WO2021166816A1 - 真空ポンプコントローラおよび真空ポンプ - Google Patents

真空ポンプコントローラおよび真空ポンプ Download PDF

Info

Publication number
WO2021166816A1
WO2021166816A1 PCT/JP2021/005365 JP2021005365W WO2021166816A1 WO 2021166816 A1 WO2021166816 A1 WO 2021166816A1 JP 2021005365 W JP2021005365 W JP 2021005365W WO 2021166816 A1 WO2021166816 A1 WO 2021166816A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacement
vacuum pump
rotation frequency
rotor shaft
center
Prior art date
Application number
PCT/JP2021/005365
Other languages
English (en)
French (fr)
Inventor
横塚 克久
山本 雅之
Original Assignee
エドワーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エドワーズ株式会社 filed Critical エドワーズ株式会社
Priority to EP21757852.5A priority Critical patent/EP4108946A4/en
Publication of WO2021166816A1 publication Critical patent/WO2021166816A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0489Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/048Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps comprising magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0446Determination of the actual position of the moving member, e.g. details of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Definitions

  • the present invention relates to a vacuum pump controller and a vacuum pump.
  • magnetic bearings are used as rotor bearings.
  • the displacement is detected by the radial sensor in the radial direction of the rotor rotating shaft, and the displacement of the rotor rotating shaft is controlled by conducting a current corresponding to the displacement to the electromagnet.
  • a magnetic bearing device (a) converts the output signal of a radial sensor that detects the displacement of the rotating shaft of the rotor from a stationary coordinate system to a rotating coordinate system, and performs low-pass filtering on the output signal after conversion to rotating coordinates.
  • the components due to the imbalance are extracted, and (b) the extracted components are subtracted from the output signal of the original radial sensor.
  • the rotor can swing around the center of inertia without suppressing the components caused by the imbalance (see, for example, Patent Document 1).
  • the displacement of the rotation shaft is controlled based on the sensor output signal from which the inertia center rotation component is removed, and the inertia center rotation component is not controlled.
  • the rotor rotating shaft is in forward precession, resonance occurs in a specific rotation frequency range where the rotor rotation frequency approaches the natural frequency in the forward precession, and the displacement of the rotor rotation shaft increases. Resulting in.
  • the present invention has been made in view of the above problems, and an object of the present invention is to obtain a vacuum pump controller and a vacuum pump that operate a vacuum pump satisfactorily in a specific rotation frequency range.
  • the vacuum pump controller adjusts the displacement of the rotor shaft of the vacuum pump and the signal processing unit that generates a current command value based on the sensor signal obtained from the displacement sensor that detects the displacement of the rotor shaft of the vacuum pump.
  • the electromagnet is provided with a drive circuit for conducting a current corresponding to a current command value and a displacement limiting unit. Then, the displacement limiting unit adjusts the current command value so as to limit the displacement of the rotor shaft to the displacement caused by the swing around the center of inertia when the rotation frequency of the rotor shaft is in the specific rotation frequency range. ..
  • the vacuum pump according to the present invention includes the above-mentioned vacuum pump controller, the above-mentioned rotor shaft, and the above-mentioned magnetic bearing provided with the above-mentioned displacement sensor and the above-mentioned electromagnet.
  • FIG. 1 is a diagram showing an internal configuration of a vacuum pump according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating an arrangement of radial bearings in the vacuum pump according to the embodiment of the present invention.
  • FIG. 3 is a block diagram showing a configuration of a controller that controls a magnetic bearing of a vacuum pump according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing a configuration of an inertial center rotation component removing portion in FIG.
  • FIG. 5 is a block diagram showing the configuration of the displacement limiting portion in FIG.
  • FIG. 6 is a diagram illustrating a change in displacement of the rotor shaft with respect to the rotation frequency.
  • FIG. 7 is a diagram illustrating a change in displacement based on precession around the center of inertia of the rotor shaft.
  • FIG. 8 is a diagram illustrating a change in the natural frequency with respect to the rotation frequency according to the moment of inertia ratio.
  • FIG. 1 is a diagram showing an internal configuration of a vacuum pump according to an embodiment of the present invention.
  • the vacuum pump shown in FIG. 1 is a turbo molecular pump, and in the vacuum pump main body 10, the casing 1, the stator blade 2, the rotor 3, the thrust bearing portion 4, the radial bearing portion 5, the motor portion 6, the intake port 7, and the exhaust are exhausted.
  • a mouth 8 and a screw groove 9 are provided.
  • the rotor 3 includes a rotor blade 3a, a rotor inner cylinder portion 3b, and a rotor shaft 3c.
  • the rotor blade 3a is connected to the rotor inner cylinder portion 3b, and the rotor inner cylinder portion 3b is connected to the rotor shaft 3c by, for example, screwing.
  • the casing 1 has a substantially cylindrical shape, and a rotor 3, a thrust bearing portion 4, a radial bearing portion 5, a motor portion 6, and the like are housed in the internal space thereof, and a plurality of stages of stator blades 2 are fixed to the inner peripheral surface thereof. Has been done.
  • the casing is composed of the casing 1 and the stator blades 2.
  • the thrust bearing portion 4 and the radial bearing portion 5 are magnetic bearings of the rotor shaft 3c, and a displacement sensor that detects the displacement of the rotor shaft 3c in the axial and radial directions, and the displacement of the rotor shaft 3c in the axial and radial directions. It is equipped with an electromagnet to control.
  • the radial bearing portion 5 includes a displacement sensor 11H and an electromagnet 12H at a position higher than the center of gravity of the rotor 3, and a displacement sensor 11B and an electromagnet 12B at a position lower than the center of gravity of the rotor 3.
  • FIG. 2 is a perspective view illustrating the arrangement of the radial bearing portion 5 in the vacuum pump according to the embodiment of the present invention.
  • the displacement sensor 11H includes a pair of displacement sensors 11XHp, 11XHn for the Xh axis, and a pair of displacement sensors 11YHp, 11YHn for the Yh axis
  • the displacement sensor 11B includes the Xb axis. Includes a pair of displacement sensors 11XBp, 11XBn, and a pair of displacement sensors 11YBp, 11YBn for the Yb axis.
  • the electromagnet 12H includes a pair of electromagnets 12XHp, 12XHn for the Xh axis, and a pair of electromagnets 12YHp, 12YHn for the Yh axis
  • the electromagnet 12B includes a pair of electromagnets 12XBp, 12XBn for the Xb axis.
  • a pair of electromagnets 12YBp, 12YBn for the Yb axis is a pair of electromagnets 12XBp, 12XBn for the Xb axis.
  • electromagnets 12H and 12B generate an electromagnetic force in the Xh axis direction and an electromagnetic force in the Yh axis direction, and an electromagnetic force in the Xb axis direction and an electromagnetic force in the Yb axis direction.
  • the radial displacement of the shaft 3c is controlled.
  • the motor unit 6 rotates the rotor shaft 3c by an electromagnetic force.
  • the motor unit 6 is controlled by a predetermined controller (for example, a controller 21 described later), and the rotation frequency ⁇ of the rotor shaft 3c (that is, the rotor 3) is controlled.
  • the intake port 7 is an upper end opening of the casing 1, has a flange shape, and is connected to a chamber or the like (not shown). Gas molecules fly into the intake port 7 from the chamber or the like due to thermal motion or the like.
  • the exhaust port 8 has a flange shape and discharges gas molecules and the like.
  • the vacuum pump shown in FIG. 1 is a composite blade type in which a screw groove pump portion having a screw groove 9 is provided after the turbo molecular pump portion by the stator blade 2 and the rotor 3 described above, but an all-blade type may also be used.
  • FIG. 3 is a block diagram showing a configuration of a controller that controls a magnetic bearing of a vacuum pump according to an embodiment of the present invention.
  • the vacuum pump includes a controller 21 that electrically controls the vacuum pump main body 10.
  • the controller 21 controls the above-mentioned magnetic bearing (radial bearing portion 5, etc.).
  • the controller 21 may be built in the vacuum pump, or may be a separate device from the vacuum pump main body 10 and may be an independent device that can be attached to and detached from the vacuum pump main body 10.
  • the controller 21 includes a dedicated circuit and / or a computer, and executes various processes by calculation by hardware and / or software.
  • the controller 21 includes a signal processing unit 31, a drive circuit 32, an inertial center rotation component removing unit 33, a displacement limiting unit 34, an addition calculation unit 35, and a control unit 36.
  • the signal processing unit 31 generates a current command value for the electromagnets 12H and 12B based on the sensor signals obtained from the displacement sensors 11H and 11B.
  • the drive circuit 32 conducts the electromagnets 12H and 12B with a current corresponding to the above-mentioned current command value.
  • the rotor shaft 3c swings around the center of inertia at a rotation frequency ⁇ r while rotating at a rotation frequency ⁇ due to forward precession.
  • the inertial center rotation component removing unit 33 removes a component (inertia center rotation component) caused by the swing around the inertial center from the above-mentioned sensor signal.
  • the signal processing unit 31 performs displacement due to swing around the center of inertia based on the sensor signal from which the center of inertia rotation component has been removed by the unit of removing the center of inertia rotation component 33. Generate current command values to allow.
  • the inertia center rotation component removing unit 33 removes the inertia center rotation component in the sensor signal when the rotation frequency ⁇ of the rotor shaft 3c exceeds a predetermined threshold value ⁇ 1 which is lower than the lower limit value of the specific rotation frequency range described later.
  • a predetermined threshold value ⁇ 1 which is lower than the lower limit value of the specific rotation frequency range described later.
  • the inertia center rotation component is removed by the inertia center rotation component removing unit 33 based on the sensor signal.
  • the signal processing unit 31 generates a current command value.
  • the center of inertia here means the center of inertia of the entire rotor 3 as shown in FIG. 7, which will be described later, and the reference axis of the moment of inertia is XY in the stationary coordinate system of the entire rotor 3. It is assumed as an axis passing through the center of gravity on the coordinates and the center of gravity on the Z coordinates.
  • FIG. 4 is a block diagram showing the configuration of the inertial center rotation component removing portion 33 in FIG.
  • the inertia center rotation component removing unit 33 includes a coordinate conversion unit 41, a low-pass filter 42, an inverse coordinate conversion unit 43, a subtraction calculation unit 44, and a synchronous oscillator 45.
  • the coordinate conversion unit 41 converts the sensor signals Xh, Yh, Xb, Yb from the stationary coordinate system to the rotating coordinate system having the swing rotation frequency ⁇ r of the rotor shaft 3c.
  • the sensor signals Xh (upper X-axis), Yh (upper Y-axis), Xb (lower X-axis), and Yb (lower Y-axis) of the stationary coordinate system rotate as shown in FIG.
  • the sensor signals in the coordinate system are converted into Xrh (upper X-axis), Yrh (upper Y-axis), Xrb (lower X-axis), and Yrb (lower Y-axis).
  • the low-pass filter 42 attenuates frequency components other than the DC component (corresponding to the swing rotation frequency ⁇ r in the stationary coordinate system) in the sensor signals Xrh, Yhr, Xrb, and Yrb in the rotating coordinate system.
  • the inverse coordinate conversion unit 43 converts the sensor signal from the rotating coordinate system to the stationary coordinate system.
  • the coordinate converter 41, a low pass filter 42 and inverse coordinate transformation unit 43, the sensor signal in the stationary coordinate system and functions as a band-pass filter that attenuates the frequency component other than rotation about the frequency omega r shake.
  • the swing rotation frequency ⁇ r of the sensor signal extracted in this way is subtracted from the original sensor signal by the subtraction calculation unit 44, so that the component of the swing rotation frequency ⁇ r in the sensor signal (that is, the center of inertia rotation) Component) is removed.
  • the synchronous oscillator 45 is, for example, a PLL (Phase Locked Loop) or the like, and is a signal used for the above-mentioned coordinate conversion and inverse coordinate conversion in synchronization with the rotation pulse signal synchronized with the zero cross position in the sensor signals of the displacement sensors 11H and 11B.
  • Sin ( ⁇ r ) and cos ( ⁇ r ) are generated and supplied to the coordinate conversion unit 41 and the inverse coordinate conversion unit 43.
  • the rotation pulse signal is generated from the outputs of the displacement sensors 11H and 11B in a circuit (not shown).
  • the displacement limiting unit 34 swings the displacement of the rotor shaft 3c around the center of inertia when the rotation frequency ⁇ of the rotor shaft 3c is in the specific rotation frequency range (high rotation frequency range described later). Adjust the current command value to limit the displacement due to.
  • the displacement limiting unit 34 has inertia when (a) the rotation frequency ⁇ of the rotor shaft 3c is in the intermediate rotation frequency range from the above-mentioned predetermined threshold value to the lower limit value of the specific rotation frequency range.
  • the displacement caused by the swing around the center is specified and stored in a memory (not shown), etc.
  • the stored displacement is read out from an unillustrated memory or the like, and the current command value is adjusted so as to limit the displacement of the rotor shaft 3c to the displacement.
  • FIG. 5 is a block diagram showing the configuration of the displacement limiting unit 34 in FIG.
  • the displacement limiting unit 34 includes a coordinate conversion unit 51, a low-pass filter 52, a coefficient storage unit 53, a compensation signal generation unit 54, an inverse coordinate conversion unit 55, a phase / gain setting unit 56, and a synchronous oscillator. 57 is provided.
  • the coordinate conversion unit 51, the low-pass filter 52, the inverse coordinate conversion unit 55, and the synchronous oscillator 57 are the coordinate conversion unit 41, the low-pass filter 42, the inverse coordinate conversion unit 43, and the synchronization in the inertial center rotation component removing unit 33 shown in FIG. It is the same as the oscillator 45.
  • the coordinate conversion unit 51 and the low-pass filter 52 may be used instead of the coordinate conversion unit 41 and the low-pass filter 42 without separately providing the coordinate conversion unit 51 and the low-pass filter 52.
  • Coefficient coefficient storage unit 53 output from the low-pass filter 52 at certain rotational frequency .omega.ref (i.e., current shake factor indicates the magnitude of rotation about the frequency ⁇ r)
  • Xhj upper X-axis
  • Yhj upper Y-axis
  • Xbj lower X-axis
  • Ybj lower Y-axis
  • the compensation signal generation unit 54 is a compensation signal corresponding to the difference between the current coefficients Xhj, Yhj, Xbj, Ybj and the reference values Xhref, Yhref, Xbref, Ybref, the phase ⁇ , and the gains Gh (upper side) and Gb (lower side).
  • dXhr, dXhr, dXhr, and dXhr are generated as shown in FIG.
  • the phase ⁇ and the gains Gh and Gb are set to predetermined values by the phase / gain setting unit 56.
  • the compensation signal generation unit 54 uses the current displacement as the reference value. Compensation signals dXhr, dYhr, dXrb, dYrb that limit the displacement of Xhref, Yhref, Xbref, and Ybref at the stored rotation frequency ⁇ ref are generated. Therefore, when the displacement due to the current rotation frequency ⁇ matches the displacement at the time when the reference values Xhref, Yhref, Xbref, and Ybref are the stored rotation frequencies ⁇ ref, the compensation signals dXhr, dXhr, dXhr, and dXhr. The value will be zero.
  • the compensation signals dXhr, dYhr, dXrb, dYrb are converted from the rotating coordinate system to the rest coordinate system by the inverse coordinate conversion unit 55, and the compensation signals dXh, dYh, dXb, dYb in the rest coordinate system are the displacement limiting unit 34. Is generated as the output value of.
  • the synchronous oscillator 57 generates signals sin ( ⁇ r ) and cos ( ⁇ r ) in the same manner as the synchronous oscillator 45, and also generates signals sin ( ⁇ r + ⁇ ) and cos ( ⁇ r + ⁇ ) corresponding to the phase ⁇ . Generate.
  • the addition calculation unit 35 adds the output value of the displacement limiting unit 34 to the current command value output from the signal processing unit 31.
  • the control unit 36 supplies settings and commands to each of the above-mentioned units in the controller 21.
  • FIG. 6 is a diagram illustrating a change in displacement of the rotor shaft with respect to the rotation frequency ⁇ .
  • FIG. 7 is a diagram illustrating a change in displacement based on precession around the center of inertia of the rotor shaft.
  • the signal processing unit when the rotation frequency ⁇ of the rotor 3 is increased from zero to the rated rotation frequency ⁇ o when the vacuum pump is started, the signal processing unit is in the low rotation frequency range where the rotation of the rotor 3 is not stable. 31 uses a sensor signal from which the inertial center rotation component has not been removed to generate a current command value so that the displacement based on the sensor signal approaches zero by PID control. In this low rotation frequency range, the displacement limiting unit 34 does not output a compensation signal or outputs a compensation signal having a value of zero. That is, the displacement is not limited in the low rotation frequency range.
  • the rotation frequency ⁇ rises and reaches the first threshold frequency ⁇ 1.
  • the signal processing unit 31 Using the sensor signal with the inertia center rotation component removed, the PID control generates a current command value based on the sensor signal so that the displacement component other than the inertia center rotation component approaches zero (that is, the inertia center rotation component). Is acceptable).
  • the displacement limiting unit 34 does not output a compensation signal or outputs a compensation signal having a value of zero. That is, the displacement is not limited in the intermediate rotation frequency range.
  • the displacement limiting unit 34 sets the above-mentioned coefficients Xhj, Yhj, Xbj, Ybj indicating the inertial center rotation component at this time. Save as reference values Xhref, Yhref, Xbref, Ybref.
  • the displacement limiting unit 34 starts outputting the compensation signal described above.
  • the current command value output from the signal processing unit 31 is adjusted by this compensation signal, and as shown in FIG. 7, the displacement of the rotation of the rotor shaft 3c is the reference rotation frequency ⁇ ref. It is controlled so that it becomes the displacement of the swing around at.
  • FIG. 8 is a diagram illustrating a change in the natural frequency with respect to the rotation frequency according to the moment of inertia ratio (gyro factor).
  • the rotor 3 is in a forward aging motion, and as shown in FIG. 8, the moment of inertia ratio ⁇ (the ratio of the moment of inertia Iz in the axial direction to the moment of inertia Ir in the radial direction, Iz / Ir) is less than 1.
  • the critical speed rotation frequency ⁇ corresponding to the natural frequency
  • the moment of inertia ratio ⁇ is 1.
  • the critical speed increases, and when the moment of inertia ratio ⁇ becomes 1, the critical speed disappears, and the natural frequency gradually approaches the rotation frequency as the rotation frequency increases.
  • the rotation frequency becomes close to the natural frequency, and when the above-mentioned displacement limiting unit 34 (that is, the compensation signal) is not used, the swing displacement as shown in FIG. However, it increases from the displacement of the swing around the center of inertia.
  • the above-mentioned compensation signal suppresses the increase in the swinging displacement to the extent of the inertial center rotation component, and the current value conducted through the electromagnets 12H and 12B does not exceed the allowable current value of the apparatus.
  • the vacuum pump can be operated.
  • the above-mentioned high rotation frequency region (specific rotation frequency region), that is, the second threshold frequency ⁇ 2 is set corresponding to the moment of inertia ratio ⁇ of the rotor 3.
  • the moment of inertia ratio ⁇ of the rotor 3 has a value such that the difference between the rated rotation frequency ⁇ o and the natural frequency of the rotor 3 at the rated rotation frequency ⁇ o is equal to or less than a predetermined value, for example, 0. It has a value of 0.8 or more and 1 or less, or a value of 1 or more. That is, as described above, the rotor 3 has a moment of inertia ratio ⁇ such that the swinging displacement increases in the high rotation frequency region. Even in such a rotor 3, the above-mentioned compensation signal suppresses the displacement of the swing in the high rotation frequency region to the displacement caused by the inertial center rotation component.
  • the signal processing unit 31 generates a current command value based on the sensor signals obtained from the displacement sensors 11H and 11B that detect the displacement of the rotor shaft 3c of the vacuum pump. ..
  • the drive circuit 32 conducts a current corresponding to the current command value to the electromagnets 12H and 12B that adjust the displacement of the rotor shaft 3c of the vacuum pump.
  • the displacement limiting unit 34 sets a current command value so as to limit the displacement of the rotor shaft 3c to the displacement caused by the swing around the center of inertia. adjust.
  • the present invention is applicable to, for example, a vacuum pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

【課題】 特定の回転周波数域で真空ポンプを良好に運転させる真空ポンプコントローラおよび真空ポンプを得る。 【解決手段】 信号処理部31は、当該真空ポンプのロータ軸3cの変位を検出する変位センサ11H,11Bから得られるセンサ信号に基づいて電流指令値を生成する。駆動回路32は、当該真空ポンプのロータ軸3cの変位を調整する電磁石12H,12Bに、電流指令値に対応する電流を導通させる。変位制限部34は、ロータ軸3cの回転周波数Ωが特定回転周波数域に入っている場合、ロータ軸3cの変位を、慣性中心まわりの振れ回りに起因する変位に制限するように電流指令値を調整する。

Description

真空ポンプコントローラおよび真空ポンプ

 本発明は、真空ポンプコントローラおよび真空ポンプに関するものである。

 ターボ分子ポンプなどの真空ポンプでは、ロータの軸受として磁気軸受が使用されている。磁気軸受では、ロータ回転軸のラジアル方向について、ラジアルセンサで変位が検出され、変位に応じた電流を電磁石に導通させてロータ回転軸の変位が制御される。

 ある磁気軸受装置は、(a)ロータの回転軸の変位を検出するラジアルセンサの出力信号を静止座標系から回転座標系に変換し、回転座標に変換後の出力信号に対してローパスフィルタ処理を行い、ローパスフィルタ処理後の出力信号を回転座標系から静止座標系に変換することで、不釣り合いに起因する成分を抽出し、(b)抽出した成分を、元のラジアルセンサの出力信号から減算して、不釣り合いに起因する成分を抑制せずにロータが慣性中心まわりに振れ回り可能な状態としている(例えば特許文献1参照)。

特開2001-27238号公報

 しかしながら、上述の磁気軸受装置では、慣性中心回転成分を除去したセンサ出力信号に基づいて回転軸の変位制御をしており、慣性中心回転成分については制御されていない。

 このとき、ロータ回転軸は前進歳差運動をしており、ロータの回転周波数が前進歳差運動における固有振動数に近づく特定の回転周波数域では共振が発生し、ロータの回転軸の変位が増大してしまう。

 また、センサ出力信号から慣性中心回転成分を除去せずに、慣性中心回転成分を抑制するように回転軸の変位制御を行うことが考えられるが、その場合、回転軸が形状中心まわりに回転するように変位を抑制する必要があり、そのために大きな電流を電磁石に導通させることが要求され、現実的ではない。

 本発明は、上記の問題に鑑みてなされたものであり、特定回転周波数域で真空ポンプを良好に運転させる真空ポンプコントローラおよび真空ポンプを得ることを目的とする。

 本発明に係る真空ポンプコントローラは、真空ポンプのロータ軸の変位を検出する変位センサから得られるセンサ信号に基づいて電流指令値を生成する信号処理部と、真空ポンプのロータ軸の変位を調整する電磁石に、電流指令値に対応する電流を導通させる駆動回路と、変位制限部とを備える。そして、変位制限部は、ロータ軸の回転周波数が特定回転周波数域に入っている場合、ロータ軸の変位を、慣性中心まわりの振れ回りに起因する変位に制限するように電流指令値を調整する。

 本発明に係る真空ポンプは、上述の真空ポンプコントローラと、上述のロータ軸と、上述の変位センサおよび上述の電磁石を備えた磁気軸受とを備える。

 本発明によれば、特定回転周波数域で真空ポンプを良好に運転させる真空ポンプコントローラおよび真空ポンプが得られる。

 本発明の上記又は他の目的、特徴および優位性は、添付の図面とともに以下の詳細な説明から更に明らかになる。

図1は、本発明の実施の形態に係る真空ポンプの内部構成を示す図である。 図2は、本発明の実施の形態に係る真空ポンプにおけるラジアル軸受部の配置について説明する斜視図である。 図3は、本発明の実施の形態に係る真空ポンプの磁気軸受を制御するコントローラの構成を示すブロック図である。 図4は、図3における慣性中心回転成分除去部の構成を示すブロック図である。 図5は、図3における変位制限部の構成を示すブロック図である。 図6は、ロータ軸の回転周波数に対する変位の変化について説明する図である。 図7は、ロータ軸の慣性中心まわりの歳差運動に基づく変位の変化について説明する図である。 図8は、慣性モーメント比に応じた、回転周波数に対する固有振動数の変化を説明する図である。

 以下、図に基づいて本発明の実施の形態を説明する。

 図1は、本発明の実施の形態に係る真空ポンプの内部構成を示す図である。図1に示す真空ポンプは、ターボ分子ポンプであって、真空ポンプ本体10において、ケーシング1、ステータ翼2、ロータ3、スラスト軸受部4、ラジアル軸受部5、モータ部6、吸気口7、排気口8、およびネジ溝9を備える。ロータ3は、ロータ翼3a、ロータ内筒部3b、およびロータ軸3cを備える。ロータ翼3aは、ロータ内筒部3bに接続され、ロータ内筒部3bは、ロータ軸3cに、例えばネジ止めなどで接続されている。 

 ケーシング1は、略円筒形状を有し、その内部空間に、ロータ3、スラスト軸受部4、ラジアル軸受部5、モータ部6などを収容し、その内周面に複数段のステータ翼2を固定されている。ケーシング1およびステータ翼2でステータが構成されている。

 スラスト軸受部4およびラジアル軸受部5は、ロータ軸3cの磁気軸受であって、軸方向および半径方向のロータ軸3cの変位を検出する変位センサ、軸方向および半径方向のロータ軸3cの変位を制御する電磁石などを備える。

 特に、ラジアル軸受部5は、ロータ3の重心より高い位置に、変位センサ11Hおよび電磁石12Hを備え、ロータ3の重心より低い位置に、変位センサ11Bおよび電磁石12Bを備える。

 図2は、本発明の実施の形態に係る真空ポンプにおけるラジアル軸受部5の配置について説明する斜視図である。

 具体的には、例えば図2に示すように、変位センサ11Hは、Xh軸について一対の変位センサ11XHp,11XHn、およびYh軸について一対の変位センサ11YHp,11YHnを含み、変位センサ11Bは、Xb軸について一対の変位センサ11XBp,11XBn、およびYb軸について一対の変位センサ11YBp,11YBnを含む。また、例えば図2に示すように、電磁石12Hは、Xh軸について一対の電磁石12XHp,12XHn、およびYh軸について一対の電磁石12YHp,12YHnを含み、電磁石12Bは、Xb軸について一対の電磁石12XBp,12XBn、およびYb軸について一対の電磁石12YBp,12YBnを備える。

 このような変位センサ11H,11Bによって、上側センサ位置でのXh軸方向の変位XhおよびYh軸方向の変位Yh、並びに、下側センサ位置でのXb軸方向の変位XbおよびYb軸方向の変位Ybが得られる。

 また、このような電磁石12H,12Bによって、Xh軸方向の電磁力およびYh軸方向の電磁力、並びに、Xb軸方向の電磁力およびYb軸方向の電磁力が発生され、その電磁力によって、ロータ軸3cのラジアル方向の変位が制御される。

 図1に戻り、モータ部6は、ロータ軸3cを電磁力で回転させる。モータ部6は、所定のコントローラ(例えば後述のコントローラ21)によって制御され、ロータ軸3c(つまり、ロータ3)の回転周波数Ωが制御される。吸気口7は、ケーシング1の上端開口部であって、フランジ形状を有し、図示せぬチャンバなどに接続される。吸気口7には、熱運動などで、そのチャンバなどから気体分子が飛来してくる。排気口8は、フランジ形状を有し、気体分子などを排出する。

 なお、図1に示す真空ポンプは、上述のステータ翼2およびロータ3によるターボ分子ポンプ部の後段にネジ溝9によるネジ溝ポンプ部を備える複合翼式であるが、全翼式でもよい。

 図3は、本発明の実施の形態に係る真空ポンプの磁気軸受を制御するコントローラの構成を示すブロック図である。

 当該実施の形態に係る真空ポンプは、真空ポンプ本体10を電気的に制御するコントローラ21を備える。そのコントローラ21は、上述の磁気軸受(ラジアル軸受け部5など)を制御する。

 なお、コントローラ21は、当該真空ポンプに内蔵されていてもよいし、真空ポンプ本体10とは別体とされ、真空ポンプ本体10に対して着脱可能な独立した装置としてもよい。

 コントローラ21は、専用回路および/またはコンピュータを備え、ハードウェアおよび/またはソフトウェアによる演算によって、各種処理を実行する。ここでは、コントローラ21は、信号処理部31、駆動回路32、慣性中心回転成分除去部33、変位制限部34、加算演算部35、および制御部36を備える。

 信号処理部31は、変位センサ11H,11Bから得られるセンサ信号に基づいて、電磁石12H,12Bのための電流指令値を生成する。

 駆動回路32は、電磁石12H,12Bに、上述の電流指令値に対応する電流を導通させる。

 特に変位制御しない場合、ロータ軸3cは、前進歳差運動で、回転周波数Ωで回転しつつ、慣性中心のまわりを振れ回り周波数ωで振れ回ろうとする。慣性中心回転成分除去部33は、上述のセンサ信号から、慣性中心まわりの振れ回りに起因する成分(慣性中心回転成分)を除去する。ロータ軸3cの所定の回転周波数域において、信号処理部31は、慣性中心回転成分除去部33により慣性中心回転成分が除去されたセンサ信号に基づいて、慣性中心まわりの振れ回りに起因する変位を許容するように電流指令値を生成する。この実施の形態では、慣性中心回転成分除去部33は、ロータ軸3cの回転周波数Ωが後述の特定回転周波数域の下限値より低い所定閾値Ω1を超えると、センサ信号における慣性中心回転成分の除去を開始する。具体的には、ロータ軸3cの回転周波数Ωが特定回転周波数域の下限値より低い所定閾値Ω1を超えると、慣性中心回転成分除去部33により慣性中心回転成分を除去されたセンサ信号に基づいて信号処理部31が電流指令値を生成する。なお、ここでの慣性中心は、後述する図7で示すようにロータ3全体での慣性中心を意味し、更に、慣性モーメントの基準軸は、ロータ3全体での静止座標系でのX-Y座標上の重心とZ座標上の重心を通る軸として想定している。

 図4は、図3における慣性中心回転成分除去部33の構成を示すブロック図である。例えば図4に示すように、慣性中心回転成分除去部33は、座標変換部41、ローパスフィルタ42、逆座標変換部43、減算演算部44、および同期発振器45を備える。

 座標変換部41は、センサ信号Xh,Yh,Xb,Ybを、静止座標系から、ロータ軸3cの振れ回り回転周波数ωの回転座標系へ変換する。

 具体的には、静止座標系のセンサ信号Xh(上側X軸),Yh(上側Y軸),Xb(下X軸),Yb(下側Y軸)が、図4に示すようにして、回転座標系のセンサ信号Xrh(上側X軸),Yrh(上側Y軸),Xrb(下X軸),Yrb(下側Y軸)に変換される。

 ローパスフィルタ42は、回転座標系でのセンサ信号Xrh,Yrh,Xrb,Yrbにおける、(静止座標系での振れ回り回転周波数ωに対応する)直流成分以外の周波数成分を減衰させる。逆座標変換部43は、センサ信号を、回転座標系から、静止座標系へ変換する。つまり、座標変換部41、ローパスフィルタ42、および逆座標変換部43は、静止座標系におけるセンサ信号の、振れ回り回転周波数ω以外の周波数成分を減衰させるバンドパスフィルタとして機能する。

 このようにして抽出されたセンサ信号の振れ回り回転周波数ωが、減算演算部44により元のセンサ信号から減算されることで、センサ信号における振れ回り回転周波数ωの成分(つまり慣性中心回転成分)が除去される。

 同期発振器45は、例えばPLL(Phase Locked Loop)などで、変位センサ11H,11Bのセンサ信号におけるゼロクロス位置に同期した回転パルス信号に同期して、上述の座標変換および逆座標変換に使用される信号sin(ω)およびcos(ω)を生成し、座標変換部41および逆座標変換部43に供給する。なお、回転パルス信号は、図示せぬ回路で変位センサ11H,11Bの出力から生成される。

 図3に戻り、変位制限部34は、ロータ軸3cの回転周波数Ωが特定回転周波数域(後述の高回転周波数域)に入っている場合、ロータ軸3cの変位を、慣性中心まわりの振れ回りに起因する変位に制限するように、電流指令値を調整する。

 この実施の形態では、変位制限部34は、(a)ロータ軸3cの回転周波数Ωが、上述の所定閾値から特定回転周波数域の下限値までの中間回転周波数域に入っているときに、慣性中心まわりの振れ回りに起因する変位を特定して図示せぬメモリーなどに記憶し、(b)その後、ロータ軸3cの回転周波数が上述の特定回転周波数域に入った場合、中間回転周波数域で記憶された変位を図示せぬメモリーなどから読み出し、ロータ軸3cの変位を、その変位に制限するように、電流指令値を調整する。

 図5は、図3における変位制限部34の構成を示すブロック図である。例えば図5に示すように、変位制限部34は、座標変換部51、ローパスフィルタ52、係数保存部53、補償信号生成部54、逆座標変換部55、位相・ゲイン設定部56、および同期発振器57を備える。

 座標変換部51、ローパスフィルタ52、逆座標変換部55、および同期発振器57は、図4に示す慣性中心回転成分除去部33における座標変換部41、ローパスフィルタ42、逆座標変換部43、および同期発振器45と同様のものである。座標変換部51、およびローパスフィルタ52は、別途設けずに、座標変換部41およびローパスフィルタ42を代わりに使用してもよい。

 係数保存部53は、ある回転周波数Ωrefにおいてローパスフィルタ52から出力される係数(つまり、現時点の振れ回り回転周波数ωの大きさを示す係数)Xhj(上側X軸),Yhj(上側Y軸),Xbj(下側X軸),Ybj(下側Y軸)を、基準値Xhref,Yhref,Xbref,Ybrefとして図示せぬメモリーなどに記憶する。

 補償信号生成部54は、現時点の係数Xhj,Yhj,Xbj,Ybjと基準値Xhref,Yhref,Xbref,Ybrefとの差分、位相θおよびゲインGh(上側),Gb(下側)に対応する補償信号dXrh,dXrh,dXrh,dXrhを図5に示すように生成する。なお、位相θおよびゲインGh,Gbは、位相・ゲイン設定部56によって所定の値に設定される。

 補償信号生成部54は、現時点の回転周波数Ωによる変位が、基準値Xhref,Yhref,Xbref,Ybrefが保存された回転周波数ωの際の変位より大きい場合には、現時点の変位を、基準値Xhref,Yhref,Xbref,Ybrefが保存された回転周波数Ωrefの際の変位に制限する補償信号dXrh,dYrh,dXrb,dYrbを生成する。したがって、現時点の回転周波数Ωによる変位が、基準値Xhref,Yhref,Xbref,Ybrefが保存された回転周波数Ωrefの際の変位に一致している場合には、補償信号dXrh,dXrh,dXrh,dXrhの値はゼロとなる。

 この補償信号dXrh,dYrh,dXrb,dYrbは、逆座標変換部55によって、回転座標系から静止座標系へ変換され、静止座標系での補償信号dXh,dYh,dXb,dYbが、変位制限部34の出力値として生成される。

 同期発振器57は、同期発振器45と同様にして、信号sin(ω)およびcos(ω)を生成するとともに、位相θに対応する信号sin(ω+θ)およびcos(ω+θ)を生成する。

 図3に戻り、加算演算部35は、変位制限部34の出力値を、信号処理部31から出力される電流指令値に加算する。

 制御部36は、コントローラ21内の上述の各部に対する設定や指令を供給する。

 次に、上記真空ポンプの動作について説明する。

 図6は、ロータ軸の回転周波数Ωに対する変位の変化について説明する図である。図7は、ロータ軸の慣性中心まわりの歳差運動に基づく変位の変化について説明する図である。

 この実施の形態では、真空ポンプの起動時に、ロータ3の回転周波数Ωをゼロから定格回転周波数Ωoまで増加させていく場合、ロータ3の回転が安定していない低回転周波数域では、信号処理部31は、慣性中心回転成分が除去されていないセンサ信号を使用して、PID制御でセンサ信号に基づく変位をゼロに近づけるように電流指令値を生成する。この低回転周波数域では、変位制限部34は、補償信号を出力しないか、値がゼロの補償信号を出力する。つまり、低回転周波数域では、変位制限は行われない。

 その後、回転周波数Ωが上昇し第1閾値周波数Ω1に到達する。第1閾値周波数Ω1から第2閾値周波数Ω2までの中間回転周波数域および第2閾値周波数Ω2から定格回転周波数Ωoまでの高回転周波数域(上述の特定回転周波数域)では、信号処理部31は、慣性中心回転成分が除去されたセンサ信号を使用して、PID制御でセンサ信号に基づく、慣性中心回転成分以外の変位成分をゼロに近づけるように電流指令値を生成する(つまり、慣性中心回転成分は許容される)。中間回転周波数域では、変位制限部34は、補償信号を出力しないか、値がゼロの補償信号を出力する。つまり、中間回転周波数域では、変位制限は行われない。

 そして、回転周波数Ωが中間回転周波数域の所定の基準回転周波数Ωrefになったとき、変位制限部34は、この時点での慣性中心回転成分を示す上述の係数Xhj,Yhj,Xbj,Ybjを、基準値Xhref,Yhref,Xbref,Ybrefとして保存する。

 その後、さらに回転周波数Ωが上昇し、第2閾値周波数Ω2に到達すると、変位制限部34は、上述の補償信号の出力を開始する。これにより、高回転周波数域では、信号処理部31から出力される電流指令値が、この補償信号によって調整され、図7に示すように、ロータ軸3cの振れ回りの変位が、基準回転周波数Ωrefのときの振れ回りの変位になるように制御される。

 図8は、慣性モーメント比(ジャイロファクタ)に応じた、回転周波数に対する固有振動数の変化を説明する図である。

 ロータ3は前進歳差運動をしており、図8に示すように、慣性モーメント比γ(軸方向の慣性モーメントIzと径方向の慣性モーメントIrとの比,Iz/Ir)が1未満であるときは、比較的低速で、危険速度(固有振動数に一致する回転周波数Ω)を迎えるため、制御などで、ロータ軸3cの変位を抑制することが可能であるが、慣性モーメント比γが1に近づくと、危険速度が高くなっていき、慣性モーメント比γが1になると、危険速度がなくなり、回転周波数の増加に伴い、固有振動数が回転周波数に漸近していく。したがって、定格回転周波数を含む高回転周波数域では、回転周波数が固有振動数に近くなり、上述の変位制限部34(つまり、補償信号)を使用しない場合、図6に示すように、振れ回り変位が、慣性中心まわりの振れ回りの変位から増加していく。

 仮に高回転周波数域において振れ回り変位をゼロに抑制しようとすると、高回転周波数域ではロータ3が高速回転しているため、電磁石12H,12Bに大電流を導通させる必要があるが、装置の許容電流値を超えてしまうおそれや、騒音が生じることから、現実的ではない。この実施の形態では、上述の補償信号で、慣性中心回転成分の程度まで振れ回り変位の増加を抑制しており、電磁石12H,12Bに導通させる電流値が装置の許容電流値を超えることなく当該真空ポンプを運転することができる。

 この実施の形態では、上述の高回転周波数域(特定回転周波数域)、つまり、第2閾値周波数Ω2は、ロータ3の慣性モーメント比γに対応して設定される。この実施の形態では、ロータ3の慣性モーメント比γは、ロータ3の定格回転周波数Ωoでの、その定格回転周波数Ωoと固有振動数との差を所定値以下とする値を有し、例えば0.8以上かつ1以下の値、または1以上の値を有する。つまり、上述のように、ロータ3は、高回転周波数域で振れ回り変位が増加するような慣性モーメント比γを有する。そのようなロータ3であっても、上述の補償信号によって、高回転周波数域における振れ回りの変位は、慣性中心回転成分に起因する変位まで抑制される。

 以上のように、上記実施の形態によれば、信号処理部31は、当該真空ポンプのロータ軸3cの変位を検出する変位センサ11H,11Bから得られるセンサ信号に基づいて電流指令値を生成する。駆動回路32は、当該真空ポンプのロータ軸3cの変位を調整する電磁石12H,12Bに、電流指令値に対応する電流を導通させる。変位制限部34は、ロータ軸3cの回転周波数Ωが特定回転周波数域に入っている場合、ロータ軸3cの変位を、慣性中心まわりの振れ回りに起因する変位に制限するように電流指令値を調整する。

 これにより、大電流を必要とせずにロータ軸3cの振れ回りによる変位が適度に抑制されるため、特定回転周波数域で真空ポンプを良好に運転させることができる。

 なお、上述の実施の形態に対する様々な変更および修正については、当業者には明らかである。そのような変更および修正は、その主題の趣旨および範囲から離れることなく、かつ、意図された利点を弱めることなく行われてもよい。つまり、そのような変更および修正が請求の範囲に含まれることを意図している。

 本発明は、例えば、真空ポンプに適用可能である。

 3 ロータ

 5 ラジアル軸受部(磁気軸受の一例)

 11B,11H 変位センサ

 12B,12H 電磁石

 21 コントローラ(真空ポンプコントローラの一例)

 31 信号処理部

 32 駆動回路

 33 慣性中心回転成分除去部

 34 変位制限部

Claims (5)


  1.  真空ポンプの磁気軸受を制御する真空ポンプコントローラにおいて、

     前記真空ポンプのロータ軸の変位を検出する変位センサから得られるセンサ信号に基づいて電流指令値を生成する信号処理部と、

     前記ロータ軸の変位を調整する電磁石に、前記電流指令値に対応する電流を導通させる駆動回路と、

     変位制限部とを備え、

     前記変位制限部は、前記ロータ軸の回転周波数が特定回転周波数域に入っている場合、

    前記ロータ軸の変位を、慣性中心まわりの振れ回りに起因する変位に制限するように、前記電流指令値を調整すること、

     を特徴とする真空ポンプコントローラ。

  2.  前記センサ信号から、慣性中心まわりの振れ回りに起因する成分を慣性中心回転成分として除去する慣性中心回転成分除去部をさらに備え、

     前記信号処理部は、前記特定回転周波数域において、前記慣性中心回転成分除去部により前記慣性中心回転成分が除去された前記センサ信号に基づいて、前記慣性中心まわりの振れ回りに起因する変位を許容するように前記電流指令値を生成すること、

     を特徴とする請求項1記載の真空ポンプコントローラ。

  3.  前記慣性中心回転成分除去部は、前記ロータ軸の前記回転周波数が前記特定回転周波数域の下限値より低い所定閾値を超えると、前記センサ信号における前記慣性中心回転成分の除去を開始し、

     前記変位制限部は、(a)前記ロータ軸の前記回転周波数が、前記所定閾値から前記特定回転周波数域の下限値までの中間回転周波数域に入っているときに、前記慣性中心まわりの振れ回りに起因する変位を特定して記憶し、(b)前記ロータ軸の前記回転周波数が前記特定回転周波数域に入ったときに、前記ロータ軸の変位を前記中間回転周波数域で記憶された前記慣性中心まわりの振れ回りに起因する前記変位に制限する前記電流指令値の調整を開始すること、

     を特徴とする請求項2記載の真空ポンプコントローラ。

  4.  前記特定回転周波数域は、前記真空ポンプのロータの慣性モーメント比に対応して設定され、

     前記慣性モーメント比は、前記ロータの定格回転周波数での、前記定格回転周波数と前記ロータの固有振動数との差を所定値以下とする値を有し、0.8以上であること、

     を特徴とする請求項1から請求項3のうちのいずれか1項記載の真空ポンプコントローラ。

  5.  請求項1から請求項4のうちのいずれか1項記載の真空ポンプコントローラと、

     前記ロータ軸と、

     前記変位センサおよび前記電磁石を備えた前記磁気軸受と、

     を備えることを特徴とする真空ポンプ。
PCT/JP2021/005365 2020-02-20 2021-02-12 真空ポンプコントローラおよび真空ポンプ WO2021166816A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21757852.5A EP4108946A4 (en) 2020-02-20 2021-02-12 VACUUM PUMP CONTROL AND VACUUM PUMP

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-026896 2020-02-20
JP2020026896A JP7361630B2 (ja) 2020-02-20 2020-02-20 真空ポンプコントローラおよび真空ポンプ

Publications (1)

Publication Number Publication Date
WO2021166816A1 true WO2021166816A1 (ja) 2021-08-26

Family

ID=77391193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005365 WO2021166816A1 (ja) 2020-02-20 2021-02-12 真空ポンプコントローラおよび真空ポンプ

Country Status (3)

Country Link
EP (1) EP4108946A4 (ja)
JP (1) JP7361630B2 (ja)
WO (1) WO2021166816A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7214805B1 (ja) 2021-08-30 2023-01-30 エドワーズ株式会社 磁気軸受装置及び真空ポンプ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137302A (ja) * 1987-11-25 1989-05-30 Koyo Seiko Co Ltd 磁気軸受の制御装置
JPH04116014U (ja) * 1991-03-29 1992-10-15 セイコー精機株式会社 磁気軸受の制御装置
JPH06193633A (ja) * 1992-03-09 1994-07-15 Hitachi Ltd 磁気軸受制御方法及び装置
JP2001027238A (ja) 1999-07-13 2001-01-30 Nsk Ltd 磁気軸受装置
JP2012163052A (ja) * 2011-02-08 2012-08-30 Edwards Kk 回転体及び該回転体を搭載した真空ポンプ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137302A (ja) * 1987-11-25 1989-05-30 Koyo Seiko Co Ltd 磁気軸受の制御装置
JPH04116014U (ja) * 1991-03-29 1992-10-15 セイコー精機株式会社 磁気軸受の制御装置
JPH06193633A (ja) * 1992-03-09 1994-07-15 Hitachi Ltd 磁気軸受制御方法及び装置
JP2001027238A (ja) 1999-07-13 2001-01-30 Nsk Ltd 磁気軸受装置
JP2012163052A (ja) * 2011-02-08 2012-08-30 Edwards Kk 回転体及び該回転体を搭載した真空ポンプ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4108946A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7214805B1 (ja) 2021-08-30 2023-01-30 エドワーズ株式会社 磁気軸受装置及び真空ポンプ
WO2023032766A1 (ja) * 2021-08-30 2023-03-09 エドワーズ株式会社 磁気軸受装置及び真空ポンプ
JP2023034065A (ja) * 2021-08-30 2023-03-13 エドワーズ株式会社 磁気軸受装置及び真空ポンプ

Also Published As

Publication number Publication date
JP2021131064A (ja) 2021-09-09
JP7361630B2 (ja) 2023-10-16
EP4108946A1 (en) 2022-12-28
EP4108946A4 (en) 2024-02-21

Similar Documents

Publication Publication Date Title
JP4249916B2 (ja) ブラシレスモータの制御回路、ブラシレスモータ装置、及び真空ポンプ装置
JPH0572177B2 (ja)
EP3240183B1 (en) Synchronous electrical power distribution system
EP3197043A1 (en) Multiple generator synchronous electrical power distribution system
JPH089692A (ja) 可変速発電電動装置
JP3169892B2 (ja) ターボ分子ポンプ装置
WO2021166816A1 (ja) 真空ポンプコントローラおよび真空ポンプ
WO2018179410A1 (ja) 電動機制御装置、圧縮機及び電動機制御方法
Piippo et al. Adaptive observer combined with HF signal injection for sensorless control of PMSM drives
WO2013128799A1 (ja) 電動モータの制御装置
WO2016000215A1 (zh) 速度波动的抑制方法、控制装置和压缩机控制系统
KR20180111896A (ko) 각도 결정 방법, 장치 및 제어 장치
JP4927000B2 (ja) センサレスブラシレスモータの制御回路、センサレスブラシレスモータ装置、及び真空ポンプ装置
JP2019044894A (ja) 磁気軸受制御装置および真空ポンプ
JP5361452B2 (ja) 同期電動機のセンサレス制御装置
US11736050B2 (en) Motor drive method and motor drive apparatus
JP5178693B2 (ja) 電動過給機の制御装置
US11384770B2 (en) Vacuum pump, and control device of vacuum pump
JP4127758B2 (ja) 分子ポンプの制御装置、及び分子ポンプ装置
JPH0562244B2 (ja)
JP2006271117A (ja) ステッピングモータの駆動装置
JP2024014058A (ja) 真空ポンプ、及び、制御方法
JPS6313918A (ja) 磁気軸受式タ−ボ分子ポンプの回転軸姿勢制御装置
JP2004048934A (ja) Dcブラシレスモータのロータ角度検出装置
CN117795214A (zh) 磁轴承装置及真空泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021757852

Country of ref document: EP

Effective date: 20220920