WO2021166844A1 - 数値制御装置 - Google Patents

数値制御装置 Download PDF

Info

Publication number
WO2021166844A1
WO2021166844A1 PCT/JP2021/005488 JP2021005488W WO2021166844A1 WO 2021166844 A1 WO2021166844 A1 WO 2021166844A1 JP 2021005488 W JP2021005488 W JP 2021005488W WO 2021166844 A1 WO2021166844 A1 WO 2021166844A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
numerical control
state
unit
machine tool
Prior art date
Application number
PCT/JP2021/005488
Other languages
English (en)
French (fr)
Inventor
庸士 大西
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to DE112021001171.5T priority Critical patent/DE112021001171T5/de
Priority to CN202180014950.8A priority patent/CN115136085A/zh
Priority to JP2022501873A priority patent/JPWO2021166844A1/ja
Priority to US17/759,984 priority patent/US20230065613A1/en
Publication of WO2021166844A1 publication Critical patent/WO2021166844A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/409Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using manual input [MDI] or by using control panel, e.g. controlling functions with the panel; characterised by control panel details, by setting parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/0009Energy-transferring means or control lines for movable machine parts; Control panels or boxes; Control parts
    • B23Q1/0045Control panels or boxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • B23Q17/2233Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the tool relative to the workpiece
    • B23Q17/2241Detection of contact between tool and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/54Arrangements or details not restricted to group B23Q5/02 or group B23Q5/22 respectively, e.g. control handles
    • B23Q5/58Safety devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40132Haptic joystick with force feedback based on accelerometer included in joystick

Definitions

  • the present invention relates to a numerical control device.
  • Patent Document 1 discloses a machine tool including a control means for changing the type of sound or vibration of the notification means according to the magnitude of the detection load by the load detecting means.
  • the numerical control device is a numerical control device that controls a machine tool having a manual handle, and is specified by the numerical control device or a state specifying unit that specifies the state of the machine tool, and the state specifying unit.
  • the manual handle includes a haptic control unit that generates haptic feedback based on the state of the numerical control device or the machine tool.
  • FIG. 1 is a diagram showing a configuration of a numerical control device 1 and a machine tool 2.
  • the numerical control device 1 and the machine tool 2 are connected by a bus (not shown) or the like, and the machine tool 2 operates according to the control of the numerical control device 1.
  • the numerical control device 1 includes a control unit 11, a storage unit 12, a servo amplifier 13, and a PLC (Programmable Logical Controller) 14.
  • the control unit 11 is a processor such as a CPU (Central Processing Unit), and by executing a program stored in the storage unit 12, the manual handle control unit 111, the operation definition unit 112, the state identification unit 113, and the selection unit 114 , As a parameter determination unit 115 and a haptic control unit 116.
  • a processor such as a CPU (Central Processing Unit)
  • CPU Central Processing Unit
  • the storage unit 12 is composed of a ROM (read only memory), a RAM (random access memory), a non-volatile memory, a hard disk drive, and the like, and stores various types of data.
  • the storage unit 12 stores operation definition data, parameters, and the like, which will be described later.
  • the servo amplifier 13 amplifies the axis movement command received from the control unit 11 and drives the servomotor 21 of the machine tool 2.
  • the PLC 14 receives an M (auxiliary) function signal, an S (spindle speed control) function signal, a T (tool selection) function signal, and the like from the control unit 11 via a bus. Then, the PLC 14 processes these signals by the sequence program and outputs the processed output signals to the machine tool 2.
  • the PLC 14 controls a pneumatic device, a hydraulic device, an electromagnetic actuator, etc. in the machine tool 2 by an output signal.
  • the PLC 14 receives various signals such as a button signal, a switch signal, and a manual handle signal of the machine operation panel 22 of the machine tool 2, and sequentially processes the received various signals. Then, the PLC 14 transmits various sequence-processed signals to the control unit 11 via the bus.
  • the machine tool 2 includes a servomotor 21 and a machine operation panel 22. Although other configurations of the machine tool 2 are omitted in the present specification for the sake of simplification of description, the machine tool 2 has a general machine tool configuration.
  • the servomotor 21 drives the shaft by the movement command of the shaft received from the servo amplifier 13.
  • the machine control panel 22 includes a button and a switch 221 and a manual handle 222. Buttons and switches 221 include mechanical buttons and switches. The button and switch 221 outputs a button signal and a switch signal to the PLC 14 when the mechanical button or switch is pressed.
  • the manual handle 222 moves one or more axes manually.
  • the manual handle 222 includes a pulse generation unit 2221, a driver 2222, an actuator 2223, and a handle unit 2224.
  • the pulse generation unit 2221 When the handle unit 2224 is rotated in the + direction or the-direction, the pulse generation unit 2221 outputs a pulse signal according to the rotation.
  • This pulse signal is a two-phase pulse for determining the rotation direction, and is transmitted to the control unit 11 via the bus. Then, the manual handle control unit 111 of the control unit 11 transmits a movement command of the axis of the machine tool 2 to the servo amplifier 13 based on this pulse signal.
  • the driver 2222 receives a control signal from the haptic control unit 117 of the control unit 11 and outputs a drive signal for generating haptic feedback to the actuator 2223.
  • the actuator 2223 is driven by a drive signal from the driver 2222 to generate haptic feedback.
  • the actuator 2223 may be, for example, an electric motor, an electromagnetic actuator, a shape memory alloy, an electroactive polymer, a solenoid, an eccentric motor, a linear resonance actuator, a piezoelectric actuator, or the like. Further, the actuator 2223 may be composed of a plurality of different actuators.
  • the handle portion 2224 is composed of a mechanical manual handle, and is operated by, for example, an operator.
  • the manual handle control unit 111 receives the pulse signal output from the pulse generation unit 2221. Then, the manual handle control unit 111 transmits a movement command of the axis of the machine tool 2 to the servo amplifier 13 based on the pulse signal.
  • the motion definition unit 112 sets the motion definition data that defines the haptic feedback generated in the manual handle 222.
  • the motion definition data associates the state of the numerical control device 1 or the machine tool 2 with the type of haptic feedback.
  • the operation definition data is stored in the storage unit 12.
  • the state specifying unit 113 specifies the state of the numerical control device 1 or the machine tool 2. Specifically, the state specifying unit 113 specifies the state of the numerical control device 1 based on the operating state of the numerical control device 1. Further, the state specifying unit 113 may specify the state of the numerical control device 1 based on an external signal input to the numerical control device 1. Further, the state specifying unit 113 may specify the state of the machine tool 2 based on the state of the numerical control device 1 and the machine information registered in the numerical control device. Further, the state specifying unit 113 may specify the state of the machine tool 2 based on the state of the numerical control device 1 and the relational expression derived from the machining theory or the like.
  • the selection unit 114 selects the type of haptic feedback based on the operation definition data and the state of the numerical control device 1 or the machine tool 2. Specific examples of the state of the numerical control device 1 or the machine tool 2 will be described later.
  • the parameter determination unit 115 determines the parameters related to the haptic feedback based on the type of the haptic feedback selected by the selection unit 114.
  • the type of haptic feedback is associated with the parameters related to haptic feedback.
  • the type of haptic feedback and the parameters related to the haptic feedback are determined based on the information stored in the storage unit 12 and the program execution state.
  • Parameters related to haptic feedback include magnitude, direction, frequency, duration, amplitude, intensity, density, etc. of haptic feedback.
  • the haptic control unit 116 causes the manual handle 222 to generate haptic feedback based on the state of the numerical control device 1 or the machine tool 2 specified by the state specifying unit 113. Specifically, the haptic control unit generates a control signal using the parameters determined by the parameter determination unit 115 based on the state of the numerical control device 1 or the machine tool 2 specified by the state identification unit 113. The control signal is notified to the driver 2222. As a result, the haptic control unit 116 causes the manual handle 222 to generate haptic feedback.
  • FIG. 2 is a diagram showing an example of the state of the numerical control device 1.
  • the numerical control device 1 moves the tool P and the work M of the machine tool 2 in response to the operation of the manual handle 222.
  • the state specifying unit 113 specifies the state of the used axis among the plurality of axes as the operating state of the numerical control device 1.
  • the selection unit 114 selects the type of haptic feedback associated with the state of the axis used.
  • the type of haptic feedback associated with the condition of the shaft used is manual. It may be the torque or resistance tactile sensation generated at the handle 222. Then, the haptic control unit 117 provides a large torque or a large resistance tactile haptic feedback when the weight of the mechanism, jig, tool and work related to the used shaft is heavy, or when the risk of the used shaft is high. It may be generated.
  • the type of haptic feedback associated with the state of the axis used may be the torque generated by the manual handle 222. .. Then, the haptic control unit 117 generates a haptic feedback of a torque having a magnitude that makes it difficult to rotate the manual handle 222 when the axis cannot be moved such as in an emergency stop or in a state before the servo system is ready. You may.
  • FIG. 3 is a diagram showing an example of the state of the numerical control device 1.
  • the numerical control device 1 receives the signal output from the probe Q for measurement.
  • the machine tool 2 has a probe Q for measurement in order to measure the amount of deviation of the attached work position.
  • the signal output from the measurement probe Q is input to the numerical control device 1 as an external signal.
  • the state specifying unit 113 specifies the state of the numerical control device 1 based on the external signal input to the numerical control device 1.
  • the state specifying unit 113 is based on the input contact signal.
  • the contact of the probe Q is specified as the state of the numerical control device 1.
  • the selection unit 114 selects the type of haptic feedback associated with the contact of the probe Q.
  • the type of haptic feedback associated with probe Q contact may be the vibrating tactile or resistance tactile sensation generated by the manual handle 222.
  • the contact signal external signal
  • the haptic control unit 117 maximizes the large vibration tactile sensation generated in the manual handle 222 or the resistance tactile sensation in the traveling direction of the manual handle 222. Etc. may be generated to generate haptic feedback.
  • FIG. 4 is a diagram showing an example of the state of the numerical control device 1.
  • the numerical control device 1 receives a signal output when the grid point or the limit switch S is operated.
  • the machine tool 2 has a grid point indicating that the axis has returned to the reference point and a limit switch S indicating that the axis is at the movement limit.
  • the signal output when the grid point or the limit switch S is operated is input to the numerical control device 1 as an external signal.
  • the state specifying unit 113 specifies the state of the numerical control device 1 based on the external signal input to the numerical control device 1.
  • the selection unit 114 selects the type of haptic feedback associated with the operation of the grid points or the limit switch S.
  • the type of haptic feedback associated with the activation of grid points or limit switches may be the vibrating tactile or resistance tactile sensation generated by the manual handle 222.
  • the haptic control unit 117 may generate a large vibration tactile sensation or a haptic feedback that maximizes the resistance tactile sensation in the traveling direction of the steering wheel when the grid point or the limit switch S is operated.
  • FIG. 5 is a diagram showing an example of the machine tool 2 state.
  • the machine tool 2 lathes the work T with the cutting tool U.
  • the machining load can generally be estimated by calculation from machining conditions such as spindle speed and the like.
  • the state specifying unit 113 specifies the estimated machining load as the state of the machine tool 2.
  • the selection unit 114 selects the type of haptic feedback associated with the machining load.
  • the type of haptic feedback associated with the machining load may be the torque or resistance tactile sensation generated by the manual handle 222.
  • the haptic control unit 117 may generate haptic feedback so that the resistance tactile sensation or torque of the manual handle 222 increases according to the magnitude of the machining load.
  • FIG. 6 is a flowchart showing a processing flow of the numerical control device 1.
  • the motion definition unit 112 sets the motion definition data that defines the haptic feedback generated in the manual handle 222.
  • the state specifying unit 113 specifies the state of the numerical control device 1 or the machine tool 2.
  • step S3 the selection unit 114 selects the type of haptic feedback based on the operation definition data and the state of the numerical control device 1 or the machine tool 2.
  • step S4 the parameter determination unit 115 determines the parameters related to the haptic feedback based on the type of the haptic feedback selected by the selection unit 114.
  • step S5 the haptic control unit 116 generates a control signal using the parameters determined by the parameter determination unit 115, and notifies the driver 2222 of the control signal.
  • step S6 the driver 2222 receives the control signal from the haptic control unit 116 of the control unit 11 and outputs the drive signal for generating the haptic feedback to the actuator 2223.
  • the actuator 2223 is then driven by a drive signal from the driver 2222 to generate haptic feedback.
  • the numerical control device 1 for controlling the machine tool 2 having the manual handle 222 includes a state specifying unit 113 for specifying the state of the numerical control device 1 or the machine tool 2 and a state.
  • the manual handle 222 includes a haptic control unit 116 that generates haptic feedback based on the state of the numerical control device 1 or the machine tool 2 specified by the specific unit 113.
  • the numerical control device 1 makes the state of the machine tool or the numerical control device intuitive to the operator by generating haptic feedback at the manual handle 222 based on the state of the numerical control device 1 or the machine tool 2. It is possible to make people feel like it, and work efficiency can be improved.
  • the state specifying unit 113 specifies the state of the numerical control device 1 based on the operating state of the numerical control device 1. As a result, the numerical control device 1 can make the operator intuitively feel the operating state of the numerical control device 1, and can improve the work efficiency.
  • the state specifying unit 113 specifies the state of the numerical control device 1 based on an external signal input to the numerical control device 1.
  • the numerical control device 1 can make the operator intuitively feel the external signal input to the numerical control device 1, and can improve the work efficiency.
  • the state specifying unit 113 specifies the state of the machine tool 2 based on the state of the numerical control device 1 and the machine information registered in the numerical control device 1. As a result, the numerical control device 1 can make the operator intuitively feel the state of the numerical control device 1, and can improve the work efficiency.
  • the numerical control device 1 is based on the action definition unit 112 that sets the action definition data that defines the haptic feedback output to the manual handle 222, the action definition data, and the state of the numerical control device 1 or the machine tool 2. Further, a selection unit 114 for selecting the type of haptic feedback and a parameter determination unit 115 for determining parameters related to haptic feedback based on the type of haptic feedback are further provided, and the haptic control unit 116 manually uses parameters. Haptic feedback is generated at the handle 222. As a result, the numerical control device 1 can appropriately generate haptic feedback on the manual handle 222.
  • the present invention is not limited to the above-described embodiments. Further, the effects described in the present embodiment merely list the most preferable effects arising from the present invention, and the effects according to the present invention are not limited to those described in the present embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

作業効率を向上させることができる数値制御装置を提供する。手動ハンドルを有する工作機械を制御する数値制御装置は、数値制御装置又は工作機械の状態を特定する状態特定部と、状態特定部により特定された数値制御装置又は工作機械の状態に基づいて、手動ハンドルにおいてハプティックフィードバックを生成させるハプティック制御部と、を備える。

Description

数値制御装置
 本発明は、数値制御装置に関する。
 従来より、手動ハンドルにより軸送りを行う工作機械において、負荷に応じて音や振動を発生させる技術が知られている(例えば、特許文献1参照)。特許文献1は、負荷検出手段による検出負荷の大小に応じて報知手段の音や振動の種類を変化させる制御手段を備える工作機械を開示している。
特開平06-190691号公報
 しかし、このような工作機械及び工作機械を制御する数値制御装置は、工作機械又は数値制御装置の状態を作業者に対して直感的に感じ取らせることができず、作業効率が損なわれていた。そのため、工作機械又は数値制御装置の状態を作業者に対して直感的に感じ取らせることができ、作業効率を向上させることができる数値制御装置が望まれていた。
 本開示に係る数値制御装置は、手動ハンドルを有する工作機械を制御する数値制御装置であって、前記数値制御装置又は前記工作機械の状態を特定する状態特定部と、前記状態特定部により特定された前記数値制御装置又は前記工作機械の状態に基づいて、前記手動ハンドルにおいてハプティックフィードバックを生成させるハプティック制御部と、を備える。
 本発明によれば、作業効率を向上させることができる。
本実施形態に係る数値制御装置及び工作機械の構成を示す図である。 数値制御装置の状態の例を示す図である。 数値制御装置の状態の例を示す図である。 数値制御装置の状態の例を示す図である。 工作機械の状態の例を示す図である。 数値制御装置の処理の流れを示すフローチャートである。
 以下、本発明の実施形態の一例について説明する。
 図1は、数値制御装置1及び工作機械2の構成を示す図である。数値制御装置1及び工作機械2は、バス(図示せず)等によって接続されており、工作機械2は、数値制御装置1の制御に従って動作する。
 図1に示すように、数値制御装置1は、制御部11と、記憶部12と、サーボアンプ13と、PLC(Programmable Logic Controller)14と、を備える。
 制御部11は、CPU(Central Processing Unit)等のプロセッサであり、記憶部12に記憶されたプログラムを実行することによって、手動ハンドル制御部111、動作定義部112、状態特定部113、選択部114、パラメータ決定部115及びハプティック制御部116として機能する。
 記憶部12は、ROM(read only memory)、RAM(random access memory)、不揮発性メモリ、ハードディスクドライブ等で構成され、各種のデータを記憶する。
 例えば、記憶部12は、後述する動作定義データ、パラメータ等を記憶する。
 サーボアンプ13は、制御部11から受け付けた軸の移動指令を増幅し、工作機械2のサーボモータ21を駆動する。
 PLC14は、制御部11からバスを介してM(補助)機能信号、S(スピンドル速度制御)機能信号、T(工具選択)機能信号等を受け付ける。そして、PLC14は、これらの信号をシーケンス・プログラムによって処理し、処理された出力信号を工作機械2へ出力する。PLC14は、出力信号によって工作機械2内の空圧機器、油圧機器、電磁アクチュエータ等を制御する。
 また、PLC14は、工作機械2の機械操作盤22のボタン信号、スイッチ信号、手動ハンドル信号等の各種信号を受け付け、受け付けた各種信号をシーケンス処理する。そして、PLC14は、シーケンス処理された各種信号を、バスを介して制御部11へ送信する。
 工作機械2は、サーボモータ21と、機械操作盤22と、を備える。なお、本明細書では、工作機械2の他の構成は、説明の簡素化のため省略するが、工作機械2は、一般的な工作機械の構成を有する。
 サーボモータ21は、サーボアンプ13から受け付けた軸の移動指令により軸を駆動する。
 機械操作盤22は、ボタン及びスイッチ221と、手動ハンドル222と、を備える。
 ボタン及びスイッチ221は、機械的なボタン及びスイッチを含む。ボタン及びスイッチ221は、機械的なボタン又はスイッチが押されると、ボタン信号及びスイッチ信号をPLC14へ出力する。
 手動ハンドル222は、1又は複数の軸を手動操作により移動する。手動ハンドル222は、パルス生成部2221と、ドライバ2222と、アクチュエータ2223と、ハンドル部2224と、を備える。
 パルス生成部2221は、ハンドル部2224を+方向又は-方向に回転させると、その回転に応じてパルス信号を出力する。このパルス信号は、回転方向を判別するための二相のパルスであって、バスを介して制御部11へ送信される。そして、制御部11の手動ハンドル制御部111は、このパルス信号に基づいて工作機械2の軸の移動指令をサーボアンプ13へ送信する。
 ドライバ2222は、制御部11のハプティック制御部117から制御信号を受け付け、ハプティックフィードバックを生成するための駆動信号をアクチュエータ2223へ出力する。
 アクチュエータ2223は、ドライバ2222からの駆動信号によって駆動され、ハプティックフィードバックを生成する。アクチュエータ2223は、例えば、電気モータ、電磁気アクチュエータ、形状記憶合金、電気活性ポリマー、ソレノイド、偏心モータ、リニア共振アクチュエータ、又は圧電アクチュエータ等であってもよい。また、アクチュエータ2223は、複数の異なるアクチュエータで構成されてもよい。
 ハンドル部2224は、機械的な手動ハンドルで構成され、例えば、作業者によって操作される。
 手動ハンドル制御部111は、パルス生成部2221から出力されたパルス信号を受け付ける。そして、手動ハンドル制御部111は、パルス信号に基づいて工作機械2の軸の移動指令をサーボアンプ13へ送信する。
 動作定義部112は、手動ハンドル222において生成されるハプティックフィードバックを定義する動作定義データを設定する。動作定義データは、数値制御装置1又は工作機械2の状態と、ハプティックフィードバックの種別と、を関連付ける。動作定義データは、記憶部12に記憶される。
 状態特定部113は、数値制御装置1又は工作機械2の状態を特定する。具体的には、状態特定部113は、数値制御装置1の動作状態に基づいて数値制御装置1の状態を特定する。また、状態特定部113は、数値制御装置1に入力される外部信号に基づいて数値制御装置1の状態を特定してもよい。また、状態特定部113は、数値制御装置1の状態と数値制御装置に登録された機械情報に基づいて工作機械2の状態を特定してもよい。また、状態特定部113は、数値制御装置1の状態と加工理論等から導かれる関係式に基づいて工作機械2の状態を特定してもよい。
 選択部114は、動作定義データ及び数値制御装置1又は工作機械2の状態に基づいて、ハプティックフィードバックの種別を選択する。数値制御装置1又は工作機械2の状態の具体例は後述する。
 パラメータ決定部115は、選択部114により選択されたハプティックフィードバックの種別に基づいて、ハプティックフィードバックに関するパラメータを決定する。ここで、ハプティックフィードバックの種別は、ハプティックフィードバックに関するパラメータと関連付けられる。ハプティックフィードバックの種別及びハプティックフィードバックに関するパラメータは、記憶部12に記憶された情報とプログラム実行状態に基づいて決定される。
 ハプティックフィードバックに関するパラメータは、ハプティックフィードバックの大きさ、方向、周波数、持続期間、振幅、強度、密度等を含む。
 ハプティック制御部116は、状態特定部113により特定された数値制御装置1又は工作機械2の状態に基づいて、手動ハンドル222においてハプティックフィードバックを生成させる。具体的には、ハプティック制御部は、状態特定部113により特定された数値制御装置1又は工作機械2の状態に基づいて、パラメータ決定部115により決定されたパラメータを用いて制御信号を生成し、制御信号をドライバ2222へ通知する。これにより、ハプティック制御部116は、手動ハンドル222においてハプティックフィードバックを生成させる。
 図2は、数値制御装置1の状態の例を示す図である。図2に示す例では、数値制御装置1は、手動ハンドル222の操作に応じて工作機械2の工具PやワークMを移動させる。
 工作機械2が複数の軸を有する場合、状態特定部113は、複数の軸のうち、使用される軸の状態を数値制御装置1の動作状態として特定する。そして、選択部114は、使用される軸の状態と関連付けられるハプティックフィードバックの種別を選択する。
 例えば、使用される軸に関わる機構や治具、工具及びワークの重量が重い場合や、使用される軸の危険度が高い場合、使用される軸の状態と関連付けられるハプティックフィードバックの種別は、手動ハンドル222において生成されるトルク又は抵抗触覚であってもよい。そして、ハプティック制御部117は、使用される軸に関わる機構、治具、工具及びワークの重量が重い場合や、使用される軸の危険度が高い場合、大きなトルク又は大きな抵抗触覚のハプティックフィードバックを生成させてもよい。
 また、非常停止やサーボ系の準備完了前状態等のような軸移動ができない場合、使用される軸の状態と関連付けられるハプティックフィードバックの種別は、手動ハンドル222において生成されるトルクであってもよい。そして、ハプティック制御部117は、非常停止やサーボ系の準備完了前状態等のような軸移動ができない場合、手動ハンドル222を回転することが困難な程度の大きさのトルクのハプティックフィードバックを生成させてもよい。
 図3は、数値制御装置1の状態の例を示す図である。図3に示す例では、数値制御装置1は、計測用のプローブQから出力される信号を受け付ける。
 取り付けられたワーク位置のずれ量を計測するために、工作機械2は、計測用のプローブQを有する。この場合、計測用のプローブQから出力される信号は、外部信号として数値制御装置1に入力される。そして、状態特定部113は、数値制御装置1に入力される外部信号に基づいて数値制御装置1の状態を特定する。
 例えば、状態特定部113は、プローブQがワークR等のような物体に接触したことを示す接触信号(外部信号)が数値制御装置1に入力された場合、入力された接触信号に基づいて、プローブQの接触を数値制御装置1の状態として特定する。
 選択部114は、プローブQの接触と関連付けられるハプティックフィードバックの種別を選択する。例えば、プローブQの接触と関連付けられるハプティックフィードバックの種別は、手動ハンドル222において生成される振動触覚又は抵抗触覚であってもよい。そして、ハプティック制御部117は、接触信号(外部信号)が数値制御装置1に入力された場合、手動ハンドル222において生成される大きな振動触覚又は手動ハンドル222の進行方向への抵抗触覚を最大にする等のハプティックフィードバックを生成させてもよい。
 図4は、数値制御装置1の状態の例を示す図である。図4に示す例では、数値制御装置1は、グリッド点又はリミットスイッチSを作動したときに出力される信号を受け付ける。
 工作機械2は、軸がレファレンス点に復帰したことを示すグリッド点や、軸が移動限界にあることを示すリミットスイッチSを有する。グリッド点又はリミットスイッチSを作動したときに出力される信号は、外部信号として数値制御装置1に入力される。そして、状態特定部113は、数値制御装置1に入力される外部信号に基づいて数値制御装置1の状態を特定する。
 選択部114は、グリッド点又はリミットスイッチSの作動と関連付けられるハプティックフィードバックの種別を選択する。例えば、グリッド点又はリミットスイッチの作動と関連付けられるハプティックフィードバックの種別は、手動ハンドル222において生成される振動触覚又は抵抗触覚であってもよい。そして、ハプティック制御部117は、、グリッド点又はリミットスイッチSを作動したとき、大きな振動触覚又はハンドルの進行方向への抵抗触覚を最大にするハプティックフィードバックを生成させてもよい。
 図5は、工作機械2状態の例を示す図である。図5に示す例では、工作機械2は、切削工具UによってワークTを旋盤加工する。このような工作機械2の旋盤加工において、加工負荷は、一般的に、主軸回転数等のような加工条件から計算によって推定することができる。
 状態特定部113は、推定された加工負荷を工作機械2の状態として特定する。選択部114は、加工負荷と関連付けられるハプティックフィードバックの種別を選択する。例えば、加工負荷と関連付けられるハプティックフィードバックの種別は、手動ハンドル222において生成されるトルク又は抵抗触覚であってもよい。そして、ハプティック制御部117は、加工負荷の大きさに応じて手動ハンドル222の抵抗触覚又はトルクが大きくなるようにハプティックフィードバックを生成させてもよい。
 図6は、数値制御装置1の処理の流れを示すフローチャートである。
 ステップS1において、動作定義部112は、手動ハンドル222において生成されるハプティックフィードバックを定義する動作定義データを設定する。
 ステップS2において、状態特定部113は、数値制御装置1又は工作機械2の状態を特定する。
 ステップS3において、選択部114は、動作定義データ及び数値制御装置1又は工作機械2の状態に基づいて、ハプティックフィードバックの種別を選択する。
 ステップS4において、パラメータ決定部115は、選択部114により選択されたハプティックフィードバックの種別に基づいて、ハプティックフィードバックに関するパラメータを決定する。
 ステップS5において、ハプティック制御部116は、パラメータ決定部115により決定されたパラメータを用いて制御信号を生成し、制御信号をドライバ2222へ通知する。
 ステップS6において、ドライバ2222は、制御部11のハプティック制御部116から制御信号を受け付け、ハプティックフィードバックを生成するための駆動信号をアクチュエータ2223へ出力する。そして、アクチュエータ2223は、ドライバ2222からの駆動信号によって駆動され、ハプティックフィードバックを生成する。
 以上説明したように、本実施形態によれば、手動ハンドル222を有する工作機械2を制御する数値制御装置1は、数値制御装置1又は工作機械2の状態を特定する状態特定部113と、状態特定部113により特定された数値制御装置1又は工作機械2の状態に基づいて、手動ハンドル222においてハプティックフィードバックを生成させるハプティック制御部116と、を備える。このように数値制御装置1は、数値制御装置1又は工作機械2の状態に基づいて、手動ハンドル222においてハプティックフィードバックを生成させることにより、工作機械又は数値制御装置の状態を作業者に対して直感的に感じ取らせることができ、作業効率を向上させることができる。
 また、状態特定部113は、数値制御装置1の動作状態に基づいて数値制御装置1の状態を特定する。これにより、数値制御装置1は、数値制御装置1の動作状態を作業者に対して直感的に感じ取らせることができ、作業効率を向上させることができる。
 また、状態特定部113は、数値制御装置1に入力される外部信号に基づいて数値制御装置1の状態を特定する。これにより、数値制御装置1は、数値制御装置1に入力される外部信号を作業者に対して直感的に感じ取らせることができ、作業効率を向上させることができる。
 また、状態特定部113は、数値制御装置1の状態と数値制御装置1に登録された機械情報に基づいて工作機械2の状態を特定する。これにより、数値制御装置1は、数値制御装置1の状態を作業者に対して直感的に感じ取らせることができ、作業効率を向上させることができる。
 また、数値制御装置1は、手動ハンドル222に対して出力されるハプティックフィードバックを定義する動作定義データを設定する動作定義部112と、動作定義データ及び数値制御装置1又は工作機械2の状態に基づいて、ハプティックフィードバックの種別を選択する選択部114と、ハプティックフィードバックの種別に基づいて、ハプティックフィードバックに関するパラメータを決定するパラメータ決定部115と、を更に備え、ハプティック制御部116は、パラメータを用いて手動ハンドル222においてハプティックフィードバックを生成させる。これにより、数値制御装置1は、手動ハンドル222においてハプティックフィードバックを適切に生成させることができる。
 以上、本発明の実施形態について説明したが、本発明は前述した実施形態に限るものではない。また、本実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本実施形態に記載されたものに限定されるものではない。
 1 数値制御装置
 2 工作機械
 11 制御部
 12 記憶部
 13 サーボアンプ
 14 PLC
 22 機械操作盤
 111 手動ハンドル制御部
 112 動作定義部
 113 状態特定部
 114 選択部
 115 パラメータ決定部
 116 ハプティック制御部
 221 ボタン及びスイッチ
 222 手動ハンドル
 2221 パルス生成部
 2222 ドライバ
 2223 アクチュエータ
 2224 ハンドル部

Claims (5)

  1.  手動ハンドルを有する工作機械を制御する数値制御装置であって、
     前記数値制御装置又は前記工作機械の状態を特定する状態特定部と、
     前記状態特定部により特定された前記数値制御装置又は前記工作機械の状態に基づいて、前記手動ハンドルにおいてハプティックフィードバックを生成させるハプティック制御部と、
     を備える数値制御装置。
  2.  前記状態特定部は、前記数値制御装置の動作状態に基づいて前記数値制御装置の状態を特定する、請求項1に記載の数値制御装置。
  3.  前記状態特定部は、前記数値制御装置に入力される外部信号に基づいて前記数値制御装置の状態を特定する、請求項1に記載の数値制御装置。
  4.  前記状態特定部は、前記数値制御装置の状態と前記数値制御装置に登録された機械情報に基づいて前記工作機械の状態を特定する、請求項1に記載の数値制御装置。
  5.  前記数値制御装置は、
     前記手動ハンドルに対して出力される前記ハプティックフィードバックを定義する動作定義データを設定する動作定義部と、
     前記動作定義データ及び前記数値制御装置又は前記工作機械の状態に基づいて、前記ハプティックフィードバックの種別を選択する選択部と、
     前記ハプティックフィードバックの種別に基づいて、前記ハプティックフィードバックに関するパラメータを決定するパラメータ決定部と、
    を更に備え、
     前記ハプティック制御部は、前記パラメータを用いて前記手動ハンドルにおいて前記ハプティックフィードバックを生成させる、請求項1から4のいずれか一項に記載の数値制御装置。
PCT/JP2021/005488 2020-02-20 2021-02-15 数値制御装置 WO2021166844A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021001171.5T DE112021001171T5 (de) 2020-02-20 2021-02-15 Numerische Steuervorrichtung
CN202180014950.8A CN115136085A (zh) 2020-02-20 2021-02-15 数值控制装置
JP2022501873A JPWO2021166844A1 (ja) 2020-02-20 2021-02-15
US17/759,984 US20230065613A1 (en) 2020-02-20 2021-02-15 Numerical control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020027523 2020-02-20
JP2020-027523 2020-02-20

Publications (1)

Publication Number Publication Date
WO2021166844A1 true WO2021166844A1 (ja) 2021-08-26

Family

ID=77391226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005488 WO2021166844A1 (ja) 2020-02-20 2021-02-15 数値制御装置

Country Status (5)

Country Link
US (1) US20230065613A1 (ja)
JP (1) JPWO2021166844A1 (ja)
CN (1) CN115136085A (ja)
DE (1) DE112021001171T5 (ja)
WO (1) WO2021166844A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023175799A1 (ja) * 2022-03-16 2023-09-21 株式会社ジェイテクト 研削盤

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0857735A (ja) * 1994-08-19 1996-03-05 Fanuc Ltd 手動ハンドル送り方式
JP2014050950A (ja) * 2012-09-06 2014-03-20 Fanuc Robotics America Inc 触覚教示ペンダント
JP2017117278A (ja) * 2015-12-25 2017-06-29 ファナック株式会社 ハンドル操作に応じてncプログラムを実行する機能において、プログラム実行状態を確認する手段を備えた数値制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190691A (ja) 1992-12-28 1994-07-12 Makino Milling Mach Co Ltd 加工負荷報知機能を有する工作機械

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0857735A (ja) * 1994-08-19 1996-03-05 Fanuc Ltd 手動ハンドル送り方式
JP2014050950A (ja) * 2012-09-06 2014-03-20 Fanuc Robotics America Inc 触覚教示ペンダント
JP2017117278A (ja) * 2015-12-25 2017-06-29 ファナック株式会社 ハンドル操作に応じてncプログラムを実行する機能において、プログラム実行状態を確認する手段を備えた数値制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023175799A1 (ja) * 2022-03-16 2023-09-21 株式会社ジェイテクト 研削盤

Also Published As

Publication number Publication date
CN115136085A (zh) 2022-09-30
US20230065613A1 (en) 2023-03-02
JPWO2021166844A1 (ja) 2021-08-26
DE112021001171T5 (de) 2023-01-19

Similar Documents

Publication Publication Date Title
JP4298770B2 (ja) 干渉チェック機能を備えた数値制御装置
JP5819812B2 (ja) 工作機械の負荷表示装置
JP6346253B2 (ja) 工作機械及び機械学習装置
JP6434246B2 (ja) 機械異常履歴の解析支援機能を有する数値制御装置
JP2019067136A (ja) 数値制御システム
WO2021166844A1 (ja) 数値制御装置
JP2019188558A (ja) 工具選定装置及び機械学習装置
JP2004246498A (ja) 位置制御装置
WO1994009419A1 (en) Numerically controlled apparatus
WO2021166843A1 (ja) 数値制御装置
WO1998012018A1 (fr) Technique de delimitation des tolerances d'usinage en cas d'utilisation d'un dispositif de commande numerique et procede d'usinage a avance manuelle
JPH11129144A (ja) Nc工作機械の制御装置
JP5362146B1 (ja) 数値制御装置および数値制御システム
JP6441253B2 (ja) 干渉検出後の対策を容易にする数値制御装置
WO2021166841A1 (ja) 数値制御装置
JP7280310B2 (ja) 数値制御装置
JP2020170365A (ja) 数値制御装置
JP6464135B2 (ja) 数値制御装置
JP6985565B1 (ja) 制御装置
JP2011070538A (ja) 加工制御装置およびレーザ加工装置
WO2021141016A1 (ja) 数値制御装置、切粉除去システム、切粉除去方法
JP2009129395A (ja) 数値制御装置、コンピュータプログラム及び記憶媒体
JPH07194157A (ja) サーボモータ制御装置
WO2023079589A1 (ja) 制御装置及びコンピュータ読み取り可能な記録媒体
JP2005301886A (ja) 数値制御システムおよび数値制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501873

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21757925

Country of ref document: EP

Kind code of ref document: A1