各種用途に用いられる。
 例えば、種々の官能基を保有する環状ポリシロキサン類を、単独又は他の種類の環状もしくは鎖状のシロキサン化合物と共に、酸又はアルカリといった平衡化反応触媒の存在下にて反応せしめることにより、高分子量のシリコーンオイル、シリコーンレジン、又はシリコーンゴムを製造する方法が知られている。製造した高分子量体は、原料由来の官能基の種類によって、各種性能の向上がもたらされる。
 さらに、環状ポリシロキサンは化粧品材料の希釈剤や、ドライクリーニングの溶剤、絶縁膜用の原料としても使われている。
 環状ポリシロキサンの合成方法については、過去に合成例が報告されている。
 例えば、特許文献1では、SiH基を有する直鎖状のポリシロキサンに対して、アルミニウムトリイソプロポキシドを用いることで、1,3,5,7-テトラメチルシクロテトラシロキサンを合成する技術が提案されている。
Figure JPOXMLDOC01-appb-C000007
 特許文献2では、トリヒドロキシフェニルシランをメタンスルホン酸で処理することで、下記の環状ポリシロキサンを合成する技術が提案されている。
Figure JPOXMLDOC01-appb-C000008
 特許文献3では、ノルマルオクチルトリクロロシランを水で縮合させた後、1,1,3,3-テトラメチルジシラザン及びジメチルクロロシランで処理することで下記の環状ポリシロキサンを合成する技術が提案されている。
Figure JPOXMLDOC01-appb-C000009
 また、1分子構造の中に、2種以上の異なるシロキサン単位を有する環状ポリシロキサンの合成例についても報告されている。
 特許文献4では、ジメトキシイソプロピルビニルシランと1,1,3,3-テトラメチルジシロキサンに対してルイス酸触媒による脱メタン反応を用いることで下記の環状ポリシロキサンを合成している。
Figure JPOXMLDOC01-appb-C000010
 特許文献5では、トリエチルアミン下で1,3-ジヒドロキシ-1,1,3,3-テトラメチルジシロキサンと、メチルジクロロシランとの縮合反応により1,1,3,3,5-ペンタメチルシクロトリシロキサンを合成している。
Figure JPOXMLDOC01-appb-C000011
 特許文献6では、下記式のZにフッ素含有有機基を有する環状ポリシロキサンの合成が報告されている。この文献では、合成法(1)ジメチルジクロロシランとフッ素含有有機基を有するジクロロシランとを共加水分解する方法、合成法(2)ジメチルジクロロシランとメチルジクロロシランとを共加水分解して得たヒドロシラン型シクロシロキサンと、フッ素含有のオレフィンをヒドロシリル化反応させる方法、合成法(3)ジメチルジクロロシランと、メチルビニルジクロロシランとを共加水分解して得たビニル型シクロシロキサンと、フッ素含有のヒドロシランをヒドロシリル化反応させる方法、合成法(4)ジメチルジクロロシランと、メチルビニルジクロロシランとを共加水分解して得たビニル型シクロシロキサンに、ペルフルオロアルキルヨージド付加させてヨウ素置換シクロシロキサンとした後、還元する方法の4種類の合成法が用いられている。
Figure JPOXMLDOC01-appb-C000012
 特許文献7~9では、環状シロキサンとジクロロシランにヘキサメチルリン酸トリアミド(HMPA)を用いた後、加水分解することで、それぞれ下記の環状ポリシロキサンを合成している。
特許文献7:1-ビニル-1,3,3,5,5,7,7-ヘプタメチルシクロテトラシロキサン
Figure JPOXMLDOC01-appb-C000013
特許文献8:下記式の環状ポリシロキサン
Figure JPOXMLDOC01-appb-C000014
特許文献9:下記式の環状ポリシロキサン
Figure JPOXMLDOC01-appb-C000015
特開2005-139123号公報 特開2015-182980号公報 特開2017-145231号公報 特開2018-172321号公報 特開平9-59383号公報 特開昭60-163887公報 特開平1-281135号公報 特開昭63-14787号公報 特開2007-23021号公報
 上記の環状ポリシロキサンの製造方法について、特許文献1~3は、得られる環状ポリシロキサンの官能基がそれぞれ限定的であり、また環状の三量体、四量体、五量体等が同時に生成し、単一成分を高収率で得ることは困難である。
 特許文献4は、ビニル基含有の環状ポリシロキサンに限定的であり、また強ルイス酸の高活性な試薬を使用するため副生成物が生成し、目的の環状ポリシロキサンの収率が低い。
 特許文献5は、2種の原料を同速度で同時に滴下する合成法であるため、製造が難しく、得られる収率も低い。
 特許文献6は、全ての合成法において、シランの共加水分解反応を行うため、反応収率が低く、また環状ポリシロキサンの重合度も安定的ではない。
 特許文献7~9は、得られる環状ポリシロキサンの官能基がそれぞれ限定的であり、また実施例では、触媒として発がん性を有するヘキサメチルリン酸トリアミド(HMPA)を用いているのみである。
 上記の通り、環状ポリシロキサンの従来の製造方法において、有毒な触媒を使用せず、簡便に合成可能であり、種々の官能基を有する目的の環状ポリシロキサンが高収率・高純度にて得られる合成法は知られていない。
 本発明は、上記事情に鑑みなされたもので、有毒な触媒を使用せず、簡便な工程かつ穏やかな条件下にて、高収率・高純度で環状ポリシロキサンが得られる、環状ポリシロキサンの製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成するため鋭意研究を重ねた結果、環状シロキサンとジハロシランを式-C(=O)N<で表されるカルボン酸アミド結合を有するルイス塩基化合物、P=O結合を有するリン化合物、4級アンモニウム塩及び4級ホスホニウム塩から選ばれる少なくとも1種の触媒の存在下において反応せしめて、合成中間体の分子鎖両末端ハロゲン原子封鎖の直鎖状ポリシロキサンを合成し、次いでその化合物を加水分解することにより、環状ポリシロキサン化合物が高収率・高純度にて得られることを見出し、本発明をなすに至った。
 即ち、本発明は、下記環状ポリシロキサンの製造方法を提供する。
1.下記一般式(1)
Figure JPOXMLDOC01-appb-C000016
(式中、R1及びR2はそれぞれ独立に、水素原子又は炭素原子数1~10の非置換又は置換の1価炭化水素基であり、aは3≦a≦5の整数である。)
で表される原料環状シロキサンと、
 下記一般式(2)
Figure JPOXMLDOC01-appb-C000017
(式中、R3及びR4はそれぞれ独立に、水素原子又は炭素原子数1~20の非置換又は置換の1価炭化水素基(但し、フッ素含有1価炭化水素基を除く。)であり、Xはハロゲン原子である。)
で表されるジハロシランとを、
 -C(=O)N<で表されるカルボン酸アミド結合を有するルイス塩基化合物、P=O結合を有するリン化合物、4級アンモニウム塩及び4級ホスホニウム塩から選ばれる1種以上の触媒の存在下において、一般式(1)で表される環状シロキサンの開環を伴う反応をさせて、分子鎖両末端ハロゲン原子封鎖の直鎖状ポリシロキサンを得る工程、
 得られた分子鎖両末端ハロゲン原子封鎖の直鎖状ポリシロキサンを水と反応させることで、下記一般式(3)
Figure JPOXMLDOC01-appb-C000018
(式中、R1及びR2はそれぞれ独立に、水素原子又は炭素原子数1~10の非置換又は置換の1価炭化水素基であり、R3及びR4はそれぞれ独立に、水素原子又は炭素原子数1~20の非置換又は置換の1価炭化水素基(但し、フッ素含有1価炭化水素基を除く。)であり、bは3≦b≦10の整数である。)
で表される環状ポリシロキサンを得る工程を含む、環状ポリシロキサンの製造方法。
2.一般式(1),(3)において、R1及びR2がそれぞれ独立に炭素原子数1~10の非置換の1価炭化水素基である1記載の環状ポリシロキサンの製造方法。
3.一般式(1),(3)において、R1及びR2がメチル基である2記載の環状ポリシロキサンの製造方法。
4.一般式(2),(3)において、R3及びR4が水素原子又は炭素原子数1~10の非置換の1価炭化水素基である1~3のいずれかに記載の環状ポリシロキサンの製造方法。
5.下記一般式(1’)
Figure JPOXMLDOC01-appb-C000019
(式中、R1及びR2はそれぞれ独立に、水素原子又は炭素原子数1~10の非置換又は置換の1価炭化水素基である。)
で表される原料環状シロキサンと、
 下記一般式(2’)
Figure JPOXMLDOC01-appb-C000020
(式中、R3及びR4はそれぞれ独立に、水素原子又は炭素原子数1~20の非置換又は置換の1価炭化水素基(但し、フッ素含有1価炭化水素基を除く。)である。)
で表されるジクロロシランを、
 -C(=O)N<で表されるカルボン酸アミド結合を有するルイス塩基化合物、P=O結合を有するリン化合物、4級アンモニウム塩及び4級ホスホニウム塩から選ばれる1種以上の触媒の存在下において、一般式(1’)で表される環状シロキサンの開環を伴う反応をさせて、分子鎖両末端塩素原子封鎖の直鎖状ポリシロキサンを得る工程、
 得られた分子鎖両末端塩素原子封鎖の直鎖状ポリシロキサンを水と反応させることで、下記一般式(3’)
Figure JPOXMLDOC01-appb-C000021
(式中、R1及びR2はそれぞれ独立に、水素原子又は炭素原子数1~10の非置換又は置換の1価炭化水素基であり、R3及びR4はそれぞれ独立に、水素原子又は炭素原子数1~20の非置換又は置換の1価炭化水素基(但し、フッ素含有1価炭化水素基を除く。)である。)
で表される環状ポリシロキサンを得る工程を含む、環状ポリシロキサンの製造方法。
6.一般式(1’),(3’)において、R1及びR2がそれぞれ独立に、炭素原子数1~10の非置換の1価炭化水素基である5記載の環状ポリシロキサンの製造方法。
7.一般式(1’),(3’)において、R1及びR2がメチル基である6記載の環状ポリシロキサンの製造方法。
8.一般式(2’),(3’)において、R3及びR4が水素原子又は炭素原子数1~10の非置換の1価炭化水素基である5~7のいずれかに記載の環状ポリシロキサンの製造方法。
9.触媒が、三級アミド結合を含有するルイス塩基化合物、及びホスフィンオキシドから選ばれる1種以上である1~8のいずれかに記載の環状ポリシロキサンの製造方法。
10.触媒が、N,N-ジメチルホルムアミド、テトラメチル尿素、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、1,3-ジメチル-2-イミダゾリジノン、酸化トリメチルホスフィン、トリエチルホスフィンオキシド、トリ-n-プロピルホスフィンオキシド、トリブチルホスフィンオキシド、トリ-n-オクチルホスフィンオキシド、トリス(2-エチルヘキシル)ホスフィンオキシド、トリシクロヘキシルホスフィンオキシド、トリフェニルホスフィンオキシド、メチル(ジフェニル)ホスフィンオキシド、エチルジフェニルホスフィンオキシド、ジフェニルビニルホスフィン=オキシド、エチニル(ジフェニル)ホスフィンオキシド、メトキシメチル(ジフェニル)ホスフィンオキシド及びシクロヘキシルジフェニルホスフィンオキシドから選ばれる1種以上である9記載の環状ポリシロキサンの製造方法。
 本発明の環状ポリシロキサンの製造方法は、有毒な触媒を使用せず、簡便な工程かつ穏やかな条件下にて、高収率・高純度で環状ポリシロキサンを得ることができる。また、合成した環状ポリシロキサンを、高分子量のシリコーンオイルやシリコーンゴムの原料として用いることにより、それらに更なる特性向上や新規な物性を付与することができる。さらに環状ポリシロキサンは、化粧品材料の希釈剤や、ドライクリーニングの溶剤、絶縁膜用の原料としても用いることができる。
実施例1で得られた環状ポリシロキサン(3-1)の1H-NMRスペクトル(溶媒CDCl3)を示す図である。 実施例1で得られた環状ポリシロキサン(3-1)の29Si-NMRスペクトル(溶媒CDCl3)を示す図である。
実施例4で得られた環状ポリシロキサン(3-2)の1H-NMRスペクトル(溶媒CDCl3)を示す図である。 実施例4で得られた環状ポリシロキサン(3-2)の29Si-NMRスペクトル(溶媒CDCl3)を示す図である。
実施例6で得られた環状ポリシロキサン(3-3)の1H-NMRスペクトル(溶媒CDCl3)を示す図である。 実施例6で得られた環状ポリシロキサン(3-3)の29Si-NMRスペクトル(溶媒CDCl3)を示す図である。
 以下、本発明の環状ポリシロキサンの製造方法について詳細に説明する。
 本発明は、二つの工程を有するものである。
[I]一般式(1)で表される環状シロキサンと、一般式(2)で表されるジハロシランとを、-C(=O)N<で表されるカルボン酸アミド結合を有するルイス塩基化合物、P=O結合を有するリン化合物、4級アンモニウム塩及び4級ホスホニウム塩から選ばれる1種以上の触媒の存在下において、一般式(1)で表される環状シロキサンの開環を伴う反応をさせて、分子鎖両末端ハロゲン原子封鎖の直鎖状ポリシロキサンを得る工程、
[II]
 得られた分子鎖両末端ハロゲン原子封鎖の直鎖状ポリシロキサンを水と反応させることで、目的とする一般式(3)で表される環状シロキサンを得るものである。
[I]工程
 [I]反応についてさらに詳述すると、一般式(1)で表される環状シロキサンと、一般式(2)で表されるジハロシランとを、-C(=O)N<で表されるカルボン酸アミド結合を有するルイス塩基化合物、P=O結合を有するリン化合物、4級アンモニウム塩、及び4級ホスホニウム塩から選ばれる1種以上の触媒の存在下において反応させて、一般式(1)で表される環状シロキサンの環状構造を開くことにより、下記一般式(3’’)(式中、X、R1、R2、R3、R4、a及びbは、上述と同じである。)で表される合成中間体である分子鎖両末端ハロゲン原子封鎖の直鎖状ポリシロキサンを製造する工程であり、以下の反応式(I)で表され、以下の記述において「開環反応」と称する工程である。
Figure JPOXMLDOC01-appb-C000022
(式中、R1及びR2はそれぞれ独立に、水素原子又は炭素原子数1~10の非置換又は置換の1価炭化水素基であり、aは3≦a≦5の整数である。R3及びR4はそれぞれ独立に、水素原子又は炭素原子数1~20の非置換又は置換の1価炭化水素基(但し、フッ素含有1価炭化水素基を除く。)であり、Xはハロゲン原子である。R3及びR4はそれぞれ独立に、水素原子又は炭素原子数1~20の非置換又は置換の1価炭化水素基(但し、フッ素含有1価炭化水素基を除く。)であり、bは3≦b≦10の整数である。)
[原料環状シロキサン]
 本発明において、原料として使用する環状シロキサンは、下記一般式(1)で表されるものである。
Figure JPOXMLDOC01-appb-C000023
(式中、R1及びR2はそれぞれ独立に、水素原子又は炭素原子数1~10の非置換又は置換の1価炭化水素基であり、aは3≦a≦5の整数である。)
 ここでR1及びR2の1価炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基等の好ましくは炭素数1~8のアルキル基、シクロヘキシル基等の好ましくは炭素数5~8のシクロアルキル基、ビニル基、アリル基、ヘキセニル基、オクテニル基等の好ましくは炭素数2~8のアルケニル基、シクロヘキセニルエチル基等の好ましくは炭素数3~8のシクロアルケニルアルキル基、アクリロイルプロピル基、アクリロイルメチル基、メタクリロイルプロピル基等の好ましくは炭素数4~10のアクリロイルアルキル基、及びメタクリロイルアルキル基、フェニル基、トリル基等の好ましくは炭素数6~10のアリール基、ベンジル基等の好ましくは炭素数7~10のアラルキル基、又はこれらの基の炭素原子に結合している水素原子の一部又は全部をヒドロキシ基、シアノ基、ハロゲン原子、アルコキシシリル基、ポリオキシアルキレン基、エポキシ基、カルボキシル基等で置換した炭素数1~10の1価炭化水素基が挙げられる。中でも、炭素原子数1~10の非置換の1価炭化水素基、及び3,3,3-トリフルオロプロピル基が好ましく、メチル基、ビニル基、3,3,3-トリフルオロプロピル基がより好ましく、メチル基がさらに好ましい。
 aは、3≦a≦5の整数であり、好ましくはa=3である(上記一般式(1’))。
[ジハロシラン]
 もう一方の原料で使用するジハロシランは、下記一般式(2)で表されるものである。
Figure JPOXMLDOC01-appb-C000024
(式中、R3及びR4はそれぞれ独立に、水素原子又は炭素原子数1~20の非置換又は置換の1価炭化水素基(但し、フッ素含有1価炭化水素基を除く。)である。)
 R3及びR4の1価炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基等の好ましくは炭素数1~12のアルキル基、シクロヘキシル基等の好ましくは炭素数5~12のシクロアルキル基、ビニル基、アリル基、ヘキセニル基、オクテニル基等の好ましくは炭素数2~12のアルケニル基、シクロヘキセニルエチル基等の好ましくは炭素数3~12のシクロアルケニルアルキル基、アクリロイルプロピル基、アクリロイルメチル基、メタクリロイルプロピル基等の好ましくは炭素数4~12のアクリロイルアルキル基、及びメタクリロイルアルキル基、フェニル基、トリル基等の好ましくは炭素数6~12のアリール基、ベンジル基等の好ましくは炭素数7~12のアラルキル基、又はこれらの基の炭素原子に結合している水素原子の一部又は全部をヒドロキシ基、シアノ基、ハロゲン原子、アルコキシシリル基、ポリオキシアルキレン基、エポキシ基、カルボキシル基等で置換した炭素数1~20の1価炭化水素基が挙げられる。中でも、炭素原子数1~20の非置換の1価炭化水素基が好ましく、メチル基、ビニル基、フェニル基がより好ましい。
 Xはハロゲン原子であり、塩素原子、臭素原子、ヨウ素原子等が挙げられ、塩素原子が好ましい(上記一般式(2’))。
 (I)開環反応における一般式(1)の化合物と式(2)の化合物のモル比は特に制限がなく、任意であり、bが3≦b≦10の整数となる範囲で適宜選定されるが、式(2)の化合物の1モルに対して、式(1)の化合物0.8~5モルが好ましく、0.8~3モルがより好ましい。0.8モル未満又は5モルを超えると、経済的に不利となる場合や、目的物質の精製に支障が出るような不純物を発生させる場合がある。
[触媒]
 開環反応の触媒として、-C(=O)N<で表されるカルボン酸アミド結合を有するルイス塩基化合物、P=O結合を有するリン化合物、4級アンモニウム塩及び4級ホスホニウム塩から選ばれる1種以上の触媒を用いる。触媒は、1種単独であっても2種以上の併用であってもよい。
 カルボン酸アミド結合を有するルイス塩基化合物としては、任意のカルボン酸アミド化合物、ウレタン化合物又はウレア化合物を用いることができる。反応効率の点から、N原子に直接結合したH原子を有さない、三級アミド結合を含有するルイス塩基化合物が好ましい。
 カルボン酸アミド化合物の例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルプロピオンアミド、N,N-ジメチルイソブチルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジメチルアセトアセトアミド、N,N-ジエチルホルムアミド、N,N-ジエチルアセトアミド、N,N,N’,N’-テトラアセチルエチレンジアミン、1-メチル-2-ピロリドン等が挙げられる。
 これらの中でも、反応効率及び入手の容易さから、N,N-ジメチルホルムアミドが好ましい。
 ウレタン化合物の例としては、N-メトキシカルボニルマレイミド、3-メチル-2-オキサゾリドン、1-エトキシカルボニル-4-ピペリドン、1-tert-ブトキシカルボニルピロリジン等が挙げられ、ウレア化合物の例としては、テトラメチル尿素、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、1,1,3,3-テトラエチル尿素、1,1,3,3-テトラブチル尿素、N,N’-ジメチル-N,N’-ジフェニル尿素、1,3-ジメチル-2-イミダゾリジノン、1,3-ジメチルウラシル、1,3-ジメチルバルビツル酸、カフェイン等が挙げられる。これらの中で、反応効率及び入手の容易さから、テトラメチル尿素、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、1,3-ジメチル-2-イミダゾリジノンが好ましい。
 P=O結合を有するリン化合物としては、発がん性を有するヘキサメチルリン酸トリアミド(HMPA)等のリン酸トリアミドを除く、任意のP=O結合を有するリン化合物を用いることができる。反応効率の点から、ホスフィンオキシドが好ましい。
 P=O結合を有するリン化合物の例としては、酸化トリメチルホスフィン、トリエチルホスフィンオキシド、トリ-n-プロピルホスフィンオキシド、トリブチルホスフィンオキシド、トリ-n-オクチルホスフィンオキシド、トリス(2-エチルヘキシル)ホスフィンオキシド、トリシクロヘキシルホスフィンオキシド、トリフェニルホスフィンオキシド、メチル(ジフェニル)ホスフィンオキシド、エチルジフェニルホスフィンオキシド、ジフェニルビニルホスフィン=オキシド、エチニル(ジフェニル)ホスフィンオキシド、メトキシメチル(ジフェニル)ホスフィンオキシド、シクロヘキシルジフェニルホスフィンオキシド、(4-ブロモフェニル)ジフェニルホスフィンオキシド、(3-ブロモフェニル)ジフェニルホスフィンオキシド、ビス(4-ブロモフェニル)フェニルホスフィンオキシド、ビス(3-ブロモフェニル)フェニルホスフィンオキシド、トリス(3-ブロモフェニル)ホスフィンオキシド、トリス(4-メチルフェニル)ホスフィンオキシド、2,5-ジヒドロキシフェニル(ジフェニル)ホスフィンオキシド、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、フェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、3-メチル-1-フェニル-2-ホスホレン1-オキシド、[(N,N-ジイソブチルカルバモイル)メチル]オクチルフェニルホスフィン=オキシド、1,2-ビス(ジフェニルホスフィノ)エタンモノオキシド、一酸化1,3-ビス(ジフェニルホスフィノ)プロパン、1,8-ビス(ジフェニルホスフィニル)ナフタレン、ビス[2-[(オキソ)ジフェニルホスフィノ]フェニル]エーテル、2,8-ビス(ジフェニルホスホリル)ジベンゾ[b,d]フラン、リン酸、リン酸メチル、リン酸フェニル、リン酸ジメチル、リン酸ジブチル、リン酸ジフェニル、リン酸トリメチル、リン酸トリブチル、リン酸トリアリル、リン酸トリフェニル、リン酸トリス(トリメチルシリル)、メチルホスホン酸、ブチルホスホン酸、ビニルホスホン酸、フェニルホスホン酸、ジメチルホスフィン酸、ジフェニルホスフィン酸、メチルホスホン酸ジメチル、ビニルホスホン酸ジエチル、メチレンジホスホン酸、メチレンジホスホン酸テトライソプロピル、亜リン酸ジメチル、亜リン酸ジブチル、亜リン酸ジフェニル等が挙げられる。これらの中で、反応効率及び入手の容易さから、酸化トリメチルホスフィン、トリエチルホスフィンオキシド、トリ-n-プロピルホスフィンオキシド、トリブチルホスフィンオキシド、トリ-n-オクチルホスフィンオキシド、トリス(2-エチルヘキシル)ホスフィンオキシド、トリシクロヘキシルホスフィンオキシド、トリフェニルホスフィンオキシド、メチル(ジフェニル)ホスフィンオキシド、エチルジフェニルホスフィンオキシド、ジフェニルビニルホスフィン=オキシド、エチニル(ジフェニル)ホスフィンオキシド、メトキシメチル(ジフェニル)ホスフィンオキシド、シクロヘキシルジフェニルホスフィンオキシドが好ましい。
 4級アンモニウム塩及び4級ホスホニウム塩としては、任意の4級アンモニウム塩及び4級ホスホニウム塩を用いることができる。
 4級アンモニウム塩の例としては、テトラブチルアンモニウムブロミド、テトラブチルアンモニウムクロリド、テトラプロピルアンモニウムブロミド、メチルトリ-n-オクチルアンモニウムクロリド等が挙げられる。4級ホスホニウム塩の例としては、テトラブチルホスホニウムブロミド、テトラブチルホスホニウムクロリド、メチルトリフェニルホスホニウムブロミド等が挙げられる。これらの中で、反応効率及び入手の容易さから、メチルトリ-n-オクチルアンモニウムクロリド、テトラブチルホスホニウムブロミドが好ましい。
 上記の触媒の使用量は、一般式(2)で表されるジハロシラン1モルに対して、0.0001~5モルが好ましく、0.0005~3モルがより好ましく、0.001~1モルがさらに好ましい。0.0001モル以上とすることで、より十分な触媒効果が得られ、5モルを超えると経済的に不利な場合がある。なお、使用量が多い場合の条件は、反応溶媒として使用されることを想定しているものである。
 開環反応の反応温度は、特に制限はないが、-10~150℃が好ましく、0~100℃がより好ましい。反応温度が150℃を超えると、経済的に不利な場合があり、また収率の低下を招くような副生物が発生する場合もある。一方、反応温度が-10℃未満だと、反応速度が必要以上に遅くなる場合がある。
 開環反応においては、反応原料の混合方法及び混合順序には特に制限はない。式(1)の化合物、式(2)の化合物及び触媒を一括に混合、式(1)の化合物及び式(2)の化合物の混合物に触媒を添加、式(1)の化合物又は式(2)の化合物と触媒の混合物に式(2)の化合物又は式(1)の化合物を滴下、式(1)の化合物又は式(2)の化合物に、式(2)の化合物又は式(1)の化合物と触媒の混合物を滴下、触媒又は触媒と溶媒の混合物中で式(1)の化合物と式(2)の化合物を反応させる、具体的には、触媒又は触媒と溶媒の混合物中に式(1)の化合物及び式(2)の化合物をそれぞれ個別にもしくは混合して滴下するのいずれでもよい。
 開環反応では、反応溶媒は本質的に必須の物質ではないが、反応系の均一性を向上させたり、反応系の容積を増加させて撹拌性を向上させたり等の必要に応じて使用してもよい。溶媒は1種単独で又は2種以上を適宜組み合わせて用いることができる。溶媒としては、例えば、トルエン、キシレン、エチルベンゼン、メシチレン等の芳香族系炭化水素系溶剤、ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ウンデカン、ドデカン、テトラデカン、ヘキサデカン、シクロヘキサン、メチルシクロヘキサン、パラフィン等の脂肪族系炭化水素系溶剤、工業用ガソリン(ゴム揮発油等)、石油ベンジン、ソルベントナフサ等の炭化水素系溶剤、アセトン、メチルエチルケトン、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、メチルイソブチルケトン、ジイソブチルケトン、アセトニルアセトン、シクロヘキサノン等のケトン系溶剤、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル等のエステル系溶剤、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、1,2-ジメトキシエタン、1,4-ジオキサン、テトラヒドロフラン等のエーテル系溶剤、2-メトキシエチルアセタート、2-エトキシエチルアセタート、プロピレングリコールモノメチルエーテルアセタート、2-ブトキシエチルアセタート等のエステルとエーテル部分を有する溶剤、ヘキサメチルジシロキサン、オクタメチルトリシロキサン、ジメチルシリコーンオイル等のシロキサン系溶剤、アセトニトリル等のニトリル系溶剤、塩化メチレン、クロロホルム、四塩化炭素等の塩素化炭化水素系溶剤、m-キシレンヘキサフロライド、ベンゾトリフロライド等のフッ素変性芳香族炭化水素系溶剤、メチルパーフルオロブチルエーテル、エチルパーフルオロブチルエーテル、パーフルオロ(2-ブチルテトラヒドロフラン)等のフッ素変性エーテル系溶剤、ジメチルスルホキシド等が挙げられる。
 これらの中でも、芳香族系炭化水素系溶剤、脂肪族系炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、ニトリル系溶剤、フッ素変性芳香族炭化水素系溶剤、ジメチルスルホキシドが好ましく、さらにトルエン、ヘキサン、ヘプタン、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、アセトニトリル、m-キシレンヘキサフロライド、ジメチルスルホキシドが好ましい。但し、原料の一方である一般式(2)のジハロシランと反応する可能性のある種類、例えばアルコール類、アミン類等は好ましくない。
 原料である環状シロキサンが固体である場合、有機溶媒に均一に溶解している必要はなく、一部が溶解した状態で開環反応を行ってもよい。
 溶媒の使用量は、原料環状シロキサンとジハロシランとの合計100質量部に対し1~1,000質量部が好ましく、5~300質量部がより好ましい。
 開環反応の反応圧力は、常圧もしくは加圧のいずれの条件でも実施でき、特に制限はないが、一般的には、大気圧条件で十分である。
 開環反応の反応系の雰囲気は、特に制限はないものの、引火性化合物を取り扱うために、防災上の観点からは、一般的には不活性ガスの雰囲気下が望ましく、不活性ガスの具体例としては窒素もしくはアルゴン等が挙げられる。
 開環反応の反応時間は、0.1~100時間であり、好ましくは1~50時間で十分である。0.1時間未満だと、反応が不完全となる場合や短時間で急激に反応させることにより反応熱で系内の温度が急上昇する場合があり、100時間を超えると、経済的に不利になる場合がある。
[II]工程
 [II]工程についてさらに詳述すると、上記の反応式(1)によって表される「開環反応」の生成物である一般式(3’’)の分子鎖両末端ハロゲン原子封鎖の直鎖状ポリシロキサンを、さらに水と反応せしめることにより、両末端のハロゲン基同士を加水分解縮合させて、分子内で環状構造を形成させ、本発明の目的物質である一般式(3)の環状ポリシロキサンを得る工程であり、「加水分解反応」と称し、以下の反応式(II)で表される。式中、X、R1、R2、R3、R4及びbは上記と同じである。
Figure JPOXMLDOC01-appb-C000025
 加水分解反応における水と一般式(3’’)の分子鎖両末端ハロゲン原子封鎖の直鎖状ポリシロキサンのモル比は特に制限がなく、任意ではあるが、式(3’’)の化合物の1モルに対して、水が1~1,000モルが好ましく、2~100モルがより好ましい。1モル未満では、化学量論的に水が不足の条件となり、未反応の(3’’)の化合物が残存してしまう。また、1,000モルを超えると経済的に不利となる場合がある。
 加水分解反応の反応温度は、特に制限はないが、-10~100℃が好ましく、0~80℃がより好ましい。反応温度が100℃を超えると、水が沸騰して突沸等の現象を起こす場合や不純物が発生する場合があり、一方、反応温度が-10℃未満だと、水が固化して撹拌性に支障を来す場合や反応速度が必要以上に遅くなる場合がある。
 加水分解反応においては、反応原料の混合方法には特に制限はない。一般式(3’’)の分子鎖両末端ハロゲン原子封鎖の直鎖状ポリシロキサンを含む(I)「開環反応」の反応混合物に水を滴下してもよいし、水にその反応混合物を滴下してもよい。
 加水分解反応においては、有機溶媒を必要に応じて使用してもよい。なお、有機溶媒は反応前に添加しても、反応後に添加してもよい。溶媒としては、例えば、トルエン、キシレン、エチルベンゼン、メシチレン等の芳香族系炭化水素系溶剤、ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ウンデカン、ドデカン、テトラデカン、ヘキサデカン、シクロヘキサン、メチルシクロヘキサン、パラフィン等の脂肪族系炭化水素系溶剤、工業用ガソリン(ゴム揮発油等)、石油ベンジン、ソルベントナフサ等の炭化水素系溶剤、アセトン、メチルエチルケトン、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、メチルイソブチルケトン、ジイソブチルケトン、アセトニルアセトン、シクロヘキサノン等のケトン系溶剤、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル等のエステル系溶剤、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、1,2-ジメトキシエタン、1,4-ジオキサン、テトラヒドロフラン等のエーテル系溶剤、2-メトキシエチルアセタート、2-エトキシエチルアセタート、プロピレングリコールモノメチルエーテルアセタート、2-ブトキシエチルアセタート等のエステルとエーテル部分を有する溶剤、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール等のアルコール系溶剤、ヘキサメチルジシロキサン、オクタメチルトリシロキサン、ジメチルシリコーンオイル等のシロキサン系溶剤、アセトニトリル等のニトリル系溶剤、塩化メチレン、クロロホルム、四塩化炭素等の塩素化炭化水素系溶剤、m-キシレンヘキサフロライド、ベンゾトリフロライド等のフッ素変性芳香族炭化水素系溶剤、メチルパーフルオロブチルエーテル、エチルパーフルオロブチルエーテル、パーフルオロ(2-ブチルテトラヒドロフラン)等のフッ素変性エーテル系溶剤、ジメチルスルホキシド等が挙げられる。
 これらの中でも、芳香族系炭化水素系溶剤、脂肪族系炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤、アルコール系溶剤、ニトリル系溶剤、フッ素変性芳香族炭化水素系溶剤、ジメチルスルホキシドが好ましく、さらにトルエン、ヘキサン、ヘプタン、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、メタノール、エタノール、1-プロパノール、2-プロパノール、アセトニトリル、m-キシレンヘキサフロライド、ジメチルスルホキシドが好ましい。これらは1種を単独で又は2種以上を組み合わせて使用することができる。
 溶媒の使用量は、好ましくは、中間体である一般式(3’’)の分子鎖両末端ハロゲン原子封鎖の直鎖状ポリシロキサン100質量部に対し、1~1,000質量部が好ましく、5~500質量部がより好ましい。
 加水分解反応の反応圧力は、常圧もしくは加圧のいずれの条件でも実施でき、特に制限はないが、一般的には、大気圧条件で十分である。
 加水分解反応の反応系の雰囲気は、特に制限はないものの、引火性化合物を取り扱うために、防災上の観点からは、一般的には不活性ガスの雰囲気下が望ましく、不活性ガスの具体例としては窒素もしくはアルゴン等が挙げられる。
 加水分解反応の反応時間は、0.1~100時間が好ましく、より好ましくは1~50時間で十分である。0.1時間未満だと反応が不完全となる場合があり、100時間を超えると、長いと経済的に不利になる場合がある。
 加水分解反応後に公知の手段により水で有機層を洗浄してもよい。また、水洗後の残留水分の除去については、Na2SO4、MgSO4、CaCl2等の市販の乾燥剤を使用してもよい。
 反応溶液から目的物質の式(3)の環状ポリシロキサンを取り出す方法は特に制限はないが、溶媒や原料等の低分子成分を蒸発させて除去する方法、目的物質の式(3)の環状ポリシロキサンを蒸留する方法、反応溶液に水、メタノール等の貧溶媒を添加し、目的物質を析出させ、乾燥させる方法等が挙げられる。
[目的物質の環状ポリシロキサン]
 本発明の目的物質の環状ポリシロキサンは、下記一般式(3)で表される化合物である。
Figure JPOXMLDOC01-appb-C000026
(式中、R1及びR2はそれぞれ独立に、水素原子又は炭素原子数1~10の非置換又は置換の1価炭化水素基であり、R3及びR4はそれぞれ独立に、水素原子又は炭素原子数1~20の非置換又は置換の1価炭化水素基(但し、フッ素含有1価炭化水素基を除く。)であり、bは3≦b≦10の整数である。)
 ここでR1、R2、R3、及びR4は、上記式(1),(2)で記載した通りである。bは、3≦b≦10の整数であり、3≦b≦6が好ましく、b=3がより好ましい(上記一般式(3))。
 本発明の製造方法によって得られる環状ポリシロキサンは、シリコーン樹脂やシリコーンオイルへの添加剤、又は重合性モノマーとして使用されることにより、各種高分子量体の更なる特性向上や新規な物性を付与する改質剤として産業上有用である。さらに化粧品材料の希釈剤や、ドライクリーニングの溶剤、絶縁膜用材料としても用いることができる。
 以下、実施例を示し、本発明をより詳細に説明するが、本発明は下記の実施例に制限されるものではない。また、各例中、Meはメチル基、Viはビニル基、Phはフェニル基を表す。
 [実施例1]
 撹拌機及び温度計を備えて窒素置換を十分に行った四つ口フラスコに、ヘキサメチルシクロトリシロキサン(222.5g、1.00mol)、ジクロロメチルビニルシラン(141.1g、1.00mol)、ヘキサン(136.3g)及びメチルエチルケトン(45.4g)を仕込んだ。次いで撹拌しながら、触媒としてトリ-n-オクチルホスフィンオキシド(3.87g、0.01mol)を添加し、室温(25℃)窒素雰囲気下で撹拌を行った。5時間後、ガスクロマトグラフィーによる分析により、原料の消失を確認した。開環反応中間体である分子鎖両末端ハロゲン原子封鎖の直鎖状ポリシロキサン(3’-1)の生成量は約96GC%であった。
 次いで、撹拌機及び温度計を備えて窒素置換を十分に行った別の四つ口フラスコ中に、ヘキサン(330g)、メタノール(100g)、水(100g、5.56mol)を仕込み、氷で冷やして撹拌しながら10℃以下で、上記の開環反応中間体溶液を2時間かけて滴下した。滴下終了後、10℃以下で1時間撹拌し、ガスクロマトグラフィーによる分析により、開環反応中間体の消失を確認した。その後、分液漏斗にて水層を除去し、さらに水(500g)を加えて有機層を洗浄する工程を3回繰り返した。有機層を回収し、無水硫酸ナトリウム(10g)にて1時間乾燥した。この後、減圧蒸留にて、目的物質260.1gを分留した。
 減圧蒸留後に得られた目的物質を1H-NMR及び29Si-NMRで測定し、目的物質が下記式(3-1)であると同定した。目的物質の収率は84%、ガスクロマトグラフィーによる分析での純度は96%GCであった。得られた環状ポリシロキサン(3-1)の1H-NMRスペクトル(溶媒CDCl3)を図1に、得られた環状ポリシロキサン(3-1)の29Si-NMRスペクトル(溶媒CDCl3)を図2に示す。
Figure JPOXMLDOC01-appb-C000027
 [実施例2]
 実施例1において、触媒としてトリ-n-オクチルホスフィンオキシド(3.87g、0.01mol)に代えて、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン(6.41g、0.05mol)を用いる以外は、同様の操作にて反応を行った。開環反応5時間後の、中間体の分子鎖両末端ハロゲン原子封鎖の直鎖状ポリシロキサン(3’-1)の生成量は約89GC%であった。同様の加水分解反応、及び蒸留精製した環状ポリシロキサン(3-1)の収量は238.1g(収率77%)であり、純度は94GC%であった。
 [実施例3]
 実施例1において、触媒としてトリ-n-オクチルホスフィンオキシド(3.87g、0.01mol)に代えて、メチルトリ-n-オクチルアンモニウムクロリド(20.21g、0.05mol)を用いる以外は、同様の操作にて反応を行った。開環反応5時間後の、中間体の分子鎖両末端ハロゲン原子封鎖の直鎖状ポリシロキサン(3’-1)の生成量は約83GC%であった。同様の加水分解反応、及び蒸留精製した環状ポリシロキサン(3-1)の収量は221.8g(収率72%)であり、純度は93GC%であった。
 [実施例4]
 実施例1において、ジハロシランとしてジクロロメチルビニルシラン(141.1g、1.00mol)に代えて、ジクロロメチルシラン(115.0g、1.00mol)を用いる以外は、同様の操作にて反応を行った。開環反応5時間後の、中間体の分子鎖両末端ハロゲン原子封鎖の直鎖状ポリシロキサン(3’-2)の生成量は約86GC%であった。同様の加水分解反応、及び蒸留精製した環状ポリシロキサン(3-2)の収量は211.2g(収率75%)であり、純度は79GC%であった。得られた環状ポリシロキサン(3-2)の1H-NMRスペクトル(溶媒CDCl3)を図3に、得られた環状ポリシロキサン(3-2)の29Si-NMRスペクトル(溶媒CDCl3)を図4に示す。
Figure JPOXMLDOC01-appb-C000028
 [実施例5]
 実施例4において、触媒としてトリ-n-オクチルホスフィンオキシド(3.87g、0.01mol)に代えて、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン(6.41g、0.05mol)を用いる以外は、同様の操作にて反応を行った。開環反応5時間後の、中間体の分子鎖両末端ハロゲン原子封鎖の直鎖状ポリシロキサン(3’-1)の生成量は約84GC%であった。同様の加水分解反応、及び蒸留精製した環状ポリシロキサン(3-1)の収量は200.2g(収率73%)であり、純度は78GC%であった。
 [実施例6]
 実施例1において、ジハロシランとしてジクロロメチルビニルシラン(141.1g、1.00mol)に代えて、ジクロロジフェニルシラン(253.2g、1.00mol)を用いる以外は、同様の操作にて反応を行った。開環反応5時間後の、中間体の分子鎖両末端ハロゲン原子封鎖の直鎖状ポリシロキサン(3’-3)の生成量は約94GC%であった。同様の加水分解反応、及び蒸留精製した環状ポリシロキサン(3-3)の収量は322.1g(収率77%)であり、純度は92GC%であった。得られた環状ポリシロキサン(3-3)の1H-NMRスペクトル(溶媒CDCl3)を図5に、得られた環状ポリシロキサン(3-3)の29Si-NMRスペクトル(溶媒CDCl3)を図6に示す。
Figure JPOXMLDOC01-appb-C000029
 [実施例7]
 実施例6において、触媒としてトリ-n-オクチルホスフィンオキシド(3.87g、0.01mol)に代えて、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン(6.41g、0.05mol)を用いる以外は、同様の操作にて反応を行った。開環反応5時間後の、中間体の分子鎖両末端ハロゲン原子封鎖の直鎖状ポリシロキサン(3’-3)の生成量は約86GC%であった。同様の加水分解反応、及び蒸留精製した環状ポリシロキサン(3-3)の収量は300.1g(収率71%)であり、純度は90GC%であった。
 [実施例8]
 撹拌機及び温度計を備えて窒素置換を十分に行った四つ口フラスコに、2,4,6-トリメチル-2,4,6-トリビニルシクロトリシロキサン(258.5g、1.00mol)、ジクロロジフェニルシラン(253.2g、1.00mol)、ヘキサン(136.3g)及びメチルエチルケトン(45.4g)を仕込んだ。次いで撹拌しながら、触媒としてトリ-n-オクチルホスフィンオキシド(3.87g、0.01mol)を添加し、室温(25℃)窒素雰囲気下で撹拌を行った。5時間後、ガスクロマトグラフィーによる分析により、原料の消失を確認した。
 次いで、撹拌機及び温度計を備えて窒素置換を十分に行った別の四つ口フラスコ中に、ヘキサン(330g)、メタノール(100g)、水(100g、5.56mol)を仕込み、氷で冷やして撹拌しながら10℃以下で、上記の開環反応中間体溶液を2時間かけて滴下した。滴下終了後、10℃以下で5時間撹拌し、その後、分液漏斗にて水層を除去し、さらに水(500g)を加えて有機層を洗浄する工程を3回繰り返した。有機層を回収し、無水硫酸ナトリウム(10g)にて1時間乾燥した。この後、減圧乾燥にて溶媒と低分子成分を留去し、粗生成物411.1gを得た。得られた粗生成物を1H-NMR及び29Si-NMRにて測定し、下記式(3-4)が生成していることを確認した。
Figure JPOXMLDOC01-appb-C000030
 [実施例9]
 実施例8において、原料環状シロキサンとして2,4,6-トリメチル-2,4,6-トリビニルシクロトリシロキサン(258.5g、1.00mol)に代えて、1,3,5-トリス(3,3,3-トリフルオロプロピル)-1,3,5-トリメチルシクロトリシロキサン(468.5g、1.00mol)を用いる以外は、同様の操作にて反応を行った。開環反応5時間後に原料の消失を確認した。同様の加水分解反応を行い、減圧乾燥にて溶媒と低分子成分を留去し、粗生成物605.2gを得た。得られた粗生成物を1H-NMR及び29Si-NMRで測定し、下記式(3-5)が生成していることを確認した。
Figure JPOXMLDOC01-appb-C000031
 本発明の環状ポリシロキサンの製造方法によって得られる環状ポリシロキサンは、シリコーン樹脂やシリコーンオイルへの添加剤、又は重合性モノマーとして使用されることにより、各種高分子量体の更なる特性向上や新規な物性を付与する改質剤として産業上有用である。さらに化粧品材料の希釈剤や、ドライクリーニングの溶剤、絶縁膜用材料としても用いることができる。

Claims (10)

  1.  下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1及びR2はそれぞれ独立に、水素原子又は炭素原子数1~10の非置換又は置換の1価炭化水素基であり、aは3≦a≦5の整数である。)
    で表される原料環状シロキサンと、
     下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R3及びR4はそれぞれ独立に、水素原子又は炭素原子数1~20の非置換又は置換の1価炭化水素基(但し、フッ素含有1価炭化水素基を除く。)であり、Xはハロゲン原子である。)
    で表されるジハロシランとを、
     -C(=O)N<で表されるカルボン酸アミド結合を有するルイス塩基化合物、P=O結合を有するリン化合物、4級アンモニウム塩及び4級ホスホニウム塩から選ばれる1種以上の触媒の存在下において、一般式(1)で表される環状シロキサンの開環を伴う反応をさせて、分子鎖両末端ハロゲン原子封鎖の直鎖状ポリシロキサンを得る工程、
     得られた分子鎖両末端ハロゲン原子封鎖の直鎖状ポリシロキサンを水と反応させることで、下記一般式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1及びR2はそれぞれ独立に、水素原子又は炭素原子数1~10の非置換又は置換の1価炭化水素基であり、R3及びR4はそれぞれ独立に、水素原子又は炭素原子数1~20の非置換又は置換の1価炭化水素基(但し、フッ素含有1価炭化水素基を除く。)であり、bは3≦b≦10の整数である。)
    で表される環状ポリシロキサンを得る工程を含む、環状ポリシロキサンの製造方法。
  2.  一般式(1),(3)において、R1及びR2がそれぞれ独立に炭素原子数1~10の非置換の1価炭化水素基である請求項1記載の環状ポリシロキサンの製造方法。
  3.  一般式(1),(3)において、R1及びR2がメチル基である請求項2記載の環状ポリシロキサンの製造方法。
  4.  一般式(2),(3)において、R3及びR4が水素原子又は炭素原子数1~10の非置換の1価炭化水素基である請求項1~3のいずれか1項記載の環状ポリシロキサンの製造方法。
  5.  下記一般式(1’)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R1及びR2はそれぞれ独立に、水素原子又は炭素原子数1~10の非置換又は置換の1価炭化水素基である。)
    で表される原料環状シロキサンと、
     下記一般式(2’)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R3及びR4はそれぞれ独立に、水素原子又は炭素原子数1~20の非置換又は置換の1価炭化水素基(但し、フッ素含有1価炭化水素基を除く。)である。)
    で表されるジクロロシランを、
     -C(=O)N<で表されるカルボン酸アミド結合を有するルイス塩基化合物、P=O結合を有するリン化合物、4級アンモニウム塩及び4級ホスホニウム塩から選ばれる1種以上の触媒の存在下において、一般式(1’)で表される環状シロキサンの開環を伴う反応をさせて、分子鎖両末端塩素原子封鎖の直鎖状ポリシロキサンを得る工程、
     得られた分子鎖両末端塩素原子封鎖の直鎖状ポリシロキサンを水と反応させることで、下記一般式(3’)
    Figure JPOXMLDOC01-appb-C000006
    (式中、R1及びR2はそれぞれ独立に、水素原子又は炭素原子数1~10の非置換又は置換の1価炭化水素基であり、R3及びR4はそれぞれ独立に、水素原子又は炭素原子数1~20の非置換又は置換の1価炭化水素基(但し、フッ素含有1価炭化水素基を除く。)である。)
    で表される環状ポリシロキサンを得る工程を含む、環状ポリシロキサンの製造方法。
  6.  一般式(1’),(3’)において、R1及びR2がそれぞれ独立に、炭素原子数1~10の非置換の1価炭化水素基である請求項5記載の環状ポリシロキサンの製造方法。
  7.  一般式(1’),(3’)において、R1及びR2がメチル基である請求項6記載の環状ポリシロキサンの製造方法。
  8.   一般式(2’),(3’)において、R3及びR4が水素原子又は炭素原子数1~10の非置換の1価炭化水素基である請求項5~7のいずれか1項記載の環状ポリシロキサンの製造方法。
  9.  触媒が、三級アミド結合を含有するルイス塩基化合物、及びホスフィンオキシドから選ばれる1種以上である請求項1~8のいずれか1項記載の環状ポリシロキサンの製造方法。
  10.  触媒が、N,N-ジメチルホルムアミド、テトラメチル尿素、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、1,3-ジメチル-2-イミダゾリジノン、酸化トリメチルホスフィン、トリエチルホスフィンオキシド、トリ-n-プロピルホスフィンオキシド、トリブチルホスフィンオキシド、トリ-n-オクチルホスフィンオキシド、トリス(2-エチルヘキシル)ホスフィンオキシド、トリシクロヘキシルホスフィンオキシド、トリフェニルホスフィンオキシド、メチル(ジフェニル)ホスフィンオキシド、エチルジフェニルホスフィンオキシド、ジフェニルビニルホスフィン=オキシド、エチニル(ジフェニル)ホスフィンオキシド、メトキシメチル(ジフェニル)ホスフィンオキシド及びシクロヘキシルジフェニルホスフィンオキシドから選ばれる1種以上である請求項9記載の環状ポリシロキサンの製造方法。
PCT/JP2021/005600 2020-02-21 2021-02-16 環状ポリシロキサンの製造方法 WO2021166871A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21757153.8A EP4108706A4 (en) 2020-02-21 2021-02-16 PROCESS FOR PREPARING CYCLIC POLYSILOXANE
US17/801,192 US20230095953A1 (en) 2020-02-21 2021-02-16 Method for producing cyclic polysiloxane
JP2022501887A JP7459923B2 (ja) 2020-02-21 2021-02-16 環状ポリシロキサンの製造方法
CN202180015329.3A CN115135698B (zh) 2020-02-21 2021-02-16 环状聚硅氧烷的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-027966 2020-02-21
JP2020027966 2020-02-21

Publications (1)

Publication Number Publication Date
WO2021166871A1 true WO2021166871A1 (ja) 2021-08-26

Family

ID=77392090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005600 WO2021166871A1 (ja) 2020-02-21 2021-02-16 環状ポリシロキサンの製造方法

Country Status (5)

Country Link
US (1) US20230095953A1 (ja)
EP (1) EP4108706A4 (ja)
JP (1) JP7459923B2 (ja)
CN (1) CN115135698B (ja)
WO (1) WO2021166871A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203916A1 (ja) * 2022-04-19 2023-10-26 信越化学工業株式会社 界面活性剤、及び化粧料

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163887A (ja) 1984-02-07 1985-08-26 Toyo Soda Mfg Co Ltd シクロシロキサン誘導体
JPS6314787A (ja) 1986-07-08 1988-01-21 Shin Etsu Chem Co Ltd 2,4,6,8−テトラメチル−4,6,8−トリビニル−2−(3−メタクリロキシプロピル)シクロテトラシロキサン
JPH01281135A (ja) 1988-03-08 1989-11-13 Union Carbide Corp 環状シロキサンペンダントを含有するシリコーン界面活性剤
JPH07149902A (ja) * 1993-11-30 1995-06-13 Shin Etsu Chem Co Ltd アクリロキシプロピル基含有シクロテトラシロキサン、その重合体組成物の製造方法及び重合体組成物
JPH0959383A (ja) 1995-08-17 1997-03-04 Shin Etsu Chem Co Ltd 水素含有環状シロキサンの製造方法
JP2000159782A (ja) * 1998-11-25 2000-06-13 Shin Etsu Chem Co Ltd (メタ)アクリロキシプロピル基を有するシクロテトラシロキサン及びその製造方法
US20050038219A1 (en) * 2003-08-14 2005-02-17 Yu-Chin Lai Process for the production of high refractive index polysiloxane-based polymeric compositions for use in medical devices
JP2005139123A (ja) 2003-11-07 2005-06-02 Kaneka Corp SiH基を有する環状シロキサン骨格含有化合物の製造法
JP2007023021A (ja) 2005-05-19 2007-02-01 Shin Etsu Chem Co Ltd 新規な環状シロキサン化合物及びその製造方法
JP2015182980A (ja) 2014-03-25 2015-10-22 国立研究開発法人産業技術総合研究所 環状シロキサン化合物を含む組成物、環状シロキサン化合物の製造方法、及びシロキサン重合体の製造方法
JP2017145231A (ja) 2016-02-19 2017-08-24 国立大学法人群馬大学 長鎖炭化水素基とヒドロシリル基を有する環状シロキサン及びその製造方法
JP2018172321A (ja) 2017-03-31 2018-11-08 東ソー株式会社 環状シロキサン化合物、その製造方法、それを用いてなる電気絶縁膜の製造法及び膜

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL127441C (ja) * 1966-02-11
US3607898A (en) 1969-08-20 1971-09-21 Gen Electric Process for preparing cyclic syn-tetramethyltetravinyltetrasiloxane
JP3164985B2 (ja) * 1993-11-10 2001-05-14 信越化学工業株式会社 直鎖状オルガノポリシロキサン及びその製造方法
JP3606613B2 (ja) * 1994-09-05 2005-01-05 信越化学工業株式会社 低重合度オルガノポリシロキサンの製造方法
JP3816683B2 (ja) * 1998-12-04 2006-08-30 株式会社カネカ 環状オリゴシロキサンの製造方法
US7189868B2 (en) * 2005-05-19 2007-03-13 Shin-Etsu Chemical Co., Ltd. Cyclic siloxane compounds and making method
CN101298498A (zh) * 2008-06-20 2008-11-05 华南理工大学 烷氧基封端线形聚硅氧烷偶联剂及其合成方法
JP7211310B2 (ja) 2019-09-06 2023-01-24 信越化学工業株式会社 環状ポリシロキサンの製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163887A (ja) 1984-02-07 1985-08-26 Toyo Soda Mfg Co Ltd シクロシロキサン誘導体
JPS6314787A (ja) 1986-07-08 1988-01-21 Shin Etsu Chem Co Ltd 2,4,6,8−テトラメチル−4,6,8−トリビニル−2−(3−メタクリロキシプロピル)シクロテトラシロキサン
JPH01281135A (ja) 1988-03-08 1989-11-13 Union Carbide Corp 環状シロキサンペンダントを含有するシリコーン界面活性剤
JPH07149902A (ja) * 1993-11-30 1995-06-13 Shin Etsu Chem Co Ltd アクリロキシプロピル基含有シクロテトラシロキサン、その重合体組成物の製造方法及び重合体組成物
JPH0959383A (ja) 1995-08-17 1997-03-04 Shin Etsu Chem Co Ltd 水素含有環状シロキサンの製造方法
JP2000159782A (ja) * 1998-11-25 2000-06-13 Shin Etsu Chem Co Ltd (メタ)アクリロキシプロピル基を有するシクロテトラシロキサン及びその製造方法
US20050038219A1 (en) * 2003-08-14 2005-02-17 Yu-Chin Lai Process for the production of high refractive index polysiloxane-based polymeric compositions for use in medical devices
JP2005139123A (ja) 2003-11-07 2005-06-02 Kaneka Corp SiH基を有する環状シロキサン骨格含有化合物の製造法
JP2007023021A (ja) 2005-05-19 2007-02-01 Shin Etsu Chem Co Ltd 新規な環状シロキサン化合物及びその製造方法
JP2015182980A (ja) 2014-03-25 2015-10-22 国立研究開発法人産業技術総合研究所 環状シロキサン化合物を含む組成物、環状シロキサン化合物の製造方法、及びシロキサン重合体の製造方法
JP2017145231A (ja) 2016-02-19 2017-08-24 国立大学法人群馬大学 長鎖炭化水素基とヒドロシリル基を有する環状シロキサン及びその製造方法
JP2018172321A (ja) 2017-03-31 2018-11-08 東ソー株式会社 環状シロキサン化合物、その製造方法、それを用いてなる電気絶縁膜の製造法及び膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4108706A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203916A1 (ja) * 2022-04-19 2023-10-26 信越化学工業株式会社 界面活性剤、及び化粧料

Also Published As

Publication number Publication date
CN115135698A (zh) 2022-09-30
CN115135698B (zh) 2024-04-26
EP4108706A1 (en) 2022-12-28
US20230095953A1 (en) 2023-03-30
JPWO2021166871A1 (ja) 2021-08-26
EP4108706A4 (en) 2024-05-08
JP7459923B2 (ja) 2024-04-02

Similar Documents

Publication Publication Date Title
CA1222523A (en) Producing alkoxysilanes and alkoxy-oximinosilanes
US10017526B2 (en) Method for producing siloxanes from alkali salts of silanols
JP7211310B2 (ja) 環状ポリシロキサンの製造方法
KR20150115642A (ko) 실라잔 화합물의 제조 방법
WO2021166871A1 (ja) 環状ポリシロキサンの製造方法
KR20120073255A (ko) 플루오로카보작용 실세스퀴옥산의 합성
US3660443A (en) Process for the alkylation of halogenated silicon and tin compounds
JP6479996B2 (ja) シラノールの金属塩からのシロキサノールの製造方法
EP1705180B1 (en) Preparation methods of (organothiomethyl)chlorosilanes
US6596892B2 (en) Preparation of low molecular weight branched siloxanes
JP6044361B2 (ja) ジクロロモノヒドロシラン化合物の製造方法
JP4344936B2 (ja) 両末端アミノ基含有有機ケイ素化合物の製造方法
US20230312617A1 (en) Process for synthesis of organosilicon compounds from halosilanes
US3637781A (en) Process for the purification of mixtures of organochlorosilanes
KR20190054125A (ko) 반응성 실록산 및 이의 제조 방법
JP5601270B2 (ja) フルオロアルキル基を有するシラザン化合物及びその製造方法
JP6665437B2 (ja) 第3級アルキルシラン及び第3級アルキルアルコキシシランの製造方法
US10329313B2 (en) Organosilicon compounds having (meth)acrylate groups and a process for preparation thereof
US9073952B1 (en) Synthesis method for carbosilanes
US7847116B2 (en) Method of manufacturing an aminoaryl-containing organosilicon compound and method of manufacturing an intermediate product of the aforementioned compound
JP3606931B2 (ja) シクロテトラシロキサンの製造方法
JP3175548B2 (ja) 水素含有環状シロキサンの製造方法
JP5821796B2 (ja) ポリジメチルシルメチレンシロキサンの製造方法
JP2758106B2 (ja) ポリオルガノシランの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757153

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501887

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021757153

Country of ref document: EP

Effective date: 20220921